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Abstract

Internet voting has long been a topic both of public discussion and also of scientific re-

search. While the introduction of Internet voting may bring many advantages, it is further

important to ensure an adequate level of security of the systems and underlying schemes

that are used for casting and tallying the votes in order to encourage faith and acceptance

for this relatively new way of voting.

A number of cryptographic schemes have been proposed, that enable secure Internet

voting. One of the most established and well-researched solutions is the Helios scheme,

which is also implemented as an open-source system. Both its implementation and the

scheme behind it has been extensively studied in the literature, and the Helios system has

been used for numerous elections in practice, such as the IACR elections [IAC16].

However, there are election settings for which Helios is currently not appropriate, either

due to infrastructure demands, required functionality for the voters or assurance of the

security requirements. These kinds of election settings could benefit from the advantages

that secure Internet voting provides.

In this thesis we identify the election settings not currently supported by Helios, propose

our extensions for each one of these settings and evaluate their security. Hence, this

work describes four Internet voting schemes that are build upon Helios, with each scheme

developed towards a specific setting.

The first scheme presented here enables elections within the so-called boardroom voting

setting. This setting is characterized by its decentralization, whereby all the tasks within

the election are distributively performed by the voters themselves, without the support

of a centralized infrastructure. The election in the boardroom voting setting are further

conducted in an ad-hoc manner, so that limited time is available for preparation before-

hand. We propose an extension of Helios that distributes the tasks of the voting system

components in Helios among the voters. For this, we use cryptographic primitives such as

decentralized key exchange with short authentication strings, distributed threshold secret

sharing and distributed threshold decryption and Byzantine agreement.

The second scheme extends Helios with proxy voting functionality. Proxy voting, as

a newly emerged form of voting, enables the voter to delegate her voting right in the

election to a trusted third-party, the so-called proxy, who is authorized to vote on the

voter’s behalf. This extension facilitates such delegation while assuring the security for
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delegating voters and for the proxies and preserves the security guarantees provided by

Helios for the voters who vote directly (instead of delegating). For ensuring the security

of our extension, we introduce the so-called delegation credentials that are assigned to

the voters and are used to compute anonymized delegation tokens sent to the proxies to

enable delegation. We further use cryptographic primitives such as proofs of knowledge

and signatures of knowledge.

The third scheme combines the first two settings to extend Helios towards the proxy

boardroom voting setting, namely, a setting in which the elections are performed in a

decentralized way as in boardroom voting, yet the voters who cannot participate in the

election themselves are allowed to delegate their voting right to a trusted proxy before

the election. The security of our extension is assured with threshold secret sharing and

Pedersen commitments.

The fourth scheme extends Helios by improving its security. As such, it introduces

participation privacy, meaning that the voting system does not reveal which voters have

participated in the election, while supporting verification that only the eligible voters have

cast their ballots in the election. The extension furthermore introduces receipt-freeness,

ensuring that the voter cannot create a receipt that proves to a third party how she voted,

thus preventing vote selling. To ensure the security of the extension, a new kind of entity

is introduced, the posting trustee, and a new kind of ballot, the so-called dummy ballot

that is indistinguishable from a normal ballot cast by the voter, but does not modify

the election result. We furthermore use disjunctive zero-knowledge proofs and proofs

of signature knowledge to prove, that a sender of a particular ballot knows the private

signature key of an eligible voter, or that the ballot is a dummy ballot.

For each one of the extensions, the security model is provided, which describes the

security requirements and the assumptions that are necessary for ensuring the security

requirements (i.e. vote privacy or vote integrity), is provided. For the first three exten-

sions, the security model is used as a base for the informal security evaluation, in which

an informal argument is used to show, that the security requirements hold under the

described assumptions. Conducting a formal security evaluation for these extensions is

considered an important part of the future work, in which new formal definitions have to

be developed. For the fourth extension, we provide a formal security analysis that relies

on the formal definitions for the security requirements of vote privacy, vote integrity and

eligibility, available in the literature. We furthermore introduce new formal definitions for

participation privacy, receipt-freeness and fairness, which we also use for the formal proofs

of our extension.



Zusammenfassung

Internetwahlen sind bereits seit Langem ein Thema in der öffentlichen Diskussion sowie

in der wissenschaftlichen Forschung. Während die Einführung von Internetwahlen viele

Vorteile mit sich bringen kann, ist es ebenso wichtig ein adäquates Niveau von Sicherheit

zu garantieren, sodass Vertrauen und Akzeptanz in diese relativ neue Wahlform aufgebaut

werden kann. Die Sicherheit bezieht sich speziell auf Systeme und die dahinter liegenden

Protokolle, die für die Stimmabgabe und die Auszählung benutzt werden.

Es wurde bereits eine Vielzahl kryptographischer Protokolle vorgeschlagen, die sichere

Internetwahlen ermöglichen sollen. Darunter ist Helios das am meisten etabilierte und

erforschte Protokoll, für das es zusätzlich auch eine Open-Source Implementierung gibt.

Sowohl diese Implementierung als auch das Protokoll dahinter wurden extensiv in ver-

schiedener Literatur studiert, und das Helios Wahlsystem wurde für mehrere Wahlen in

der Praxis benutzt, darunter die Wahlen der IACR [IAC16].

Jedoch gibt es einige Wahlszenarien, für die Helios momentan noch nicht geeignet ist.

Darunter fallen Infrastrukturanforderungen, vom Wähler benötigte Funktionalität oder

Sicherheitsanforderungen. Dennoch können diese Arten von Wahlen von den Vorteilen,

die sichere Internetwahlen mit sich bringen, profitieren.

In dieser Dissertation identifizieren wir Wahlszenarien, die momentan nicht vom Helios

unterstützt werden, schlagen Erweiterungen für jedes dieser Szenarien vor und evaluieren

die Sicherheit dieser Erweiterungen. Infolgedessen beschreibt diese Arbeit vier Internet-

wahlprotokolle die auf Helios aufbauen, wobei jedes Protokoll für ein spezifisches Wahl-

szenario entwickelt wurde.

Das erste Protokoll, das hier präsentiert wird, ermöglicht sogenannte Wahlen in Gremien

(“Boardroom Voting”). Dieses Szenario ist durch seine Dezentralisierung charakterisiert,

wobei alle Aufgaben während einer Wahl auf die Wählern selbst, ohne Unterstützung

durch eine zentralisierte Infrastruktur, verteilt sind. Die Wahlen in Gremien werden ad-hoc

durchgeführt, sodass wenig Zeit für Vorbereitungen im Voraus zur Verfügung steht. Wir

schlagen eine Erweiterung von Helios vor, die die Aufgaben der Wahlsystemkomponenten

in Helios auf die Wähler verteilt. Dafür benutzen wir kryprographische Primitive wie den

dezentralisierten Schlüsselaustausch mit kurzen Authentifizierungszeichenketten, verteiltes

Secret-Sharing, verteilte Entschlüsselung und die Byzantinische-Fehler-Toleranz.

Das zweite Protokoll erweitert Helios mit der Funktionalität für Wahlen mit Delegation-
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sprinzip (“Proxy Voting”). Proxy Voting ist eine Wahlform, die es dem Wähler erlaubt sein

Wahlrecht in einer Wahl an eine vertrauenswürdige Drittpartei, dem sogenannten Proxy,

zu delegieren. So wird der Proxy bevollmächtigt für diesen Wähler eine Stimme abzugeben.

Diese Erweiterung ermöglicht das Delegieren der Stimme und gewährleistet dieselben

Sicherheitseigenschaften für nicht-delegierende Wähler wie im Original-Helios. Um die

Sicherheit unserer Erweiterung zu garantieren, führen wir sogenannte Delegierungs-Cre-

dentials ein. Diese sind den Wählern zugeordnet und werden verwendet, um die anonymi-

sierte Delegierungs-Tokens zu erzeugen. Der Wähler sendet zum Delegieren ein Delegier-

ungs-Token an einen Proxy. Ferner benutzen wir kryptographische Primitive wie Zero-

Knowledge Beweise und Signatures-of-Knowledge.

Das dritte Protokoll kombiniert die ersten beiden Szenarien, um Helios für Wahlen

mit Delegationsprinzip in Gremien (“Proxy Boardroom Voting”) zu erweitern. In diesem

Szenario werden die Wahlen in dezentralisierter Weise durchgeführt, dennoch haben die

Wähler, die selbst nicht am Treffen teilnehmen können, die Möglichkeit ihr Wahlrecht

an einen vertrauenswürdigen Proxy vor der Wahl zu delegieren. Die Sicherheit von un-

serer Erweiterung wird durch das Threshold-Secret-Sharing und Pedersen Commitments

gewährleistet.

Das vierte Protokoll verbessert die Sicherheit von Helios. Unsere Erweiterung führt

die Anonymität ein, sodass das Wahlsystem nicht preisgibt, welche Wähler an der Wahl

teilgenommen haben. Die Erweiterung erlaubt es jedoch zu verifizieren, dass nur wahlbe-

rechtigte Wähler gewählt haben. Weiterhin führt die Erweiterung die Quittungsfreiheit

ein: Der Wähler kann keine Quittung erzeugen, um einer Drittpartei zu beweisen, wie

er gewählt hat. Dadurch wird der Verkauf von Stimmen verhindert. Um die Sicherheit

unserer Erweiterung zu gewährleisten, wird eine neue Entität, ein Posting Trustee, sowie

eine neue Art von Stimmzetteln, ein sogenannter Dummy-Stimmzettel, eingeführt. Der

Dummy-Stimmzettel ist von einem normalen Stimmzettel, den ein Wähler abgibt, nicht

unterscheidbar. Außerdem hat er keine Auswirkung auf das Wahlergebnis. Um für einen

Stimmzettel zu zeigen, dass entweder der Absender des Stimmzettels einen geheimen Sig-

naturschlüssel des wahlberechtigten Wählers kennt oder dass der Stimmzettel ein Dummy-

Stimmzettel ist, benutzen wir disjunktive Zero-Knowledge Beweise und Proofs-of-Signature-

Knowledge.

Für jede Erweiterung wird ein Sicherheitsmodell angegeben, das die Sicherheitsan-

forderungen und die Annahmen, unter denen diese Sicherheitsanforderungen (z. B. Wahlge-

heimnis oder Stimmintegrität) erfüllt werden, beschreibt. Für die ersten drei Erweiterun-

gen wird das Sicherheitsmodell als Basis für eine informelle Sicherheitsevaluierung ver-

wendet, wobei ein informelles Argument benutzt wird, um zu zeigen, dass die Sicher-

heitsanforderungen unter den genannten Annahmen erfüllt werden. Eine formale Sicher-

heitsevaluierung von diesen Erweiterungen durchzuführen stellt einen wichtigen Aspekt

zukünftiger Arbeit dar. Dafür müssen jedoch zunächst neue formale Definitionen entwick-

elt werden. Für die vierte Erweiterung geben wir eine formale Sicherheitsanalyse an,
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die auf formalen Definitionen für die Sicherheitsanforderungen von Wahlgeheimnis, Stim-

mintegrität und Wahlberechtigung auf vorhandener Literatur aufbaut. Weiterhin führen

wir neue formale Definitionen für die Anonymität, Quittungsfreiheit und Fairness ein, die

wir auch für die formalen Sicherheitsbeweise unserer Erweiterung benutzen.
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Chapter 1

Introduction

1.1 Motivation

For many years, Internet voting has been a matter of public interest, both within the scien-

tific community and as a subject of political debates. Its proponents stress the advantages

of Internet voting, potentially increasing voter turnout and supporting voters who would

otherwise experience difficulties casting their vote, such as voters abroad or for the voters

with disabilities that impact their mobility. As a result, several countries, such as Es-

tonia [Est10] and Switzerland [SGM+15], introduced Internet voting for legally-binding

elections. Internet voting has been widely used on a smaller scale, such as in university

elections [ADMP+09,Pri17] or elections in associations [OKNV12, IAC16].

However, it must be acknowledged that there is also strong opposition to the deployment

of Internet voting. In particular, the opponents of Internet voting stress its vulnerability

to cyberattacks on the voting system components which may manipulate the election

result or violate vote privacy on a larger scale than it is possible with traditional paper-

based elections. As such, vulnerabilities have been shown to exist in systems used for

Internet voting in practice [WWIH12,SFD+14,HT15], that could well have been used by

the attacker to manipulate the election outcome [SFD+14, HT15] or to reveal how each

individual voter voted [WWIH12,SFD+14]. In particular, these vulnerabilities have shown

that stronger mechanisms for ensuring vote privacy and for detecting manipulations within

the elections are needed.

As a result, cryptographic solutions for Internet voting schemes have been proposed

that aim to ensure such security requirements as vote privacy, vote integrity or eligibility

(i.e. ensuring that only eligible voters participate in the election), as well as other se-

curity requirements deemed relevant to a particular election setting. These solutions, in

particular, rely on such techniques as encryption, proofs of knowledge, or mix nets.

One of the Internet voting schemes that uses cryptography for ensuring its security is

the Helios scheme [Adi08], implemented as an open-source voting system. Helios has been

widely used for conducting small-scale Internet voting elections. The example of such elec-

tions include the university election at UC Louvain [ADMP+09], the university elections
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in Princeton [Pri17] and the annual internal elections at the International Association of

Cryptographic Research (IACR) since 2010 [IAC16]. Several extensions of Helios have

been proposed, introducing such modifications as distributing trust between several vot-

ing system components, using pseudonyms instead of voter identities for publishing the

cast ballots (both proposed and implemented in Helios 2.0 described in [ADMP+09]), or

using digital signatures for authenticating the voters instead of passwords [CGGI14]. A

number of papers exposed the vulnerabilities of either the original Helios scheme or its ex-

tensions [BPW12,KTV12] and the implemented software [BHPS16,CFE16,GKV+16], also

addressing the solutions on fixing these vulnerabilities. Furthermore, methods of provable

security have been used to evaluate the security of either the original Helios scheme or its

extensions, resulting in formal proofs for its security requirements, namely, vote privacy

in [BCG+15] and vote integrity and eligibility in [CGGI14].

The Helios scheme, with its different extensions is versatile enough to adapt to various

election settings. However, there are still some limitations. Among these are the require-

ments on the infrastructure used for the election, available functionality for the voters

and the level of privacy or integrity that Helios offers. This thesis focuses on several the

election settings, for which the current extensions of Helios would not currently be appro-

priate. The goal of this work is to extend Helios towards some of these election settings,

hence providing ways to conduct secure Internet voting in them.

1.2 Contributions of the Thesis

This thesis describes the extensions of the Helios scheme towards different election settings.

These settings encompass as different characteristics regarding the electorate and available

infrastructure, as well as different functional and security requirements and are described

below.

The security of the extensions proposed in this thesis is systematically evaluated. Thereby,

the assumptions on adversarial capabilities are derived, that are required for the fulfillment

of the security requirements in the extensions. For one of the extensions, formal security

proofs are provided.

The structure of the thesis is summarized in Figure 1.1, with the arrows showing the

dependencies between the chapters.

1.2.1 Boardroom Voting

The first election setting considered in this thesis places specific demands on the available

infrastructure and is characterized by a specific electorate. The setting is the so-called

“boardroom voting”. It encompasses the elections that occur within corporations, univer-

sity governing bodies, and during various meetings. Elections and polls during meetings

are difficult as decisions are required when those who vote are not physically present. So

far, technology enables them to participate in public discussions (e.g., over video confer-
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Figure 1.1: Structure of this thesis

ence), but then they are either excluded from the voting process, or the voting process is

no longer secret if, for example, the voting is done via raising hands. Hence, a scheme for

remote electronic voting would benefit such voters by allowing them to participate in the

election while preserving vote privacy. In the boardroom voting setting, as opposed to

large-scale elections, the voting is performed in smaller groups, often without specialized

central election infrastructure, and is often conducted in an ad-hoc fashion. Hence, an

Internet voting scheme that can be used for boardroom voting should enable decentralized

and spontaneous elections.

There are extensions of Helios that offer some degree of decentralization by introduc-

ing multiple trustees responsible for tallying. However, they still depend on a central

infrastructure such as a bulletin board or a registration authority to conduct elections.

Hence, the first contribution of this thesis is an extension of Helios which facilitates

boardroom voting in order to support decentralized ad-hoc elections where some voters

may not be co-present. For this extension we modify the tasks performed by the voting

system components in Helios, so that they can be performed by the voters themselves in

a distributed way.

The extension of Helios towards boardroom voting and its security evaluation is de-

scribed in Chapter 3.
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1.2.2 Proxy Voting

The second contribution of this thesis considers a form of voting, the so-called “proxy

voting”, where the voter has the right not only to cast the vote directly, but also to

delegate it to a trusted person referred to as proxy. Such a form of voting can, for

example, be useful in elections that occur on a frequent basis, so that the voters might

easily become overwhelmed by the frequent demands to vote. Proxy voting would enable

them to delegate some of these decisions, while (as opposed to representative democracy)

they still retain the rights to vote directly on other issues, on which the voters feel more

informed. As such, enabling proxy voting requires additional functionality that should be

available to the voter, namely, being able to delegate her vote to a chosen proxy. Note

that in this setting the voter does not provide the proxy with instructions on how to vote,

since the purpose of the delegation is to support voters who are not sure how to vote but

want to delegate their vote to a person whose decision making in choosing a voting option

to vote for they trust.

Generally, the original Helios scheme as well as its existing extensions allow the voter

to delegate her vote to a proxy. The ways to do this, however, have their disadvantages.

As such, the first way the voters can delegate their vote in Helios is to divulge their

voting credentials to a proxy, in effect allowing them to vote on her behalf. In this case,

if the voter changes her mind, wanting to cancel her delegation and vote directly, there

is no simple mechanism for her to do so without contacting the registration authority.

Besides, this solution implies that the proxy knows which voter delegated to her, if the

voter credentials are tied to their identities. A second way to delegate using Helios is for

the proxies to prepare and submit her ballot privately to the voters who request it. This

solution, however, also has disadvantages, as the proxy has to make her choice in advance,

before the voters delegate to her, and cannot change her vote after the voters have cast

her ballot without having to contact the voters again. She further knows the identities of

the voters who delegated to her.

Hence, the second goal of this work is to extend Helios towards proxy voting while en-

abling the voters and the proxies to retain control over their votes, direct or delegated. As

the security and functional requirements towards proxy voting have not been extensively

studied in the literature, we first offer a list of security and functional requirements that

we consider relevant for proxy voting. Then, we propose a scheme that, in addition to en-

suring the security of original Helios for the voters who vote directly, addresses the proxy

voting specific requirements thus securing the delegation process.

The extension of Helios towards proxy voting and its security evaluation is described in

Chapter 4.

1.2.3 Proxy Boardroom Voting

The third contribution of this thesis considers the setting that requires proxy voting func-

tionality in boardroom voting. In this setting we consider an election among boardroom
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members, similar to boardroom voting that is performed in a decentralized way. The

proxy voting functionality should ensure that the boardroom members who are unable to

participate in the election (for example, by not being able to attend the meeting due to

time constraints) are able to delegate their vote to a trusted proxy (either another board-

room member or a third party) who participates in the meeting and vote on behalf of the

absent voter.

As such, the proposed setting suggests, that the functionality that enables to delegate

one’s vote before the meeting – hence, before the election starts – is required. The solution

for proxy voting in centralized elections proposed in this thesis, on the other hand, implies

that the voters delegate their votes after the election has been fully set up and the voting

has started. Hence, a straightforward application of the extension towards proxy voting

is not appropriate for proxy boardroom setting.

The extension towards boardroom voting would allow to delegate one’s vote before the

election in boardroom voting setting if the voter issues a signed form that enables the

chosen proxy to cast a vote on behalf of this voter. However, such a solution reveals

both to the proxy and to the rest of the voters would know to which proxy the voter has

delegated her vote. This is justified in some cases, whereby other boardroom members

know, whom the delegating voter trusts anyway. Still, in other cases the voter does not

wish to publicly disclose her support for a particular proxy to others, or even to the proxy

herself.

Hence, the third contribution of the thesis is extending Helios towards proxy boardroom

voting by combining and modifying the ideas from the extensions for boardroom voting

and proxy voting.

The extension towards proxy boardroom voting and its security analysis is described in

Chapter 5.

1.2.4 Privacy Improvements

The final contribution considers an election setting that requires a higher level of privacy

than Helios provides. Namely, it aims to ensure participation privacy, meaning that the

information, whether or not a particular voter has participated in the election, should be

hidden, and provide receipt-freeness, meaning that the voter should not be able to create

a receipt that proves to a third party that she has voted for a particular candidate.

The original Helios scheme does not ensure participation privacy, as the identities of

the voters who cast their ballot in the election are published on the bulletin board for the

public to see. Subsequent extensions of Helios address this shortcoming by allowing the

election organizers to assign pseudonyms to the voters [ADMP+09], which are published

instead of their identities. This solution, however, prevents from verifying the eligibility

of the election, as the entity who assigns the pseudonyms should be trusted to issue them

only to eligible voters.

As a further privacy issue, Helios does not ensure receipt-freeness. As such, if a voter
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manages to use a modified version of a voter client, she can prove that the ballot she cast

– which is published on the bulletin board next to her identity or pseudonym – was cast

for a particular candidate. In this way, by forwarding this receipt to a third party, she

can sell her vote. Note, as these receipts do not require extensive two-way communication

or face-to-face meetings between the voter and the vote buyer, it is possible for the vote

buying to occur on a large scale, potentially altering the outcome of the election.

Hence, the final contribution of this thesis is an extension of Helios towards privacy

improvements that achieves two goals: ensuring participation privacy while still being

able to publish the identities of the eligible voters instead of their pseudonyms in order

to enable the verification of eligibility, and ensuring receipt-freeness. Additionally, the

ways to introduce participation privacy and receipt-freeness into the extensions towards

boardroom voting, proxy voting and proxy boardroom voting are discussed.

A formal security analysis of the proposed extension with privacy improvements is pro-

vided. It relies on the existing formal security definitions that were used in order to

prove the fulfillment of the security requirements such as vote privacy, vote integrity and

eligibility in Heliios. Furthermore, new formal definitions for participation privacy and

receipt-freeness are introduced. These new definitions are used for proving the fulfillment

of these requirements in the proposed extension.

The extension of Helios towards privacy improvements of participation privacy and

receipt-freeness and its security analysis is described in Chapter 6. Futhermore, Chapter 6

discusses the ways to introduce the privacy improvements of participation privacy and

receipt-freeness into the settings described in Chapters 3 to 5.



Chapter 2

Background

This chapter describes the background of the content of the thesis. First, the security

requirements are provided that have been considered for Internet voting schemes. Then

the cryptographic primitives are outlined that are used in the Internet voting schemes,

in particular the schemes proposed in this thesis. Finally, an overview of Helios is given,

including the description of the variant of Helios that is used as a basis for the extensions

proposed in the thesis and a security model for it.

The contents of this section have been partially published at the 11th International

Conference on Availability, Reliability and Security [KMNV16], at the 6th International

Conference on Electronic Voting, Verifying the Vote [KNV+14] and at the 5th Interna-

tional Conference on E-Voting and Identity [KTV15].

2.1 Security Requirements

In this section we describe the security requirements for Internet voting used in this work.

Security requirements in Internet voting have been an extensive research topic, both

from the technical and from the legal perspective. In particular, the legal perspective has

been considered in [Vol09, BGRR13, LSBV10, Neu16] by deriving the requirements from

the legal election principles. A set of recommendations has been proposed by the Council

of Europe in 2004 [Cou04]. From the technical perspective, a number of definitions of the

security requirements have been used for the specification and evaluation of the Internet

voting schemes, both formally (e.g. [BCG+15,DKR09,CGKü+16,SFC15] ) and informally.

These requirements are summarized and described below.1. Note, that these requirements

can be ensured only for the voters who are not completely controlled by the adversary.

As such, several of these requirements relate to the privacy aspect of Internet voting

security, ensuring that no information about the voter’s intention is leaked, aside from what

can be deduced from the election result. Thereby one can distinguish between following

aspects of privacy, depending on the data that should be private:

1Since there is no consistent terminology in the literature for some of the requirements, we list the

requirements by the terms that we are going to use in this work.
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Vote Privacy. The voting system should not provide additional information on how each

particular voter has voted [RBH+09,KR05,DKR09], aside from the information available

from the election result.

Fairness. The voting system should not reveal any partial results before the voting is

finished [KR05].

Participation Privacy. The voting system should not reveal whether a particular voter

has participated in the election2 [HS11,CGGI14].

The literature further defines such security properties as receipt-freeness, coercion-resistance

or everlasting privacy, that aim to preserve the vote privacy or the participation pri-

vacy requirements under specific assumptions on the security model. As such, receipt-

freeness means that the vote privacy requirement should be preserved even for the vot-

ers who attempt to obtain a receipt that can prove to a third party how they voted

[RBH+09, KR05, DKR09]. An even stronger property is coercion resistance, meaning

that the vote privacy and participation privacy are preserved even in case of voter co-

ercion, i.e. in case the voter chooses to cooperate with the adversary during voting

[RBH+09, DKR09, JCJ05]. Another privacy-related property mentioned in the literature

is everlasting privacy, meaning that vote privacy should be ensured even for a computa-

tionally unrestricted adversary [MN06].

Other requirements are related to the integrity aspect of the Internet voting and are

meant to ensure that the election has not been manipulated. Thus, the following steps of

preventing the manipulations can be distinguished:

Vote Integrity. It should be ensured that all the votes are correctly processed by the

voting system, without being altered or manipulated [RBH+09]. Often, three steps of

processing the ballots are considered, distinguishing between cast-as-intended (i.e. the

cast ballot corresponds to the intention of the voter), stored-as-cast (i.e. the cast ballot

was stored correctly by the voting system) and tallied-as-stored (i.e. all the stored ballots

are processed correctly during the tallying) vote integrity. [RBH+09,SFC15].

Eligibility. It should be ensured, that only the votes from the eligible voters, and only

one vote from each voter, are included in the election result. [SFC15,LK02,KR05].

2While this requirement is most commonly referred to as “anonymity” in the literature, we propose the

term “participation privacy” which we consider more accurate and more helpful in distinguishing this

requirement from other privacy-related requirements.
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Moreover, much of the focus in the Internet voting literature has been on providing

verifiability for the elections, meaning that there should be means to detect manipulations

by performing the required verifications without relying on a trusted entity.

Finally, for dealing with the reliability aspect of the Internet voting, a following require-

ment is defined to ensure that the election can be successfully conducted even in presence

of some faulty system components or denial-of-service attacks:

Robustness. The voting system should be able to successfully complete the election after

all the votes have been cast, even in case if some of the authorities fail to produce valid

output [RBH+09,LK02].

In this work we consider the security requirements of vote privacy, fairness, participation

privacy, vote integrity, eligibility and robustness.

2.2 Cryptographic Primitives

In this section we describe the cryptographic primitives used in both the original Helios

scheme and in our extensions. We generally assume that the cryptographic problems, on

which the security of described primitives depends, are computationally hard.

2.2.1 ElGamal

The ElGamal encryption scheme [ElG85] is a probabilistic public-key cryptosystem that

relies on the Decisional Diffie-Hellman assumption. Let Gq as a cyclic group with prime

multiplicative order q where the Decisional Diffie-Hellman is assumed to hold. Given a

generator g of Gq, the public key is defined as (g, h) with x = logh g as a secret key. A

message m ∈ Gq is encrypted as Enc(pk,m) = (a, b) = (gr,m · hr) for a randomly chosen

r ∈ Zq. For decrypting the ciphertext (a, b) one computes m = ba−x. The ElGamal

encryption is either multiplicatively or additively homomorphic, with the latter property

achieved by encrypting gm instead of m. Note, that in case of an additively homomorphic

ElGamal, only small values of m can be decrypted due to the complexity of calculating

the discrete logarithm. Further in this thesis, c1 · c2 = (a1, b1) · (a2, b2) = (a1 · a2, b1 · b2)
denotes a pairwise multiplication of ciphertexts c1, c2.

2.2.2 Proofs of Knowledge

Proofs of knowledge are being commonly used for proving the knowledge of a witness for a

particular statement. In particular, the proofs used in this thesis have the honest verifier

zero-knowledge property, which means that the proof does not reveal any information

about the witness in a communication with a honest verifier. Examples of such proofs



10 2 Background

are the proof of discrete logarithm knowledge [Sch91], proof of discrete logarithm equality

[CP92] or knowledge of representation [CS97a]. The following notation is used in this

thesis. For example, given public parameters g, h and secret x, the proof of knowledge of

the discrete logarithm x is denoted as:

π = PoK{x : gx = h}

Cramer et al. [CDS94] propose the technique for the construction of disjunctive witness-

hiding proofs that allow proving that the prover knows a witness to one out of multiple

statements, without revealing the witness or the corresponding statement. Camenisch et

al. furthermore describe the construction of proofs of knowledge for general statements of

discrete logarithms has been proposed by Camenisch et al. in [CS97b].

For making proofs of knowledge used in this thesis into non-interactive zero-knowledge

proofs of knowledge, thus making sure that no one learns anything from the proof aside

from whether the prover knows a witness to the statement, the Fiat-Shamir heuristic [FS86]

is used. Namely, the input from the verifier in a proof (the so-called challenge) is replaced

with an output of a functionH, which should be indistinguishable from a random function.

In practice, H is often instantiated as a cryptographic hash function. Depending on what

H takes as an input, Bernhard et al. [BPW12] distinguish between weak and strong Fiat-

Shamir heuristic: in the weak version, the input to H is only the first message from the

prover (the so-called commitment), and in the strong version the input to H also includes

the public values for the statement that is being proven.

2.2.3 Signatures of Knowledge

Proofs of knowledge can also be used as a digital signature scheme, in so-called signatures

of knowledge, a concept, described in [CS97a]. Namely, given the message m to be signed,

the Fiat-Shamir heuristic is used for computing the proof of knowledge so that m is

included in the input for the function H that outputs the challenge in the proof. In this

thesis, a notation similar to the proofs of knowledge is also used for the signatures of

knowledge: for example, given (g, h) as a public key and x = logg h as a corresponding

secret key, a signature of knowledge on m, computed by proving the knowledge of x, is

denoted as:

π = PoK{x : gx = h}(m)

2.2.4 Proof of Encryption of 0

For proving that a given ElGamal ciphertext (a, b) encrypts 0 in additively homomorphic

ElGamal (or 1 in multiplicatively homomorphic ElGamal), one presents the proof:

PoK{∃r : a = grp ∧ b = hr}
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This is done using the proof of discrete logarithm equality described in [CP92].

2.2.5 Proof of Plaintext Knowledge

The ElGamal encryption does not provide non-malleability, meaning that given a cipher-

text c one can calculate a ciphertext c′ that encrypts a plaintext that is meaningfully

related to the plaintext in c, without knowing the plaintext. As such, c′ can be a re-

encryption of c, so that two ciphertexts encrypt the same plaintext. While this property

is useful in some cases, it is also that should be prevented in others, such as in order to

protect from the ballot copying attacks in Internet voting [SB13] that could violate vote

privacy. A simple way to introduce non-malleability to the ElGamal encryption, described

in [BPW12], is to make the sender of the ciphertext prove that they know a corresponding

plaintext. This can be done by using the non-interactive proof of knowledge of discrete

logarithm (described in [Sch91]). Thus, for c = (a, b) = (gr,m · hr) with g, h being the

ElGamal public keys, proving the knowledge of a plaintext m can be done via proving the

knowledge of r given a. As shown in [BPW12], the ElGamal scheme with the proof of

plaintext knowledge is NM-CPA secure.

2.2.6 Proof of 1-of-L Encryption

In order to prove that a ciphertext (a, b) encrypted with the ElGamal public key (g, h)

encrypts a message m that is in a given finite set, i.e. that m ∈ {m1, ...,mL}, one computes

the proof of knowledge with

π = PoK{r : gr = a ∧
L∨
i=1

mih
r = b}

For constructing this proof, the techniques for constructing the proof of knowledge for

proving the equality of discrete logarithms [CP92] and for disjunctive proofs [CDS94] are

being used.

2.2.7 Proof of Decryption Validity

The proofs of decryption validity are used in order to show that an ElGamal ciphertext

(a, b) decrypts to a message m without revealing the private key used for decryption.

Namely, given an ElGamal public key (g, h) and a message m, one proves that

π = PoK{s : gs = h ∧ as = b ·m−1}

The proof of decryption validity hence is equivalent for the proof of equality for discrete

logarithms described in [CP92].
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2.2.8 Proof of Signature Knowledge

Let S = (KeyGen,Sign,Verify) be a digital signature scheme, pks←$KeyGen a public key

for S and m a message from the message space of S. The proof of signature knowledge is

used for the prover to show that she knows a valid signature for m without revealing the

signature itself, i. e.

π = PoK{s : Verify(pks,m) = 1}

The ways to construct a non-interactive proof of signature knowledge for some of the

common digital signature schemes (e. g. RSA and DSA) are described in [ASW98].

2.2.9 Homomorphic Tallying

One of the approaches for anonymizing the ballots in Internet voting relies on the ho-

momorphic properties of an ElGamal encryption system. In this way, one can compute

a ciphertext that encrypts the sum of all the cast votes, so that the votes do not have

to be decrypted individually in order to get the election result. Namely, it holds for the

exponential ElGamal for the votes v1, ..., vN and encryption function Enc(pk, v):

N∏
i=1

Enc(pk, vi) = Enc(pk,
N∑
i=1

vi)

The most common way is to encode the votes in such a way, that the voters cast either

v = 1, which represents either a ”yes”-vote or a vote in support of a specified voting option,

or v = 0. Note, that in order prevent the manipulations of the election result while using

the homomorphic tallying approach, it is important that the cast ballots represent the

valid voting option. Otherwise, a malicious voter could manipulate the election result via

either over-voting (i.e. casting a vote for v = 100) or negative voting (i.e. casting a vote

v = −1). In order to prevent such manipulations, one proofs that the ciphertext cast

with the ballot encrypts a valid voting option using the proof of 1-out-of-L encryption

(Section 2.2.6).

2.2.10 Shamirs Secret Sharing

In order to enable sharing a secret between different parties, Shamir proposed a scheme

for threshold secret sharing in [Sha79]. For sharing the secret m between N parties, so

that at least t of them can reconstruct the secret together, the secret holder selects a

polynomial f(x) ∈ Zq[x] of degree t− 1 with f(0) = m. A secret share mi that is sent to

a party i = 1, ...N is calculated as mi = f(i). The reconstruction of the secret, given a set

of at least t shares mi, Q ⊂ {1, ..., N}, |Q|≥ t is calculated as m =
∑

i∈Q λimi with λi as

a Lagrange coefficient λi =
∏
j∈Q,j 6=i

i
i−j . Note that while the secret can be reconstructed

given at least t shares mi, a set of less than t shares mi does not leak any information

about the secret.
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2.2.11 Distributed Threshold Secret Sharing and Distributed Threshold
Decryption

In order to avoid having to trust a single entity that holds a secret, the secret sharing

scheme of Shamir has been further extended by Pedersen [Ped91, Ped92a]. The scheme

proposed by Pedersen enables to generate and share the secret in a decentralized manner

among multiple parties, while enabling the parties to verify the correctness of their secret

shares.

The Pedersen scheme has been used (as described in [CGGI13]) to generate a public key

and share a corresponding private key for the ElGamal cryptosystem and distributively

decrypt the ciphertexts that are encrypted using the generated public key. Cortier et al.

further prove in [CGGI13], that the resulting cryptosystem is IND-CPA secure.

2.2.12 Verifiable Re-encryption Mix Net Schemes

In order to anonymize a list of ciphertexts, the mix net shuffle schemes have been devel-

oped. In particular, the re-encryption mix net schemes rely on the homomorphic property

of an underlying cryptosystem. A number of entities, called the mix nodes, participate

in the scheme, whereby each mix node in turn shuffles the list of encrypted ciphertexts

C = (c1 = Enc(pk,m1), ..., cN = Enc(pk,mN )) using a secret permutation π and secret

randomness values r = (r1, ..., rN ), outputting the shuffled list C ′ = (c′1, ..., c
′
N ) so that

holds:

c′i = Encpk,1 · cπ(i)

In order to ensure that no ciphertexts have been manipulated during the shuffle, however,

each node has to prove that the input and output set contain the same messages m1, ...,mN

(without revealing π and r). Hence, a number of proofs of shuffle validity have been

developed [JJ00,DJV12,Gro10,BG12,TW10]. The comparison of these proofs is provided

in 2.1, with N denoting the total number of ciphertexts and T as the total number of mix

nodes. Thereby, |A| denotes the size of an anonymity set, so that for a particular input

ciphertext c and a subset of output ciphertexts A it is known, that the re-encryption of

c is in A. The soundness is measured as a probability p, with which an adversary can

provide a valid proof for a manipulated shuffle output. For measuring the efficiency of the

proof, E denotes the number of modular exponentiations needed for computing the proof

and the verification, and for measuring its robustness, t denotes the minimal number of

the mix nodes required to successfully complete the shuffle.

The verifiable re-encryption mix net can also be used to shuffle tuples of ciphertexts

(c1,1, ..., c1,k), ..., (cN,1, ..., cN,k), so that the order of the ciphertexts within a tuple (ci,1, ..., ci,k)

is preserved. In that case, the proofs of shuffle validity such as [TW10, BG12] can be

modified to prove, that the same permutation has been used for shuffling each vector

(c1,j , ..., cN,j), j = 1, ..., k.
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PoS |A| E p t

[JJ00] N/2 2N 50% (t/2 + 1)

[DJV12] N 6
√
N (

√
N − 1)/N 1

[Gro10] N 12N negligible 1

[BG12] N 2N log k + 4N negligible 1

[TW10,Wik09] N 19N + 15 negligible 1

k is a divisor of N

Table 2.1: Comparison of mix net schemes

2.2.13 Pedersen Commitment

In order to commit to a value without revealing it, several commitment schemes have been

developed. One of them, which we use in our extensions, is the Pedersen commitment

[Ped92b], that is calculated as follows: Given two independent generators (g, h) ∈ G2
q ,

a commitment on a value m ∈ Zq is calculated as c = gmhr for a random value r ∈
Zq. The commitment reveals no information about m, so that even the computationally

unrestricted adversary is unable to determine m given c. Furthermore, without knowing

the discrete logarithm logg h, it is infeasible to find two different decommitment values

m′,m for c.

2.2.14 Public-Key Infrastructure.

A public-key infrastructure (PKI) is used in Internet voting schemes for establishing se-

cure communication channels between the voters and the voting system components. In

particular, it enables authentication via digital signatures used by the voters and other

entities involved in the election to digitally sign their messages. Additionally, in case a

scheme requires private channels between the voters, or between voters and other entities

involved in the election, the PKI is used to facilitate end-to-end encryption of the messages

that are being exchanged.

2.2.15 Decentralized Key Exchange With Short Authentication Strings

For establishing the public-key infrastructure without relying on centralized certificate

authorities, a method for decentralized key exchange has been developed [NR06] that can

be used by groups of participants to exchange their public signature keys. The security of

the scheme relies on short authentication strings and an out-of-band channel. Namely, at

the end of the exchange, each participant computes a short hash value hi of the other par-

ticipants public signature keys and other values she has received. If no man-in-the-middle

attack occurred, each participant should get the same hi. These values are then manually

compared over an out-of-band channel, which might be a video call or communication via

physical proximity. Note, that the necessity of manual comparison over such a channel
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implies, that the decentralized key exchange according to this scheme is only feasible for

relatively small groups of participants.

A variant of the scheme was implemented by Farb et al. in their smartphone application

SafeSlinger [FBC+12]. For the sake of better usability, SafeSlinger presents the 24-bit hash

values that the participants have to manually compare as passphrases of three words,

constructed according to the PGP Word List [Zim95].

2.2.16 Diffie-Hellman Key Exchange

For jointly generating a common secret key between two participants, the key exchange

scheme has been proposed by Diffie and Hellman in [DH76]. The key exchange proceeds

as follows: given a common value g ∈ Gq, each one of the participants generates a secret

value xi←$Zq, and sends Yi = gxi to another participant. When receiving a value Yj = gxj

from another participant j, the participant i calculates K = Y xi
j = gxixj . The value K is

then used as a symmetric secret key for encrypting the messages, communicated between

i and j.

Note, that in order to prevent man-in-the-middle attacks, it is important that the mes-

sages Yi, Yj are send in an authenticated manner. Hence, the public signature keys of

both the participants have to be exchanged beforehand.

2.2.17 Plaintext Equivalence Tests

Plaintext equivalence tests (PET) [JJ00] are used in order to check, whether two ciphertexts

encrypt the same plaintext without revealing any more information about the plaintexts

or their relation to each other.

For a pair of ElGamal ciphertexts c, c′ ∈ G2
q with pk as a corresponding public key, c =

Enc(pk,m) = (a, b), c′ = Enc(pk,m′) = (a′, b′), these tests are performed in a distributed

way by a group of trustees that own the shared corresponding private key. The trustees

compute and jointly decrypt (
(
a

a′
)z, (

b

b′
)z
)

for a jointly generated random secret z.

The result is the value of ( mm′ )
z which is 1 if m = m′, or a random value in Gq that

reveals no information about m, m′ or their relation to each other otherwise.

Alternatively, for testing whether a ciphertext c encrypts a message m without revealing

any additional information about the plaintext of c, the PETs are performed on the

ciphertexts c, c′ with c′ as an encryption of m with a public randomness value (for example,

for the ElGamal public key (g, h), c′ := (g,m · h)).
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2.2.18 Byzantine Agreement

A number of so-called Byzantine agreement schemes proposed in the literature are designed

to solve the problem with consistent communication in a decentralized setting, where some

of the communication parties are assumed to be faulty. In particular, the proposal in

[LSP82] requires authenticated messages (for example, via digital signatures) and ensures

consistent communication in case more than half of the parties are honest. Note, however,

that this proposal has a high level of round complexity: given f faulty parties, broadcasting

one message via Byzantine agreement requires f + 1 rounds of communication.

2.3 Helios

In this section we provide an overview of Helios and its existing extensions and describe

the version of Helios that our extensions are based upon.

Helios is a well-established voting system, originally developed by Adida and described in

[Adi08]. The open-source implementation of Helios has been used in several real-world elec-

tions, e.g. the elections of the International Association for Cryptologic Research [IAC16]

or the University president election at UC Louvain [ADMP+09]. The scheme behind Helios

has furthermore been extensively studied in literature [KTV12,BCG+15,BPW12,KZZ16],

whereby formal proofs for its security has been provided [BPW12, BCG+15, CGGI14,

KRS10].

2.3.1 Overview

The basic idea of Helios, as described in [Adi08] utilizes the cryptographic techniques

mentioned in Section 2.2. The scheme can be described as follows: The registration au-

thority generates and distributes the login credentials (as usernames and passwords) to

eligible voters. The tabulation teller generates an ElGamal key (Section 2.2.1) that is used

in the election (further referred to as an election key) and publishes the public part of

it. For voting, the voters use their primary voting devices to construct their ballots by

encrypting a chosen voting option with the public election key published by the tabulation

teller. They then have an to either cast the ballot by authenticating themselves with their

username and password to the bulletin board and submitting their ballot to it, or to ver-

ify the ballot with an verification device using the Benaloh challenge [Ben06] in order to

ensure, that the ballot encrypts the intended voting option. The Benaloh challenge works

as follows: If the voter decides to verify, the voting device outputs the randomness used in

encrypting the vote. The user can then use the verification device to verify, that encrypt-

ing her chosen voting option using the output randomness results in the same ciphertext

that was computed as their ballot. Once verified, the ballot can no longer be cast, so the

voter has to construct a new ballot afterwards. The voter can choose to verify as many

ballots as she wants, and the more she does it, the better assurance the verification pro-
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vides. After the voter casts her ballot instead of verifying it, it is published on the bulletin

board near the voter’s username. The voter can then verify whether her ballot has been

correctly stored by the voting system. After the voting is finished for all the voters, the

cast ballots are anonymized by the tabulation teller using a verifiable re-encryption mix

net (Section 2.2.12)3. After the anonymization, the resulted ciphertexts are decrypted by

the tabulation teller who also provides the proof of decryption validity together with the

decryption result (Section 2.2.7).

2.3.2 Helios Extensions

Several extensions has been proposed for Helios, improving its security and usability as

well as introducing additional functionality.

As such, several extensions of Helios focus on improving vote integrity by introducing

new ways that allow the voter to verify that their vote has been encrypted and stored

correctly. The Zeus voting system [TPLT13], used in University of Athens election, mod-

ifies Helios by introducing an additional way to verify that the voting device encrypts the

voting option intended by the voter. Namely, the voters have an option to cast a ballot

using verify codes distributed to them at the registration, so that the ballots cast with

those codes are not included in the tallying, but decrypted instead, so that the voters

could verify their correctness. Further methods for the voters to verify the vote integrity

of their vote have been proposed in the Selene protocol [RRI15], which introduced track-

ing number appended to the cast ballots, and Guasch et al. [GM16,EGHM16] employing

designated-verifier proofs. The proposal by Bernhard et al. [BPW12] improves the vote

integrity of Helios by improving the soundness of the proofs of knowledge used in Helios

via using strong Fiat-Shamir heuristic. Their proposal also introduces the proof of plain-

text knowledge that is included with the ballot for improving vote privacy by preventing

ballot copying attacks described in [SB13]. The Apollo extension of Helios introduces the

usage of voting assistants to improve the voter-side verifications in [GKV+16].

The extension by Cortier et al. improves eligibility by requiring the voters to digitally

sign their ballots upon voting [CGGI14]. Another extension by Srinivasan et al. [SCH+14]

also focuses on improving eligibility by using a novel cryptographic primitive, token-based

encryption.

Further extensions to Helios has been focused on improving the vote privacy require-

ment. As such, the BeleniosRF protocol [CFG15] introduces receipt freeness into Helios

by using a novel cryptographic primitive, signatures on randomizable ciphertexts. The ex-

tension ensuring everlasting privacy was proposed by Demirel et al. [DVDGdSA12]. Note,

however, that while the authors of [DVDGdSA12] present their proposal as an extension

of Helios, they reuse very few components from the original system by using a different

way to encrypt the votes (namely, Pedersen commitments published on the bulletin board

3Note, that subsequent versions of Helios use homomorphic tallying as opposed to mix net for anonymizing

the ballots.
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and Pallier encryption for encrypting the decommitment values sent to the tabulation

tellers over private channels) for voting and a modified process for tallying. A subsequent

version of Helios, called Helios 2.0 [ADMP+09], improves vote privacy and fairness by

sharing the private election key among multiple tabulation tellers, so that the private

election key key could be calculated as a sum of each tabulation teller’s share. A further

extension [CGGI13] relies on the proposal in [CGS97] adjusted to Helios and improves

vote privacy as well as robustness by introducing distributed tallying via Pedersen secret

sharing.

An extension with improvement of robustness has also been proposed in [CBP16]. The

proposal focused on preventing the denial-of-service attacks by distributing the bulletin

board amoung multiple parallel servers.

From the usability perspective, a number of suggestions that simplify the verification

process in the current Helios implementation for the voters, have been proposed [NORV14,

KKO+11].

Further proposals suggested adding functionality to Helios. As such, the proposal of

Desmedt et al. [DC12] introduced blind ballot copying using divertible proofs, which en-

abled the voters to request a copy of the ballot cast by another voter and cast it as their

own in blinded form. The proposal in [PR16] further extended Helios towards the support

of the new form of voting, the so-called quadratic voting.

2.3.3 Helios-Base

In the following, the variant of Helios that is used as a base for our extensions (further

referred to as Helios-Base) is described.

Pre-Considerations

We make the following modifications to the scheme described in Section 2.3.1:

1. For improving eligibility, we make the voters digitally sign their ballots before casting

them, similar to the suggestion in [CGGI14].

2. For better flexibility we allow both the option of using mix net (Section 2.2.12) with

each tabulation teller acting as a mix node, or homomorphic tallying (Section 2.2.9)

approach for anonymizing the ballots. Depending on the chosen approach, different

proofs of knowledge are used throughout the election: the proofs of 1-out-of-L en-

cryption (Section 2.2.6) are crucial for the homomorphic tallying approach, and the

proof of shuffle validity is required for the mix net approach.

3. For improving vote privacy, we make the voters submit the proof of plaintext knowl-

edge (see Section 2.2.5) with their ballot, as proposed in [BPW12]. Furthermore, as

also proposed in [BPW12], for improving vote integrity we construct all the proofs
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of knowledge that are used throughout the election (i.e. proof of 1-out-of-L encryp-

tion or proof of shuffle validity, depending on the anonymization method, proof of

plaintext knowledge and proofs of decryption validity (Section 2.2.7)) using strong

Fiat-Shamir heuristic (Section 2.2.2).

4. For improving vote privacy and robustness, we distribute the election key genera-

tion between multiple tabulation tellers via distributed threshold secret sharing and

make the tabulation teller decrypt the ballots via distributed threshold decryption

(Section 2.2.11), as proposed in [CGGI13].

5. For improving vote privacy, we further require that the tabulation tellers verify

that the bulletin board has published the correct public election key as proposed

in [KZZ16].

In this way, a scheme that incorporates these extensions is more secure than the original

Helios, yet retains its flexibility, making it suitable as a basis for further extensions. We

elaborate on our choices and provide more details about them below.

Use of Digital Signatures. Following the proposal by Cortier et al. [CGGI14], digital

signatures are used for authenticating the voters. This proposal distributes the trust in

ensuring, that only the digital signatures from eligible voters are accepted, between the

registration authority and the bulletin board. Namely, it requires the registration authority

to generate the signature keys for the voters, and in order to prevent distribution to these

keys to non-eligible voters, the bulletin board distributes a set its own login credentials to

the voters. Thus, the voters both have to digitally sign their ballots with the keys received

from the registration authority, and authenticate themselves to the bulletin board with

their login credentials.

In order to provide more control to the voters, however, instead of letting the registra-

tion authority and bulletin board distribute the signature keys and login credentials to

the voters, in our version of Helios-Base we rely on a trusted public key infrastructure

(PKI, Section 2.2.14). This PKI is assumed to be tied to the voter register, so that a

public signature key of each voter is available through the PKI, and only the voter knows

her corresponding private signature key. The PKI can be established in one of the fol-

lowing ways. The first way is to use an existing PKI (such as national eID as in Estonia

or Germany), which is independent from the election. The second way is to make the

voters generate their signature key themselves and submit the public signature keys to

the registration authority who in turn publishes it on the bulletin board. Unless men-

tioned otherwise, both of these variants can be employed in our extensions. For the sake

of enabling the verification that only eligible voters participate in the election, the public

signature keys of the voters are publicly linked to the voters identities.

Note, that due to the usage of a PKI that is coupled to the voter’s real identities, Helios-

Base does not ensure the participation privacy requirement, as opposed to [CGGI14] that
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advices using pseudonyms for the voters in case better privacy is required. However, this

is a trade-off that we make for the sake of stronger eligibility guarantees. As such, if

pseudonyms are used instead of the real voters identities, then the entity that assigns

these pseudonyms should be trusted to only assign them to eligible voters. Instead, we

presume that using real identities would make it easier to verify, that these identities and

the corresponding public signature keys belong to eligible voters. Indeed, as mentioned

by Pereira in [Per16], one of the ways to check for possible manipulations is to contact

the voters to ensure that they are eligible to vote in this election or to check whether they

verified that their ballot is stored correctly.

Anonymizing the Ballots. For anonymizing the ballots, either the homomorphic tallying

approach (also used in [CGGI14] and in subsequent versions of Helios starting from Helios

2.0 [ADMP+09]) or the mix net approach (used in the original proposal in [Adi08]) with

each tabulation teller acting as a mix node in a verifiable re-encryption mix net is used.

Both of these approaches have their advantages and disadvantages. The homomorphic

tallying approach is much more efficient in case of elections with small size of electorate

and simple voting rules, such as a yes/no referendum. The mix net approach, on the

other side, allows conducting elections with more complex rules, including write-in bal-

lots that would be impossible to tally using the homomorphic tallying approach. Note,

that the particular choice of the anonymization method does not affect the security of

the scheme, assuming the reliability of the corresponding cryptographic primitives and a

computationally restricted adversary.

Use of Strong Fiat-Shamir Heuristic and Proofs of Plaintext Knowledge. The authors

of [BPW12] suggested adding a proof of plaintext knowledge to the ballot, for countering

the ballot copying attack which could lead to a violation of vote privacy. They further-

more have shown, that an election can be easily manipulated by either malicious voters

or malicious tabulation tellers with falsifying the proofs of knowledge, such as proofs of

1-out-of-L encryption (Section 2.2.6) and proofs of decryption validity (Section 2.2.7) as

originally used in Helios. In order to mitigate this attack, they suggested using strong

Fiat-Shamir heuristic for constructing the non-interactive proofs of knowledge. Hence, we

use their proposed extension in Helios-Base by requiring the voters to submit the proof

of plaintext knowledge with their vote, and by constructing all the proofs of knowledge

used in Helios-Base (proof of plaintext knowledge, proof of 1-out-of-L encryption in case

of homomorphic tallying, proof of shuffle validity in case of mix net and proof of decryp-

tion validity) using their suggestion. Note, that both of these extensions have also been

incorporated in [CGGI14].

Multiple Tabulation Tellers. While the original Helios only used one tabulation teller,

the subsequent versions starting from Helios 2.0 distributed the trust regarding vote pri-

vacy by enabling joint generation of the election key among multiple tabulation teller
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[ADMP+09], so that each tabulation teller possesses a secret share of the private election

key. This approach, however, while improving vote privacy, suffers from a drawback in

robustness, since a single missing share of the private election key would make it impossi-

ble to tally the election. Hence, our version of Helios-Base uses the proposal in [CGGI13]

which improves both vote privacy and robustness of the original Helios by using distributed

threshold secret sharing and distributed threshold decryption for distributively generating

the election key between the tabulation teller and distributed threshold decryption for

tallying the votes.

Verification by the Tabulation Teller. The authors of [KZZ16] mention, that the tab-

ulation tellers in the original Helios are not instructed to verify the correctness of the

public election key as published on the bulletin board. This, however, could lead to a

man-in-the-middle attack whereby an adversary controlling the bulletin board publishes

her own public election key instead, thus being able to decrypt all the ciphertexts sub-

mitted with the ballots and violate vote privacy for all the voters. Hence, we require that

the tabulation tellers verify that the bulletin board publishes the data as submitted to it

during the election key generation.

Description

We further describe the election process in more details as follows. For the sake of sim-

plicity, we describe the single choice (“yes/no”) election, where the voters cast either 1

or 0 (represented as g0 or g1) as their vote, although a generalization to more complex

ballots is possible. The following entities are involved in the protocol:

• Election organizers, responsible for publishing the general information for the elec-

tion, incl. the voting options. 4

• Registration authority, responsible for maintaining the so-called voting register, which

is a publicly available list of eligible voters’ public signature keys,

• Bulletin board, acting as a public append-only broadcast channel that is used for

publishing all necessary election information and cast ballots,

• Tabulation tellers, responsible for generating the election key, anonymizing the cast

ballots and decrypting the result.

The voter environment consists of a voting device, used for casting the ballot, and a

verification device used for verifying that the ballot encrypts a correct voting option. The

components of Helios and the interactions between them is depicted on Figure 2.1.

The election process can be outlined as follows.

4Note that since the published information can be easily verified by the parties involved in the election,

we do not consider the election organizers in our security models.
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Figure 2.1: Components and their interactions of Helios, numbered by the order of execution

steps. Note, that verifying a ballot (3*)) is optional, and sending the voter’s public signature key

can be omitted if an existing PKI is used.

Setup. If there is no existing PKI with the public signature keys of the voters that can

be used for the election, the voters generate and submit their public signature keys to

the registration authority. The registration authority publishes these public signature

key on the bulletin board near the voters identities, and the voters verify that their public

signature keys have been published correctly. In case of a pre-existing trustworthy PKI, the

registration authority uses it to publish the identities of the eligible voters and their public

signature keys on the bulletin board. In that case, one can always use the existing PKI

to verify, that the published public signature keys are correct. The Nt tabulation tellers

jointly generate an election key via distributed threshold secret sharing (Section 2.2.11)

with pk = (g, h = gs) ∈ G2
q as the public election key, and the private election key sk

distributed into Nt shares with t = bNt/2c as the threshold. The public election key

pk = (g, h) as well as the other data produced during the election key generation that

is required for the proofs of decryption validity, is published on the bulletin board. The

setup is concluded by publishing the list of valid voting options {v1 = g0, v1 = g1} ⊂ Gq.

Voting. In order to vote for a voting option v ∈ {v0 = g0, v1 = g1}, the voter idi prepares

her ballot (c = Enc(pk, v), πv) with:

• c = (a, b) = (gr, vhr) as the encryption of a voting option v using the public election

key pk,

• πv = PoK{r ∈ Zq : a = gr ∧ (b = v0h
r ∨ b = v1h

r)} as the proof of well-formedness,

used to prove the plaintext knowledge of v (Section 2.2.5) and that v ∈ {v0, v1}
is a valid voting option (Section 2.2.6). In case the mix net approach is used for
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anonymizing the ballots, the proof of well-formedness can be simplified to only prov-

ing the plaintext knowledge of v.

After preparing a ballot, the voter has an option either to cast it by submitting it to

the bulletin board, or to verify the ballot using the Benaloh challenge [Ben06] as in the

original version of Helios (see Section 2.3.1). The purpose of the verification is to ensure,

that the ballot was prepared correctly by the voting device. The voter can verify as many

ballots as she wants, however, once verified, the ballot can no longer be cast. When the

voter decides to cast her ballot, she digitally signs it with her private signature key and

submits it to the bulletin board. After casting the ballot, the voter verifies the bulletin

board by checking whether the ballot is correctly posted there.

Note, that for preventing the man-in-the-middle attacks, it is important for the voter

to verify that she communicates with an authentic bulletin board while casting her ballot

or verifying that it is properly published.

Tallying. After the voting has finished, the bulletin board removes all duplicate ballots

and ballots with invalid proofs of knowledge. In case the election allows vote updating,

out of all the ballots cast by the same voter, only the last ballot is kept. The voters can

once again verify, that all their ballots are properly stored on the bulletin board before the

tallying begins. Prior to the decryption, the ballots have to be anonymized. If the mix net

approach is used for the anonymization, the ciphertexts from the cast ballots are shuffled

using a verifiable re-encryption mix net with each tabulation teller acting as a mix node.

If the homomorphic tallying approach is used, the ciphertexts are multiplied together to

form an encryption of the sum of all the votes.

After the ballots have been anonymized, the result of the anonymization is decrypted

by the tabulation tellers via distributed threshold decryption and published. The proofs

of shuffle validity (in case of the mix net anonymization) and the proofs of decryption

validity, as well as digital signatures and proofs of well-formedness submitted with the

ballots during voting, are published to enable verifying that the votes have been tallied

correctly.

Security Model

We describe the security model for Helios-Base by listing the security assumptions under

which the security requirements from Section 2.1 are satisfied (based upon the results

in [BPW12, BCG+15, CGGI14, CGGI13, KZZ16, LSBV10] and our informal evaluation).

Here and in the further descriptions of the security models and the security evaluations in

the thesis, we consider an entity in the voting system (excluding the voters) to be honest

if she follows the scheme and neither divulges her private input to the adversary or to

the public, nor uses it herself in an unauthorized way, e.g. by attempting to decrypt a

ciphertext she is not authorized to. The voters, on the other hand, are considered honest
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if they are not under complete adversarial control, however, might still deviate from the

prescribed behavior during the election, e.g. in case of coercion.

Vote Privacy. Vote privacy is preserved under the assumptions, that more than half of

the tabulation tellers are honest, the voting devices do not leak the voters chosen options

to an adversary, the adversary is computationally restricted, the bulletin board does not

remove or modify the data published on it and shows the same contents to everyone,

the voter verifies that she communicates with an authentic bulletin board while casting

the ballot, and the adversary does not coerce the voters into casting a vote for a specific

voting option. Note, that the last assumption means, that neither receipt-freeness nor

coercion-resistance is ensured in Helios, and the assumption of computationally restricted

adversary means that everlasting privacy is not ensured as well.

Fairness. Fairness is preserved under the same assumptions as vote privacy.

Participation Privacy. Participation privacy is not ensured in Helios-Base, since the iden-

tities of the voters who cast their ballots are public.

Eligibility. Eligibility is preserved under the assumptions, that the voting register is trust-

worthy, the adversary is computationally restricted and that the devices of honest voters

do not leak the voters private signature keys to the adversary.

Vote integrity. Vote integrity is preserved under the assumptions, that either the voting

device or the verification device of honest voters is trustworthy, the bulletin board shows

the same contents to everyone, the adversary is computationally restricted, and the voters

perform the necessary verifications.

Robustness. Robustness is preserved under the assumption, that the majority of the

tabulation tellers are honest and produce the required output during the tally, and that

the contents of the bulletin board are available for tally (i.e. the bulletin board does not

delete the published data and shows the same contents to everyone).

The resulting list of assumptions is thus as follows:

(A-H-TabTellerHonest) More than half of tabulation tellers are honest and capable of

communicating with each other and the bulletin board.

(A-H-VotDeviceLeakage) The voting devices5 of voters do not leak data to an adversary.

5Here and in the rest of security evaluations in the thesis we refer to voting device as a set of all hardware

and software components, including the voting application, that is used by the voters for casting their

ballots.
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(A-H-NoBBModification) The bulletin board does not remove or modify the data pub-

lished on it.

(A-H-BBConsistency) The bulletin board shows the same contents to everyone.

(A-H-NoCoercion) No coercion or vote selling takes place.

(A-H-CompRestricted) The adversary is computationally restricted.

(A-H-Verify) The voters perform the verifications available to them within the system.

(A-H-VerDeviceTrusted) The verification devices6 of the voters are trustworthy.

(A-H-VotRegister) The voting register, with the eligible voters public signature keys

either generated for a specific election or based on a pre-existing PKI, as published

on the bulletin board is trustworthy. Note, that in case the voters public signature

keys have been generated for a specific election and are only available on the bulletin

board, the assumptions that the bulletin board does not delete or modify its contents

(A-H-NoBBModification), shows the same view to everyone (A-H-BBConsistency),

and the voters verify the correctness of their published public signature keys are also

required.

We hence aim to preserve the security model in our extensions, deviating from it only

if justified by the setting.

6As with voting devices, we refer to the verification device as a set of all hardware and software components

used for the voters for verifications.





Chapter 3

New Voting Setting: Boardroom Voting

Much of the current research on Internet voting has been focused on large scale elections,

such as political elections. Still, there are also many small-scale elections, such as voting in

private associations, committees and boards of directors. While currently these elections

are mostly conducted via paper ballots or simple show of hands, Internet voting would

also allows some of the voters participating remotely. We refer to elections based in such

setting as boardroom voting.

Our contribution in this chapter is to extend Helios-Base (Section 2.3.3) towards board-

room voting. We also make suggestions on how to ensure that the faults that might occur

during the election in boardroom voting setting, such as non-responding or malicious

participants, or inconsistent communication, are properly addressed in our extension.

This chapter is structured as follows. In Section 3.1 the requirements are listed, specific

to boardroom voting. Further, the security model relevant for boardroom voting is de-

scribed in Section 3.2. The proposed scheme is described in Section 3.3, and its security is

evaluated in Section 3.4. The related work on boardroom voting schemes is described in

Section 3.5. The summary of the chapter and the future work is outlined in Section 3.6.

Parts of this chapter have been published at the 6th International Conference on Elec-

tronic Voting, Verifying the Vote [KNV+14].

3.1 Setting Requirements

In this section, we consider the differences between boardroom voting and large-scale

elections and derive boardroom-specific requirements from these differences.

Large-scale elections tend to appoint trusted entities for security-critical tasks in the

election. These entities are chosen so that they represent different interest groups, for

example, competing political parties. In this way, their malicious collaboration is assumed

to be unlikely. On the contrary, the interest groups are not always so explicitly defined

in boardroom voting. Hence, choosing and appointing such entities is not always feasible

in such a setting. However, the much smaller size of the electorate enables an efficient

implementation of full trust distribution, i.e. between all the voters who take over all
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the security-critical tasks. Correspondingly, the first boardroom-specific requirement is as

follows:

Decentralization. For any security requirement, the trust should be distributed among

the voters in the boardroom voting election.

Large-scale elections tend to be prepared well in advance, including the list of eligible

voters and their public signature keys. Boardroom voting is often performed in an ad-hoc

fashion: the decision to vote on some issue might spontaneously arise during the meeting.

Furthermore, the group of board members may change on a regular basis, for example,

the board members might be represented by different people in different meetings. Thus

it is not known in advance, whether there will be an issue that has to be voted on, and

which board members will participate. Correspondingly, the second boardroom voting

requirement is as follows:

Ad-hoc Elections. It should be possible to decide during the meeting, whether there is

voting that should be conducted during the same meeting, and which voters should be

eligible to participate.

3.2 Security Model

In this section, we describe the assumptions, under which the security requirements should

be ensured in our extension. In our extension, we aim to preserve the security model

of Helios-Base, with the exception of the constrains dictated by the boardroom voting

setting. Namely, the security requirements from Section 2.1 must hold under the following

assumptions:

Vote Privacy. Vote privacy should be ensured under the assumptions that more than

half of all the voters are honest, the voting devices of the honest voters are trustworthy,

the adversary is computationally restricted, and the adversary is not capable of coercing

the voters.

Fairness. Fairness should be ensured under the same assumptions as vote privacy.

Participation Privacy. Following Helios-Base, and since the identities of boardroom mem-

bers that participate in the meeting are public, our extension does not ensure participation

privacy.
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Eligibility. Eligibility should be ensured under the assumption that an adversary is com-

putationally restricted, the identities of eligible voters are known to all the other voters,

and the voter’s private signature key is not leaked to the adversary by the voting device.

Vote Integrity. Vote integrity should be ensured under the assumptions that the devices

of the honest voters are trustworthy and that the adversary is computationally restricted.

Robustness. Robustness should be ensured under the assumptions that more than half of

all the voters are honest, their devices are trustworthy, and they are able to communicate

with each other during decryption, and that the adversary is computationally restricted.

The aforementioned assumptions can be summarized as follows:

(A-BV-HalfVotersHonest) More than the half of all the voters are honest and available

during the whole voting process, i.e. during voting and tallying.

(A-BV-Communication) The devices of honest voters are able to communicate with each

other.

(A-BV-NoCoercion) No coercion or vote selling takes place.

(A-BV-CompRestricted) The adversary is computationally restricted.

(A-BV-VotDeviceTrusted) The devices of honest voters are trustworthy.

(A-BV-EligVotersKnown) All the voters know, which other voters are eligible to partic-

ipate in the election.

The assumptions (A-BV-HalfVotersHonest), (A-BV-Communication), (A-BV-NoCoer-

cion) and (A-BV-CompRestricted) are are the same as the assumptions regarding the

tabulation tellers for Helios-Base. Further assumptions that are required for our extension

but not for Helios-Base itself are explained as follows:

(A-BV-VotDeviceTrusted) While it would be theoretically possible for the voters to use

a second device for verifying their votes, this would pose more difficulties in the

boardroom voting setting. As such, the voters have to make sure that they have

their second devices (i.e. a second smartphone) next to them during the voting,

which is not always a given due to ad-hoc nature of elections. Furthermore, as the

verification procedure has to be conducted several times for better security, this

might pose difficulties to the voters due to the limited time appointed for voting.

(A-BV-EligVotersKnown) This assumption is required for conducting the voter registra-

tion in a decentralized way, and is justified in a boardroom voting setting due to the

small amount of voters in the election.
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3.3 Description

In this section we describe the scheme extending Helios-Base towards boardroom voting

setting. From the requirements outlined in Section 3.1, the following challenges can be de-

rived: The first challenge is due to the fact that a central registration authority cannot be

assumed in boardroom voting, due to the decentralization requirement. Furthermore, the

requirement of ad-hoc elections requires an approach that allows the voters to reliably ex-

change their public signature keys during the meeting, i.e. without significant preparations

beforehand and in a timely manner. Hence, a way for the votes to reliably exchange their

public signature keys in a decentralized ad-hoc fashion is needed. The second challenge is

to distribute the task of the bulletin board due to the decentralization requirement. For

this purpose, a broadcast channel to enable the communication between the voters should

be established, which should be reliable even in presence of some malicious voters.

Recall, the Helios-Base scheme works as follows. In the setup phase, the registration

authority publishes the public signature keys of the eligible voters, either sent by the voters

for the particular election, or taken from a pre-existing PKI, on the bulletin board. The

tabulation tellers furthermore jointly generate an election key via distributed threshold

secret sharing (Section 2.2.11) and publish it on the bulletin board together with the data

required for verifying the proofs of decryption validity. In the voting phase, the voters cast

their ballot by encrypting their preferred voting option and computing the proof of well-

formedness (Section 2.2.6 or Section 2.2.5, depending on which anonymization method is

used). After computing the ballot, the voters have an option to verify that it encrypts their

intended voting option (the ballot is then discarded) or digitally sign the ballot and send

it to the bulletin board. After the voting is finished, the tabulation tellers take the cast

ballots that are published on the bulletin board, discard the ballots with invalid proofs of

well-formedness, and anonymize the rest of the ballot using either mix net (Section 2.2.12)

or homomorphic tallying approach (Section 2.2.9). Afterwards, the tabulation tellers

jointly decrypt the anonymized result via distributed threshold decryption.

In our extension to the Helios-Base, voters take over the tasks performed by the various

entities in Helios-Base. More precisely:

• In their role as registration authority, voters generate their public signature keys

and run a decentralized key exchange scheme (Section 2.2.15) for reliably exchang-

ing these keys. The reliability of the decentralized key exchange is ensured via the

manual verification the passphrases that serve as short authentication strings. Af-

terwards, the voters use the exchanged public signature keys in Diffie-Hellman key

exchange Section 2.2.16 to generate symmetric secret keys which are later used for

encrypting messages and establishing private communication channels between the

voters.

• In their role as tabulation tellers, voters jointly generate an election key via dis-

tributed threshold secret sharing (Section 2.2.11). Once the voting is finished, vot-
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Figure 3.1: Components and their interactions of Helios-BV. The voters run the election

between themselves by exchanging the election data in (1) setup via decentralized key exchange,

(2) election key generation, (3) voting, and (4) tallying.

ers either jointly mix the cast ballots with a verifiable re-encryption mix net (Sec-

tion 2.2.12), or multiply the ballots to get a ciphertext of the sum of cast votes,

following the homomorphic tallying approach (Section 2.2.9). The result of the

anonymization (i.e. either individual shuffled ballots, or the sum) is decrypted with

distributed threshold decryption.

• In their role as bulletin board, voters broadcast all their messages via decentralized

communication between them. The reliability of the decentralized communication

is ensured via Byzantine agreement as described in Section 2.2.18.

Note that one of the voters acts as an election organizer. This role does not possess

additional privileges. The task of an election organizer lies in initiating the election by

supplying the necessary information such as a question that is voted on, and starting

the scheme execution. For the distributed threshold decryption we set the threshold as

t = bN/2c + 1 for N as a total number of voters, since otherwise a malicious minority

of voters can compromise either vote privacy (given t < bN/2c + 1) or robustness (given

t > bN/2c + 1). The components and their interactions of our extension are depicted at

Figure 3.1.

We further take following approach to address the faults that might occur during the

election. We have identified the steps in the executing of the voting process, whereby

some faults might be present, most commonly some voters not being present or able to

communicate with the others. Some of the cryptographic primitives used in the scheme

are already designed to handle some of these faults. As such, in case some voter fails to

produce a valid shuffle result (if the mix net approach is used for the anonymization),

the output of a previous voter is being processed further. Furthermore, as will be shown

in Section 3.4, some of these faults, such as the voters failing to produce valid partial

decryptions of the ballots, could be ignored under the assumptions that we made.

Other faults are the ones that occur during phases that preclude the tallying. Namely,
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faults could be present during the decentralized key exchange (i.e. the adversary trying

to execute a man-in-the-middle attack), ballot initialization stage (such as voters not

responding to the invitation to vote), or voting. The diagrams in Figures 3.2a to 3.2c

show the way the scheme is supposed to handle these faults. As such, for example, the

voter who wishes to initiate the election has the option to decide, whether she still wants

to start the election if not all of the invited voters respond to her invitation, or to wait

some more for the missing voters to respond, or to cancel the election.

Another source of faults during the voting, is the inconsistency of message broadcast.

If, instead of being broadcast, the message is sent separately to each receiver, it makes

the communication vulnerable to Byzantine faults. Namely, a malicious voter can send

different messages to different receivers (for example, during broadcasting a cast ballot),

thus endangering robustness. These faults, however, are properly handled in case when

the Byzantine agreement is used in the communication between the voters.

3.4 Security Evaluation

This section is dedicated to an informal security argument on the presented scheme. To

evaluate its security according to the security model described in Section 3.2, we identify

the threats against the security requirements 7 and show that the scheme defends against

these threats under the given assumptions. For this purpose, we study each step of the

scheme in order to consider the possibilities for the adversary to intervene and either

get the information that is meant to be private or modify the data communicated or

computed within the election. Note that similar approach has been used in other works,

such as [LSBV10].

Vote Privacy. Breaking vote privacy would imply establishing a link between the plain-

text vote that is revealed at the end of tallying and the identity of the voter who submitted

the corresponding ballot. We consider the different steps of the election at which it could

be done.

The proposed fault handling ensures that the voters have an option to decline participat-

ing in the election, if they do not trust the majority of the voters to be honest. Since the

adversary is able to find ways to break vote privacy if she manages to impersonate the hon-

est voters and conduct a man-in-the-middle attack, we start off by arguing that such im-

personation of the voters is infeasible under the assumptions given in Section 3.2, namely,

(A-BV-NoCoercion), (A-BV-CompRestricted) and (A-BV-VotDeviceTrusted). Due to the

proposed fault handling, the election does not start unless all the voters confirm that the

decentralized key exchange has been performed correctly. The decentralized key exchange

scheme thus ensures that as long as the same passphrase is output for all the voters and the

7We acknowledge that in absence of formal proofs the list of such threats is not guaranteed to be exhaus-

tive.
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Figure 3.2: Fault handling in different stages. The bold text denotes the steps where voter’s

input is required, e.g. as a decision that a voter needs to make.

adversary is incapable of finding a collision for the hash function used in the decentralized

key exchange (A-BV-CompRestricted), all the voters have the valid public signature keys

of other voters. Then, unless the private signature key of the voter is leaked by them-

selves in case of coercion (prevented by the assumption (A-BV-NoCoercion)) or by their

malicious device (A-BV-VotDeviceTrusted), or the adversary manages to forge a digital

signature (prevented by the assumption (A-BV-CompRestricted)), voter impersonation is

infeasible.

We now consider other ways for the adversary to break vote privacy. The voting and

the tallying proceed in the same way as in Helios-Base, hence a similar argument for

their security holds. During voting, the vote is encrypted at the time that it is sub-

mitted by the voter with attached voter’s identity. Revealing its plaintext value at this
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stage would require decrypting the ciphertext, which is possible either via breaking the

security of the encryption (prevented by the assumption (A-BV-CompRestricted)), get-

ting the randomness value used in encrypting the ballot either from the voter herself in

case of coercion (prevented by the assumption (A-BV-NoCoercion)) or from the corrupted

voter’s device (prevented by the assumption (A-BV-VotDeviceTrusted)), or in getting the

private election key. The election key generation scheme ensures that the private election

key cannot be reconstructed, unless the adversary either corrupts more than half of the

voters or their devices (prevented by the assumptions (A-HalfVotersHonest) and (A-BV-

VotDeviceTrusted)), gets access to the private communication channels between the honest

voters either by breaking the symmetric encryption scheme used to encrypt the messages

sent over those channels (prevented by the assumption (A-BV-CompRestricted)) or break-

ing the security of Diffie-Hellman key exchange used to generate symmetric secret keys

(A-BV-CompRestricted) or impersonates the voters (as shown above, prevented by the as-

sumptions (A-BV-NoCoercion), (A-BV-CompRestricted) and (A-BV-VotDeviceTrusted)).

Furthermore, the ballot copying attacks are also prevented due to the well-formedness

proofs (A-BV-CompRestricted).

At the tallying stage, the anonymization procedure via homomorphic tallying ensures

that only the sum of all the votes is being decrypted. Alternatively, if the mix net approach

is used, it ensures that the link between the non-anonymized ciphertexts and their plain-

text value cannot be established, unless all but one8 voter reveal their correspondences

between input and shuffled ciphertexts. Hence, the adversary can prevent the ballots

from being anonymized via mix net only in case she corrupts more than N − 2 voters or

their devices (which is prevented by the assumptions (A-BV-HalfVotersHonest) and (A-

BV-VotDeviceTrusted)), or impersonates the honest voters (prevented by the assumptions

(A-BV-CompRestricted) and (A-BV-VotDeviceTrusted)).

Thus, vote privacy is ensured under the assumptions (A-BV-HalfVotersHonest), (A-BV-

NoCoercion), (A-BV-CompRestricted) and (A-BV-VotDeviceTrusted).

Fairness. The partial results of the election can only be deduced if the cast ballots are

decrypted, or the plaintext votes are leaked by the voter’s devices. In both of these

cases, however, vote privacy would be violated, since the ballots are attached to the

voter’s identities up until the tallying. Hence, fairness is ensured as long as vote privacy

is ensured, namely, under the assumptions (A-BV-HalfVotersHonest, A-BV-NoCoercion,

A-BV-CompRestricted, A-BV-VotDeviceTrusted) as shown above.

8If only one voter is honest, then the public will not know the correspondences between the voter’s

identity and the vote; however, if all the other voters are dishonest, and each dishonest voter i reveals

the correspondences between the ciphertexts in lists Ci−1 and Ci to the public, the honest voter will

be the one who knows how each one has voted. Thus, vote privacy during anonymization with mix

net could be ensured only if at least two voters perform their shuffling correctly and do not reveal the

correspondences between the ciphertexts.
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Eligibility. Since the identities of the voters whose votes are included in the tally result

are public, breaking eligibility would be possible either in case when some of these identities

do not belong to eligible voters, or when an eligible honest voter is being impersonated. In

the first case, such a manipulation would be evident due to (A-BV-EligVotersKnown). In

the second case, as shown above, voter impersonation is unfeasible under the assumptions

(A-BV-CompRestricted) and (A-BV-VotDeviceTrusted). In case of homomorphic tally-

ing, the voter might attempt to double-vote by sending an invalid voting option instead

of her vote (e.g. an encryption of g2 with g1 signifying the “yes”-vote). This, however, is

prevented by the proofs of 1-out-of-L encryption (A-BV-CompRestricted). Hence, eligibil-

ity is ensured under the assumptions (A-BV-EligVotersKnown), (A-BV-CompRestricted)

and (A-BV-VotDeviceTrusted).

Vote Integrity. We consider the cases, where a violation of vote integrity would be

noticeable by at least one honest voter. Note, in case a majority of the voters is dishonest,

then a consensus about the election result might not be reached, since the consistency

of the communication can no longer be ensured, as mentioned in the discussion of fault

handling. However, we do not consider this to be a violation of vote integrity.

While a malicious voting device can change the voter’s vote by encrypting another voting

option, this is prevented given the assumption (A-BV-VotDeviceTrusted).

The vote integrity of the election would be broken if a given cast ballot is either dropped

from the list of cast ballots, replaced with a ciphertext encrypting another plaintext, or

its plaintext content is changed upon decryption. Since the voter is involved in the tal-

lying process, she would notice if her cast ballot is dropped before the tallying. Fur-

thermore, she would also notice if her cast ballot is replaced by an adversary prior to

tallying. Alternatively, in case the homomorhic tallying approach is used, another mali-

cious voter might attempt to cast a ballot with negative vote, thus cancelling out some

of the other cast ballots (e.g. an encryption of g−1 with g1 signifying the “yes”-vote and

g0 signifying the “no”-vote). This is prevented by the proofs of 1-out-of-L encryption

(A-BV-CompRestricted).

During the tallying, in case of mix net approach to the anonymization, the proof of shuf-

fle validity ensures that the contents of the ciphertexts are not modified during anonymiza-

tion (A-BV-CompRestricted). In case of homomorphic tallying, the proofs of 1-out-of-L

encryption submitted during voting ensure that only one the final result represent the

sum of cast valid voting options (i.e. that no over-voting or negative voting occurred).

The proofs of decryption validity further ensure that the correct plaintext value is being

output for each of the cast ballot (A-BV-CompRestricted).

It follows, that vote integrity is ensured in our extension under the assumptions (A-BV-

VotDeviceTrusted) and (A-BV-CompRestricted).

Robustness. As mentioned in the discussion of fault handling, the inconsistency of the

communication can also hinder the computation of the election result. However, the



36 3 New Voting Setting: Boardroom Voting

Byzantine agreement ensures that the communication is consistent as long as the ma-

jority of the voters are honest, their devices are trustworthy and can communicate with

each other, and the adversary cannot impersonate honest voters, (assumptions (A-BV-

HalfVotersHonest), (A-BV-Communication), (A-BV-CompRestricted) and (A-BV-VotDe-

viceTrusted)). The election key generation ensures that the result of the voting can be de-

crypted and thus tallied, if at least bN/2c+1 voters and their devices are available and can

communicate with each other during decryption (assumptions (A-BV-HalfVotersHonest),

(A-BV-Communication) and (A-BV-VotDeviceTrusted). Additionally, the result can-

not be tallied without necessarily breaking vote privacy, if the anonymization of the

ballots has not been performed correctly, which is possible, as described above, if all

but one voter are unable to shuffle the ciphertexts and keep the correspondences be-

tween the input list and the shuffled list secret (prevented by the assumptions (A-BV-

HalfVotersHonest) and (A-BV-VotDeviceTrusted). Therefore, according to assumptions

(A-BV-HalfVotersHonest), (A-BV-Communication), (A-BV-CompRestricted) and (A-BV-

VotDeviceTrusted), robustness of the scheme is ensured.

3.5 Related Work

A number of proposals on Internet voting considered elections in boardroom voting setting.

The first proposals for a decentralized election was made by Demillo et al. in [DLM82],

implemented in [M+10] and later extended in [AKV05] with regards to an improvement

in efficiency. The method used in both these proposals relies on so-called decryption or

onion mix net. As opposed to the re-encryption mix net described in Section 2.2.12,

in decryption mix net the initial messages are encrypted with the public key of each

mix node. Then, each mix node permutes and decrypts all the ciphertexts in its turn.

Hence, if even one mix node fails to decrypt, the shuffling cannot be conducted and the

initial messages cannot be reconstructed. As in our scheme, the voters in [DLM82] and

in [AKV05] act as mix nodes. Hence, due to the usage of a decryption mix net, the schemes

in [DLM82,AKV05] are vulnerable with regards to robustness. Namely, in case even one

voter fails to provide valid output after casting her ballot, as opposed to our scheme, the

result cannot be computed without repeating the voting.

Kiayas et al. [KY02] proposed another approach to boardroom voting, introducing the

idea of self-tallying. The self-tallying property ensures that the election result can be

tallied directly after the last ballot is cast. For this purpose, the ballots are encoded into

the so-called self-dissolved commitments, so that the product of these commitments from

all the voters reveals the election result. This approach was further used in several other

works. As such, the proposals of [Gro04, HRZ10] improved the efficiency of [KY02]. The

proposal in [HRZ10], in particular, was further extended in [KSRH12] in order to improve

robustness and in [GIR16] in order to reduce round complexity for multiple elections among

the same group of voters. The scheme in [HRZ10] was implemented [MTM16] using the



3.5 Related Work 37

Ethereum blockchain network [Woo14].

As opposed to our scheme, the proposal by [HRZ10] and its extension in [GIR16] did

not ensure robustness, since if even one voter fails to cast her ballot, the final result

cannot be computed. Although this vulnerability was remedied in the extension proposed

in [KSRH12] by introducing a so-called recovery round performed after voting, it still did

not provide robustness in a sense that our proposal does. Namely, in [KSRH12], the tally

only includes the ballots by the voters who participate in the recovery round, if such a

round is needed. Thus, if some voters fail to send the necessary data in the recovery

round after casting their own ballot, the ballots that they cast during voting will not be

included. A similar approach is used in [KY02, Gro04] in order to recover the election

result in case some of the voters do not cast their ballot. Same as in [HRZ10, GIR16],

if some voters fail to send the necessary data during recovery, their ballots that were

cast in the previous phase of the election will not be counted. In our proposal, on the

other hand, all the cast ballots will be included in the result, even if some the voters are

not available afterwards (e.g. due to network problems). Furthermore, all the proposals

in [Gro04,HRZ10,KSRH12,GIR16,SP15] rely on an existing PKI for ensuring eligibility,

as opposed to our scheme. Finally, they all reveal the election result as the sum of all cast

votes. In this way, the votes should be encoded according to the homomorphic tallying

approach (Section 2.2.9). This allows to conduct only the elections with simple ballots,

such as “yes/no” elections or election with a small number of voting options, of which only

one can be selected. With more complex ballots, such as ballots with a large number of

voting options or the possibility to rank the voting options, using homomorphic tallying

is either too inefficient or impossible (e.g. in case of write-in ballots). Our scheme, on the

other hand, allows to conduct elections using the mix net approach for anonymizing the

ballots, which supports any kind of ballot complexity including write-in ballots.

The idea of using distributed threshold decryption, similar to our proposal, was used to

implement an Android app for boardroom voting in [Rit14]. This app uses a decentralized

version of the scheme described in [CGS97]9. The resulting implementation, however, is

vulnerable to an adversary that controls the network (as man-in-the-middle). Hence, such

an adversary is able to intercept the messages from the voters, and with that, to violate

both vote privacy and vote integrity. Our scheme, on the other hand, is not vulnerable

to such attacks due to the decentralized key exchange that allows authenticating and

encrypting the messages sent between the voters.

Other approaches to boardroom voting aim to implement boardroom voting schemes

without relying on cryptographic techniques. As such, an implementation of boardroom

voting system was described and evaluated in [ACW13]. However, as opposed to other

boardroom voting schemes, it requires a central trusted instance by using a ballot box

which is trusted not to break vote privacy. Another example is an Android application

9Note that the election key generation and decryption in Helios-Base also rely on the scheme in [CGS97]

as suggested in [CGGI13]
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for spontaneous decentralized voting in classroom setting that was proposed in [Esp08].

This proposal, however, relies on a central voting server that is trusted not to manipulate

the result. Other boardroom voting schemes, on the other hand, allow to verify that the

vote integrity of the election has not been violated.

3.6 Summary and Future Work

The contribution in this chapter extends Helios-Base towards the setting of boardroom

voting. As such, this extension allows conducting secure ad-hoc elections without relying

on a centralized infrastructure that is required for Helios.

3.6.1 Summary

In order to ensure both the ad-hoc nature of the elections in boardroom voting setting

and their decentralization, while preserving the security requirements ensured in Helios,

our extension distributes the tasks, previously performed by the trustees in Helios-Base,

among the voters while requiring limited preparations. Namely, we relied on such cryp-

tographic primitives as decentralized key exchange for enabling authenticated communi-

cation between the voters in absence of a centralized registration authority and public

key infrastructure, decentralized communication via Byzantine agreement for ensuring

the consistency of the communication in absence of a centralized bulletin board, and

distributed key exchange and distributed decryption for tallying the votes in absence of

external tabulation tellers.

3.6.2 Future Work

As future work, one would address formally proving the security of the extension. The

current definitions for the security requirements such as vote privacy or vote integrity,

used to evaluate the security of Helios, are suited towards a central infrastructure and

a separation between the voters and the components of the voting system such as the

bulletin board or the tabulation teller. Hence, in order to formally evaluate the security

of a scheme in boardroom voting, new definitions should be developed that take the

decentralized infrastructure and distribution of trust among the voters into account. For

this purpose, the literature on secure multi-party computation (e. g. [Gol98]) can be

consulted.

Further directions of future work would focus on improving the efficiency of the scheme,

considering that the Byzantine agreement requires a high number of communication rounds

in order to establish reliable communication channels. Furthermore, one would explore

the usability of a scheme, if it is to be implemented. While usability is important for

Internet voting in general, it becomes even more crucial in boardroom voting, since all the
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tasks within the election now have to be performed by the voters themselves who might

not necessarily have a technical background.





Chapter 4

New Voting Setting: Proxy Voting

In well-established forms of elections, the voters express their opinion by voting directly,

either for a candidate they want to see as their representative (in representative democracy)

or for a particular voting issue (direct democracy). Lately, another form of democracy has

been proposed, that provides voters with an additional option: during the election, the

voter has the right to either vote herself or delegate her voting right to someone else, such

as a trusted expert who might be a public person as well as a trusted friend or relative.

Thereby, voters individually have the possibility to decide to which extent they want to

directly participate in democratic processes. We refer to the elections in such setting as

proxy voting.

Our contribution in this chapter is to extend Helios-Base towards proxy voting. For this

purpose we also identify the security and functional requirements relevant for the proxy

voting settings, on which we base our extension.

This chapter is structured as follows. In Section 4.1, the functional and security require-

ments that follow from the proxy voting setting are described. Section 4.2 describes the

security model that should be ensured in the proposed extension towards proxy voting.

The extension is described in Section 4.3 and its security is evaluated in Section 4.4. The

related work on proxy voting schemes and implemented software products is overviewed

in Section 4.5. The contents of the chapter are summarized and the directions of future

work are outlined in Section 4.6.

The contents of this chapter have been published at the 11th International Conference

on Availability, Reliability and Security [KMNV16].

4.1 Setting-Specific Requirements

In this section we describe the proxy voting specific requirements that follow from the

proxy voting functionality. Before we list the functional requirements, followed by the

security requirements, we start with some pre-considerations. Namely, we consider proxies

to be persons that are registered in the voting system, so that the voters could delegate

their voting right to the proxies. In this work we do not consider the process of choosing
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proxies, since it has no influence on the scheme.

4.1.1 Functional Requirements

There is no established set of requirements in the literature that are considered essential

for the proxy voting. Thus, we consider the following functional requirements in this

thesis.

Delegation. The voter should be able to choose a proxy from a list of available proxies

and transfer her voting right in the election to this person. Then the proxy has the right

to vote on behalf of this voter by casting a delegated ballot. Note, that we do not place

any restrictions on how and whether the proxy should use her delegated voting right: she

can vote for any voting option on behalf of the voter, or not vote at all.

Cancelling the Delegation. After delegating her voting right, the voter should have the

option to change her mind and vote herself. Cancelling the delegation should remain pos-

sible at any moment of the election prior to the tallying. Note that we assume that the

voter’s own vote always has the highest priority. Thus we do not account for a scenario

whereby the voter casts a direct ballot, but changes her mind and wants to delegate later

on.

Alternatively, the voter might be willing to choose different proxies for her delegation.

The reasons for this could be twofold. First, in this way the voter can change her mind, if

after the delegation she decides to delegate to a different person. In a second use case, the

voter wants to delegate to a particular person, but is not sure whether this person would

actually use the delegated voting right and cast her delegated ballot. Hence, the voter

appoints another proxy who has a lower priority than her first choice. Thus we define

following requirements:

Changing the Delegation. After delegating, the voter should be able to appoint a dif-

ferent proxy if she changes her mind.

Prioritizing the Delegation. The voter should be able to assign priorities to different

proxies upon delegation. In this case, only the vote from the proxy with the highest pri-

ority must be included in the final tally.

4.1.2 Security Requirements

Similar to functional requirements, there are no established list of security requirements

for proxy voting in the literature. Hence, we consider following security requirements
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that are specific for the delegation process in particular, which we base upon the security

requirements for non-delegating voters in Helios-Base. Similar to the general security

requirements, we only aim to ensure the delegation-related requirements for the proxies

who are not under complete adversarial control.

Secrecy-Related Requirements

As the identity of the proxy chosen by the voter can reveal significant information regarding

her political preferences, we consider it important to keep this information private. Hence,

we aim to ensure following requirements:

Delegation Privacy - Public. For delegating voters, the identity of the corresponding

proxy should not be leaked.

Delegation Privacy - Proxy. For a given delegating voter, a proxy should be unable to

tell whether this voter delegated to her or to someone else.

At the same time, as the proxies also participate as voters in the election, we consider it

to be important that the principle of secret elections extends to them as well. Note, that

there are approaches to proxy voting that suggest the opposite, namely, that the votes of

the proxies should be public for the sake of better transparency. However, we consider

such an approach to be less optimal, especially in situations where the role of a proxy for

a particular voter can be taken not just by a public person, but also by a trusted friend

or relative. As such, we include the following requirement:

Vote Privacy for Proxies. The voting system should not provide any information to

establish a link between the proxy and her vote, aside from what is available from the

election result.

Another challenge refers to a proxy who accumulated a lot of delegation power – that

is, received a significant number of delegations. This constellation is not inherently prob-

lematic, but it might lead to a misuse of power including proxy coercion, if the number of

accumulated delegations for each proxy is known to the public or to a third party. Thus,

we require that the delegation power of a proxy remains secret to the public. Moreover, a

proxy should be restricted in her capability to prove how many votes have been delegated

to her, regardless from whether she herself knows this number.

Delegation Power Privacy. The voting system should not reveal any information about

the delegation power of the proxy, aside from what is available from the election result.

Furthermore, the proxy should be unable to prove both before and after the tallying, how

many votes have been delegated to her.
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Integrity-Related Requirements.

In order to preserve the integrity of the election, it is further important to ensure, that

only the authorised delegations by eligible voters are included in the tallying result, and

that they are tallied correctly. Hence, the following three requirements are relevant:

Delegation Eligibility. The proxy should only be able to cast their delegated ballots on

the behalf of eligible voters, and at most one delegated ballot per one voter should be

included in the final tally.

Delegation Integrity for Voters. No proxy should be able to cast a delegated ballot on

the voter’s behalf unless authorised by the voter.

Delegation Integrity for Proxies. The valid ballots cast by proxies should be correctly

included in the final tally.

4.2 Security Model

In this section we list the assumptions under which the security requirements must be

satisfied in our scheme. These assumptions are as follows:

Vote Privacy. Vote privacy should be ensured under the assumptions, that a majority

of tabulation tellers are honest, the voting devices of the honest voters do not do not

leak voters chosen voting options to an adversary, the bulletin board does not remove or

modify the data published on it, the bulletin board shows the same contents to everyone,

the voter verifies that she communicates with an authentic bulletin board while casting

the vote, the adversary is computationally restricted and the adversary is not capable of

coercing the voters to vote for a specific voting option.

Fairness. Fairness should be ensured under the same assumptions as vote privacy, with

the assumptions regarding the voters side (the voting devices of the honest voters do

not do not leak voters chosen voting options to an adversary, the voter verifies that she

communicates with an authentic bulletin board while casting the vote and the adversary

does not coerce voters) extending towards proxies and their voting devices as well.

Participation Privacy. Similar to Helios-Base, we do not aim to ensure participation

privacy in our extension.

Eligibility. Eligibility should be preserved under the assumptions, that the register of

eligible voters is trustworthy, the adversary is computationally restricted and that the

voters private signature keys are not leaked by the voting devices.



4.2 Security Model 45

Vote Integrity. Integrity should be ensured under the assumptions, that the adversary

is computationally restrictive, the voters perform the verifications available to them, the

bulletin board shows the same contents to everyone and that either the voting devices or

the verification devices of the voters are trustworthy.

Robustness. Robustness should be ensured under the assumptions, that more than half

of the tabulation tellers are available and provide valid output throughout the election,

and that the contents of the bulletin board are available for tally (i.e. the bulletin board

does not remove the data published on it and shows the same contents to everyone).

Delegation Privacy. Delegation privacy should be ensured given the assumptions that

the channels between the voters and the proxies are private and anonymous, more than half

of the tabulation tellers are honest, the bulletin board does not alter the data published

on it and shows the same contents to everyone, the voting devices of the voters do not

leak information to the adversary, the voters perform the verifications available to them,

the adversary is computationally restricted, the voters do not attempt to prove that they

delegated to a specific proxy and the proxies are semi-honest (i. e. they follow the

delegation protocol without violations, yet might try to gain additional information from

the data they receive during the protocol execution).

Vote Privacy for Proxies. Vote privacy for proxies should be ensured under the same

assumption as vote privacy, with the assumptions regarding the voters side extended

towards proxies. Furthermore, under the assumption that the communication channels

between the proxies and the bulletin board are anonymous, vote privacy for proxies should

be ensured under only the following additional assumptions: the voting devices of the

proxies are trustworthy and the proxies are not coerced to reveal their vote.

Delegation Power Privacy. Delegation power privacy should be ensured under the as-

sumption, that the communication channels between the voters and the proxies are anony-

mous and private, the communication channels between the proxies and the bulletin board

are anonymous, more than half of the tabulation tellers are honest, the bulletin board does

not remove or alter the data published on it and shows the same contents to everyone, the

voting devices of the voters do not leak information to the adversary, the voters perform

the verifications available to them and the adversary is computationally restricted.

Delegation Eligibility. Delegation eligibility should be ensured under the assumptions

that the voting register is trustworthy, the voters perform the verifications available to

them and the bulletin board does not remove the published data and outputs the same

contents to everyone.
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Delegation Integrity for Voters. Delegation integrity should be ensured under the as-

sumptions, that the adversary is computationally restricted, the voting devices do not leak

secret information and that the channels between the voters and the channels between the

voters and the proxies are private and authenticated.

Delegation Integrity for Proxies. Delegation integrity for proxies must be ensured under

the assumption, that the proxies perform the verifications available to them, that the

bulletin board shows the same contents to everyone, that the voting devices of the proxies

are trustworthy and that the adversary is computationally restricted.

The assumptions required for the security of the scheme can hence be summarized as

follows:

(A-PV-PrivChannels) The channels between the honest voters and the proxies are private

and authenticated.

(A-PV-AnonChannels) The channels between the honest voters and the proxies, as well

as between the proxies and the bulletin board, are anonymous.

(A-PV-ProxySemiHonest) The proxies are semi-honest, meaning that they do not deviate

from the protocol.

(A-PV-TabTellerHonest) More than half of tabulation tellers are honest and capable of

communicating with each other and the bulletin board.

(A-PV-VotDeviceLeakage) The voting devices of both voters and proxies do not leak

information to an adversary.

(A-PV-NoBBModification) The bulletin board does not remove or modify the data that

is published on it.

(A-PV-BBConsistency) The bulletin board shows the same contents to everyone.

(A-PV-NoCoercion) No coercion or vote selling takes place.

(A-PV-CompRestricted) The adversary is computationally restricted.

(A-PV-Verify) The voters and the proxies perform the verifications available to them

within the system.

(A-PV-VerDeviceTrusted) The verification devices of both voters and proxies are trust-

worthy.

(A-PV-VotRegister) The voting register with the eligible voters public signature keys is

trustworthy. Same as in Helios-Base, the assumptions (A-PV-NoBBModification),
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(A-PV-BBConsistency) and (A-PV-Verify) are required to ensure the trustworthi-

ness of the voting register, if the voters public signature keys have been generated

for a specific election and are only available on the bulletin board.

The assumptions (A-PV-TabTellerHonest), (A-PV-VotDeviceLeakage), (A-PV-NoBB-

Modification), (A-PV-BBConsistency), (A-PV-NoCoercion), (A-PV-CompRestricted), (A-

PV-Verify), (A-PV-VerDeviceTrusted) and (A-PV-VotRegister) are the same as in Helios-

Base. The assumptions specific to the proxy voting setting, namely, (A-PV-PrivChannels)

and (A-PV-AnonChannels), can be explained as follows:

(A-PV-PrivChannels) The exchange of private information between the voter and her

chosen proxy is crucial in ensuring that only an authorised proxy can cast a delegated

ballot on someone’s behalf. Provided a reliable PKI that encompasses the proxies

(which can be based upon the same PKI as the voting register), the assumption

(A-PV-PrivChannels) can be ensured via end-to-end encryption.

(A-PV-AnonChannels) Unless the anonymity of the communication between voters and

proxies is ensured, delegation privacy is broken, as the adversary is able to find out

the identity of the voter communicating with a specific proxy. This assumption is

furthermore required for delegation power privacy, as the adversary could otherwise

find out a lower bound on the delegation power of the proxy, if she observes how many

times the proxy cast a delegated ballot. The assumption can be facilitated either by

introducing a trusted forwarding server that ensures anonymous communication, or

by using onion routing [DMS04].

(A-PV-ProxySemiHonest) Similar to the security model in Helios-Base which does not

consider voters who might deviate from protocol (for example, to prove to the ad-

versary how they voted because of coercion), we consider dishonest proxies to be

out of scope for our work in this extension. As such, although a dishonest proxy

might coerce a voter who delegates to her to reveal the voter’s identity thus breaking

delegation privacy, we consider such a scenario to be excluded due to the assumption

(A-PV-NoCoercion).

4.3 Description

In this section we show how to extend Helios-Base towards proxy voting.

The basic idea of our extension is to introduce a new type of credential, the so-called

delegation credentials. These credentials hi,j are generated once for each voter, and can

be reused in the subsequent elections. The delegation credentials are used by the voters

to construct the delegation tokens (σ,m, c, πd) for delegating their vote in each individual

election. To do this, tokens are being forwarded to the proxies in an anonymized way

and then submitted by the proxies together with the delegated ballots during the voting.
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Figure 4.1: Components and their interactions of Helios-PV. The new components compared to

Helios-Base are in black. For the sake of simplicity, the verification step using the verification

device is omitted, and sending the voter’s public signature key to the registration authority can

be skipped in case of an existing PKI.

The validity of the tokens, and thus the validity of the delegations, is being verified only

in the final stage of the election after further anonymization. In this way, a proxy does

not know whether the token she received is valid and whether the delegated ballot of the

proxy is included in the tally. If the voter decides to cancel the delegation and cast her

vote directly, all her delegation tokens are marked as invalid. In this way, the delegated

votes are discarded from tallying.

The components of our proxy voting extension and the interactions between them is

depicted on Figure 4.1.

Setup. The initial setup is performed analogously to Helios-Base. The tabulation tellers

jointly generate the election key via distributed threshold secret sharing with a threshold

of t = bNt/2c+1 for Nt as the number of tabulation tellers (Section 2.2.11) and publish the

public part of it together with the data required for the proofs of the decryption validity.

The tabulation teller further verify, that the bulletin board publishes their data correctly.

If the PKI with the public signature key from the voters has to be established specifically

for the election, the registration authority publishes the public signature keys of the voters,

and the voters verify that these public signature keys have been published correctly on

the bulletin board. Given a pre-existing trustworthy PKI, the registration authority uses

it to publish the list of public signature keys of the eligible voters on the bulletin board,

and everyone who has access to the PKI can verify that this list is correct. Furthermore,

the voters submit their T public delegation credentials, represented as an ordered tuple

hi,1, ..., hi,T , whereby the voter knows the secret keys xi,j = logg hi,j , to the registration

authority. These credentials are posted by the registration authority on the bulletin board,
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and the voters further verify, that the delegation credentials posted next to their identity

are valid. For the purpose of establishing the communication channels between the voters

and the proxies, the list of available proxies D1, ..., Dn and their public signature keys

is made available as well. Unless specified otherwise, we imply that everything that the

voters publish on the bulletin board is digitally signed by their corresponding private

signature key. We furthermore imply, that both the voters and proxies verify that they

are communicating with an authentic bulletin board during casting a direct ballot or

delegating (voters), casting a delegated ballot (proxies) or verifying that the cast ballot,

direct or delegated, was properly stored on the bulletin board (voters and proxies). Finally,

the list of the valid voting options {v0, ..., vL−1} is published. Note that as in Helios-Base,

for the sake of simplicity we describe the election with L = 2, however, a generalization

towards more complex ballots is possible.

Voting. The voting is the same as in Helios-Base. The voter submits her ballot of the

form (cv, πv) with cv as an encryption of the chosen voting option with the public election

key and πv as the proof of well-formedness, which consists, as in Helios-Base either of the

proof of plaintext knowledge (Section 2.2.5), or in case of homomorphic tallying approach,

also of the proof of 1-out-of-L encryption (Section 2.2.6). The ballot is then published on

the bulletin board. For ensuring that her ballot encrypts the correct voting option, the

voter can also choose to verify her ballot using the verification device instead of casting

it. After submitting the ballot, the voter verifies whether it is correctly published on the

bulletin board. Note, that as in Helios-Base, it is crucial for the voters to verify that they

are interacting with an authentic bulletin board.

Delegating. For delegating with priority j = 1, ..., T , the voter idi computes an encryp-

tion of her credential cd = (ad, bd) = (grd , hi,jh
rd), a commitment σ = gm of a randomly

chosen value m ∈ Zq and a non-interactive signature of secret key knowledge (i.e. the

value xi,j on σ Section 2.2.3), πd = PoK{(rd, xi,j) : ad = grd ∧ bd = gxi,jhrd}(σ). The

signature of secret key knowledge is constructed using the technique by by Camenisch

et al. (Section 2.2.2) and described in Figure 4.2. The delegation token, which are the

values (σ,m, c, πd), are then sent to a proxy of the voter’s choice over a private anonymous

channel.

Casting a Delegated Ballot. The proxy encrypts her chosen voting option as a ci-

phertext cv = (av, bv) = (grv , vhrv). She further calculates the proof of knowledge

πv = PoK{rv,m ∈ Zq : σ = gm ∧ av = grv ∧ (bv = v0h
rv ∨ bv = v1h

rv)}, which serves both

as a proof of well-formedness10 for cv and as a proof of knowledge of a decommitment

value m. The proof, constructed using the techniques by Camenisch et al. (Section 2.2.2),

10As in Helios-Base, the proof can be simplified by omitting the proof of 1-out-of-L encryption, in case

the mix net approach for anonymising the votes is used.



50 4 New Voting Setting: Proxy Voting

Private input: m, r←$Zq, hj ∈ Gq, xj = logg hj ∈ Zq

Public input: (g, h), cd = (ad, bd) = (grd , hjh
rd) ∈ G2

q, σ = gm ∈ Gq

Proof:

w1, w2 ←R Zq, t1 ← gw1 , t2 ← gw2hw1

e← H(σ||g||h||ad||bd||t1||t2), s1 ← w1 − erd, s2 ← w2 − exj
πd ← (t1, t2, s1, s2)

Verification: (Verify(πd))

e← H(σ||g||h||ad||bd||t1||t2)

if aedg
s1 = t1 ∧ bedgs2hs1 = t2

return 1

else

return ⊥

Figure 4.2: Signature of secret key knowledge knowledge for a delegation token with priority j.

is described in Figure 4.3. She can then choose to either cast or verify the ballot. The

verification is the same as in Helios-Base using the Benaloh challenge. If the proxy decides

to cast, she submits (σ, cv, πv, cd, πd) as her ballot over an anonymous channel. Just as the

voters, the proxies verify that their ballot is published on the bulletin board after casting

it.

Cancelling a Delegation. If the voter decides to cancel the delegation and vote herself,

she just casts her own ballot as in the Helios-Base.

Tallying. After the voting is finished and just before the tallying begins, the voters and

proxies can verify that all their ballots, direct and delegated, are stored correctly on

the bulletin board and thus are included in further tallying. The tallying then proceeds

as follows. First, all duplicate ballots and ballots with invalid proofs or signatures are

removed. If the election allows vote updating, all but the last ballot out of the direct

ballots cast by the same voter, as well as all but the last ballot out of the delegated ballots

cast with the same delegation token, are discarded. The remaining direct ballots are then

further used to initialize different sets which are required for the tallying process.

Let Vown = {(cv, id)i} be the set of valid ballots which were cast by voters directly with

corresponding voter identities. Let Vd = {(cv, cd)i} denote the set of valid ballots and

delegation tokens which were cast by proxies, and let H = {h1,1, ..., h1,T , ...hN,1, ..., hN,T }
denote the set of all valid delegation credentials. For processing the delegated ballots,

two sets are initialized: a set V = {c : ∃(cv, id) ∈ Vown} representing the ballots that

will be included in the tally (at this step, this set consists of the direct ballots only), and
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Private input: m ∈ Zq, rv ←$Zq, i ∈ {0, 1}, j = ī

Public Input: (g, h), cd, cv = (av, bv) ∈ G2
q, πd ∈ G2

q × Z2
q, σ = gm

Proof:

ej ←$Zq

w0, w1, ŵ0, ŵ1←$Zq

t1,i ← gwi , t2,i ← hwi

t1,j ← gwjaejv , t2,j ← hwj (bvv
−1
j )ej

t̂i ← gŵi , t̂j ← gŵj

e← H(σ||g||h||av||bv||t1,0||t2,0||t̂0||t1,1||t2,1||t̂1)

ei ← e− ej , si ← wi − eirv, ŝi ← ŵi − eim
sj ← wj , ŝj ← ŵj

πv ← (t1,0, t2,0, t̂0, t1,1, t2,1, t̂1, s0, ŝ0, e0, s1, ŝ1, e1)

Verification:

if Verify(πd) =⊥
return ⊥

else e← H(σ||g||h||av||bv||t1,0||t2,0||t̂0||t1,1||t2,1||t̂1)

if e0 + e1 = e ∧ σe0gŝ0 = t̂0 ∧ σe1gŝ1 = t̂1

∧ aejv g
sj = t1,j ∧ (bvv

−1
0 )e0gs0 = t2,0 ∧ (bvv

−1
1 )e1gs1 = t2,1

return 1

else

return ⊥

Figure 4.3: Proof of valid delegated ballot for an option vi with delegation token (σ,m, cd, πd).
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Hown := {hi,j : ∃(cv, idi) ∈ Vown} as the list of all delegation credentials of voters who cast

a direct ballot.

Following procedure is being executed: The delegated ballots (cv, cd) ∈ Vd are being

processed through the verifiable re-encryption mix net (Section 2.2.12), resulting in an

anonymized list of tuples {(c′v, c′d)}. After the anonymization, the values of c′d are de-

crypted to reveal the delegation credentials h′ used in constructing the delegating tokens.

The ballots with h′ 6∈ H are discarded as cast with non-valid delegation tokens. The rest

of c′v is assigned to the corresponding delegation credential hi,j with i denoting the voter

idi, and j the registration priority.

This procedure results in a new set V ′d that consists of the delegated ballots with valid

delegation credentials (c′v, hi,j). The delegated ballots that were overwritten either by the

voter herself, or by a delegated ballot with the higher priority are discarded. For this,

each encrypted vote c′v from the tuple (c′v, hi,j) ∈ V ′d is added to V if and only if following

conditions hold:

1. hi,j 6∈ Hown, meaning that the delegated ballot is not revoked by the voter via casting

a direct ballot;

2. ∀(c′′v , hi,l) ∈ Vd : l < j, meaning that the delegated ballot is not overwritten with

a delegation of higher priority. Note that this implies, that the ballots cast for the

same voter with the same delegation priority but different delegation tokens are not

included into the final tally.

The encrypted votes in V are being tallied as in the Helios-Base: anonymized using

either the mix net or homomorphic tallying (Section 2.2.9) approach, and decrypted with

distributed threshold decryption (Section 2.2.11) to reveal the final election result.

4.4 Security Evaluation

In this section we evaluate our extension with regards to the security model given in

Section 4.2. Note that our arguments rely on the security of individual components in the

scheme. We, however, recognize that a formal proof is required in order to ensure, that

the integration of the individual components remains secure, which we leave for future

work.

Vote Privacy. As voting remains the same as in Helios-Base, no information about the

individual votes is leaked at this stage under the condition that Helios-Base is secure: that

is, as long as the majority of the tabulation tellers does not divulge their private election

key shares to the adversary, the honest voter or her voting device does not divulge private

information used for encrypting her vote to the adversary, the adversary is computation-

ally restricted, the voter verifies that she communicates with an authentic bulletin board
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at the time of voting and the bulletin board acts does not remove the ballots or the data

submitted to it by tabulation tellers and shows the same contents to everyone (assump-

tions (A-PV-TabTellerHonest), (A-PV-VotDeviceLeakage), (A-PV-CompRestricted), (A-

PV-NoBBModification), (A-PV-BBConsistency), (A-PV-NoCoercion) and (A-PV-Verify)).

After the voting, the direct ballots are anonymized together with the delegated ballots

from the proxies, which ensures vote privacy as long as this anonymization is performed

correctly. Since the procedure of the anonymization does not differ from Helios-Base,

vote privacy for non-delegating voters is preserved under further assumptions that at least

one mix node is honest (A-PV-TabTellerHonest) if the mix net approach is used, and

the adversary is computationally restricted (A-PV-CompRestricted). The ballot copy-

ing attacks on vote privacy are furthermore prevented due to the well-formedness proofs

(A-PV-CompRestricted).

Hence, vote privacy is preserved in our extension under the assumptions (A-PV-Tab-

TellerHonest), (A-PV-VotDeviceLeakage), (A-PV-CompRestricted), (A-PV-NoBBModifi-

cation), (A-PV-BBConsistency), (A-PV-NoCoercion) and (A-PV-Verify).

Fairness. Same as for vote privacy, the partial results for direct ballots are not leaked

under the same assumptions as in Helios-Base. Indeed, since the direct ballots are at-

tached to the voter’s identities at all time up until the tallying, revealing partial re-

sult would result in breaking vote privacy. Hence, fairness for direct ballots are en-

sured under the same assumptions as vote privacy, namely, (A-PV-TabTellerHonest),

(A-PV-VotDeviceLeakage), (A-PV-CompRestricted), (A-PV-NoBBModification), (A-PV-

BBConsistency), (A-PV-NoCoercion) and (A-PV-Verify).

We now consider the possibilities of violating fairness by getting partial results of the

delegated ballots cast by proxies. The votes cast by proxies are encrypted until the final

anonymization and subsequent decryption. Thus, similar to vote privacy in Helios-Base,

unless the adversary is capable of manipulating the voting device (prevented by the as-

sumption (A-PV-VotDeviceLeakage)), corrupting at least t out of N tabulation tellers

(prevented by the assumption (A-PV-TabTellerHonest)), breaking the encryption (pre-

vented by the assumption (A-PV-CompRestricted)), or coercing the proxies to reveal pri-

vate information (prevented by the assumption (A-PV-NoCoercion)), the adversary gets

no information about the partial results from the delegated ballots.

Hence, fairness is ensured as long as the same assumptions that are required for vote

privacy hold.

Eligibility. As in Helios-Base, the eligibility of the voters is can be violated if the adver-

sary manages to manipulate the voting register, forge the digital signatures of the voters,

or get access to their their private signature keys. A malicious voter can furthermore try

to cast an additional vote via overvoting, in case the homomorphic tallying approach is

used in the election, for which she would have to falsify the proof of 1-out-of-L encryption.
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Hence, eligibility is ensured under the assumptions (A-PV-VotRegister), (A-PV-VotDe-

viceLeakage) and (A-PV-CompRestricted).

Vote Integrity. The voter has the same options as in Helios-Base to perform the verifica-

tions for ensuring that her ballot was cast as intended by the voting device and stored as

cast on the bulletin board. Hence, as long as the voters perform the necessary verifications

(A-PV-Verify), and their verification devices are trustworthy (A-PV-VerDeviceTrusted), it

is ensured that the ballots stored on the bulletin board correspond to the voters intentions.

While the adversary might attempt to prevent the voter from verifying that her vote has

been stored in the voting system by showing her a different version of the bulletin board,

this should be prevented due to the assumption (A-PV-BBConsistency). The stored bal-

lots are properly included in the tally as long as the tabulation tellers provide valid output

during anonymization and decryption, which is ensured by the soundness of the proofs

of knowledge for computationally restricted adversary (A-PV-CompRestricted). In case

the homomorphic tallying approach is used, another malicious voter might prevent some

ballots from being included in the tally via negative voting, which should be prevented

due to the soundness of the proofs of 1-out-of-L encryption (A-PV-CompRestricted).

Hence, vote integrity is ensured under the assumptions (A-PV-Verify), (A-PV-VerDe-

viceTrusted), (A-PV-CompRestricted) and (A-PV-BBConsistency).

Robustness. Due to the distributed threshold decryption approach, as long as at least

t out of N tabulation tellers participate in the tallying process, which is given due to

the assumption (A-PV-TabTellerHonest) for t > N/2, the ballots on the bulletin board

can be tallied. Hence, as long as the contents of the bulletin board and the majority

of the tabulation tellers are available (assumptions (A-PV-NoBBModification), (A-PV-

BBConsistency) and (A-PV-TabTellerHonest)), the final result can be computed.

Delegation Privacy. Obviously, some information leakage is unavoidable if a given proxy

does not have any voters delegating to her, or if a given voter does not appear in the

list of delegating voters, either by voting directly herself or abstaining from the election.

This should not be considered to be a violation of delegation privacy. Hence, we consider

the following expression for delegation privacy for proxies: Given two delegating voters

id1, id2, and two semi-honest proxies (A-PV-ProxySemiHonest) D1, D2 each receiving

a delegation token from one of them, D1 and D2 should be unable to distinguish be-

tween ((id1, D1); (id2, D2)) and ((id1, id2); (id2, D1)), with (idi, Dj) denoting the voter idi
delegating to the proxy Dj .

Given the assumption (A-PV-VotDeviceLeakage), only the information that is either

public or sent privately to the proxies could be potentially used for breaking delegation

privacy. Furthermore, given the assumption (A-PV-NoCoercion), the voters do not provide

any additional information that is not part of the scheme, that might assist in revealing

their identity. The assumptions (A-PV-PrivChannels) and (A-PV-AnonChannels) prevent
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the proxies from using the communication channels for finding out either the identity of

the voters who delegated to each of them, or whether id1 or id2 communicated with the

other proxy.

Consider the proxies D1, D2 casting a ballot (σi, cv,i, πv,i, cd,i, πd,i) with (σi,mi, ci, πd,i)

as the delegation token, i = 1, 2. As the proxies are semi-honest, in addition to the data

received from the voters, they only have access to the public information. Namely, each

proxy further has access to the encrypted credentials cv,1, cv,2, the published delegating

credentials from both voters h1,1, ...h1,T , h2,1, ..., h2,T , and the re-encrypted ciphertexts

resulting from the mix net shuffle of delegating credentials (c′v,1, c
′
d,1), (c

′
v,2, c

′
d,2).

In order to distinguish between a delegation from id1 or id2, the proxies D1, D2 need

to be able to tell,

• whether cv,1 and cv,2 encrypt h1,k respectively h2,l or vice versa for some 1 ≤ l, k ≤ T ,

or

• whether (cv,1, cd,1) and (c′v,1, c
′
d,1) (respectively, (cv,2, cd,2) and (c′v,2, c

′
d,2) encrypt the

same plaintexts, or

• whether (cv,1, cd,1) and (c′v,2, c
′
d,2) (respectively, (cv,2, cd,2) and (c′v,2, c

′
d,2) encrypt the

same plaintexts.

Unless the proxies have access to the private election key or the randomness used for re-

encrypting (c′v,1, c
′
d,1), (c

′
v,2, c

′
d,2), the IND-CPA security of the ElGamal encryption scheme

and the zero-knowledge property of the proof πd restrict them from making the distinc-

tion. Thus, given the assumptions (A-PV-PrivChannels), (A-PV-AnonChannels), (A-

PV-TabTellerHonest), (A-PV-VotDeviceLeakage), (A-PV-NoCoercion), (A-PV-CompRe-

stricted) and (A-PV-ProxySemiHonest), delegation privacy against proxies is ensured.

In addition to what a semi-honest proxy might attempt in order to violate delegation

privacy, a malicious external adversary can furthermore attempt to trick the voter into

encrypting their delegation credential using a different ElGamal key from the one provided

by the tabulation tellers. This attack, however, is prevented if the voter verifies that she

gets the public election key from an authentic bulletin board (A-PV-Verify), the bulletin

board does not change the public election key published by the tabulation teller (A-PV-

NoBBModification) and shows the same contents to everyone (A-PV-BBConsistency).

Hence, delegation privacy for the proxies as well as for the external adversary is ensured

under the assumptions (A-PV-PrivChannels), (A-PV-AnonChannels), (A-PV-TabTeller-

Honest), (A-PV-VotDeviceLeakage), (A-PV-NoCoercion), (A-PV-CompRestricted), (A-

PV-ProxySemiHonest), (A-PV-NoBBModification) and (A-PV-BBConsistency).

Vote Privacy for Proxies. We first consider the case, where the anonymity of the com-

munication channels between the proxies and the bulletin board is not assumed. As
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shown in the evaluation of fairness, the adversary does not learn the contents of dele-

gated ballots until the voting is finished under the assumptions (A-PV-TabTellerHonest),

(A-PV-VotDeviceLeakage), (A-PV-CompRestricted), (A-PV-NoBBModification), (A-PV-

BBConsistency), (A-PV-NoCoercion) and (A-PV-Verify). The adversary, however, can

still violate vote privacy without violating fairness given following conditions: she manages

to learn the identities of the proxies that cast the delegated ballots by observing the com-

munication channel between the bulletin board and the proxies while learning their vote

by preventing the ballots from being anonymized correctly. The proper anonymization,

however, is ensured given that the majority of the tabulation teller (who also act as mix

nodes in case mix net is used for the anonymisation) are honest (A-PV-TabTellerHonest).

Under an additional assumption that the channels between the proxies and the bulletin

board are anonymous (A-PV-AnonChannels), the adversary cannot violate vote privacy

even if she manages to decrypt the ciphertexts cast with the delegated ballots. However,

vote privacy will be violated if the voting devices of the proxies reveal the voting option

that the proxy has voted for (prevented by the assumption (A-PV-VotDeviceLeakage)),

or if the proxy herself is coerced to reveal her vote to the adversary (prevented by the

assumption (A-PV-NoCoercion)).

Hence, vote privacy for proxies is ensured under the assumptions (A-PV-TabTellerHonest),

(A-PV-VotDeviceLeakage), (A-PV-CompRestricted), (A-PV-NoBBModification), (A-PV-

BBConsistency), (A-PV-NoCoercion) and (A-PV-Verify). Furthermore, under the as-

sumption (A-PV-AnonChannels) vote privacy for proxies is ensured as long as the as-

sumptions (A-PV-VotDeviceLeakage, A-PV-NoCoercion) hold.

Delegation Power Privacy. One way for the adversary to violate delegation power would

be count the number of delegated ballots cast by the proxy. Even if some of these ballots

are cast using invalid delegation credentials, the adversary can still use this number to

estimate the proxy’s delegation power and to find out its higher bound. However, this

would not be possible given anonymous channels between the proxies and the bulletin

board (A-PV-AnonChannels).

The proxy herself knows how many delegation tokens she has gotten in the election

– however, she is not able to distinguish, whether a given delegation token contains

an encryption of a valid delegation credential unless she manages to decrypt cv (pre-

vented by the assumptions (A-PV-TabTellerHonest), (A-PV-CompRestricted), (A-PV-

NoBBModification), (A-PV-BBConsistency) and (A-PV-Verify)) or to get a plaintext

value of it either from the coerced voter or the voting device (prevented by the assumptions

(A-PV-VotDeviceLeakage) and (A-PV-NoCoercion)). Hence, she does not know exactly

how many of these tokens are actually valid delegations. Furthermore, if the proxy for-

wards her delegation tokens to a third party, unless this third party does not control the

communication channels between the proxy and the voters (which would contradict the

assumptions (A-PV-PrivChannels) and (A-PV-AnonChannels)), she does not know which

ones of the delegation tokens were sent to the proxy, and which were created by the proxy
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herself in order to cheat about her delegating power.

Hence, even if the proxy tries to prove to the adversary how much delegation power she

has by showing the delegation tokens to the adversary, she can cheat by either creating

some of the delegation tokens herself (thus overestimating her delegation power) or omit

some of them (underestimating her delegation power). In both of these cases, the adversary

has no way to tell before the tally whether the proxy cheats or not.

After the tallying, however, the total number of invalid delegation tokens d̂ cast within

the election is revealed. In this way, given d delegation tokens that the proxy received or

presented to a third party, it can be concluded that at least d− d̂ of them are valid. Thus,

the requirement of delegation power privacy after the tally is only probabilistically en-

sured under the assumptions (A-PV-TabTellerHonest), (A-PV-CompRestricted), (A-PV-

NoBBModification), (A-PV-BBConsistency), (A-PV-Verify), (A-PV-PrivChannels) and

(A-PV-AnonChannels), which can be corrected if a sufficient number of “chaff” fake del-

egations are added to the tally similar to the suggestion in the Civitas system [CCM08].

Delegation Eligibility. Given the assumption (A-PV-VotRegisterTrustworthy), only eli-

gible voters participate in the election. Furthermore, given that the voters verify that the

bulletin board publishes their valid delegation credentials (assumptions (A-PV-Verify),

(A-PV-NoBBModification) and (A-PV-BBConsistency), all the published delegation cre-

dentials belong to eligible voters. As long as the decryption of the credentials in delegation

tokens is performed correctly, which is ensured by the corresponding proofs of knowledge

together with the assumption (A-PV-CompRestricted), everyone can verify that only the

delegated ballots with valid delegation credentials with at most one delegated ballot from

each voter, are included in the tally. Violating delegation eligibility via overvoting in case

of homomorphic tallying is furthermore prevented by the proofs of 1-out-of-L encryption.

Hence, delegation eligibility is ensured under the assumptions (A-PV-VotRegister), (A-

PV-CompRestricted), (A-PV-Verify), (A-PV-NoBBModification) and (A-PV-BBConsis-

tency).

Delegation Integrity for Voters. Let us consider the case where the proxy is willing

to cast a ballot using the credential hi,j on behalf of some voter idi. For this she needs

to calculate the signature of knowledge πd = SoK{(r, xi,j) : a = gr ∧ b = gxi,khr}(σ),

which according to the assumption, that the adversary is computationally restricted (A-

PV-CompRestricted) she cannot do without the knowledge of xi,j . The same argument

holds for a proxy who wants to cast her ballot with a different priority than the one

delegated to her. That is, upon getting the delegation token for the credential hi,j , she

wants to cast a ballot using the credential hi,k for k 6= j. Again, given the assump-

tion (A-PV-CompRestricted), she cannot do this without the knowledge of xi,k. Hence,

unless xi,j is leaked by the malicious voter’s device (prevented by the assumption (A-PV-

VotDeviceLeakage)), it cannot be used by the adversary for casting a delegated ballot

without the voter’s explicit authorization.
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An adversary might attempt to impersonate a proxy chosen by the voter and get the

delegation credentials, in particular, the private value m, instead of the proxy. This is

prevented, however, given private and authenticated communication channels between

the voters and the proxies (A-PV-PrivChannels).

Finally, if an adversary gets the public part of the delegation token (namely, the values

(σ, c, πd)) before the delegated ballot is published on the bulletin board (for example,

by intercepting the channel between the proxy and the bulletin board or by controlling

the bulletin board), she can attempt to use it to cast her delegated ballot instead before

the proxy does. However, such an attack would be prevented in our scheme. Due to

the assumption (A-PV-CompRestricted) and the fact that σ is integrated into πd, the

adversary would need to know the value of m in order to calculate the proof of knowledge

πv. This, however, is prevented given that m is sent to the legitimate proxy over an

private channel (A-PV-PrivChannels) and does not leave the proxy’s voting device (A-

PV-VotDeviceLeakage).

It is worth noting, that the voter can detect a violation of delegation integrity for

voters even without relying on the assumptions (A-PV-VotDeviceLeakage) and (A-PV-

PrivChannels) if she performs the available verifications at the end of the tally. Namely,

as all the used delegation credentials are decrypted after the anonymisation, the voter

can see how many times her delegation credentials (and which priorities exactly) have

been used in casting a delegated ballot. If this number or the used priority does not

correspond to her intention, or a delegation credentials with the wrong priority has been

used, she can conclude that the additional ballots were cast by an adversary. However,

while manipulations can be detected in this way, at this point of the election there is

no way to distinguish between the ballots from a legitimate proxy or from the adversary

without violating delegation privacy.

Delegation Integrity for Proxies. Similarly to the votes of non-delegating voters, the

votes of proxies would be correctly included in the election result, as long as the proxies

perform the verification and check that their ballots are published on the bulletin board

at the end of the election (A-PV-Verify), the proofs of 1-out-of-L encryption (in case of

homomorphic tallying) are sound (A-PV-CompRestricted) and the mix net and decryption

is performed correctly (ensured by corresponding proofs together with the assumption (A-

PV-CompRestricted)).

4.5 Related Work

In this section we review the proxy voting schemes and implementations currently avail-

able. There are a few proxy voting implementations which are published by different
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organizations. Two widely known systems are LiquidFeedback11 and Adhocracy12. How-

ever both approaches completely relinquish vote secrecy, since all actions of users are

visible to other users of the system at any time.

Furthermore, a number of schemes were made to conduct cryptographic proxy voting

[Tch12,ZHT13].

The ballot-copying approach proposed by by Desmedt et al. [DC12] mentioned in Sec-

tion 2.3.2 ultimately provides a kind of proxy voting functionality, although the authors

do not refer to their proposal as proxy voting. The proxies in this proposal also act as

regular voters by casting their ballot as in the original Helios. For delegating, the voter

can contact the proxy via a two-way anonymous channel. The proxy then provides the

voter with a re-encryption of her own ballot and a valid proof of well-formedness for the

ballot, which the voter can blind with random values and cast as her own ballot. This

scheme, however, does not allow the proxies to change her mind and update her vote after

the voters have cast the ballots received from the proxy, without necessarily contacting all

the voters again. Furthermore, the proxy has to cast her ballot or at least know what she

should vote for before the voter requests a copy of her ballot. Our extension, on the other

hand, does not place such limitations on the proxy, in that a proxy can decide to cast her

ballot at any time of the election and does not have to communicate with the voter after

she receives the delegation token, even if the proxy wants to update her vote. Furthermore,

only one-way anonymous channels are required for the communication between the voter

and the proxy in our extension.

Another scheme for proxy voting has been proposed by Tchorbadjiiski [Tch12]. The

scheme uses hash chain for implementing the delegation functionality and ensures vote

privacy for both voters and proxies as well as delegation privacy using blind signatures

and an anonymous channel. The scheme, however, requires trusting a single voting system

component for ensuring the eligibility of the election without means to verify it, as opposed

to our extension. Similarly, a single voting system component in [Tch12] can violate vote

privacy or delegation privacy, while our extension allows to distribute the trust between

several entities to secure these requirements. As opposed to our extension, the scheme

in [Tch12] further does not provide delegation power privacy, in that each proxy knows

and can prove to a third party, how many voters delegated to her.

The scheme proposed in [ZHT13] describes two approaches to delegating. In both of

these approaches, the proxies publish their votes in plaintext either before or after the

election. For delegating in the server-side approach, the voter encrypts the name of the

chosen proxy and casts it as her ballot. In the client-side approach, the voter encrypts the

vote cast by her chosen proxy. As opposed to our extension, both of these approaches do

not ensure vote privacy for proxies. Furthermore, in the client-side approach, the proxy

cannot update her vote if she changes her mind at any time during the election without

11http://liquidfeedback.org/
12https://adhocracy.de/

http://liquidfeedback.org/
https://adhocracy.de/
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having to contact all the voters, while our extension allows the proxy to do this at any

time until the tallying. In the server-side delegation, the number of voters who delegated

to each proxy is public information, hence, as opposed to our extension, delegation power

privacy is not ensured. Similar to the proposal in [Tch12], both the client-side and the

server-side approach in [ZHT13] are vulnerable to single point of failure, so that a single

corrupted voting system component can violate vote privacy and eligibility without being

detected, as opposed to our proposal.

The approach in [KNM+16] deals with the problem of coercion resistance as it extends

the coercion-resistant JCJ/Civitas scheme [CCM08] towards proxy voting. This is done by

introducing delegation credentials, constructed in a similar way to the voting credentials

in Civitas, and a new kind of entity, the delegation server, that is to be trusted for coercion

resistance. The coercion resistance of the extension, however, as in the Civitas scheme,

comes at a price of computational complexity and increased effort that is required from

the voters, while the extension described in this chapter provides better efficiency and a

simpler process of voting and delegating.

4.6 Summary and Future Work

The contribution described in this chapter extends Helios-Base towards a new form of

voting, proxy voting. Elections with proxy voting provide the voters with an additional

option to delegate their vote to a trusted proxy instead of voting directly. Our extension

allows conducting election with proxy voting functionality, in which the voters can del-

egate, cancel their delegation if they change their mind and decide to vote directly, and

delegate their votes to multiple proxies while assigning different priorities to them.

4.6.1 Summary

Our extension aims to ensure the security of the delegation process, while at the same

time preserving the level of security provided by Helios for the voters who vote directly.

Namely, our extension ensures such requirements as delegation privacy, meaning that the

voter’s choice of proxy is secret, delegation eligibility, meaning that the proxies can cast

the delegated ballots on behalf of eligible voters only, delegated integrity, meaning that

the proxy can only cast a delegated ballot if she is authorized to do so by the voter,

and delegation power privacy, meaning that the proxy does not know for sure, how many

voters have delegated to her. Our extension further extends the security requirements

for direct voters to the proxies. As such, it preserves vote privacy and vote integrity

for the delegated ballots cast by proxies. The security of our extension is ensured via

the so-called delegation credentials that are assigned to the voters. These credentials are

used by the voters to construct anonymized delegation tokens, which are forwarded to the

chosen proxies. The proxy uses her delegation token to cast a delegated ballot, which is

included in the tally only if it was constructed using a delegation credential from an eligible
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voter, the voter did not cast a direct ballot, and did not delegate with higher priority to

another proxy. For ensuring both privacy and integrity related security requirements of

the delegation, we relied on such cryptographic primitives as proofs of knowledge and

signatures of knowledge.

4.6.2 Future Work

As in the case of boardroom voting, one important direction of future work would be the

formal evaluation of our scheme. The challenge of this task is due to the fact that a number

of new security requirements are introduced that are specific to the delegation process, and

therefore have not yet been considered in previous research. Hence, new formal security

definitions have to be developed and applied to the evaluation of our scheme as well as

possibly other proxy voting schemes.

Other directions of future work would consist researching the non-technical aspects of

proxy voting. As such, the usability of our scheme, in particular, of the delegating process,

can be studied. Furthermore, it would be interesting to study the understandability of

the proxy voting concept in general, including the mental models that the voters might

have for delegating their vote, and the additional functionality of the delegation that the

voters or the election organizers might want to enable.





Chapter 5

New Voting Setting: Proxy Boardroom

Voting

In boardroom voting schemes, time and geographical restrictions often prevent absent

board members from participating in the election. As such, even if the election supports

remote participation, some of the participants might not be available at the time while

the voting takes place. Consequently, decisions are often not supported by a required

quorum. For such situation, it is worth considering the possibility to delegate one’s vote

to a trusted board member that is present, a proxy. We refer to such setting as proxy

boardroom voting.

Our contribution in this chapter is to further modify the Helios-Base extension towards

boardroom voting described in Chapter 3 to enable proxy boardroom voting.

The chapter is structured as follows. We describe the requirements on proxy voting in

boardroom setting in Section 5.1, and the security model under which these requirements

are to be achieved in Section 5.2. We describe our extension in Section 5.3, followed by

the security evaluation in Section 5.4. Section 5.5 summarizes the chapter and provides

the directions of future work.

The contents of this chapter are to be published at the 2nd Workshop on Advances in

Secure Electronic Voting Associated with Financial Crypto 2017 [KMNV17].

5.1 Setting-Specific Requirements

In this section we describe the proxy boardroom voting specific requirements.

The scenario for proxy boardroom voting can be described as follows. The voters know

in advance, when the election takes place (i. e. the meeting and the agenda for it).

Each voter then can make a decision either to participate in a meeting personally (pos-

sibly also remotely), or appoint a proxy before the election, chosen among other meeting

participants, who casts a ballot on behalf of the voter during the voting.

The main limitation of this scenario, as opposed to proxy voting with centralized in-

frastructure, is the ability for the voters to delegate their voting rights before the election,
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hence, before the setup phase of the election has been conducted. This is important due to

the fact, that the voters who participate in the meeting are supposed to take over the role

of tabulation tellers in boardroom voting. Hence, it follows that the setup phase, which

requires simultaneous participation of all the voters that would act as tabulation tellers,

can only be conducted during the meeting itself. Thus, the following requirement follows:

Delegation Prior to Setup. A voter must be able to appoint the proxy and delegate her

voting right before the setup preparations for the elections, which require the participation

of all the voters acting as tabulation teller, are conducted.

We further aim to preserve the security requirements specific in proxy voting setting as

outlined in Chapter 4.

5.2 Security Model

In this section we list the assumptions under which we aim to ensure the security require-

ments in our scheme. As we consider the case, where the voters that are present within

a meeting also act as proxies, we do not include the security requirements of vote pri-

vacy for proxies and delegation integrity for proxies in our analysis. Instead, we consider

these security requirements a part of vote privacy and vote integrity respectively. The

assumptions that each security requirement relies upon are as follows:

Vote Privacy. Vote privacy should be ensured under the assumptions that more than

half of the voters present within a meeting are honest, the voting devices of the honest

voters are trustworthy, there is a trustworthy public-key infrastructure (PKI) with the

eligible voters public signature keys, the adversary is computationally restricted and the

adversary is not capable of coercing the voters to vote for a specific voting option.

Fairness. Fairness should be ensured under the same assumptions as vote privacy.

Participation Privacy. As in Helios-Base and in our boardroom voting extension in Chap-

ter 3, the extension presented in this chapter does not ensure participation privacy.

Eligibility. The eligibility requirement must be ensured under the assumptions that an

adversary is computationally restricted, there is a trustworthy PKI with the eligible voters

public signature keys and that the voter device does not leak the voter’s private signature

key to the adversary.

Vote Integrity. Vote integrity should be ensured under the assumptions that the devices

of the honest voters are trustworthy, and that the adversary is computationally restrictive.
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Robustness. Robustness should be ensured under the assumptions that more than half

of all the voters present within a meeting are honest, are able to communicate with each

other during the whole election, their devices are trustworthy, and the adversary is com-

putationally restricted.

Delegation Privacy. Delegation privacy should be ensured given the assumptions that

more than half of the present voters are not corrupted by the adversary, the voting devices

of both delegating and present voters do not leak information to the adversary, the ad-

versary is computationally restricted, there is a trustworthy PKI with the eligible voters

public signature keys, and the adversary does not coerce the voters to delegate to a specific

proxy.

Delegation Eligibility. Delegation eligibility should be ensured under the assumptions

that there is a trustworthy PKI with the eligible voters public signature keys, and that

the adversary is computationally restricted.

Delegation Integrity. Delegation integrity should be ensured under the assumptions, that

there is a trustworthy PKI with the eligible voters public signature keys, the adversary is

computationally restricted, and the voting devices of honest voters are trustworthy.

Delegation Power Privacy. Delegation power privacy should be ensured under the as-

sumptions, that more than half of the present voters are honest, the voting devices of

both delegating and present voters do not leak information to the adversary, the adver-

sary is computationally restricted, there is a trustworthy PKI with the eligible voters

public signature keys, and the voters do not actively try to prove to the adversary how

they voted.

The assumptions required for the security of our scheme are hence summarized as fol-

lows:

(A-PBV-HalfVotersHonest) Out of Np present voters, at least Np− t+ 1 are honest and

do not divulge their private information to the adversary.

(A-PBV-VotDeviceTrusted) The devices of honest voters are trustworthy.

(A-PBV-Communication) At least t of present voters are available, capable to commu-

nicate with each other, and produce valid output during the election.

(A-PBV-CompRestricted) The adversary is computationally restricted.

(A-PBV-NoCoercion) No coercion or vote selling takes place.

(A-PBV-PKI) There is a trustworthy PKI with the eligible voters public signature keys.
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The assumptions (A-PBV-HalfVotersHonest), (A-PBV-VotDeviceTrusted), (A-PBV-

Communication), (A-PBV-CompRestricted) and (A-PBV-NoCoercion) are required for

the boardroom voting as described in Chapter 3. The remaining assumption is justified

as follows:

(A-PBV-PKI) Since the proposed scenario does not include ad-hoc elections, it would be

possible to assume that the voters have time to exchange their public signature keys

in advance (either using the decentralized key exchange as described in Chapter 3 or

any other suitable approach), thus establishing a PKI encompassing all the eligible

voters.

Note that the setting assumes that the proxies also act as tabulation teller, hence, they

are involved during the whole election including the tallying process. This, together with

an overall small number of voters or proxies, allows for constructing a scheme for delegation

that no longer requires anonymous channels between voters and proxies, as opposed to

the scheme described in Chapter 4 at the expense of increased interactions between the

proxies. Furthermore, since the proxies are also the voters, the private channels between

the proxies and the delegating voters can, on the other hand, be implemented given a

trustworthy PKI (A-PBV-PKI).

5.3 Description

We are now ready to provide a description of our scheme for proxy voting in boardroom

voting setting. As mentioned in Section 5.2, for this scheme, we assume the existence of a

trustworthy public-key infrastructure among all eligible voters. Furthermore, the PKI is

used to establish private communication channels between the voters, and the Byzantine

agreement (Section 2.2.18), as in Chapter 3, is used for broadcasting the messages among

proxies. Depending on the ballot complexity, either the mix net approach (Section 2.2.12)

or the homomorphic tallying approach (Section 2.2.9) is used for the anonymization. The

components and their interactions of our extension (Helios-PBV) are depicted in Fig-

ure 5.1.

In further descriptions we imply that every message is signed by its sender idi with a

private signature key skidi .

Pre-Election. A list of all the eligible voters id1, ..., idN is made available 13, with a list

of their public signature keys pkidi (the corresponding private signature keys skidi are

possessed only by the voters). Furthermore, each voter broadcasts a pair of keys (gi, hi)

with xi = loggi hi known only to the voter idi. The list of voters that are about to be

present at the meeting is known in advance, so that the majority of them are actually

present.

13This list, for example, could be a list of board members who have a right to participate in the meeting.
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Figure 5.1: Components and their interactions of Helios-PBV. An existing PKI is assumed (1),

and after the delegation (2) the proxies jointly conduct the election by exchanging the data in (3)

election key generation, (4) casting direct ballots, (5) casting delegated ballots, and (6) tallying.

Delegation. The delegation can occur before as well as during the election, prior to

the voting. We define Vd ⊂ {id1, ..., idN} as a set of voters who delegate, and Vp =

{id1, ..., idN} \ Vd as the voters who decide to vote directly. Since the voters in Vp also

receive delegations from the voters in Vd, they are further referred to as proxies.

The threshold t is defined as bNp/2c+ 1, with Np = |Vp| as the number of proxies. If a

voter idi ∈ Vd decides to delegate, following steps are required:

The voter idi selects a random value mi ∈ Zq, which serves as her delegation token. She

then shares gmi
i among proxies as follows:

• Compute the shares of mi using Shamirs secret share scheme (see Section 2.2.10):

select a random polynomial fi(x) ∈ Zq[x] with degree t−1 and fi(0) = mi. For each

voter idj ∈ Vp, compute secret share mi,j = fi(j).

• For each voter idj ∈ Vp, furthermore compute commitments ci,j = (c
(1)
i,j , c

(2)
i,j ) with

c
(1)
i,j = g

ri,j
i h

ui,j
i , c

(2)
i,j = g

mi,j

i h
ri,j
i for random ri,j , ui,j ∈ Zq (similar to Pedersen com-

mitments, see Section 2.2.13), and a digital signature on ci,j , si,j = Sign(skidi , ci,j).

• For each voter idj ∈ Vp, set m′i,j to mi if the voter idj is chosen as a proxy, and

a random value in Zq otherwise. If the voter does not want to choose a proxy and

wants to abstain instead, she sets m′i,j to a random value in Zq for each voter.

The tuple (g
mi,j

i ,m′i,j , si,j , ri,j , ui,j) is being sent to each voter idj ∈ Vp over a private

channel. Note that idj can compute c
(1)
i,j , c

(2)
i,j herself.
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Setup. At this point, any voter idi who delegated her voting right can change her mind

and attend the meeting; in that case, idi is excluded from Vd and added to Vp prior to

voting.

During the election, the distributed threshold secret sharing (Section 2.2.11) is being

executed by the proxies idj ∈ Vp to establish the public election key pkv = (gv, hv) and

the corresponding private election key skv with hv = gskvv . At this point the list of valid

voting options is being made available, as V = {v1, ..., vL} ⊂ ZLq .

Furthermore, for all the delegating voters idi ∈ Vd an encryption of the delegation token

gmi
i with pkv is jointly calculated, whereby each voter idj ∈ Vp performs the following

steps, given the tuple (g
mi,j

i ,m′i,j , ci,j , ri,j , ui,j) as received during the delegation:

• Encrypt her share of gmi
i resulting in e

(d)
i,j = Enc(pkv, g

mi,j

i ),

• Compute the proof of knowledge χi,j using the technique described in [CS97b] (see

Section 2.2.2), proving that e
(d)
i,j encrypts the same value that is committed in ci,j

(i.e. χi,j = PoK{ri,j , ui,j , r′i,j : ai,j = g
r′i,j
v ∧ bi,j/c(2)i,j = h

r′i,j
v h

−ri,j
i ∧ c(1)i,j = g

ri,j
i h

ui,j
i }

for e
(d)
i,j = (ai,j , bi,j)).

• Broadcast the tuple (idi, e
(d)
i,j , ci,j , si,j , χi,j).

Given that for each i, at least t of the values of e
(d)
i,j with valid proofs, j ∈ Qi ⊂ {1, ..., N},

|Qi|≥ t are broadcast, these values are combined as

e
(d)
i =

∏
j∈Qi

(e
(d)
i,j )λi,j

with λi,j :=
∑

k∈Qi,k 6=j
j

j−k . The resulting value of e
(d)
i thus corresponds to the encryp-

tion of gmi
i = g

∑
j∈Qi

mi,jλi,j

i with the public election key pkv.

Voting. The voters who are present in the meeting (i.e. the proxies, idj ∈ Vp) cast their

ballots directly by submitting E
(p)
j = Enc(pkv, vj) with vj signifying their choice, and the

accompanying well-formedness proof σj that proves the knowledge of vj (Section 2.2.5)

and, in case of anonymization via homomorphic tallying that vj ∈ V (Section 2.2.6).

Furthermore, for each delegating voter idi ∈ Vd, each proxy idj ∈ Vp calculates a value

ê
(d)
i,j = Enc(pkv, g

m′i,j
i ). Note that ê

(d)
i,j encrypts gmi

i only in case that the voter idj is in

possession of a delegation token mi (i. e. m′i,j = mi). For the sake of ensuring soundness,

the voter further calculates πi,j as a proof of knowledge of plaintext discrete logarithm

for m′i,j constructed using the technique described in [CS97b] (i.e. πi,j = PoK{wi,j ,mi,j :

a
(d)
i,j = g

wi,j
v , b

(d)
i,j = g

mi,j

i h
wi,j
v } with ê

(d)
i,j = (a

(d)
i,j , b

(d)
i,j )), calculates E

(d)
i,j as Enc(pkv, v

(d)
i,j ) with

v
(d)
i,j as her chosen option to cast on behalf of the delegating voter idi, σi,j as the well-

formedness proof for E
(d)
i,j (i. e. as for the direct ballots, the proof of plaintext knowledge,
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and for homomorphic tallying, the proof of 1-out-of-L encryption), and broadcasts the

tuple (ê
(d)
i,j , E

(d)
i,j , πi,j , σi,j).

Tallying - Weeding Duplicates and Invalid Delegations. In the next stage, the delegated

ballots are processed. First, the delegated ballots with invalid proofs of knowledge are

removed. Then, the vote updating policy is applied. Namely, the given two ballots cast

as direct ballots by the same voter, or two delegated ballots cast on behalf of the same

voter by the same proxy, either all but the last (if vote updating is allowed) or all by the

first (if vote updating is not allowed) cast ballot are excluded from further processing.

The next step removes the delegated ballots if they have canceled by the voter, i.e.

if the voter cast a direct ballot instead. Namely, out of all the delegated ballots tuples

(ê
(d)
i,j , E

(d)
i,j , πi,j), the ballots with idi ∈ Vp are removed.

The remaining delegated ballots are being anonymized via verifiable re-encryption mix

net (Section 2.2.12) with each proxy acting as a mix node, resulting in an anonymized list

V = {(ê
′(d)
i,j , E

′(d)
i,j )}. The values e

(d)
i that encrypt the voters delegation tokens mi are also

processed through the mix net resulting in an anonymized list V ′ = {e
′(d)
i }. The next step

removes the delegated ballots cast with an invalid delegation token. For this, the following

procedure is performed for each anonymized tuple (ê
′(d)
i,j , E

′(d)
i,j ) ∈ V :

• Calculate PET(ê
′(d)
i,j , e

′(d)
i ) for each e

′(d)
i ∈ V ′ (see Section 2.2.17).

• If the PET is positive for some index i:

– add E
′(d)
i,j to the list V ′′ for further tallying,

– remove e
′(d)
i from V ′.

Tallying - Mixing and Decrypting. After that, the list of ciphertexts {E(p)
j }idj∈Vp ∪

{E
′(d)
i } ∈ V ′′ is being anonymized with either mix net or homomorphic tallying ap-

proach. The anonymized result is being decrypted via distributed threshold decryption

(Section 2.2.11).

5.4 Security Evaluation

In this section we provide an informal security evaluation for our scheme. Note that, as in

previous chapters, we recognize that for better reliability of our arguments a formal proof

is required, which we consider to be a part of future work.

We first evaluate the fulfillment of the security requirements not related to delegation.

Vote Privacy. This requirement is violated if the adversary is capable of corrupting vot-

ing devices, which then leak the choices made by the voters. This attack is infeasible as-
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suming that honest voters’ devices are not compromised (A-PBV-VotDeviceTrusted), and

the voters are not trying to prove to the adversary how they voted (A-PBV-NoCoercion).

Another way to violate vote privacy of honest voters is to decrypt the encrypted votes

prior to their anonymization (i. e. before the mixing or homomorphic multiplication).

This, however, requires either being able to break the encryption of the ballots (pre-

vented by the assumption (A-PBV-CompRestricted)), the collaboration of at least t vot-

ers who hold the shares of a private election key (prevented by the assumption (A-PBV-

HalfVotersHonest)), or eavesdropping on the communication channels in order to get the

private election key shares, which is prevented by a trustworthy PKI (A-PBV-PKI).

Furthermore, vote privacy can be violated by revealing the secret permutation used by

each voter during the mixing. However, as long as at least one voter keeps this permutation

secret (implied by (A-PBV-HalfVotersHonest)), the permutation between the resulting

output and the input ciphertexts remains secret to the public, and as long as at least two

voters keep their permutation secret (A-PBV-HalfVotersHonest), the the permutation

between the resulting output and the input ciphertexts remains secret to all the voters as

well.

Hence, vote privacy is ensured under the assumptions (A-PBV-VotDeviceTrusted), (A-

PBV-NoCoercion), (A-PBV-PKI), (A-PBV-CompRestricted) and (A-PBV-HalfVotersHo-

nest).

Fairness. As the cast ballots are attached to the voters’ identities until the tallying,

violating fairness would also imply violating vote privacy. Hence, fairness is ensured

under the same assumptions as vote privacy: namely, that the voting devices of honest

voters are trustworthy (A-PBV-VotDeviceTrusted), at least half of proxies are honest

(A-PBV-HalfVotersHonest), no coercion or vote selling takes place (A-PBV-NoCoercion),

the PKI is trustworthy (A-PBV-PKI) and the underlying encryption cannot be broken

(A-PBV-CompRestricted).

Eligibility. This requirement is ensured as long as the PKI used to authenticate the voters

is trustworthy (A-PBV-PKI), the private signature keys are not leaked to the adversary

by the honest voters voting devices (A-PBV-VotDeviceTrusted), and the adversary is

computationally restricted (A-PBV-CompRestricted).

Vote Integrity. Similar to the security evaluation in Chapter 3, we consider the cases,

where a violation of vote integrity would be noticeable by at least one honest voter.

For direct ballots, vote integrity can be violated by replacing a cast ballot with another

ciphertext at the time of casting via a malicious voting device (prevented by A-PBV-

VotDeviceTrusted). Alternatively, the adversary can try either to replace or to drop

the ballot after it has been cast14. However, given a trustworthy voting device, such a

14Note that these attempts would also be prevented given assumptions (A-PBV-PKI, A-PBV-

Communication)
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manipulation will be detected by the voter, since her result would not fit with the result of

other voters (A-PBV-VotDeviceTrusted). Another way to manipulate the tally would be

to manipulate ballots during the shuffling process or to produce an incorrect decryption

result. Both possibilities are excluded due to the usage of sound proofs of shuffle validity

and decryption validity (A-PBV-CompRestricted).

We now consider the integrity of delegated ballots. Note that in case the voter has

delegated her voting right to multiple proxies, only a ballot from one of them is included

into the tallying. Hence, in this way excluding the ballots of other proxies from being

included in the tallying is not considered a violation of delegation integrity for proxies.

Similarly, excluding the ballots cast on behalf of dishonest voters does not violate the

requirement.

A dishonest majority of proxies might prevent the delegated ballot on behalf of the

particular voter from being included in the tally by refusing to publish their values e
(d)
i,j ,

hence, preventing the reconstruction of e
(d)
i . However, since the misbehaviour of dishonest

voters would be detected by everyone, we do not consider it to be a violation of vote

integrity.

On the other hand, publishing the invalid values e
(d)
i,j , so that the reconstructed e

(d)
i does

not encrypt the value of gmi
i for a valid delegation token mi, would indeed be a violation

of vote integrity, if undetected. However, the soundness of the proof of knowledge χi,j

that accompanies ê
(d)
i,j and the computational binding property of the commitment ci,j

that holds unless the secret xi is leaked (assumptions (A-PBV-VotDeviceTrusted) and

(A-PBV-CompRestricted)) ensure that each e
(d)
i,j encrypts the value g

mi,j

i committed in

ci,j . Since ci,j is signed by the voter (and a lack of a valid signature would be noticeable

to the honest proxies, as well as to the delegating voters who verify the election data),

the unforgeability of the signature (A-PBV-CompRestricted) ensures that ci,j was sent

by the voter herself, hence, it contains the valid value of g
mi,j

i . Furthermore, reusing old

signatures on ci,j would be prevented, since the election information and the timestamp

are incorporated in the signature. Hence, the reconstructed value e
(d)
i encrypts the same

gmi
i that is shared by the voter idi

Another way to prevent the delegated ballots from an honest proxy to be included in

the tally is to ensure that the result of PET(ê
′(d)
i,j , e

′(d)
i ) outputs some value other than

1. This is prevented due to the soundness of the proofs of knowledge accompanying the

PETs. Furthermore, analogously to the case of direct ballots, the soundness of proofs of

shuffle validity and decryption validity prevent the manipulation of cast ballots (A-PBV-

CompRestricted).

It therefore follows that vote integrity is ensured under the assumptions (A-PBV-

VotDeviceTrusted) and (A-PBV-CompRestricted).

Robustness. Similar to the scheme in Chapter 3, the consistency of broadcast communi-

cation via Byzantine agreement is ensured under the assumptions (A-PBV-HalfVotersHo-
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nest), (A-PBV-Communication), (A-PBV-CompRestricted) and A-PBV-VotDeviceTrusted).

Furthermore, violating robustness would mean that either the mixing, the weeding of in-

valid delegations or the decryption has failed to output a valid output. This is prevented

if at least t proxies are available and provide the required output during the tallying

(A-PBV-Communication).

Delegation Privacy. The delegation privacy requirement would be violated if it is re-

vealed which proxy possesses the value mi that was shared by the voter idi among other

proxies. This can be achieved either by corrupting the voting device of idi that stores mi

(prevented by the assumption (A-PBV-VotDeviceTrusted)), observing the voter during

the delegation (prevented by the assumption (A-PBV-NoCoercion)), getting access to at

least t shares of mi (i.e. corrupting at least t proxies (prevented by the assumption (A-

PBV-HalfVotersHonest)) or their voting devices (prevented by the assumption (A-PBV-

VotDeviceTrusted)), or eavesdropping on the communication channels (prevented by the

assumption (A-PBV-PKI))), or decrypting e
(d)
i and the values of ê

(d)
i,j (i.e. either breaking

encryption (prevented by the assumption (A-PBV-CompRestricted)) or obtaining at least

t shares of a secret key skv by corrupting at least t proxies (prevented by the assump-

tion (A-PBV-HalfVotersHonest)) or their voting devices (prevented by the assumption

(A-PBV-VotDeviceTrusted))).

Furthermore, the delegating voter herself cannot construct a proof that she delegated

to a specific proxy, even if she provides all the shares g
mi,j

i and the value of mi to the

adversary. Namely, given that the voter knows the discrete logarithm xi = loggi hi, she

can provide fake values of g
mi,j

i , mi instead. As such, for every values mi,j , ri,j and ui,j

(thus, for every pair of commitments c
(1)
i,j , c

(2)
i,j ) and every value m′i,j 6= mi,j the voter can

find r′i,j , u
′
i,j so that xiri,j + mi,j = xir

′
i,j + m′i,j and xiui,j + ri,j = xiu

′
i,j + r′i,j (thus,

c
(1)
i,j = g

r′i,j
i h

u′i,j
i and c

(2)
i,j = g

m′i,j
i h

r′i,j
i ). She can then fake the receipt by sending a random

value m′i and a set of shares m′i,j that reconstruct to m′i together with the corresponding

values of r′i,j , u
′
i,j to the present voter who requests such a receipt. Given t as threshold

and Np as the total amount of present voters among which gmi is shared, the voter would

have to fake at least Np − t+ 1 shares mi,j . Hence, as long as at least Np − t+ 1 present

voters are honest, and that the delegating voter knows the identities of the honest present

voters, the adversary would not be able to distinguish between the fake values g
mi,j

i , mi

that from the real ones.

Note, however, that in case one of the voters idj ∈ Vp (i.e. who received delegations)

is not available in the meeting, the scheme reveals the number of delegating voters who

either abstained (but still participated in the delegation by issuing invalid delegation tokens

m′i,j 6= mi to all the voters in Vp) or delegated to idj . We do not consider such a case to

be a violation of delegation privacy, since, as shown above, the scheme does not reveals

the identities of the voters who either issued invalid delegation tokens or delegated to

idj and does not make it possible to tell whether a given voter issued a valid token
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to idj or not (under the assumptions (A-PBV-VotDeviceTrusted), (A-PBV-NoCoercion),

(A-PBV-HalfVotersHonest), (A-PBV-PKI) and (A-PBV-CompRestricted)). At the same

time, in order to reduce the information leakage in our scheme, we would suggest actively

encouraging that the voters in Vd who decide to abstain still to participate in the delegation

phase of the election by issuing invalid delegation tokens m′i,j 6= mi to all the voters in Vp.

Furthermore, the proxies can be encouraged to re-delegate by forwarding their delegation

token to another trusted proxy, if they think they would not be able to participate in the

meeting.

Hence, under the assumptions (A-PBV-VotDeviceTrusted), (A-PBV-NoCoercion), (A-

PBV-HalfVotersHonest), (A-PBV-PKI) and (A-PBV-CompRestricted), delegation secrecy

is ensured.

Delegation Eligibility. Casting a delegated ballot on behalf of a non-eligible voter would

require forging the signatures on the commitments ci,j sent to the proxies (prevented by

the assumptions (A-PBV-PKI) and (A-PBV-CompRestricted)). Furthermore, multiple

delegated ballots on behalf of the same voter are dismissed during tallying.

Hence, this requirement is ensured as long as the PKI is trustworthy (A-PBV-PKI) and

the adversary is computationally restricted (A-PBV-CompRestricted).

Delegation Integrity. One way to violate this requirement for a proxy idj who wants to

cast a delegated ballot on behalf of the voter idi without being authorized, is to find out

the value of mi, shared by idi to the proxies during the delegation. This would require

either corrupting the voting device of idi (A-PBV-VotDeviceTrusted) or eavesdropping

on the communication between idi and a proxy chosen by her (which is prevented due to

private communication channels, i.e. the trustworthiness of the PKI (A-PBV-PKI)). Note

that even if the adversary succeeds in obtaining at least t shares of g
mi,j

i from the present

voters, she would still require to compute the discrete logarithm mi,j (prevented by the

assumption (A-PBV-CompRestricted)).

Alternatively, an adversary can attempt manipulating the computation of e
(d)
i , so that

it encrypts a plaintext gim
′ chosen by her. As shown in the evaluation of vote integrity,

however, the assumption (A-PBV-CompRestricted) ensures than e
(d)
i encrypts the same

value g
mi,j

i sent by the voter.

Furthermore, delegation integrity can be violated, if the proxy idj submits a value ê
(d)
i,j

which is accepted during the weeding of invalid delegations. The soundness of the proof

of knowledge of plaintext discrete logarithm πi,j (A-PBV-CompRestricted) ensures that

the proxy knows the value mi,j with g
mi,j

i encrypted in ê
(d)
i,j . As shown above, the assump-

tions (A-PBV-PKI) and (A-PBV-CompRestricted) ensure that the reconstructed values

e
(d)
i encrypt the delegation tokens submitted by the voters to their chosen proxies. The

soundness of the proof of shuffle ensures (A-PBV-CompRestricted), that the anonymized

encrypted delegation tokens e
′(d)
i encrypt the same values as e

(d)
i as the reconstructed
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values sent by the voters. The soundness of proofs of knowledge accompanying the PET

(A-PBV-CompRestricted) ensures that the delegation by idj on behalf of idi is accepted

only if ê
′(d)
i,j encrypts the same values as e

′(d)
i . Hence, the proxy is capable of submitting

ê
(d)
i,j that is accepted as valid only if she knows mi.

Hence, delegation integrity is ensured under the assumptions (A-PBV-CompRestricted),

(A-PBV-PKI) and (A-PBV-VotDeviceTrusted).

Delegation Power Privacy. Given Nd = N − Np delegating voters, each proxy should

posses Nd delegation tokens. Violating delegation power privacy would mean estimating,

possibly with the help of the proxy herself who tries to prove her delegation power, how

many of those tokens are valid. However, given that the delegation privacy requirement

is fulfilled, a proxy herself does not know which ones of the delegation tokens she received

are valid. Hence, under the assumptions that at least Np− t+ 1 of proxies are honest (A-

PBV-HalfVotersHonest), the PKI ensures the privacy of the communication channels (A-

PBV-PKI), the voting devices of the delegating voters and honest proxies are trustworthy

(A-PBV-VotDeviceTrusted), the voters do not collaborate with the proxy to prove that

they delegated their voting right to her (A-PBV-NoCoercion) and the encryption is not

broken (A-PBV-CompRestricted), delegation power privacy is ensured.

Note that as already mentioned in the evaluation of delegation privacy, if a proxy

idj ∈ Vp does not participate in the election, our scheme could reveal the number of

voters Nj who either delegated to idj or issued invalid delegation tokens mi,j to all the

proxies. However, since the scheme does not reveal, how many voters out of Nj abstained,

delegation power privacy is not violated, especially if the voters who want to abstain are

encouraged to issue invalid delegation tokens instead of not participating at all.

5.5 Summary and Future Work

The contribution described in this chapter extends Helios towards elections in the proxy

boardroom setting, distributing the trust between the voters during the election in a

decentralized way, and allowing the voters who cannot be available during the election to

delegate their vote to one of the present voters before the election starts.

5.5.1 Summary

Building up upon our extensions described in Chapter 3 and Chapter 4, our scheme en-

sures the security requirements that are relevant for boardroom voting for direct voters,

and security requirements relevant for the delegation process in the proxy voting setting.

The extension employs such cryptographic primitives as secret sharing, commitments and

proofs of knowledge. In order to delegate their vote before the election setup, the voter

generates a delegation token and shares it via secret sharing among the present voters.

She further sends the delegation token to the present voter who is chosen as a proxy, and
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sends fake delegation tokens to the rest of the present voters. During the election, each

one of the present voters uses the delegation token that she received to cast a delegated

ballot, with only the ballot cast with a real delegation token included in the tally.

5.5.2 Future Work

Generally, the same directions of future work that apply to the boardroom voting and

proxy voting setting, also apply to proxy boardroom setting. As such, one would pro-

vide formal security proofs for the proposed proxy boardroom voting scheme. For this

purpose, similar to the challenges for boardroom voting and proxy voting, new formal

definitions have to be developed that address the infrastructure and functionality in the

proxy boardroom voting setting. Further directions of future work would include study-

ing the usability and understandability of proxy voting concept in boardrooms, and the

additional functionality that might be useful in such setting.

Another direction of future work is more specific to the proxy boardroom voting setting.

It can be generally presumed that the number of voters in boardroom voting in general

is relatively small, as compared to large-scale elections. Hence, due to the small size of

the electorate, the election result itself might reveal enough information that allows to

identify the votes of individual voters. This issue might become even more prominent if

some of the voters delegate, since all the ballots, direct and delegated, are cast by a small

pool of present voters. Hence, it becomes more important to study the methods to reduce

the information leakage from the election result, for example, by employing tally-hiding

methods that reveal only the winner of the election, but not how many votes each voting

option has.





Chapter 6

Privacy Improvements: Participation

Privacy, Receipt-Freeness

For the sake of improving eligibility, Helios-Base does not provide participation privacy by

publishing the identities of the voters who cast their ballots. It is also vulnerable to vote

buying by not ensuring receipt-freeness: hence, the voter is able to construct a receipt

that proves how she voted.

Our contribution is to propose an extension of Helios-Base, further referred to as KTV-

Helios, that ensures probabilistic participation privacy and receipt-freeness while also pro-

viding means to verify that only the eligible voters have cast their ballots. We provide

formal proofs for the security of our extension. For these proofs, the existing definitions are

used for vote privacy, vote integrity and eligibility. The new definitions for fairness as well

as for probabilistic participation privacy and probabilistic receipt-freeness are proposed.

For participation privacy and receipt-freeness, the means to quantify the adversarial ad-

vantage in KTV-Helios according to these definitions have also been described.

This chapter is structured as follows. We describe the additional security requirements

as ensured in our scheme in Section 6.1, and the security model we rely on in Section 6.2.

In Section 6.3 we provide a formal description of KTV-Helios. Next we provide the formal

security proofs for our extension in Section 6.4. Namely, we provide definitions of existing

security requirements and prove their fulfillment for KTV-Helios: vote integrity and eli-

gibility in Section 6.4.4, and fairness, vote privacy and its stronger form, receipt-freeness,

in Section 6.4.1. In Section 6.4.3 we define participation privacy and provide an evalu-

ation of it for KTV-Helios, and Section 6.4.1 defines and evaluates receipt-freeness. We

further informally evaluate robustness in Section 6.4.5. Section 6.5 describes the related

work on schemes ensuring the security requirements introduced by our extension and on

formal security proofs for electronic voting schemes. Section 6.6 discusses the efficiency of

the proposed extension, and Section 6.7 discusses the integration of KTV-Helios extension

with other settings described in Chapter 3 (see Section 6.7.1), Chapter 4 (see Section 6.7.2)

and Chapter 5 (see Section 6.7.3). The contributions of this chapter are summarized and

directions of future work are discussed in Section 6.8.
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The contents of this chapter have been published at the 5th International Conference

on E-Voting and Identity [KTV15] and the Cryptology ePrint Archive [BKV16].

6.1 Extension-Specific Requirements

In this section we describe the privacy improvements that we introduce to Helios-Base in

our extension. One of those improvements is the introduction of participation privacy:

Although the information whether a voter has participated in the election is usually po-

tentially available in traditional paper-based elections, whereby anyone can observe people

going into a polling station, an Internet voting system without participation privacy re-

veals the identities of the voters who cast their vote in an election on a much larger scale

by publishing them online. Hence, the lack of participation privacy in Internet voting is a

violation of voter privacy that is more serious in comparison to paper-based elections.

Participation Privacy. The voting system should not reveal whether a particular voter

has participated in the election.

Another additional security property with regards to privacy is meant to prevent vote

buying. While in Helios-Base the voter can provide a receipt showing which voting option

she voted for by storing the randomness used to encrypt her ballot, we aim to prevent such

attacks in our extension. Hence, the next requirement is to ensure the following property:

Receipt-Freeness. Vote privacy should be preserved under the assumption, that the

voter might attempt to construct a receipt that proves to the adversary, that the voter

has voted for a specific voting option.

We provide the formalisation of both participation privacy and receipt-freeness as used

in our extension in Section 6.4.3 and Section 6.4.1.

6.2 Security Model

In this section we describe the assumptions that the proposed security requirements rely

on in the KTV-Helios scheme. Our extension introduces a new kind of entity, the posting

trustee. The security requirements should be fulfilled under following assumptions in our

scheme:

Vote Privacy. For the voters who do not attempt to prove how they voted, the vote pri-

vacy requirement must be ensured under the assumptions, that a majority of tabulation

tellers are honest, the voting device does not leak information to the adversary, the adver-

sary is computationally restricted, the voters verify that they are interacting with the valid

bulletin board during voting and the bulletin board does not remove or modify the data
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published on it and shows the same contents to everyone. Furthermore, for the voters who

might attempt to provide a receipt that proves how they voted, receipt-freeness should

be ensured under the following additional assumptions: the verification devices do not

leak information to the adversary, the adversary is incapable of observing the communi-

cation channel between the voter, the posting trustees and the voting system, at least one

posting trustee is honest, the voter is capable of casting a vote without being observed by

the adversary, the adversary does not cast ballots on behalf of the voter which plaintexts

the voter does not know, and the voters decide to follow the adversary’s instructions or to

fake their receipts independently from each other.

Fairness. Fairness must be ensured for the voters who do not interact with the adversary

under the same assumptions as vote privacy without receipt-freeness.

Participation Privacy. Participation privacy must be ensured given the following assump-

tions: the majority of the tabulation tellers are honest, both the voting and the verification

devices do not leak information to the adversary, the adversary is incapable of observing

the communication channel between the voter, the posting trustees and the voting system,

at least one posting trustee is honest, the voters verify that they are interacting with the

valid bulletin board during voting, the bulletin board does not remove or modify the data

published on it and shows the same contents to everyone, the voters decide to abstain or

to participate in the election independently from each other and the adversary does not

coerce the voters to abstain from the election.

Vote Integrity. The vote integrity of the election must be ensured as long as the voters

who cast their ballots perform the available verifications, the bulletin board shows the

same contents to everyone, the voters’ devices do not leak the voters private signature

keys to the adversary, and the adversary is computationally restricted.

Eligibility. Eligibility must be ensured under the assumption, that the voting register is

trustworthy and the adversary is computationally restricted.

Robustness. Availability should be preserved under the assumptions, that the contents

of the bulletin board are available for tallying (i.e. the bulletin board does not remove the

data published on it and shows the same contents to everyone), and more than half of the

tabulation tellers are honest.

The assumptions used in our scheme can hence be summarized as follows:

(A-KTV-TabTellerHonest) More than half of tabulation tellers are honest.
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(A-KTV-PosTrusteeHonest) At least one posting trustee is honest.

(A-KTV-VotDeviceLeakage) The voting devices of voters do not leak information to an

adversary.

(A-KTV-NoBBModification) The bulletin board does not remove or modify the data

published on it.

(A-KTV-BBConsistency) The bulletin board shows the same contents to everyone.

(A-KTV-CompRestricted) The adversary is computationally restricted.

(A-KTV-Verify) The voters perform the verifications available to them within the system.

(A-KTV-VerDeviceTrusted) The verification devices of voters are trustworthy.

(A-KTV-VotRegister) The voting register with the eligible voters public signature keys

is trustworthy. If the voters public keys are only available on the bulletin board,

the assumptions (A-KTV-NoBBModification, A-KTV-BBConsistency) are further

required.

(A-KTV-AnonChannels) The channels between the honest voters and the bulletin board,

as well as between the posting trustees and the bulletin board, are anonymous.

(A-KTV-NoForcedAbstention) No coercion in form of forced abstention or randomiza-

tion takes place.

(A-KTV-NoUnknownPlaintext) The adversary does not cast ballots on behalf of the

voter which plaintexts the voter does not know.

(A-KTV-HiddenVote) The voters have the possibility to cast a ballot without being ob-

served by the adversary.

(A-KTV-IndAbstain) The honest voters make their decision to abstain or to participate

in the election independently from each other.

(A-KTV-IndReceipt) The voters who are required by the adversary to provide receipts

decide to follow the instructions or to fake the receipt independently from each other.

The assumptions (A-KTV-TabTellerHonest), (A-KTV-VotDeviceLeakage), (A-KTV-

NoBBDeletion), (A-KTV-CompRestricted), (A-KTV-Verify), (A-KTV-VerDeviceTrusted)

and (A-KTV-VotRegister), are the same as in Helios-Base. Note, however, that the as-

sumption (A-KTV-VotDeviceLeakage) is required not only for vote privacy, as in Helios-

Base, but for the vote integrity as well, since it relies on the adversary not having access to

the voter’s private signature key. This assumption, however, could be realistically expected

in some of the settings, e.g. in case a national eID infrastructure with tamper-resistant

smartcards for storing the voter’s private signature key is in place.
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The assumption that the voter’s private signature key is not leaked is also crucial for

ensuring receipt-freeness. Note, that the voter might still violate it by either voluntarily

divulging her private signature key to the adversary or even giving away her smartcard

entirely, if she wants to prove how she voted. However, if the private signature key is used

for multiple purposes outside the election (e.g. for authentication in other governmental or

private services via eID), the incentive for the voter to divulge it should be much greater

than for providing a receipt for her vote in one election, making large-scale vote buying

less likely to occur.

Nevertheless, even in the case where the voters private signature keys are stored on

trusted devices, the voting device still should be trusted not to leak the voter’s choice (for

vote privacy) or the fact whether the voter has cast a ballot (for participation privacy and

receipt-freeness) to the adversary.

The further new assumptions that are required for our extension can be explained as

follows.

(A-KTV-PosTrusteeHonest) The security of our extension relies on the adversary not

being able to tell, whether a particular ballot published on the bulletin board was

sent by the voter or by a posting trustee. Hence, it is crucial to trust that there is at

least one posting trustee that does not disclose whether she cast a particular ballot

to the adversary.

(A-KTV-AnonChannels) Similar to the previous assumption, the anonymity of the com-

munication channels is critical in ensuring, that the adversary does not distinguish

between the ballots sent by voters and the ballots sent by posting trustees. This

anonymity can be ensured either by a trusted forwarding server, or onion routing.

(A-KTV-HiddenVote) If this assumption is not ensured and the adversary can observe

the voter throughout all the voting phase or otherwise make sure that the voter is

not able to cast her vote without adversarial observation, then it follows trivially

that ensuring receipt-freeness is not possible.

(A-KTV-NoUnknownPlaintext) In our extension, this assumption relies on the voter not

divulging her private signature key to the adversary, which is justified if the private

signature key is also used for purposes other than voting, e.g. as a part of eID

infrastructure, in which case divulging it to the adversary would incur larger losses

to the voter than she would gain from selling her vote. It further relies on on

the absence of two-way communication between the voter and the adversary during

casting the ballot, which we consider unlikely in large-scale vote buying.

(A-KTV-NoForcedAbstention) This assumption is a weaker form of the assumption in

Helios-Base, that no coercion takes place. Thus, as opposed to Helios-Base, our

extension can prevent some forms of coercion (receipt-freeness), but not other ones

(forced abstention and randomization).
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(A-KTV-IndAbstain) This assumption, albeit a simplification from real-world behavior,

is required for the sake of being able to model participation privacy.

(A-KTV-IndReceipt) As with voter independence for participation privacy, this assump-

tion is required for the sake of being able to model receipt-freeness.

6.3 Description

In this section we describe the KTV-Helios scheme. Note that as opposed to the descrip-

tions in Chapters 3 to 5 we provide a more formal description of the scheme in order to

be able to formally evaluate its security.

Overview. The basic idea of the KTV-Helios scheme is the introduction of a new kind

of entity, the posting trustee and the new type of ballots, the dummy ballots, which

contain an encryption of 0. While the setup remains unchanged from Helios-Base, the

voting is modified as follows. The voter encrypts the chosen voting option and submits

it to the bulletin board together with the accompanying well-formedness proofs, which

include the proof of plaintext knowledge as in Helios-Base, and the disjunctive proof for

proving that either the voter knows the signature on the encrypted vote, or the submitted

ciphertext encrypts 0. In case she later wants to update her vote for option v with the

vote for another voting option v′, the voter submits another ballot that encrypts v′ − v.

The ballots, composed of the encrypted vote and proof, are published on the bulletin

board next to the voters identity. The posting trustee also casts a random number of

dummy ballots on behalf of each voter, that are published next to that voter’s identity.

Each dummy ballot consists of an encryption of 0 accompanied with the well-formedness

proofs that are constructed in the same way as the proofs for non-dummy ballots. The

participation privacy and receipt-freeness of KTV-Helios then depends on the inability of

the adversary to distinguish between the dummy ballots and the ballots cast by voters.

The tallying further differs from Helios-Base. After the voting is finished, for each voter

the ballots that are published next to the voter’s identity are aggregated into the final

ballot. Due to the homomorphic property of the cryptosystem, and due to the fact that

the dummy ballots contain the encryption of 0, this final ballot encrypts the sum of all non-

dummy votes cast by the voter. The final ballots of all voters are being further anonymized

via mix net shuffling. After the shuffling, each anonymized ballot is further processed by

the tabulation tellers and either assigned to a valid voting option, or discarded without

revealing its plaintext value.

The components of our extension (KTV-Helios) and the interactions between them are

depicted on Figure 6.1.

Building Blocks of the KTV-Helios Scheme. We describe the building blocks (i.e. the

cryptographic primitives, probability distributions and plaintext tally function) of the
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Figure 6.1: Components and their interactions of KTV-Helios. The new components compared

to Helios-Base are in black. For the sake of simplicity, the verification step using the verification

device is omitted, and sending the voters public signature keys to the registration authority can

be skipped in case of an existing PKI.

KTV-Helios scheme. The scheme uses the following cryptographic primitives (see more

detailed descriptions in Section 2.2):

• ElGamal with proof of plaintext knowledge [BPW12], a NM-CPA secure encryption

scheme (the same one is used in Helios-Base). Its algorithms are KeyGen,Enc,Dec.

The encryption of a messagem ∈ Zq with a public key (g, h) ∈ G2 is ((gr, gmhr), πPoK)

where r←$Zq is randomly sampled and πPoK is a proof of knowledge of r (see Sec-

tion 2.2.5). To decrypt a ciphertext ((c(1), c(2)), πPoK) with a secret key sk, one

first checks the validity of the proof πPoK and if the proof is valid successful sets

m = c(2) · (c(1))(−sk).

• distributed threshold secret sharing and distributed threshold decryption for ElGa-

mal (see Section 2.2.11). Its algorithms are DistKeyGen(Nt, t),DistDec. The algo-

rithm DistKeyGen is jointly run by Nt parties in order to generate a public ElGamal

key and Nt shares of a corresponding private key with a threshold of t. Correspond-

ingly, DistDec run by at least t out of Nt parties in order to decrypt an ElGamal

ciphertext using the previously generated private key.

• An existentially unforgeable digital signature scheme consisting of algorithms SigKeyGen,

Sign and Verify.

• The Chaum-Pedersen NIZK proof EqProof(g1, g2, h1, h2) that proves the equality

of discrete logarithms logg1 h1 = logg2 h2 as described in [CP92] (see Sections 2.2.4

and 2.2.7). This proof can be simulated in the random oracle model, for which we

write SimEqProof(g1, g2, h
′
1, h
′
2) (see e.g. [BCG+15]).
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• A NIZK disjunctive proof DisjProof(pkid, skid′ ∈ {skid, 0}, g1, g2, h1, h2, t) that given

(pkid, skid)←$SigKeyGen and g1, g2, h1, h2 ∈ Gq and timestamp t proves either the

knowledge of s = Sign(sks, g1||g2||h1||h2||t) (see Sections 2.2.4 and 2.2.8) or the

equality of discrete logarithms logg1 h1 = logg2 h2.

• A verifiable re-encryption mix net for ElGamal ciphertexts Mix(c1, ..., cN ) (see Sec-

tion 2.2.12).

• A plaintext equivalence test (PET) for the ElGamal ciphertexts (see Section 2.2.17).

On input a ciphertext c, a secret key sk and a message m, the PET outputs a

decryption factor d that is 1 if c is an encryption of m under sk and random in Zq
otherwise. It also creates a proof πPET that it operated correctly (this is another

Chaum-Pedersen EqProof, see Section 2.2.7). The PET is performed either by a

single holder of a private key, or via distributed threshold decryption, if the private

key is distributed among multiple parties as described in Section 2.2.11.

The next building blocks are the probability distributions. They are used by the posting

trustees in order to cast a random number of dummy ballots at random times next to each

voter’s id. In order to specify the dummy ballot casting algorithm for the posting trustee,

we use two probability distributions Pd and Pt. The first probability distribution Pd is

used to sample a number of dummy ballots for each voter. This distribution therefore has

a support [x, y] with x, y as the minimal and maximal number of dummy ballots that the

posting trustee is going to cast for each voter (i.e., x ∈ N0, y ∈ N∪{∞}). The parameters

x and y, as well as the exact Pd needs to be chosen according to the optimal trade-off

between security and efficiency in each election. The way to calculate the trade-off is

provided in Section 6.4.3. The second probability distribution Pt is used to determine the

time to cast each dummy ballot. Thus, this distribution has a support [Ts, Te] with Ts
denoting the timestamp at the beginning of the voting, and Te the timestamp at the end

of the voting. In order to obfuscate the ballots cast by voters, Pt should be chosen so that

this distribution resembles the distribution of times at which the voters cast their ballots.

For this, e.g. the information from the previous elections could be used.

Next we describe the plaintext tally function of the KTV-Helios scheme, that takes the

plaintext votes cast by voters and the posting trustee as input and outputs the election

result. While this function is not actually applied in the election, its formalization is

still required for proving the vote integrity of the scheme. The plaintext tally function

is informally described in the following way. The valid votes cast by registered eligible

voters are included in the tally. If the voter casts multiple votes, they are added together

to form a final vote. If the final vote is a valid voting option, it is included in the tally,

otherwise it is replaced with a null vote. If the voter abstains, their final vote is counted

as a null vote15. The votes cast by the posting trustee are not included in the result.

15Note, that the function does not make a distinction between abstaining voters, and voters that cast a

null vote.
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The formalised description of the plaintext tally function is as follows: Let Gq be the

plaintext space of (KeyGen,Enc,Dec). Then, let Vvalid = {v1, ..., vL} ⊂ GL
q , 0 6∈ Vvalid be a

set of valid voting options, so that the voter is allowed to select one of these options as her

vote. Let then ρ′ : (Vvalid ∪ {0})N → NL0 be the function that, given the plaintext votes

cast within the election, outputs a vector of values with the sum of cast votes for each

candidate and the number of abstaining voters. Let I = {id1, ..., idN} be a set of registered

eligible voters, and îd 6∈ I denote the posting trustee. Further, let NT be the total number

of votes cast within the election. We define the tally function for the KTV-Helios scheme

ρ(Vcast) : (I ∪ {îd} ×Gq)∗ → R as follows:

1. Initialise a set Vfinal = {(id1, 0), ..., (idN , 0)}

2. For every (id, v) ∈ Vcast, if id ∈ I, replace the tuple (id, v′) ∈ Vfinal with (id, v′+v).

If id = îd, discard the vote.

3. For every (idi, vi) ∈ Vfinal, if vi 6∈ Vvalid, replace (idi, vi) with (idi, 0)

4. Output ρ′(v1, ..., vN ).

We further show that the function ρ provides partial counting property, also used for

proving the vote integrity of the election analogously to [CGGI14]. The partial counting

property suggests, that given a partition of the set of cast ballots, the sum of the individual

tally results on each partitions should correspond to the tally result on the total set. We

provide a more formal definition of partial counting as follows:

Definition 6.1. Let I ∪ {îd} be the set of eligible voters and the posting trustee, and

let the sets I1,...,Ik partition I ∪ {îd}. Let Vcast be the list of all the cast votes in the

election, and define the lists V(1)
cast, ...,V

(k)
cast ⊂ Vcast so that for each (id, v) ∈ Vcast holds

(id, v) ∈ V(i)
cast ⇐⇒ id ∈ Ii, i = 1, ..., k. A plaintext tally function f provides partial

counting if it holds:

f(Vcast) =
k∑
i=1

f(V(i)
cast)

Theorem 6.2. The plaintext tally function of KTV-Helios ρ provides partial counting.

Proof. Let I = {id1, ..., idN} be a set of voter identities, îd 6∈ I the identity denoting the

posting trustee, {v1, ..., vL} ∈ Gq \ {0} a set of valid voting options, and let Vcast be a set

of tuples (id, v) with id ∈ I ∪ {îd} and v ∈ Gq.

Let I1, .., Ik be partitions of I ∪ {îd}, so that
⋃k
i=1 Ii = I ∪ {îd} and Ii ∩ Ij = ∅ for all

i 6= j. We further define the lists V(i)
cast ⊂ Vcast as a list of all the tuples (id, v) ∈ Vcast, for

which holds id ∈ Ii.
The partial counting property means, that the tally on Vcast can be expressed as a sum

of tallies on all the lists V(i)
cast, i = 1, ..., k. Namely, it should hold
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ρ(Vcast) =

k∑
i=1

ρ(V(i)
cast)

In order to prove this, consider the output of ρ(V(i)
cast). Let ρ′ be the function, that,

given the list of plaintext votes v1, ..., vN outputs the number of votes for each vot-

ing option v1, ..., vL and the number of abstaining voters. Namely, on the input of

v1, ..., vN ∈ ({v1, ..., vL} ∪ 0)L+1 ⊂ GL+1
q , ρ′ returns a vector of values R ∈ NL+1

0 . It

holds, that ρ′ supports partial counting. Namely, for two lists S1 = (v1,1, ..., vN1,1) and

S2 = (v2,1, ..., vN2,2) with S1, S2 ∈ ({v1, ..., vL} ∪ 0)L+1, it holds

ρ′(S1) + ρ′(S2) = ρ′(S1 ∪ S2)

According to the definition of ρ, with V as a set of tuples (id, v) ∈ I ∪ {îd} × G1, ρ

outputs R = ρ′(v1, ..., vN ) with vi, i = 1, ..., N being either the sum of all votes cast by

the voter idi ∈ I, or vi = 0 if there were no valid votes from the voter idi in V (i.e. there

is no tuple (idi, v) with v ∈ {v1, ..., vL} in V).

it follows that ρ(V(i)
cast) = ρ′(v1,i, ..., vN,i) with vj,i denoting the sum of all cast votes

by the voter idj if idj ∈ Ii, and vj,i = 0 if idj 6∈ Ii. Combined with the partial counting

property of ρ′ it follows that

ρ(Vcast) =

k∑
i=1

ρ(V(i)
cast)

Formal Description of KTV-Helios: We are now ready to provide the formal descrip-

tion of the KTV-Helios scheme. This description is based upon the syntax proposed

in [BCG+15], adjusted to the context of the KTV-Helios scheme. For the sake of sim-

plicity, we describe a scheme with a single posting trustee. We first specify the various

functions in place, i.e.:

• Register(1λ, id) is run by the voter and the registration authority. Given a register I

of eligible voters, the function returns a pair of keys (pkid, skid)←$SigKeyGen(1λ) to

the voter id and adds (id, pkid) to the list of registered voters public signature key

Ipk if id ∈ I.

• Setup(1λ) is run by the tabulation tellers. If there is a single tabulation teller,

the function runs (pk, sk) = KeyGen to create the election keys and returns the

public election key pk. In case of Nt > 1 tabulation teller, the function runs

(pk, sk1, ..., skNt) = DistKeyGen(Nt, t) with t = bNt/2c + 1 and returns the public

election key pk.
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• Vote((id′, skid′), id, v, t) creates a ballot b = (id, c, πPoK , π, t) for voter id ∈ I and

voting option v, that is cast at a timestamp16 t. If id = id′ (a voter casting her

own ballot) then it computes (c, πPoK) = Enc(pk, v) where c = (c(1), c(2)) and π =

DisjProof(pkid, skid′ , g, h, c
(1), c(2), t) using a signature Sign(skid′ , g||h||c||t). If id′ = îd

(the posting trustee is casting a ballot on behalf of the voter id) then skid′ is not

required, but v must be 0. Note, that the challenges used in πPoK and π should

include the statements and commitments from both πPoK and π in order to prevent

that the voter signs and casts the ballot she did not compute herself.

• Validate(b) parses the ballot b as (id, c = (c(1), c(2)), πPoK , π, t) and returns 1 if π and

πPoK are valid proofs, id ∈ I and t ∈ [Ts, Te], and ⊥ otherwise.

• VerifyVote(BB, b) is used by the voter to ensure that her ballot b is properly stored

on the bulletin board. It outputs 1 if b ∈ BB and ValidateBB(BB) holds, otherwise

⊥.

• VoteDummy(id) is used by the posting trustees to cast dummy ballots for a given

voter id. The posting trustee samples a random number m←$Pd and random times-

tamps t1, ..., tm←$Pt, and returns a set of ballots

(Vote((îd, 0), id, 0, t1), ...,Vote((îd, 0), id, 0, tm))

• Valid(BB, b) is run by the bulletin board before appending a new ballot. It checks

that Validate(b) = 1 and that the ciphertext c in b does not appear in any ballot

already on the board. If this holds it returns 1, otherwise ⊥.

• ValidateBB(BB) checks that the contents of the bulletin board are valid. It is run

by the tabulation tellers as part of the tallying process and by the voters verifying

the bulletin board. It creates an empty board BB′ and for each ballot b ∈ BB runs

“if Valid(BB′, b) then append b to BB′”. If any ballot gets rejected it returns ⊥,

otherwise 1.

• Tally(BB, sk) is used by the tabulation teller(s). It returns a tuple (R,Π) where R

is the election result and Π is auxiliary data (proofs of correct tallying). In more

detail:

1. Run ValidateBB(BB) and return ⊥ if this fails.

2. Parse each ballot b ∈ BB′ as (id, c, πPoK , π, t).

3. For each id appearing in the ballots, set cid =
∏
c∈C(id) c where C(id) is the set

of ciphertexts c in ballots belonging to voter id.

16As the timestamp t denotes the time at which b is submitted to the bulletin board, we assume that it is

chosen in [Ts, Te].
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4. Mix the ballots (c1, . . . , cN ) (where N is the number of distinct identities who

cast a ballot) to get a new list of ballots (c̄1, . . . , c̄N ) and a proof πmix of shuffle

validity. In case multiple tabulation tellers are involved, each of them performs

the shuffling in their turn.

5. For each i ∈ {1, . . . , N} and each valid voting option v ∈ Vvalid, use the PET (ei-

ther as a single tabulation teller or as multiple tabulation tellers using DistDec)

on c̄i and v to create a decryption factor di,v and proof πPET,i,v.

6. The result R is the number of times each voting option was chosen, i.e. R(v) =

|{i : di,v = 1}| for all v ∈ Vvalid. The auxiliary data Π contains the proofs of

shuffle validity πmix, the shuffled ciphertexts (c̄1, . . . , c̄N ), the decryption factors

di,v and the PET proofs πPET,i,v for i ∈ {1, . . . , N} and v ∈ Vvalid.

• ValidateTally(BB, (R,Π)) takes a bulletin board BB and the output (R,Π) of Tally

and returns 1 if ValidateBB(BB) = 1 and all the proofs πmix and πPET are valid,

otherwise ⊥. It is used to verify an election.

These functions are combined in order to build the KTV Helios scheme. The corre-

sponding description of the KTV Helios scheme is given in the following paragraphs along

the line of the three phases of an election.

Setup. The election organizers publish a set of valid non-null voting options Vvalid =

(v1, ..., vL) with 0 6∈ Vvalid on an empty bulletin board BB. If there is no existing PKI

encompassing the eligible voters, the eligible voters from the voting register I generate and

send their public signature keys to the registration authority running Register(1λ, id), who

publishes the list of registered voters Ipk = {(id1, pkid1), ..., (idN , pkidN )} on the bulletin

board. In that case, the voters verify that the bulletin board publishes the correct public

signature keys. The tabulation teller(s) run Setup(1λ) and verify that the bulletin board

publishes the correct data submitted to it.

Voting. The posting trustees run VoteDummy(id) for each registered eligible voter id ∈ I
independently from each other. Each posting trustee then submits each resulting dummy

ballot b = (id, c, πPoK , π, t) to the bulletin board at a time corresponding to the timestamp

t. The bulletin board appends b to BB. The voter id runs Vote((id, skid), id, v, t) in order

to cast her ballot for a voting option v at a time denoted by timestamp t. The bulletin

board appends b to BB. Then, the voter can run VerifyVote(BB, b) to verify whether her

ballot is properly stored.

Tallying. The tabulation teller(s) runs Tally(BB, sk) on the contents of the bulletin board,

and publish the resulting output (R,Π). Everyone who wants to verify the correctness of

the tally runs ValidateTally(BB, (R,Π)).
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6.4 Security

In this section we describe the security evaluation for our extension. Namely, we propose

the formal definitions of participation privacy, receipt-freeness and fairness and use ex-

isting definitions of verifiability against malicious bulletin board (to prove integrity and

eligibility) and of ballot privacy (to prove vote privacy without receipt-freeness). Using

these definitions, we provide formal security proofs for our scheme. In addition to this, we

provide an informal evaluation for the robustness requirement.

6.4.1 Vote Privacy

In this section we prove the security of KTV-Helios for vote privacy. We do this by first

evaluating KTV-Helios given the same security model for vote privacy as in Helios-Base,

and then provide a proof for a stronger form of vote privacy, receipt-freeness.

Note that while our security model outlined in Section 6.2 requires more than half of the

tabulation tellers to be honest, in our formal analysis we only consider the case with only

one tabulation teller. Intuitively, we presume that the results should be transferable to

the case with multiple tabulation tellers due to the properties of the secret sharing scheme

underlying the distributed threshold secret sharing and distributed threshold decryption.

Namely, possessing only less than a threshold (in our case, t = bNt/2c+ 1) of the private

election key shares should provide no information on the private election key or on the

plaintexts encrypted with a corresponding public election key. Similar to [BCG+15], the

security proofs for such a case will be considered in future work.

Vote Privacy without Receipt-Freeness

We first prove vote privacy in our security model for the KTV-Helios scheme for the

voters who do not attempt to create a receipt for their vote. For this, we use the defini-

tion of ballot privacy (BPRIV) in [BCG+15]. Since the original definition also uses two

auxiliary properties called strong correctness and strong consistency, we prove these as

well. Together these definitions imply that an adversary does not get more information

from an election scheme as they would from the election result alone. Put differently, the

election data — ballots on the bulletin board, well-formedness proofs, proofs of shuffle

validity and of decryption validity — do not leak any information about the votes. We

assume like in [BCG+15] that both the tabulation teller and the bulletin board that the

voter communicates with are honest (assumptions (A-KTV-TabTellerHonest), (A-KTV-

NoBBModification), (A-KTV-BBConsistency) and (A-KTV-Verify)), the voting device

does not leak private information (A-KTV-VotDeviceLeakage) and the adversary is com-

putationally restricted (A-KTV-CompRestricted), which corresponds to the definition of

vote privacy (without receipt-freeness) and the security assumptions we require for its

fulfillment as outlined in Section 6.2.
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Purpose and Definition of BPRIV: We adjust the definition proposed by Bernhard et

al. [BCG+15] – more precisely the definition in the random oracle model – to the KTV-

Helios scheme by including additional parameters required for casting a ballot. We also

omit the Publish algorithm as our bulletin boards do not store any non-public data (our

Publish would be the identity function). Recall that a scheme satisfies BPRIV [BCG+15]

if there exists an algorithm SimProof such that no adversary has more than a negligible

chance of winning the BPRIV game; the game itself uses the SimProof algorithm in the

tallying oracle.

The purpose of BPRIV is to show that one does not learn anything more from the

election data (including the bulletin bulletin board and any proofs output by the tallying

process) than from the election result alone. In other words, the election data does not

leak information about the votes, at least in a computational sense17. For example, if

Alice, Bob and Charlie vote in an election and the result is “3 yes” then the result alone

implies that Alice must have voted yes, which is not considered a privacy breach. But

if Charlie votes yes and the result is “2 yes, 1 no” then Charlie should not, without any

further information, be able to tell whether Alice voted yes or no as this does not follow

from the result.

The BPRIV notion is a security experiment with two bulletin boards, one of which

(chosen at random by sampling a bit β) is shown to the adversary. For each voter, the

adversary may either cast a ballot themselves or ask the voter to cast one of two votes

v0, v1 in which case a ballot for v0 is sent to the first bulletin board and a ballot for v1
is sent to the second bulletin board. The adversary thus sees either a ballot for v0 or

a ballot for v1 and a scheme is BPRIV secure if no PPT adversary has better than a

negligible chance of distinguishing the two cases. At the end of the election, the adversary

is always given the election result for the first bulletin board. This disallows trivial wins

if the adversary makes the results on the two bulletin boards differ from each other. If

the first bulletin board was the one shown to the adversary, it is tallied normally; if the

adversary saw the second bulletin board but the first result then the experiment creates

fake tallying proofs to pretend that the second bulletin board had the same result as the

first one. This is the role of the SimProof algorithm that must be provided as part of a

BPRIV security proof.

The experiment Expbpriv,βA,S for the scheme S is formally defined as follows: The challenger

sets up two empty bulletin boards BB0 and BB1, runs the setup phase as outlined in

Section 6.3 and publishes the public election key pk. The challenger also chooses a random

β ∈ {0, 1}. The adversary can read the bulletin board BBβ at any time and can perfomr

the following oracle queries:

• OCast(b): This query lets the adversary cast an arbitrary ballot b, as long as b is

17In an information-theoretic sense, a ballot with an encrypted vote does of course contain information

about the vote, otherwise one could not tally it. But since the votes are encrypted, they should not help

anyone who does not have the private election key to discover the contained vote.
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valid for the bulletin board BBβ that the adversary can see. If Valid(BBβ, b) = 1, the

challenger runs Append(BB0, b) and Append(BB1, b) to append the ballot b to both

bulletin boards.

• OVoteLR(id′, id, v0, v1, t): This lets the adversary ask a voter to vote for either v0
or v1 depending on the secret β. First, if id ∈ I and id′ = id the challenger

computes b0 = Vote((id, skid), id, v0, t) and b1 = Vote((id, skid), id, v1, t). If id ∈ I

and id′ = îd then the challenger computes two18 ballots b0 = Vote((id′, skid′), id, 0, t)

and b1 = Vote((id, skid), id, 0, t). If none of these cases applies, the challenger

returns ⊥.

Secondly, the challenger checks if Valid(BBβ, bβ) = 1 and returns ⊥ if not. Finally

the challenger runs Append(BB0, b0) and Append(BB1, b1).

• OTally(): The adversary calls this to end the voting and obtain the results. They

may call this oracle only once and after calling it, the adversary may not make any

more OCast or OVoteLR calls.

The challenger computes a result and auxiliary data for BB0 as (R,Π) = Tally(BB0, sk).

If β = 1, the challenger also computes simulated auxiliary data for BB1 as Π =

SimProof(BB1, R), overwriting the previous auxiliary data Π. The challenger then

returns (R,Π) to the adversary.

At the end, the adversary has to output a guess g ∈ {0, 1}. We say that the adversary

wins an execution of the experiment if g = β.

Definition 6.3. A voting scheme S satisfies ballot privacy (BPRIV) if there exists a PPT

simulation function SimProof(BB, R) so that for any PPT adversary the quantity

AdvbprivA,S :=
∣∣∣Pr
[
Expbpriv,0A,S = 1

]
− Pr

[
Expbpriv,1A,S = 1

]∣∣∣
is negligible (in the security parameter).

Proof for the KTV-Helios Scheme: The core of a BPRIV proof is a simulator SimTally

that, when β = 1, takes as input the bulletin board BB1 and the result R from BB0 and

outputs simulated data Π that the adversary cannot distinguish from real auxiliary data,

such as proofs of shuffle validity or of decryption validity. This proves that the auxiliary

data Π does not leak any information about the votes, except what already follows from

the result.

Recall that the tallying process in KTV-Helios is as follows:

1. Remove any invalid ballots from the bulletin board using ValidateBB.

18Vote is a randomised algorithm so the effect of calling it twice on the same inputs is to create two distinct

ballots.
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2. Homomorphically aggregate the ballots from each voter.

3. Shuffle the remaining ballots (one per voter) in a mix-net.

4. Match each shuffled ballot against each valid vote v ∈ V with a PET.

5. Compute the number of voters who chose each vote v ∈ V by counting the successful

PETs. This gives the election result R.

6. The auxiliary data Π comprises the proofs of shuffle valiidity Πmix from stage 3 and

the data and proofs ΠPET forming the PETs in stage 4.

The additional PET stage compared to (non-KTV) Helios actually makes the ballot

privacy proof easier. The simulator SimProof(BB, R) works as follows:

1. Remove any invalid ballots from the bulletin board BB using ValidateBB.

2. Homomorphically aggregate the ballots from each voter.

3. Shuffle the remaining ballots (one per voter) in a mix-net. Note, we do not need to

simulate the mix-net; we can just run a normal mix (and store the auxiliary data

Πmix that this creates).

4. Simulate the PETs (we will describe this in detail below) to get simulated data

Π′PET .

5. Return (Πmix,Π
′
PET ).

The following lemma is useful to construct the PET simulator.

Lemma 6.4. In any execution of the BPRIV game, if we tallied both bulletin boards then

with all but negligible probability, both bulletin boards would end up with the same number

of ballots.

Note that both the OVoteLR and the OCast oracles either add one ballot to both bulletin

boards each or do not add any ballots at all. Therefore we have the invariant that the

number of ballots before tallying is the same on both bulletin boards with probability 1.

The first stage of the tallying algorithm runs ValidateBB to remove possibly invalid

ballots. On the visible bulletin board BBβ, since all ballots were already checked in the

oracles before placing them on the bulletin board, we conclude that ValidateBB does not

remove any ballots. On the invisible bulletin board BB(1−β), if any ballot b gets removed

then we consider the query (VoteLR or Cast) where it was created. The only way a ballot b

can get removed again is if at the time it was added, it was valid on BBβ (or it would never

have got added at all) but invalid on BB(1−β) (or it would not get removed again later).

But this means that the ciphertext c in the ballot b in question must be a copy of an earlier

ciphertext on BB(1−β) but not on BBβ, as this is the only other case when Valid declares
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a ballot invalid, and the only such ballots are those created by OVoteLR. Therefore we

conclude that either two ballots created by OVoteLR have collided, the probability of

which is certainly negligible, or the adversary has submitted in a OCast query a copy of a

ciphertext that OVoteLR previously placed on the invisible bulletin board BB(1−β). Since

the adversary never saw this ciphertext, and since the encryption scheme is NM-CPA so

ciphertexts must be unpredictable, the probability of this event is negligible too. This

concludes the proof of Lemma 6.4.

We now describe how to simulate the PET. Our inputs are a number N of ballots (the

output of the mix-net), a result R that was correctly computed on a different bulletin

board that also had N ballots (after stage 1 of tallying) by Lemma 6.4 and a set Vvalid of

valid voting options.

Since the PETs in a real tally are taken over ballots that have just come out of a mix-

net, the distribution of votes in these ballots is a uniformly random permutation of votes

subject to the tally being R. For example, if R indicates that there was one vote for v = 1

and N − 1 votes for v = 2 then the probability of the 1-vote being in the i-th ballot is

1/N , irrespective of the order in which the ballots were cast (for example the adversary

might know that the first person to vote was the one that cast the 1-vote). This is because

the ballots are uniformly permuted in the mix-net.

Our simulation strategy is therefore to emulate this random permutation. The result

R gives us a mapping fR : Vvalid ∪ 0 → {0, 1, . . . , n} where for example fR(v) = 3 means

that three voters voted for v and fR(0) is the number of voters who cast an invalid vote or

abstained. We have fR(0) +
∑

v∈Vvalid
fR(v) = N , i.e. the number of invalid/abstention

votes plus the totals for each valid option sum to the number n of ballots that came out

of the mix-net. We simulate as follows:

1. Create a list L = (L1, . . . , LN ) such that each vote v ∈ Vvalid appears fR(v) times

in L and the value 0 appears fR(0) times. Then permute L randomly.

2. Create an N×|V | matrix d of PET results: if L[i] = v, which means that we pretend

voter i voted for v ∈ Vvalid, then set di,v = 1. Otherwise set di,v to be a random

element of Zq.

3. For each (i, v) pair create a simulated PET proof as follows. For each ciphertext

ci = (c
(1)
i , c

(2)
i ) and each valid voting option v ∈ Vvalid pick a random ri,v←$Zq and

set si,v = ((c
(1)
i )r, (c

(2)
i /v)r). Then compute proofs

πi,v = SimEqProof(g, s
(1)
i,v , h, s

(2)
i,v /di,v) ∪ EqProof(c

(1)
i , c

(2)
i /v, s

(1)
i,v , s

(2)
i,v )

4. Return the mix-net proofs of shuffle validity Πmix and the PET proofs/data ΠPET

consisting of the values di,v, si,v and the associated proofs πi,v.

The EqProof part proves that the si,v are correct re-randomisations of the ci for the

votes v ∈ Vvalid, which they are. The SimEqProof are fake proofs that the di,v are the
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decryptions of the si,v which is generally false since we chose the di,v values randomly.

As the encryption scheme in question is NM-CPA secure, no PPT adversary has more

than a negligible change of telling a correct d-value from a false one without any proofs

(indeed, this is why we have the proofs of decryption validity in the real tally) and since

the proofs are zero-knowledge, we can assume that a PPT adversary cannot tell a real

from a simulated proof. Therefore the proofs πi,v do not help in distinguishing real from

fake di,v either.

The adversary does know the result R (since the challenger in the BPRIV game outputs

that and SimTally cannot change it) but the simulated decryptions di,v are consistent with

R and follow the same distribution as the real ones. Therefore we can claim that the

output of the tallying oracle in case β = 1 is indistinguishable to PPT adversaries from

the output in the case β = 0. The other information that the adversary sees are the ballots

on the bulletin board (in particular the OVoteLR ones which have a dependency on β)

but these are ciphertexts in an NM-CPA secure encryption scheme so we can assume that

they are indistinguishable to PPT adversaries too. We therefore conclude that KTV-Helios

satisfies BPRIV and have proven the following.

Theorem 6.5. KTV-Helios satisfies the BPRIV security definition.

Strong Correctness and Strong Consistency: Together with BPRIV, [BCG+15] con-

tains two auxiliary properties called strong correctness and strong consistency that are

also required for a voting scheme to guarantee vote privacy. We define and check these

properties here for the KTV scheme.

The Valid algorithm can reject new ballots based on the information already on the bul-

letin board (for example, it can reject a duplicate of an existing ballot). Strong correctness

ensures that the rejection algorithm is not too stong, in particular that dishonest voters

cannot manipulate the bulletin board to the point where it would prevent an honest voter

from casting her ballot. To model this we let the adversary choose a bulletin board and

test if an honest ballot, for which the adversary can choose all inputs, would get rejected

from this bulletin board.

Since the original definition did not contain timestamps or a list of registered voter

identities, we adapt the syntax of the original definition [BCG+15, Def. 9] to include

these elements.

Definition 6.6. A voting scheme S has strong correctness if no PPT adversary has more

than a negligible probability of winning in the following experiment.

1. The challenger sets up the voting scheme and publishes the public election key pk

and the list of voter identities and public keys I.

2. The adversary generates a bulletin board BB, a voter identity id ∈ I, a vote v ∈ V
and a timestamp t ∈ [Ts, Te].
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3. The challenger creates a ballot b = Vote((id, skid), id, v, t).

4. The adversary loses if there is already a ballot with timestamp t′ ≥ t on BB.

5. The adversary wins if Valid(BB, b) rejects the honest ballot b.

We have made the following changes compared to the original definition: we have added

identities id to match the syntax of our voting scheme and demanded that the adversary

choose an id ∈ I since otherwise the ballot b will quite legitimately be rejected. We have

also added timestamps and the restriction that the adversary must choose a timestamp t

satisfying both t ≤ Te and t > t′ for any timestamp t′ of a ballot already on the bulletin

board BB. Otherwise one could trivially stop any more ballots from being accepted by

putting a ballot with timestamp Te on the bulletin board.

Lemma 6.7. The voting scheme described in Section 6.3 satisfies strong correctness.

Proof. If Valid(BB, b) fails on a ballot then one of two things must have happened:

Validate(b) = 0 or the ciphertext c in b is already on the bulletin board somewhere.

Validate(b) only fails if the identity id in b is not in I, one of the proofs in b does not

verify or the timestamp is out of its domain. Since we are considering a honestly generated

ballot b in the strong correctness experiment, correctness of the proof schemes involved

means that the proofs are correct.

Since the ballot b in question is created by Vote which picks a fresh random r←$Zq, the

probability of c colliding with a previous ciphertext (even an adversarially created one) is

negligible. (To be precise, since we are assuming a PPT adversary, the bulletin board BB

created by the adversary can only contain a polynomially bounded number of ciphertexts

and since the probability of a collision with any of these is negligible individually, so is the

sum of these probabilities for a union bound.) This proves Lemma 6.7.

The definition of strong correctness may seem tautological (and the proof trivial) but it

prevents the following counter-example from [BCG+15, Section 4.4]: an adversary can set

a particular bit in a ballot of its own that causes the bulletin board to reject all further

ballots. Assuming that either Alice wants to vote for (candidate) 1 and Bob wants to

vote for 2 or the other way round, in a private voting scheme we would not expect the

adversary to be able to tell who voted for 1. Without strong correctness, the adversary

could let Alice vote then submit their “special” ballot to block the bulletin board, then

ask Bob to vote. Since Bob’s ballot now gets rejected, the result is exactly Alice’s vote,

so the adversary discovers how she voted.

Strong consistency prevents the Valid algorithm from leaking information in scenarios

such as the following: the adversary can submit a special ballot that gets accepted if and

only if the first ballot already on the bulletin board is a vote for 1. Of course this is mainly

of interest where Valid has access to non-public information, either because it has access

to a private election key or the bulletin board contains non-public information.
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Strong consistency formally says that the election result is a function of the votes and

that each valid ballot must be uniquely associated with a vote. In particular, the vote in

one ballot cannot depend on the other ballots on the bulletin board.

Definition 6.8. A voting scheme has strong consistency relative to a result function ρ if

there are two algorithms

• Extract(sk, b) takes an private election key and a ballot and returns either a pair

(id, v) containing an identity id ∈ I and a vote v ∈ V , or the symbol ⊥ to denote an

invalid ballot.

• ValidInd(pk, b) takes an public election key and a ballot and returns 0 (invalid ballot)

or 1 (valid ballot).

such that the following conditions hold.

1. The extraction algorithm returns the identity and vote for honestly created ballots:

for any election key (pk, sk) created by Setup, any voter registration list I and any

ballot b created by Vote((id, skid), id, v, t) where id ∈ I, t ∈ [Ts, Te] and v ∈ V we

have Extract(sk, b) = (id, v).

2. Ballots accepted onto a bulletin board are also accepted by ValidInd: for any bulletin

board BB, if Valid(BB, b) holds then ValidInd(pk, b) holds too.

3. For any PPT adversary A, the probability of winning the following game is negligible:

a) Create an election key (pk, sk) with Setup and set up user registration list I.

b) Give A the all public and private election key, as well as public and private

signature keys of the voters and let A return a bulletin board BB. Let n be the

number of ballots on this bulletin board.

c) A loses if there is any ballot b on the bulletin board BB for which ValidInd(b) = 0.

d) Let (r1,Π) = Tally(sk,BB). The adversary loses if the tallying function returns

⊥.

e) Let ei = Extract(bi) for i = 1, . . . , n and the bi are the ballots on the bulletin

board BB. Let r2 = ρ(e1, . . . , en).

f) The adversary wins if r1 6= r2.

We prove that KTV-Helios satisfies strong consistency. This means that we have to

check that the tally function really counts the votes in the ballots.

For Extract(sk, b) we parse the ballot as b = (id, c, πPoK , π, t) and check the two proofs;

if either of them fail then we return ⊥. Then we decrypt c with sk to get a vote v. If

v ∈ Vvalid then we return (id, v) otherwise we return ⊥. For ValidInd(pk, b) we just run

Validate(b). We can assume that the list I of voter identities and public signature keys is

public. We check the three conditions:
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1. This follows from correctness of the encryption and proof schemes. If we encrypt a

vote v ∈ V to get ciphertext c then we also get v back when we decrypt c with the

matching key and the correct voting algorithm produces correct proofs too.

2. Since Valid runs Validate, it must hold that ballots accepted onto the bulletin board

are valid.

3. In fact the probability of an adversary winning this game is zero. Consider an

execution of the experiment in which r1 6= r2 in the last stage. We know that Tally

did not return ⊥ or we would not have got this far, therefore all ballots on the

bulletin board passed Validate individually and the bulletin board as a whole passed

ValidBB(BB). In particular ValidateBB did not cause tallying to abort.

In this case, by the definition of Tally, the result r1 is obtained by homomorphically

adding the ciphertexts of each voter, mixing (which does not change the votes) and

then PET-decrypting the resulting ballots which for all valid votes produces the

same result as normal decryption whereas invalid ones are discarded.

The extraction to get r2 on the other hand first decrypts each ciphertext individually,

then (to evaluate ρ) sums the decrypts for each voter, discards invalid sums and then

reports the number of votes for each option. By the homomorphic property of the

encryption scheme, these two methods of tallying must return the same result r

(strong consistency does not deal with the proofs Π of correct tallying).

This concludes the proof of strong consistency.

Receipt-Freeness

We now prove that KTV-Helios ensures receipt-freeness as a stronger form of vote privacy

for the voters who might try to create a receipt for their vote. The KTV-Helios scheme

ensures probabilistic receipt-freeness via deniable vote updating. The principle of deniable

vote updating has also been proposed in other e-voting schemes [LH16,LHK16,AKLMQ15]

in order to protect against vote selling and to prevent a voter from constructing receipts

that show how the voter has voted. As such, the voter can cast her ballot for the voting

option the adversary instructs to vote for, but due to deniable vote updating the voter

can change her vote without the adversary knowing it.

The variant of deniable vote updating used in KTV-Helios is also characterized by

enabling the so-called preliminary deniable vote updating. Given two ballots bA, bv, with

bA as the ballot with the vote for a candidate demanded by the adversary, and bv the

ballot that “updates” bA to a vote for a candidate chosen by the voter, the voter can cast

bA and bv in any order. This approach prevents an attack, where the voter succeeds to

cast bA as the last ballot in the election, thus making sure that her vote has not been

updated. However, in KTV-Helios, constructing bv requires the knowledge of a vote that

was cast with bA.
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We propose a formal definition for probabilistic receipt-freeness for e-voting schemes

with deniable vote updating. Our definition is inspired by the definition of coercion resis-

tance by Kuesters et al. in [KTV10a] and the definition of receipt-freeness by Cortier et

al. [CFG15, CCFG16]. As such, we introduce a game-based definition based on [CFG15]

and modified for the support of deniable vote updating. Similar to [KTV10a], we employ

the δ-notation in order to denote an adversarial advantage δ in finding out whether the

voter indeed voted as instructed by the adversary, or whether she faked the receipt and

voted for another voting option. Furthermore, similar to [KTV10a], we consider vote buy-

ing from a single voter, while considering an extension towards multiple voters in future

work.

Note that the definition in [CFG15,CCFG16] argues that the receipt-freeness should not

rely on the actions of the voter, the so-called “counter-strategy”, that the voter should

apply in order to fake her receipt while still voting how she wants to. Indeed, as outlined

in the overview of the related work in Section 6.5, different approaches exist on whether

receipt-freeness should include counter-strategies or not. Hence, we agree that our defini-

tion does not encompass this type of strong receipt-freeness, but describes a weaker version

of it instead, which is ensured in KTV-Helios and other schemes that rely on deniable vote

updating.

Thus, we adjust the definition by Cortier et al. by enabling the voter to apply a counter-

strategy against an adversary that demands a receipt, namely, to deniably update her vote.

The receipt-freeness in our definition relies on the existence of following algorithms:

• DeniablyUpdate(id, skid, v0, v1, tv) as the function for casting a ballot that changes the

vote of the voter id from v0 to v1. The function further takes as input the voter’s

private signature key skid and the timestamp at which the updating ballot is cast.

For KTV-Helios, DeniablyUpdate(id, skid, v0, v1, tv) is defined as casting a ballot for

v1 − v0, that is

DeniablyUpdate(id, skid, v0, v1, tv) = Vote((id, skid), id, v1 − v0, tv)

• Obfuscate(id) as the function used by the voting system for hiding the presence of

ballots cast by the voter id for the purpose of deniable vote updating. For KTV-

Helios, Obfuscate(id) models the output of an honest posting trustee and is defined

as casting a random number of dummy ballots distributed according to Pd, Pt, that

is

Obfuscate(id) = VoteDummy(id)

• SimProof(BB, R) as the function for simulating the proof of correct tallying given the

ballots published on the bulletin board BB and the tally result R. For KTV-Helios,

SimProof(BB, R) is defined in the same way as described in the evaluation of ballot

privacy.
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We define an experiment Exprfree,βA,S for a voting scheme S as follows:

The challenger sets up two bulletin boards BB0, BB1 by running the setup as described

Section 6.3 and randomly chooses β ∈ {0, 1}, so that the adversary only sees BBβ. The

adversary has access to the following queries:

• OVoteLR(id, v0, v1, t): the oracle computes b0 = Vote(id, skid, v0, t) and

b1 = Vote(id, skid, v1, t) and appends b0 to BB0, b1 to BB1.

• OReceipt(id, v0, v1, t): the oracle returns ⊥ if v0 6∈ Vvalid, that is, if an adversary

wants to obtain a receipt for casting a vote for a non-valid voting option. Oth-

erwise, the oracle computes bA = Vote(id, skid, v0, t) and appends bA to both of

the bulletin boards BB0, BB1. The oracle furthermore returns the random coins

ω used for constructing bA to the adversary. Additionally, the oracle computes

bv = DeniablyUpdate(id, skid, v0, v1, tv) for a random timestamp t←$Pt and appends

bv to BB1. The oracle further runs an obfuscation algorithm Obfuscate(id) on both

of the bulletin boards. The adversary is allowed to query OReceipt only once.

• OTally: The oracle returns the tally result R on BB0 and the auxiliary data Π which

is either real in case β = 0 or simulated (i.e. Π = SimProof(BB1, R)) in case β = 1.

The adversary is allowed to query OTally only once.

The oracle further fills both of the bulletin boards with the content on behalf of honest

voters and honest voting system entities. At the end of an experiment, the adversary has

to output her guess for β.

Intuitively, the definition encompasses the scenario of vote selling, whereby the adversary

tells the voter the name of the candidate the voter has to provide a receipt for, and the

voter is able to access the random coins used in creating an adversarial ballot bA (i.e.

the randomness used in creating an ElGamal ciphertext). It, however, does not cover the

scenarios where the adversary wants to make sure the voter did not cast a valid vote in

the election, or to change the voter’s vote to a random candidate (forced abstention and

randomization as described in [JCJ05]). It also does not consider the information leakage

from the election result.

We are now ready to define δ-receipt-freeness for deniable vote updating:

Definition 6.9. The voting scheme S achieves delta-receipt-freeness, if there are algo-

rithms SimProof, DeniablyUpdate, Obfuscate so that holds

|Pr
[
Exprfree,0A,S = 0

]
− Pr

[
Exprfree,1A,S = 0

]
− δ|

is negligible in the security parameter.

The assumptions regarding adversarial capabilities for receipt-freeness in KTV-Helios

are then as follows: the tabulation teller does not divulge her private election key to the ad-

versary (A-KTV-TabTellerHonest), both the voting and the verification device do not leak
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the information to the adversary (A-KTV-VotDeviceLeakage, A-KTV-VerDeviceTrusted),

the adversary is incapable of observing the communication channel between the voter,

the posting trustees and the voting system (A-KTV-AnonChannels), at least one posting

trustee does not divulge private information to the adversary (A-KTV-PosTrusteeHonest),

the voter verifies that she communicates with an authentic bulletin board during voting,

the bulletin board does not remove or modify the data published on it and shows the same

contents to everyone (A-KTV-NoBBModification, A-KTV-BBConsistency), the voter is

capable of casting a vote without being observed by the adversary (A-KTV-HiddenVote)

and the voters who are required by the adversary to provide receipts act independent

from each other (A-KTV-IndReceipt). Hence, the assumptions match the ones given in

Section 6.2.

In order to find an appropriate value of δ, so that we can show that KTV-Helios achieves

δ-receipt-freeness, we further need to account for the adversarial advantage gained from

the number of ballots next to voter’s identity on the bulletin board. For this purpose,

we define the following experiment Exprfnum,βA,Pd,Pt
: The challenger chooses a random β{0, 1}

and outputs the number m + β, with m←$Pd, and the set of timestamps t1, ..., tm, tm+β

that are independently sampled from Pt to the adversary. The adversary has to guess β.

Hence, the experiment models the voter either obeying the adversary’s instructions (for

β = 0) or casting an additional ballot (for β = 1), whereby the adversary only has access

to the number of ballots and their timestamps, but not to the ballots themselves.

Let δrfnumPd,Pt
denote an advantage in this experiment, so that

Pr
[
Exprfnum,0A,Pd,Pt

= 0
]
− Pr

[
Exprfnum,1A,Pd,Pt

= 0
]
− δrfnumPd,Pt

is negligible. We are now ready to provide an evaluation of δ-receipt-freeness for KTV-

Helios.

Theorem 6.10. KTV-Helios, instantiated with probability distributions Pd,Pt, achieves

δ-receipt-freeness privacy given the algorithms SimProof, DeniablyUpdate, Obfuscate, with

δ = δrfnumPd,Pt
. It further does not achieve δ′-receipt-freeness for any δ′ < δ.

Proof. We base our proof on the idea, that the number of ballots next to the voter is the

only source of information that gives advantage to the adversary. We consider a sequence

of games, starting from Exprfree,0A and ending with Exprfree,1A and show, that the adversary A
distinguishes the transition through all those games with the advantage of at most δrfnumPd,Pt

.

We define BB0,i as the content of the bulletin board and (Ri,Πi) as the tally output at

the end of the game Gi, i = 1, ..., 4. We define the sequence as follows:

• G1. The first game G1 is equivalent to the experiment Exprfree,βA with β = 0 (hence,

it is equivalent to the election where the voter id does not try to deniably update her

vote). Thus, the content of BB0,1 and the tally output (R1,Π1) correspond to the content

of BB0 and the output of OTally at the end of Exprfree,0A .
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• G2. The second game G2 is equivalent to the election, where the voter id casts

an additional ballot with a null-vote. Thus, the content of the bulletin board BB0,2 is

equivalent to the content of the bulletin board BB1 at the end of Exprfree,1A for the adversary

using the query OReceipt(id, v0, v1, t) with v0 = v1.

We prove, that the adversary has an advantage of δnum of distinguishing between the

output of G1 and G2. The tally result does not change, hence the tally output (R2,Π2)

is equivalent to the tally output (R1,Π1). The only difference between the contents of

BB0,1 and BB0,2 are the ballots next to id. Namely, G1 contains only the ballot bA and

m dummy ballots b1, ..., bm generated by the function VoteDummy(id) next to id, with

m←$Pd and the timestamps for the ballots b1, ..., bm randomly sampled from Pt. As for

the second game, in addition to the ballots bA, b1, ..., bm, the bulletin board BB0,2 further

contains an additional non-dummy (i.e. cast by the voter, not by a posting trustee) ballot

bv = Vote((id, skid), id, 0, tv) cast by the voter at a random timestamp tv←$Pt. As bv, as

well as b1, ..., bm, contains an encryption of 0, and due to the zero-knowledge property of

the disjunctive proof π attached to both dummy and non-dummy ballots, it holds that

bv is indistinguishable from the dummy ballots bi, ..., bm. Furthermore, the timestamp

attached to bv is randomly sampled from the same distribution Pt as the timestamps for

the dummy ballots b1, ..., bm. Hence, the number of the ballots next to id remains the

only source of information that the adversary can use to gain advantage in distinguishing

between G1 and G2.

It therefore follows, that in order to distinguish between G1 and G2, the adversary has

to distinguish, given the number of ballots m′, whether m′ was sampled from Pd (in which

case the adversary is in G1), or m′ = m + 1 with m←$Pd (in which case there is an

additional non-dummy ballot, and the adversary is in G2). This distinction corresponds

to the definition of the experiment Exprfnum,βA,Pd,Pt
.

Therefore, we conclude that distinguishing between the outputs of G1 and G2 is equiv-

alent to distinguishing between the output of Exprfnum,0A,Pd,Pt
and Exprfnum,1A,Pd,Pt

, and therefore the

adversarial advantage of distinguishing between the output of G1 and G2 is δrfnumPd,Pt
.

• G3. The third game G3 is equivalent to the election, where the voter cast a vote for

a non-null voting option v 6= 0, and the tally result R is calculated on the bulletin board

BB0,2 with simulated tally proof Π = SimProof(BB0,3, R).

We now prove, that the adversarial advantage in distinguishing between the output

of G2 and G3 is negligible. Consider an adversary B in the ballot privacy experiment

Expbpriv,βA,S who simulates the games G2 and G3 for the adversary A. The adversary B
returns the output of Expbpriv,βA for the queries OVoteLR, OTally. For simulating the

output of OReceipt(id, v0, v1, t), B proceeds as follows: first, she computes a ballot bv =

Vote((id, skid), id, v0, t). She then chooses a random value m←$Pd, and a set of and

random timestamps t1, ..., tm←$Pt, and computes a set of ballots b1, ..., bm with bi =

Vote((îd, 0), id, 0, ti). She then uses the query OVoteLR(id, id, 0, v1/v0, t
′) for a random

t′ ∈ Pt in Expbpriv,βA and returns its output together with the ballots bv, b1, ..., bm to A. At



102 6 Privacy Improvements: Participation Privacy, Receipt-Freeness

the end, B returns the value β output by A as the guess in Expbpriv,βA,S . Thus, it follows that

the adversarial advantage in distinguishing G2 from G3 is at most equal to the adversarial

advantage in Expbpriv,βA , denoted as δBPRIV .

It follows, that in the transition through the game sequence G1 → G2 → G3 the outputs

of each game are distinguished from the outputs of a previous game with the advantage

either δrfnumPd,Pt
(for games G1 and G2) or δBPRIV (for games G2 and G3). Hence, the

adversary distinguishes between the output in Exprfree,βA with the advantage of at most

δrfnumPd,Pt
+ δBPRIV , with δBPRIV negligible as proven in Section 6.4.1.

6.4.2 Fairness

Intuitively, it can be seen that fairness is implied by vote privacy in KTV-Helios, since the

ballots are attached to the voters identities up until the tally. In this section we propose

a following way to evaluate fairness in a formal way, whereby we show that vote privacy

according to the definition of ballot privacy as described in Section 6.4.1 also implies

fairness.

The idea behind our definition of fairness is as follows. The adversary has the access to

the contents of the bulletin board before the voting is finished (hence, also before the tally

result is published). Fairness is violated if at some point during the voting the adversary

gets some information on the partial result of the election, that is, the result of tallying

the ballots that have been cast so far. We model this violation as follows: given any two

partial results R0, R1 that correspond to the same number of cast ballots k, the adversary

should be unable to distinguish, which one of these results is the current partial result of

the election based on the contents of the bulletin board.

Note that the adversary knows the partial results based upon the ballots of the voters

that are fully under adversarial control. These ballots are therefore not considered in our

definition.

Hence, in order to define fairness, we propose a following experiment Expfairness,βA,S . The

adversary selects two vectors R0 = (v0,1, ..., v0,k), R1 = (v1,1, ..., v1,k) with R0 6= R1. She

further selects k honest voters (id1, ..., idk). The challenger sets up two empty bulletin

boards BB0 and BB1, runs the setup phase as outlined in Section 6.3 and chooses a random

β←$ {0, 1}. She further computes a set of ballots bi,j = Vote((idj , skidj ), idj , vi,j , ti,j) for

a random timestamp ti,j←$Pt, i = 0, 1, j = 1, ..., k and appends each bi,j to BBi. The

adversary then gets to see BBβ and has to output β.

We further define fairness as follows:

Definition 6.11. A voting scheme S ensures fairness, if the adversarial advantage in

AdvfairnessA,S :=
∣∣∣Pr
[
Expfairness,0A,S = 1

]
− Pr

[
Expfairness,1A,S = 1

]∣∣∣
is negligible for any PPT adversary.

We are now ready to prove fairness for KTV-Helios.
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Theorem 6.12. The voting scheme defined in Section 6.3 provides fairness.

Proof. We show, that an adversary in Expfairness,βA,S has at most the same advantage as in

Expbpriv,βA,S . Indeed, consider an adversary A in Expbpriv,βA,S who has access to an algorithm

B that solves Expbpriv,βB,S . A models the experiment Expfairness,βA,S as follows. She returns the

output of Expbpriv,βA,S in the setup to B. Furthermore, upon getting the two result vectors

R0, R1 from the adversary in Expfairness,βA,S , she casts a query OVoteLR(idj , idj , v1,j , v0,j , t)

for each j = 1, ..., k and returns its output by Expbpriv,βA,S to B. After casting all k of such

queries, she returns the output of B as her answer in Expbpriv,βB,S . Hence, the adversarial

advantage in Expfairness,βA,S is at most as large as the adversarial advantage in Expbpriv,βA,S ,

which is negligible as shown in Section 6.4.1. Hence, fairness in KTV-Helios is ensured as

long as vote privacy is ensured.

6.4.3 Participation Privacy

In this section we evaluate the participation privacy requirement in KTV-Helios. As

in the case of vote privacy including receipt-freeness, we provide formal evaluation of

participation privacy given a single tabulation teller. As such, we presume that the results

of our analysis should hold for the case of multiple tabulation tellers if more than half of

them are honest, due to the properties of the secret sharing scheme used in generating the

election key and distributed threshold decryption. We consider the formal security proofs

for such case a part of future work.

We first provide a cryptographic definition of probabilistic participation privacy (Sec-

tion 6.4.3). Since one may consider participation privacy an extension of vote privacy,

seeing abstention as one of the possible voting options, we decided to consider modify-

ing an existing definition of vote privacy for defining participation privacy. As such, our

definition of participation privacy is inspired by the idea of vote swapping that has been

used, in particular, in [BY86] to provide a game-based definition of vote privacy. The vote

swapping approach considers two voters, id0 and id1 and two different votes v0 and v1, so

that the adversary has to distinguish between the election where id0 votes for v0 and id1
votes for v1, or vice versa. While more advanced definitions for vote privacy have been

developed (see [BCG+15] for an overview), the concepts that they use would not be suit-

able for defining participation privacy, since the techniques that obfuscate the content of

the ballot (i.e. encryption) are generally different from the techniques that obfuscate the

identities of the voters who cast their ballots. Hence, based on the vote swapping idea, we

consider voter swapping in our definition: given two voters id0, id1, the adversary should

be unable to distinguish whether id0 has abstained and id1 participated in the election,

or vice versa.

Note that our definition assumes that the number of cast ballots included in the tally is

revealed by the election result. On the other hand, while publishing the number of voters

who participated in the election (thus, the number of ballots that were cast and included
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in the tally) is often the case in practice, in both Internet voting and traditional elections,

other voting systems might encode the votes in such a way, that the presentation of the

final result does not reveal the number of the voters who cast their ballot. For example,

given that the “yes”-vote is coded as 1 and a “no”-vote as −1, the final result presented

as the sum of all the cast votes, and given that the individual ballots are not published,

the result of 0 would not reveal whether there were two voters voting for 1 and −1, or no

voters at all. The participation privacy for such a voting system would not be covered by

our definition. However, we still consider our definition to be appropriate for KTV-Helios

and other voting systems that do reveal the number of participating voters. Proposing a

more general definition would be considered in future work.

In order to enable the evaluation of participation privacy in KTV-Helios, we chose to

propose a quantitative definition, inspired by the coercion resistance definition in [KTV10a]

and the verifiability definition in [CGKü+16]. Similar to the notion of (γk, δ)-verifiability

with quantitative goal γk in [CGKü+16], we speak of (δ, k)-participation privacy, where

δ denotes the advantage of the adversary who tries to tell whether a given voter has

abstained from casting her ballot in the election, or cast her ballot at most k times. In

Section 6.4.3, we instantiate this definition for the KTV-Helios and provide the optimal

value of δ, so that KTV-Helios satisfies (δ, k)-participation privacy.

Defining (δ, k)-Participation Privacy: We consider the following experiment Expppriv,βA,S,k
given the adversary A ∈ CS , so that CS is a set of PPT adversaries, defined according

the adversarial model for a particular scheme. There are two bulletin boards BB0, BB1,

which are set up by the challenger. The adversary only sees the public output for one

of these bulletin boards BBβ, β←$ {0, 1}. Let QS be a set of oracle queries which the

adversary has access to. Using these queries, the adversary fills both of the bulletin

boards with additional content modeling the voting, so that BB0 and BB1 contain the

same cast ballots except for the ballots for the voters id0, id1: given a number of voting

options v1, ..., vk′ chosen by the adversary, k′ ≤ k, for each i = 0, 1, the bulletin board

BBi contains the votes for v1, ..., vk′ on behalf of idi and an abstention from the election

is modeled for the voter id1−i.

The oracle computes the tally result R on BB0. In case a voting scheme provides

auxiliary output Π for the tally, the oracle returns (R,Π) in case β = 0, and simulates

the auxiliary output Π′ = SimProof(BB1, R), returning the tuple (R,Π′) in case β = 119.

The oracle further outputs the public content of BBβ to the adversary. The goal of the

adversary is to guess whether the provided output corresponds to BB0 or to BB1, i.e. to

guess β.

The definition of (δ, k)-participation privacy is then as follows:

19The tally result should be the same, if the vote of each voter is equally included in the result. However,

in order to be able to model the voting schemes where the weight of the vote might depend on the voter’s

identity, we chose to simulate the auxiliary output in our definition.
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Definition 6.13. The voting scheme S achieves (δ, k)-participation privacy given a subset

of PPT adversaries CS, if for any adversary A ∈ CS, k ∈ N and two honest voter id0, id1
holds

|Pr
[
Expppriv,0A,S,k = 0

]
− Pr

[
Expppriv,1A,S,k = 0

]
− δ|

is negligible in the security parameter.

(δ, k)-Participation Privacy in the KTV-Helios Scheme: In order to evaluate (δ, k)-

participation privacy in the KTV-Helios scheme according to the aforementioned defini-

tion, we first need to specify the adversary A ∈ CS we aim to protect against. Afterwards

we consider the information sources that would help the adversary A ∈ CS to correctly

guess β at the end of the experiment. This is done in order to determine the optimal

value of δ, so that the KTV-Helios scheme satisfies (δ, k)-participation privacy for a given

k with A ∈ CS according to Theorem 6.13. We conclude the evaluation by showing how to

calculate this optimal value of δ depending on the information leakage from those sources.

Specification of A ∈ CS We make following assumptions regarding adversarial capabili-

ties: the tabulation teller is honest, thus does not divulge the private election key to the ad-

versary (A-KTV-TabTellerHonest), both the voting and the verification device do not leak

the information to the adversary (A-KTV-VotDeviceLeakage, A-KTV-VerDeviceTrusted),

the adversary is incapable of observing the communication channel between the voter,

the posting trustee and the voting system (A-KTV-AnonChannels), at least one posting

trustee does not divulge private information to the adversary (A-KTV-PosTrusteeHonest),

the voter verifies that she communicates with an authentic bulletin board during voting,

the bulletin board does not remove or modify the published data and shows the same

view to everyone (A-KTV-NoBBModification, A-KTV-BBConsistency), the honest voters

(aside from id0 and id1 in Expppriv,βA,S,k ) decide to participate or to abstain in the election

independently from each other (A-KTV-IndAbstain) and the voters are not actively try-

ing to prove that they abstained due to coercion (A-KTV-NoForcedAbstention). Thus,

we assume that the adversary is only able to cast dummy ballots on behalf of any voter

and non-dummy ballots on behalf of corrupted voters. Hence, the assumptions match the

ones given in Section 6.2.

We define CS as a set of adversaries that are given access to the queries QS = {OCast,
OVoteAbstain, OTally} in the experiment Expppriv,βA,S,k . These queries are defined as follows:

• OCast(b): the adversary casts a ballot on behalf of a corrupted voter by appending

b to both of the bulletin boards BB0 and BB1. If the ballot b is invalid (namely,

ValidBB(BBβ, b) =⊥), the query terminates and returns ⊥.

• OVoteLR(id′, v0, v1): the adversary requests an oracle to cast a ballot on behalf of

an honest voter other than id0, id1 for either v0 (which is appended on BB0) or v1
(which is appended on BB1). If id′ ∈ {id0, id1}, the query terminates and returns ⊥.
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• OVoteAbstain(v1, ..., vk′): the oracle returns ⊥ if k′ > k. Otherwise, the oracle

models the output of an honest posting trustee by appending a series of dummy

ballots b1, ..., bmi ←$VoteDummy(idi), i = {0, 1} next to both of the voters id0, id1
on both of the bulletin boards BB0 and BB1, with m0, m1 sampled by the oracle

according to the probability distribution Pd defined as in Section 6.3.Additionally,

for each of the bulletin boards BBi, i = {0, 1}, the oracle appends k′ ballots b′j =

Vote((idβ, skidi), idβ, vj , t
′
j), j = 1, ..., k′ with a random timestamp t′j←$Pt next to

the voter idi. The adversary is allowed to query OVoteAbstain(v1, ..., vk′) only once.

• OTally: The oracle returns the tally result R on BB0 and the auxiliary data Π which

is either real in case β = 0 or simulated (i.e. Π = SimProof(BB1, R)) in case β = 1.

The adversary is allowed to query OTally only once.

We now consider the sources of information that would help the adversary A ∈ CS to

correctly guess β at the end of the experiment Expppriv,βA,S,k . Namely, one such source that can

be used by the adversary is k′ additional ballots next to idi on the bulletin board BBi as

the output of OVoteAbstain(v1, ..., vk′). In order to account for the adversarial advantage

gained from the number of ballots next to voter’s identity on the bulletin board, we define

the following experiment Expnum,βA,Pd,Pt,k′
: the challenger chooses a random β ∈ 0, 1. She

then outputs two numbers m0, m1, so that mβ = m+ k′, with m←$Pd, and m1−β←$Pd.
The oracle additionally returns the set of timestamps t0,1, ..., tm0 , tm0+1, ..., tm0+m1 that

are independently sampled from Pt to the adversary. Hence, β = i models the election in

which the voter id1−i abstains and the voter idi casts k′ ballots. The adversary has to guess

β. Let δnumk,Pd,Pt
denote an advantage in this experiment, so that |Pr

[
Expnum,0A,Pd,Pt,k

= 0
]
−

Pr
[
Expnum,1A,Pd,Pt,k

= 0
]
− δnumk,Pd,Pt

| is negligible20. We are now ready to evaluate (δ, k)-parti-

cipation privacy, for KTV-Helios.

Theorem 6.14. KTV-Helios, instantiated with the probability distributions Pd,Pt achieves

(δ, k)-participation privacy for a given k > 0 given the subset of adversaries CS, with

δ = maxk′≤k δ
num
k′,Pd,Pt

. It further does not achieve (δ′, k)-participation privacy for any

δ′ < δ.

Proof. We base our proof on the idea, that the aforementioned sources of information (i.e.

the number of ballots next to id0 and id1) is the only ones that give advantage to the

adversary. The rest of the public election data, as in case of ballot privacy (as shown in

Section 6.4.1), does not provide any advantage to the adversary.

Our proof strategy is hence as follows. We consider a sequence of games, starting from

Expppriv,0A,Sk and ending with Expppriv,1A,S,k and show, that the adversary A that is given access to

the queries in QS distinguishes the transition through all those games with the advantage

of at most δ := maxk′≤k δ
num
k′,Pd,Pt

. We define BB0,i as the content of the bulletin board and

20We show how to calculate δnumk,Pd,Pt for some choices of Pd and Pt in Section 6.6.
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(Ri,Πi) as the tally output at the end of the game Gi, i = 1, ..., 4. We define the sequence

as follows:

• G1. The first game G1 is equivalent to the experiment Expppriv,βA,S,k with β = 0, and

v1, ..., vk′ 6= 0 (hence, it is equivalent to the election where the voter id1 abstains, and the

voter id0 casts k′ ≤ k ballots with the votes v1, ..., vk′). Thus, the content of BB0,1 and

the tally output (R1,Π1) correspond to the content of BB0 and the output of OTally at

the end of Expppriv,0A,S,k .

• G2. The second game G2 is equivalent to the election, where the voter id1 abstains,

and the voter id0 casts k′ ≤ k ballots with a null-vote each. The contents of the bulletin

board BB0,2 is equivalent to the content of the bulletin board BB0 at the end of Expppriv,1A,S,k
for the adversary using the query OVoteAbstain(v1, ..., vk′) with v = 0. The tally result

R, however, is calculated on the contents of the bulletin board BB0,1 in the game G1, and

the auxiliary output Π2 is simulated as Π2 = SimProof(R1,BB0,2).

We prove, that the adversarial advantage in distinguishing between the output of G1

and G2 is at most the adversarial advantage in the ballot privacy experiment (Sec-

tion 6.4.1). Consider an adversary B in the ballot privacy experiment Expbpriv,βA,S , who

simulates the games G1 and G2 for the adversary A. The adversary B returns the out-

put of Expbpriv,βA,S for the queries OCast, OVoteLR and OTally. For simulating the output

of OVoteAbstain(v1, ..., vk′), B proceeds as follows: First, she simulates the dummy bal-

lots for each voter idi, i ∈ {0, 1} by choosing a random values mi←$Pd, and a set of

random timestamps t1, ..., tmi ←$Pt. The dummy ballots bi,1, ..., bi,mi are computed as

bi,j = Vote((îd, 0), idi, 0, tj), j = 1, ...,mi. Afterwards, she simulates casting the votes

v1, ..., vk′ : For each of the votes vl, l = 1, ..., k′, she uses the query OVoteLR(id1, id1, 0, vl, t)

for a random tl ∈ Pt in Expbpriv,βA,S . The output of the queries OVoteLR and the dummy

ballots bi,1, ..., bi,mi is returned to A. At the end, B returns the value β output by A as the

guess in Expbpriv,βA,S . Thus, it follows that the adversarial advantage in distinguishing G1

from G2 is at most equal to the adversarial advantage in Expbpriv,βA,S , denoted as δBPRIV .

• G3. The third game G3 is equivalent to the election, where the voter id0 abstains, and

the voter id1 casts k′ ≤ k ballots with null-vote each. Namely, the content of the bulletin

board BB0,3 is equivalent to the content of the bulletin board BB1 at the end of Expppriv,1A,S,k
for the adversary using the query OVoteAbstain(v1, ..., vk′) with vl = 0 ∀l = 1, ..., k′,

k′ ≤ k. The tally outputs the result R1 computed on BB0,1 and simulated auxiliary data

Π3 = SimProof(R2,BB0,3).

We prove, that the adversary has an advantage of maxk′≤k δ
num
k′,Pd,Pt

of distinguishing

between the output of G2 and G3. The tally result does not change, hence the tally

output (R1,Π2) is equivalent to the tally output (R1,Π3). The only difference between

the contents of BB0,2 and BB0,3 is the presence of k′ additional ballots with the encryption

of 0, that are published either next to id0 (on BB0,2 in G2) or next to id1 (on BB0,3 in

G3) on BB0,3. Since all of these ballots encrypt 0 and due to the zero-knowledge of the

attached well-formedness proofs, each individual ballot bj , j = 1, ..., k′, published next to
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idi would be indistinguishable from the dummy ballots published next to id1−i, i = 0, 1,

in either one of the games G2, G3. Hence, the total number of the ballots next to id0, id1
and the timestamps of the ballots are the only source of information that can be used in

distinguishing between G2 and G3.It follows that distinguishing between the outputs of G2

and G3 is equivalent to distinguishing between the output of Expnum,0A,Pd,Pt,k′
and Expnum,1A,Pd,Pt,k′

for every k′ ≤ k chosen by the adversary, and therefore the adversarial advantage of

distinguishing between the output of G1 and G2 is at most maxk′≤k δ
num
k′,Pd,Pt

.

• G4. The fourth game G4 is equivalent to the election where the voter id0 abstains,

and the voter id1 casts k′ ballots with the votes v1, ..., vk′ 6= 0. The tally is computed

on BB0,1, and the auxiliary output is simulated as Π4 = SimProof(R1,BB0,4). Applying

the same argument as for the indistinguishability of G1 and G2, it holds that adversary

distinguishes between the outputs of two games with the same advantage as in the ballot

privacy experiment, namely δBPRIV .

It follows, that the in transition through the game sequence G1 → G2 → G3 → G4, the

outputs of each game are distinguished from the outputs of a previous game with the ad-

vantage either δBPRIV (for the games G1 and G2, and for the games G3 and G4) or δnumk′,Pd,Pt

for k′ ≤ k (for the gamesG1 andG2). Since δBPRIV is negligible, as proven in Section 6.4.1,

it holds that the adversary distinguishes between the output in Expppriv,βA,k with the advan-

tage only negligibly larger than δnumk,Pd,Pt
for each k′ < k that she chooses in the experiment.

Thus, given that an adversary chooses k′ so that δnumk,Pd,Pt
≥ δnum,k′′ ∀k′′ 6= k′, k′′ ≤ k, the

adversarial advantage in Expppriv,βA,S,k is negligibly larger than δk := maxk′≤k δ
num
k′,Pd,Pt

.

6.4.4 Vote Integrity and Eligibility

In order to prove the vote integrity and eligibility of the KTV-Helios scheme, we rely on

the definition of weak verifiability by [CGGI14], which, under the additional assumptions

that the ballots are cast as intended by the voters (i.e. not manipulated at the time of

casting by the voting device, which should be ensured via corresponding verifications)

and that all the voters who cast their votes verify that it appears on the bulletin board,

corresponds to our definition and security model for both vote integrity and eligibility as

described in Section 6.2.

Definition of Verifiability: Our goal was to prove that the scheme allows to verify that

only ballots from the eligible voters, and one ballot from each voter only, are included

in the tally, and that each ballot cast by eligible voters is correctly tallied. It is hence

required, that a successful verification ensures, that the tally result consists of the ballots

of all the honest voters who run VerifyVote(BB, b), a subset of ballots of honest voters

who did not do this, and a subset of ballots of voters corrupted by the adversary. Note,

we accept the following assumptions: The bulletin board is consistent in showing the

same view to everyone (A-KTV-BBConsistency). The voting register with eligible voters

public signature keys is trustworthy (A-KTV-VotRegister). Furthermore, honest voters
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private signature keys are not leaked to the adversary (A-KTV-VotDeviceLeakage) and the

adversary is computationally restricted (A-KTV-CompRestricted). Hence, assuming that

the voters perform their verifications on trustworthy verification devices (A-KTV-Audit,A-

KTV-VerDeviceTrusted), the assumptions match the assumptions for vote integrity and

eligibility as given in Section 6.2.

For the actual proof, we rely on the ’verifiability against a malicious bulletin board’

framework definition for Helios alike schemes of [CGGI14] which we adjust the definition

in [CGGI14] to the KTV-Helios scheme by applying the following experiment Expver−bA,S :

The challenger runs the setup phase as outlined in Section 6.3 on behalf of the election

organizers, the registration authority and the eligible voters. The tabulation teller, which

might be controlled by the adversary, runs Setup(1λ). The challenger further initializes

an empty set IC and HVote, which would correspond to the set of corrupted voters and

to the votes cast by honest voters correspondingly. The adversary is given access to the

following queries:

• OCast(b): appends the ballot b to the bulletin board BB.

• OVote(id′, id, v, t): If id ∈ I ∪ {îd} and id 6∈ IC , appends b to BB where b =

Vote((id′, skid′), id, v, t), and adds a tuple (id′, v, b) to HVote. Note, that as opposed

to the definition in [CGGI14], the tuples (id′, ∗, ∗) already present in HVote are

not removed, since the tally function takes all the valid cast ballots as the input.

Otherwise, the query returns ⊥.

• OCorrupt(id): if called for a corrupt voter identity id ∈ IC , the oracle immediately

returns ⊥.Otherwise, it adds id to IC and returns the voter’s private signature key

skid to the adversary. In contrast to the definition in [CGGI14], we require that each

tuple (id, ∗, ∗) ∈ HVote is removed from HVote, meaning that the previous ballots

cast for the voter id using the OVote query no longer count as ballots of an honest

voter.

In addition to these queries, the adversary also has the capabilities of adding, modifying

and removing the ballots on the bulletin board. Additionally, a set of voters Checked ⊂ I
is defined, so that for each query OVote(id, id, v, t), it is assumed that the corresponding

voter id ∈ Checked has run VerifyVote(BB, b) on the resulting ballot at the end of the

election, and complained to the authorities in case the verification result was negative. At

the end of the experiment, the adversary produces the tally output (R,Π). The experiment

outputs Expver−bA,S = 0 if one of the following cases holds:

• There were no manipulation, i.e. the output result R corresponds to the votes from

honest voters who checked that their ballot is properly stored on the bulletin board,

a subset of votes from honest voters who did not perform this check, and a subset

of votes from corrupted voters: i.e.
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R= ρ((idE,1, vE,1), ..., (idE,nE
, vE,nE

))+ρ((idA,1, vA,1), ..., (idA,nA
, vA,nA

))

+ ρ((idB,1, vB,1), ..., (idB,nB
, vB,nB

))

holds; while the list of tuples (idE,i, vE,i) were cast by honest voters (i.e. (idE,i, vE,i, ∗) ∈
HVote for all i = 1, ..., nE ) who verified that their ballot is properly stored on

the bulletin board (i.e. idE,i ∈ Checked for all i = 1, ..., nE); the list of tuples

{(idA,1, vA,1), ..., (idA,nA
, vA,nA

)} were cast by honest voters (i.e. (idA,i, vA,i, ∗) ∈
HVote for all i = 1, ..., nA) who did not verify (i.e. idA,i 6∈ Checked for all i =

1, ..., nA); and the list of tuples {(idB,1, vB,1), ..., (idB,nB
, vB,nB

)} represents those

votes cast by the adversary so that the list {idB,1, ..., idB,nB
} contains at most |IC |

of unique identities (i.e. at most as many unique identities as the number of cor-

rupted voters).

• A manipulation was detected, i.e either there were complains from the voters who

run the VerifyVote check with VerifyVote(BB, b) =⊥, or the tally output does not

pass the validity check: ValidateTally(BB, (R,Π)) = 0.

The experiment Expver−bA,S serves as a basis for the definition of verifiability21 against a

malicious bulletin board.

Definition 6.15. A voting scheme S ensures verifiability, if the success probability in

Expver−bA,S Pr
[
Expver−bA,S = 1

]
is negligible for any PPT adversary.

Proof for the KTV-Helios Scheme: We are now ready to prove the verifiability against

a malicious bulletin board for the KTV-Helios scheme.

Theorem 6.16. The voting scheme defined in Section 6.3 provides verifiability against a

malicious bulletin board.

We proceed with the proof as follows: (1) We first prove that each well-formed ballot

b1, ..., bn on the bulletin board was either cast by an honest voter who checked whether the

ballot is properly stored on the bulletin board, by an honest voter who did not check this,

by a corrupted voter, or the ballot corresponds to a null vote. (2) We then show that the

plaintext tally result on all the votes corresponding to these ballots together correspond

to the sum of a) all the votes cast by honest voters who checked that their vote is stored

on the bulletin board, b) a subset of votes from honest voters who did no such checks, c)

at most |IC | votes cast by the adversary and d) the dummy votes. After this, we prove

(3) that this plaintext tally result corresponds to the result output by the tally function

21Note, that the definition can be further cast into the verifiability framework by Kuesters, Trudering and

Vogt [KTV10b] in order to enable uniform treatment of verifiability. The casting of the definition by

Cortier et al. [CGGI14] has been described in [CGKü+16]. Since the scheme and the security in [CGGI14]

are similar to the KTV-Helios scheme and the definition of verifability used in this paper, the casting

into the framework can also be done in a similar manner.
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Tally, if this function is applied according to its specification in Section 6.3. We conclude

by proving (4), that the adversary is incapable of producing a tally result that passes the

verification check, and yet is different from the tally result output by Tally.

Step 1. Let b = (id, c, πPoK , π, t) be a well-formed ballot (that passes Validate) on the

bulletin board. We prove that b belongs to one of the following lists with overwhelming

probability:

• VHCcast := ((idE,1, vE,1), ..., (idE,nE
, vE,nE

)) the list of all tuples of honest voters and

non-null votes (i.e. ((idE,i, vE,i), ∗) ∈ HVote) who verified that their ballot is properly

stored on the bulletin board (i.e. idE,i ∈ Checked).

• VHUcast := ((idA,1, vA,1), ..., (idA,nA
, vA,nA

)), the list of all tuples of honest voters and

non-null votes (i.e. ((idA,i, vA,i), ∗) ∈ HVote) who did not verify that their ballot is

properly stored on the bulletin board (i.e. idE,i 6∈ Checked).

• VCcast := ((idB,1, vB,1), ..., (idB,nB
, vB,nB

)), the list of all tuples of corrupted voters

with non-null votes (i.e. idB,i ∈ IC) and their votes.

• VDcast := {(∗, 0)}nD : the list of all tuples that correspond to the null votes.

From the soundness of the proof π we conclude that the ciphertext c from the ballot b

is signed by the voter’s private signature key, or else c encrypts null, in which case b is a

null-ballot and (îd, 0) must be in VDcast. If b is signed (i.e. it does not encrypt a null vote),

by unforgeability of the signature scheme and the assumption that the private signature

keys of the honest voters are not leaked to the adversary, either b was cast by a corrupt

voter and so (id, v) ∈ VCcast where v is the vote encrypted in c, or else b was cast by a

honest voter and so (id, v) must belong to one of the other two lists (depending on whether

id ∈ Checked or not).

Step 2. We prove that applying the tally function ρ to the lists in step 1 outputs the

tally result that includes all votes by honest voters who checked their ballots, at most IC

votes by corrupt voters and a subset of the remaining honest votes (by voters who did not

check).

If there were no complaints from the voters in Checked, which would have caused the

adversary to lose the security game, we know that all the ballots from these voters must

be on the bulletin board so all their votes are in VHCcast. The adversary’s ballots are only

the ones in VCcast whose identities are in IC so the number of these ballots is at most |IC |.
All the remaining ballots are in VHUcast and so must have been cast by non-checking honest

voters. Since ρ supports partial counting as explained in Section 6.3 we conclude, for Vcast
the list of all votes in ballots on the bulletin board:

ρ(Vcast) = ρ(VHCcast) + ρ(VHUcast) + ρ(VCcast).

Step 3. We prove that applying Tally(BB, sk) to the ballots on the bulletin board tallies

them correctly, i.e. the result R corresponds to ρ(Vcast).
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The homomorphic property of ElGamal means that the ciphertexts input to the mix

net contain the sum of all votes cast under the name of each voter. The mix net does not

change the encrypted values in the ciphertexts, it just permutes them around. Since the

ElGamal is a correct encryption scheme (i.e. the decryption outputs the correct message

that was encrypted) and the PET is sound, it follows that the decrypted values output

in the PET correspond to the messages in the ciphertexts output by the mix net. Hence

it follows that the result output by Tally(BB, sk) corresponds to the function ρ applied to

the votes in the ballots on BB. (This step is essentially a proof of correctness for the KTV

scheme.)

Step 4. We prove that the adversary cannot output a result/proof pair (R′,Π′) for a

result R′ different from the result R that Tally would return, which passes ValidateTally.

The homomorphic sum-ciphertexts for each voter are recomputed by ValidateTally to be

able to check the shuffle validity of the mix net. The mix net is protected by the proof of

shuffle validity πmix ∈ Π′ which is sound, so the shuffled ciphertexts (c̄i) ∈ Π′ must be a

valid permutation and re-encryption of those on the bulletin board. The PET decryptions

too are protected by a sound proof of decryption validity, so the decryption factors d in Π

must match the ballots on the bulletin board. From these decryption factors, the result

R can be recomputed. Therefore, unless one of the proofs in Π is invalid (which would

contradict soundness) we conclude that if ValidateTally(BB, (R′,Π′)) only outputs 1 when

R is the correct result for BB.

Hence, the adversarial success probability Pr
[
Expver−bA,S = 1

]
is negligible. This proves

verifiability against malicious bulletin boards.

6.4.5 Robustness

We only provide an informal argument to the robustness requirement in our KTV-Helios.

We further consider providing formal proofs as future work.

It has already been shown in previous sections of this chapter (more precisely, Sec-

tion 6.4.4), that a voting system can output an election result that corresponds to the

ballots published on the bulletin board, as long as the contents of the bulletin board are

available for tallying, and the tabulation tellers provide valid output during the tally,

namely, the results of mix net and PETs. The output of mix net can be used to ensure

the privacy-related requirements of the election, as long as at least one tabulation teller is

honest and performs the shuffle correctly. Furthermore, given the threshold distribution of

the private election key between the tabulation tellers, it suffices if at least t = bNt/2c+ 1

of the tabulation teller provide output for PETs. Hence, robustness is ensured as long

as the contents of the bulletin board are available for tallying, and a threshold number

of tabulation teller (that is, more than half) are available and provide valid output dur-

ing tallying. We consider providing formal proofs for robustness in KTV-Helios as future

work.
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Note, however, that the assumption, that the contents of the bulletin board are available,

can be difficult to ensure in case of board flooding : In the scheme in Section 6.3, as

well in a family of other schemes that rely on anonymous channels for casting the ballot

[CCM08,SKHS11], the adversary can exploit this possibility via a denial of service attack

by casting a large amount of ballots, possibly even up to a point when bulletin board can

no longer be available. Note, that the impact of such an attack, however, is considerably

lower than in [CCM08], as the computations required for processing the ballots increase

in linear time with the number of cast ballots, as opposed to quadratic time in [CCM08].

However, we still consider mitigating board flooding attacks in future work.

6.5 Related Work

In this chapter describe the related work on both the privacy improvements proposed in

our extension (i.e. participation privacy and receipt-freeness) and formal evaluation of

security requirements in Internet voting protocols.

6.5.1 Privacy Improvements

While a number of proposed Internet voting schemes provide participation privacy, most

of them achieve by omitting every information identifying the voter. As such, the ballots

might not be published at all (e. g. in Estonian Internet voting system [Est10]), published

without any reference to the voter who cast it (e. g. in the voting approaches using blind

signatures, such as [FOO92]) or published next to the pseudonyms of the voters who cast

them (e. g. the newer versions of Helios [ADMP+09]). However, in all of these approaches,

achieving participation privacy comes with weaker eligibility. As such, if pseudonyms are

used, it is much more difficult to verify that a pseudonym (hence, a corresponding ballot)

belongs to an eligible voter, than in case the actual voters identities are being published.

Hence, the registration authority (i.e. the entity that assigns pseudonyms to the voters)

should be trusted to ensure eligibility. Similarly, if the ballots are published with no

reference to the voter, the entity who is responsible for authorizing that a ballot is included

in the tally should be trusted only to accept ballots from eligible voters. Furthermore, if

the cast ballots are not published at all, then both the eligibility and the vote integrity of

the election cannot be verified.

An alternative approach to ensure participation privacy (referred to by the authors as

anonymity) while also providing means to verify eligibility has been proposed by Haenni

and Spycher [HS11]. This approach relies on a verifiable mix net shuffle of the voters DSA

public signature keys, so that the anonymized keys are used for signing and publishing

the cast ballots. The scheme, however, does not provide receipt-freeness, as a voter can

still prove that she voted for a particular candidate by storing the randomness used in

creating a ballot, just like in Helios-Base. Other approaches to ensuring participation

privacy have relied on such techniques as set membership proofs [LH15] or linkable ring
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signatures [HB16], without providing receipt-freeness.

A number of Internet voting schemes have been proposed that aim to ensure receipt-

freeness, thus countering vote selling. Similar to ensuring participation privacy, one ap-

proach used in real-world elections for ensuring receipt-freeness consisted in refusing to

publish the cast ballots, thus making it impossible for the voter to construct a receipt.

Other proposals aim at ensuring receipt-freeness without hindering eligibility or vote in-

tegrity, such as the proposal by Hirt et al. [HS00] using mix net shuffle and designated-

verifier proofs, proposal by Lee et al. [LBD+03] using a tamper-resistant randomizer or

the extension of Helios in [CFG15] using signatures on randomizable ciphertexts. All these

proposals, however, do not ensure participation privacy.

Several proposals [AKLMQ15, LH16, LHK16] aim to ensure receipt-freeness using the

deniable updating approach, similar to our extension. All these proposals also ensure

participation privacy. The proposal in [LH16] uses set membership proofs for ensuring

participation privacy and relies on an idea of dummy ballots, similar to our extension, for

receipt-freeness. However, it is significantly less efficient than our proposal, requiring e.g.

OMN computations for verifying all the cast ballots given M as the number of eligible

voters and N as the total number of cast ballots (including dummy ballots), as opposed to

O(N) in our extension. The scheme in [LH16] furthermore does not support preliminary

vote updating. Hence, the voter who waits until the last minute to cast her ballot can

construct a receipt for it with a higher success probability (i.e. if no dummy ballots are cast

on behalf of the voter afterwards). Our proposal, on the other hand, still allows the voters

to deniably modify her vote by casting another updating ballot beforehand. The proposals

in [LHK16] and [AKLMQ15] lack in efficiency as well, both requiring O(N2) computations

for tallying N cast ballots, as opposed to O(N) computations in our proposal.

The goal of ensuring both receipt-freeness and participation privacy without drawbacks

in eligibility is addressed, among other security requirements, by the schemes aiming to

provide the property of coercion resistance. In particular, the work of Juels, Catalano and

Jacobson (JCJ) in [JCJ05] presented an Internet voting scheme that provides coercion

resistance – the definition of which includes receipt freeness as well as protection against

forced abstention, randomization and simulation attacks – against strong attacker. This

scheme, however, is unsuited for practical use, due to the fact, that its performance is

O(N2) with N as the number of eligible voters. Therefore, a number of works have pro-

posed the improvements to the JCJ system, that preserve the coercion-resistance prop-

erties while achieving linear complexity – among others, approaches based upon group

signatures [AT13], panic passwords [CH11], concurrent ballot authorization [ECH12],

anonymity sets [SHKS11], using the voter roll [SKHS11] or algebraic message authen-

tication codes [ABBT16]. In particular, the work by Spycher et al. [SKHS11] also relies on

the concept of dummy ballots similar to the concept used in our extension for achieving

coercion resistance with linear complexity. Furthermore, several improvements focused

on improving other shortcomings in JCJ scheme, such as addressing the issue of board
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flooding [KHF11], improving usability with using tamper-resistant smartcards [NFVK13]

or improving verifiability [Roe16] with an additional proof of knowledge during the voting.

All these improvements, however, still require complex forms of credential management

thus lacking in usability from the voter’s perspective. A number of other schemes has been

suggested that provide some level of coercion resistance [KZ07, RW11], which, however,

also require complex actions from the voter. The Caveat Coercitor scheme [GRBR13] aims

at detecting whether coercion took place during the election, but not at preventing it.

6.5.2 Formal Security Analysis

Significant work has been done in formal analysis of the security of Internet voting schemes.

Several concrete and abstract definitions of security requirements and underlying assump-

tions have been developed applying various formalization approaches. As such, an overview

of game-based ballot privacy definitions was proposed in [BCG+15], and a framework

that proposes a uniform treatment of the verifiability definitions from [Ben87, KTV10b,

CGGI14, KZZ15, SFC15] is described in [CGKü+16]. Other approaches for defining and

evaluating the security of voting schemes include applied pi-calculus [KR05, BHM08,

DKR09], process algebra [MHS12] or k-resilience terms [SVRH11]. These approaches

have been applied to evaluate various voting schemes [DKR09,KRS10,SVRH11,ACW13].

In particular, the formal security analysis of Helios has been the topic of [KRS10,CGGI14,

BCG+15], resulting in formal proofs of its vote privacy [BCG+15] as well as vote integrity

and eligibility [KRS10,CGGI14]. Our work in this chapter, in particular, builds upon the

results of Bernhard et al. [BCG+15] for vote privacy and Cortier et al. [CGGI14] for vote

integrity and eligibility.

A number of formal definitions for receipt-freeness that allow modeling and evaluating

this property in the electronic voting schemes have been proposed. Kiayias et al [KZZ15]

proposed a game-based definition for receipt-freeness, which ensures, that the voters do

not not get any information from the voting system that can serve as a receipt. Their

definition, however, considers receipt-freeness only for the voters that do not deviate from

the instructions issued by the voting system. Hence, the scenarios where the voters are re-

quired to follow the instructions of the adversary in order to obtain a receipt are excluded,

as opposed to our definition. Cortier et al. [CFG15,CCFG16] provide another game-based

definition, which also considers the voters that can deviate from the instructions by the

voting system for the sake of obtaining a receipt. Their definition, however, does not

consider the so-called “counter-strategies”, that would allow the voter to construct a fake

receipt for the adversary, yet to vote for her desired voting option by via a specific course

of action (not covered by the instructions from the voting system that only describe the

voting process in absence of vote buying). Note that the receipt-freeness of KTV-Helios

relies on such a counter-strategy, namely, on deniable vote updating. The simulation-based

definition of Moran et al. in [MN06], as well as the definition in [KT09] based on epistemic

logic, on the contrary, allow the voter to apply counter-strategies to fake her receipts. Fur-
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ther symbolic definitions of receipt-freeness include [DKR09, JP06, BHM08] (see also an

overview of such definitions in [Men09]), and a framework for expressing the existing defi-

nitions of receipt-freeness in the modal logics of strategic ability method has been proposed

in [TJR16]. These definitions, however, are more abstract than the definition proposed in

this chapter, which is game-based and tailored to the class of counter-strategies, namely,

deniable vote updating, used in KTV-Helios and is game-based as the other definitions

used in evaluating the security of Helios (in previous works) and KTV-Helios (in this

chapter).

For now, participation privacy electronic voting has not been in the focus of research

on formal security proofs. Hence, although the definitions of vote privacy (see e.g. an

overview of such definitions in [BCG+15]) can be adjusted to address participation privacy,

no formal definitions of this requirement have been proposed specifically. While a number

of symbolic definitions of fairness was proposed (see e.g. [TMT+08,DKR09,KR05]), to the

best of our knowledge, no game-based definition of fairness have been proposed yet.

6.6 Efficiency

For estimating the efficiency of our extension, we use the following approach. Let T as

the number of tabulation tellers, that are responsible for both the mixing of the votes and

performing the PETs with t as threshold parameter (usually suggested as t = bT/2c+ 1),

let N ′ =
∑N

i=1mi be the number of all the ballots posted during voting (including dummy

ballots posted by the posting trustee), L as number of valid voting options (for example,

L = 2 for referendum). We count the required number of modular exponentiations during

each phase of the election, summarizing the findings in Table 6.1. We assume, that

the verifiable re-encryption mix net scheme with the proof of shuffle validity proposed

in [TW10] is used during the tallying, requiring 8N + 5 modular exponentiations for

the proof of shuffle validity and 9N + 11 modular exponentiations for its verification.

Furthermore, we assume that the DSA signatures are used for authenticating the voters.

Table 6.1: Efficiency of individual phases

Setup 3T + t− 2 + 2L

Voting (cast ballot, voter-side) 8

Voting (verify, server-side) 10N ′

Tallying (4T + 5t− 1)NL+ (19N + 16)T

We note, that estimating N ′ depends on the expected value of the probability distribu-

tion Pd. This probability distribution, however, also influences the security of the scheme,

so an appropriate trade-off should be found. We show how the choice of Pd influences both

the efficiency and either participation privacy or receipt-freeness of the scheme according

to our definitions in Sections 6.4.1 and 6.4.3.
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Efficiency vs. Participation Privacy: We now provide an example of how to quantify

(δ, k)-participation privacy given a particular distribution for the number of dummy votes

Pd. For this we consider an adversarial advantage in the experiment Expnum,βA,Pd,Pt,k
defined

in Section 6.4.3. Hence, we consider an adversary who only sees the number of ballots and

their timestamps next to the voter.

Let Pd be a geometric distribution with the parameter p ∈ (0, 1], so that the probability

Pr[X = m] = (1− p)mp for m ≥ 0 and Pr[X = m ] = 0 for m < 0. Since the probability

distribution for times of casting the dummy ballots Pt is chosen in such a way, that

it corresponds to the distribution of times at which the voters cast their ballots, the

timestamps on the ballots do not provide any additional information to the adversary.

Hence, we only consider the total number of cast ballots next to the voter as the source

of information for the adversary.

Let k > 0, Mc ⊂ N2
0 be a set of all pairs (m0,m1) output in Expnum,βA,k , for which an

adversary guesses β = 0 (i.e. that m0 = m + k with m←$Pd, m1←$Pd. It holds for

δnum,k as defined in Section 6.4.3:

δnum,k := Pr
[
Expnum,0A,k = 0

]
− Pr

[
Expnum,1A,k = 0

]
=

∑
(m0,m1)∈Mc

Pr[X = m0 − k ] · Pr[X = m1 ]− Pr[X = m0 ] · Pr[X = m1 − k ]

Let M+ := {(m0,m1) ∈ N2
0 : P (X = m0 − k) · P (X = m1) − P (X = m0) · P (X =

m1 − k) > 0}. It further holds,

δnum,k ≥
∑

(m0,m1) ∈M+

P (X = m0 − k) · Pr[X = m1 ]− Pr[X = m0 ] · Pr[X = m1 − k ]

=

k−1∑
m1=0

∞∑
m0=k

Pr[X = m0 − k ] · Pr[X = m1 ]

=

k−1∑
m1=0

(1− p)m1p

∞∑
m0=0

(1− p)m0p

= 1− (1− p)k

It further follows, that an adversary who is instructed to always output β = 0 if for

the output pair (m0,m1) if it holds that Pr[X = m0 − k ] · Pr[X = m1 ] − Pr[X = m0 ] ·
Pr[X = m1 − k ] > 0, guesses β correctly with an advantage of 1−(1−p)k. Hence, it holds

for the adversarial advantage δnum,k = 1−(1−p)k. It further holds, that maxk′≤k δnum,k′ =

δnum,k. Thus, the KTV-Helios scheme with Pdummy as a geometric distribution with

parameter p achieves (δ, k)-participation privacy with δ = 1− (1− p)k. At the same time,

as an expected value of a Pt, it holds that there would be an average of N ′ = 1−p
p dummy

ballots for each voter.
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Efficiency vs. Receipt-Freeness As in the case of participation privacy, consider Pd to be

a geometric distribution with the parameter p ∈ (0, 1], and Pt chosen to correspond to the

distribution of times at which the voters cast their ballots. We consider the adversarial

advantage from seeing the total number of cast ballots next to the voter (i.e. in the

experiment Exprfnum,βA,Pd,Pt
described in Section 6.4.1) as follows:

Let Mc ⊂ N0 be a set of all values of m output in Exprfnum,βA,k , for which an adversary

guesses β = 0 (i.e. that m with m←$Pd. It holds for δnum,k as defined in Section 6.4.1:

δnum,k := Pr
[
Expnum,0A,k = 0

]
− Pr

[
Expnum,1A,k = 0

]
=
∑
m∈Mc

Pr[X = m ]− Pr[X = m− 1]

Let M+ := {m ∈ N0 : P (X = m) − P (X = m − 1) > 0}, i.e. for the geometric

distribution, M+ = {0}. Then it holds,

δnum,k ≥
∑

m ∈M+

Pr[X = m ]− Pr[X = m− 1]

= Pr[X = 0]

= p

Hence, an adversary who is instructed to always output β = 0 for the output m = 0

and β = 1 otherwise, guesses β correctly with an advantage of p. Thus, the KTV-Helios

scheme with Pd as a geometric distribution with parameter p achieves (δ)-receipt-freeness

with δ = p. At the same time, as an expected value of a Pd, it holds that there would be

an average of N ′ = 1−p
p dummy ballots for each voter.

6.7 Application for Boardroom and Proxy Voting

In this section we briefly discuss the ways to implement the security improvements de-

scribed in Chapter 6 for the settings described in Chapter 3, Chapter 4 and Chapter 5.

6.7.1 Boardroom Voting

We consider participation privacy to be a lesser issue in boardroom voting, since the

information about which voters participate in the meeting is most likely public. However,

the security of boardroom voting can still be improved by ensuring receipt-freeness.

Note, however, that the receipt-freeness of our extension is ensured due to deniable

vote updating, which in turn is possible only if a voter is capable of updating her vote

without being observed by the adversary. Hence, it is difficult to ensure receipt-freeness

for the voters who are physically present in the same room. We therefore focus on ensuring

receipt-freeness for the voters who vote remotely (given that an adversary is not observing

them during the voting) or against an external adversary for the voters who vote from the

same location.
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For modifying the scheme from Chapter 6 we introduce the following change to the

voting process:

The scheme in Chapter 6 requires either an honest bulletin board or an anonymous

channel between the bulletin board and the voter or the posting trustee for preserving the

participation privacy and receipt freeness. The absence of a centralised bulletin board in

boardroom voting, however, requires finding another solution for ensuring, that a dummy

ballot is indistinguishable from a ballot that is meant to deniably update the voter’s vote.

One possible way to address this challenge would be to rely on existing solutions that

ensure anonymous communications, such as onion routing. In the absence of a centralized

broadcast channel, however, these solutions, require a significant overhead in both required

computations and communicated data for each transferred message. Due to the efficiency

constrains in boardroom voting, such an overhead might be unsuitable for such a setting.

Hence, we propose a modification to the security model of the scheme. All the voters

are required to take over the task of a posting trustee by casting a random number of

dummy ballots on behalf of all the other voters. Whenever a voter wants to deniably cast

a ballot, instead of broadcasting it directly, she sends it via a private channel to another

voter whom she trusts. This voter, in turn, replaces one of her dummy ballots she wanted

to cast on behalf of the sender.

The modified scheme for boardroom voting would run as follows. As in the boardroom

voting scheme from Chapter 3, for the setup the voters run a decentralised key exchange

in order to exchange their public signature keys and generate symmetric secret keys for

private communication. The voting then consists of two rounds. In the first round, the

voters cast their ballots as described in Chapter 3. If a voter Vc wants to fake a receipt and

deniably update her vote for vA for a vote for vB, she computes her ballot bv encrypting

vA − vB as described in Section 6.3 and sends it privately to another trusted voter Vt.

In the second round, each voter Vi randomly choosesN−1 valuesmi,j←$Pt, j = 1, ..., N ,

j 6= i and casts mi,j dummy ballots for each voter Vj
22. If a voter Vt has got a ballot

bv from the voter Vc in the previous round, instead of one of the mt,k dummy ballots for

Vi she casts the ballot bv. After the voting period has ended, the votes are being tallied

according to Section 6.3, with voters taking over the tasks of the tabulation tellers.

6.7.2 Proxy Voting

The extent, to which participation privacy and receipt-freeness should extend to the proxy

voting setting, is a topic for further discussion. As such, we consider following variants for

defining participation privacy in context of proxy voting:

Direct Voting vs. Abstaining. The adversary is unable to tell whether the voter cast a

direct ballot or abstained from the election.

22As this step can be performed in the back-end by the voters voting devices, it does not influence the

usability of the voting process
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Direct Voting vs. Delegating. The adversary is unable to tell whether the voter cast a

direct ballot or delegated to a proxy.

Delegating vs. Cancelling. The adversary is unable to tell whether the voter canceled

their delegation by casting a direct ballot.

Delegating vs. Abstaining. The adversary is unable to tell whether the voter delegated

to a proxy or abstained from the election.

Participation Privacy for Proxies. The adversary is unable to tell whether the proxy cast

a delegated ballot.

Accordingly, we can distinguish between following variants of receipt-freeness:

Direct Voting. The voter is unable to construct a receipt for casting a direct ballot for a

particular voting option.

Delegating. The voter is unable to construct a receipt for delegating to a particular proxy.

Casting a Delegated Ballot. The proxy is unable to construct a receipt for casting a

delegated ballot for a particular voting option.

Note, that an extension proposed in Chapter 4 already ensures participation privacy for

proxies, given an anonymous channel between the proxies and the bulletin board. Hence,

we no longer consider it in further discussions.

We further propose two solutions to introduce participation privacy and receipt-freeness

to proxy voting. Our first solution, referred to as weaker participation privacy and receipt-

freeness, ensures participation privacy with regards to direct voting vs. abstaining and

delegating vs. canceling and receipt-freeness for direct voting and delegating. and to a

certain extent casting a delegated ballot. The second solution, referred to as stronger

participation privacy and receipt-freeness, also ensures participation privacy with regards

to direct voting vs. delegating and delegating vs. abstaining and receipt-freeness for

casting a delegated ballot. Both of the solutions are further described.

Weaker Participation Privacy and Receipt-Freeness

Our first solution uses the deniable vote updating principle from the scheme from Chapter 6

to ensure that the voter is unable to prove that her direct ballot was cast for a particular

voting option. The same principle ensures, that even if the voter is forced to delegate

her vote to a malicious proxy, she can make it invalid and cancel the delegation with a

direct ballot without the adversary noticing. The proxy, on the other hand, can prove to

the adversary how the cast her delegated ballots, but she cannot prove that these ballots

would be included into the tally (i.e. they are attached to valid delegation credentials and

not overwritten by direct ballot).
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We consider a list of valid voting options V ⊂ Gq and a predetermined value d ∈
Gq \ V ∪ {0} that indicates that the voter chose to delegate her vote. We furthermore

require a function f : G4
q → Gq that, given two ciphertexts c, c′ ∈ G2

q produces following

output without revealing further information about the plaintexts encrypted in c1, c2:

f(c, c′) =


Dec(c) if Dec(c) ∈ V
Dec(c) ifDec(c) = d and Dec(c′) ∈ V
0 otherwise

This function can be implemented via PETs calculated by the tabulation tellers. Its

purpose is to filter the ballots in the following way: given c1 as the encryption of a voting

option in a direct ballot next to the voter’s identity and c2 as the encryption of a voting

option in a delegated ballot from the same voter, f outputs the plaintext of c1 if it is a

valid vote, the plaintext of c2 if the voter indicated that she delegates by casting d and

the corresponding proxy casts a ballot for a valid voting option, and a null vote in all the

other cases.

Our modified scheme can then be described as follows. For the sake of simplicity, we

only describe the voters having one delegation priority.

The setup runs as described in Chapter 6 and Chapter 4, resulting in the publication

of the voting register with the voters public signature keys and of the voters delegation

credentials. During the voting, the voters who choose to cast a direct ballot (or to cancel

their delegation) cast their ballots as described in Chapter 6, and the posting trustee

likewise casts dummy ballots on behalf of each voter. Delegating occurs as described

in Chapter 4. During the tallying, the ciphertexts next to each voter that represent

her direct ballot are multiplied together, the same way as in Chapter 6, forming a list

of ciphertexts c1, ..., cN . Correspondingly, as in Chapter 4, the delegated ballots cast by

proxies are processed by the tabulation tellers: the ballots are anonymized via mix net, the

delegation credentials attached to the ballots are decrypted after the anonymization and

the ballots are assigned according to these credentials to the corresponding voters. As a

result, for the voters id1, ..., idN a list of ciphertexts c′1, ..., c
′
N is formed, whereby c′i denotes

an encrypted voting option cast in a delegated ballot for the voter idi, and c′i = Enc(0)

for the voters, on which behalf no delegated ballots have been cast. The tuples (ci, c
′
i)

are further anonymized via shuffling, and afterwards the function f is applied in order to

assign each tuple to either a valid voting option or a null vote.

Stronger Participation Privacy and Receipt-Freeness

Our second solution, in addition to the dummy ballots for direct ballots, it also introduces

dummy ballots for the delegated ballots. These dummy ballots are constructed in the

following way:

Recall, that in order to construct a delegation token in Chapter 4, the voter idi has to

submit her encrypted delegation credential (ad, bd) = Encgxi with gxi as her public part of
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the delegation credential and xi as a secret key23, and the following proof as her delegation

token:

πd = PoK{(rd, xi) : ad = grd ∧ bd = gxihrd}(σ)

The proxy then proves the knowledge of m = logg σ that she got from the voter via a

private channel. During the tallying, (ad, bd) is decrypted to reveal a delegation credential

gxi .

We modify this proof to enable casting dummy ballots for delegating votes. Namely,

the proof should enable the posting trustee to construct dummy delegation tokens with

the credentials gxi without knowing xi; however, these dummy tokens should only enable

casting null votes. For this purpose, we require an independent generator ĝ, so that logg ĝ

is unknown. The delegation token on behalf of the voter idi (computed either by the voter

herself or by the posting trustee) consists of the following values:

• a ciphertext (ad, bd) = Encgxi ,

• a value σ = ĝm or σ = gm for a random m,

• a proof of knowledge πd as

πd = PoK{(rd, xi,m) : σ = ĝm ∨ ad = grd ∧ bd = gxihrd ∧ σ = gm}(σ)

Thus, given that only the voter knows the value of xi, only she can cast delegation tokens

using σ = gm, while the posting trustee has to set σ = ĝm in constructing her tokens. For

casting a delegated ballot (av, bv) corresponding to the delegation token ((ad, bd)σ, πd),

then, the proxy or the posting trustee computes a proof of knowledge:

πv = PoK{(rv,m) : av = grv ∧ bv = hrv ∨ σ = gm}

Thus, since g, ĝ are independent generators, and for a given σ one can only know the

value of either logg σ or logĝ σ, it follows that the dummy delegation tokens can be only

used to cast null votes.

Given this method for constructing the dummy ballots, the tallying proceeds in the same

way as described above, except that the delegated ballot cast using the same delegation

credential (which include dummy delegated ballots) are multiplied together, similarly to

the direct ballots. In this way, participation privacy with regards to direct voting vs.

delegating and delegating vs. abstaining is ensured in that the adversary is unable to tell,

whether the voter has delegated her vote in the election.

23Again, for the sake of simplicity, we only describe delegating with one priority, hence the index j is

omitted.
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6.7.3 Proxy Boardroom Voting

As in Section 6.7.1, we consider participation privacy to be of less relevance to the board-

room voting setting, which extends to the boardroom functionality as well. Hence, we

describe the ways to use the techniques in Chapter 6 to add receipt-freeness to the scheme

described in Chapter 5.

For direct ballots, we propose to use dummy ballots as described in Section 6.7.1.

Namely, the dummy ballots on behalf of each voter should be cast by other voters. In case

the voter wants to update her vote, she sends her new ballot to another trusted voter,

who in turn casts it in place of a dummy ballot.

For ensuring receipt-freeness for delegated ballots, we first describe the possible ways to

prevent the voters from constructing receipts that they delegated to a particular proxy.

Note that the scheme proposed in Chapter 5 already ensures such a property. Recall,

that in this scheme each voter idi possesses a pair of keys gi, hi, so that only the voter

knows the value of xi = loggi hi. In order to delegate her vote, the voter idi computes the

shares of a random secret value mi as mi,j using Shamir secret sharing (Section 2.2.10) and

sending the value of g
mi,j

i to the proxy idj together with the signature on commitments

ci,j = (c
(1)
i,j , c

(2)
i,j ) with c

(1)
i,j = g

ri,j
i h

ui,j
i , c

(2)
i,j = g

mi,j

i h
ri,j
i for random ri,j , ui,j ∈ Zq to each

proxy idj . She then sends the value mi to her chosen proxy, and a random value m′i,j to

every other proxy. Given that mi cannot be reconstructed unless more than half of the

proxies reveal their shares g
mi,j

i , delegation privacy is preserved, so that only the voter

knows the identity of her chosen proxy.

It holds that the voter herself cannot prove that she delegated to a specific proxy to a

third party, even if she reveals all the values mi, mi,j , m
′
i,j , ri,j , ui,j generated during the

delegation. Consider the situation, where the voter attempts to convince an adversary

that she delegated to the proxy idk, while delegating to another proxy. It holds, that

m′i, k is a random value, while the shares mi,j reconstruct to another value mi instead

with mi 6= m′i,k. In order to fake her receipt, the voter has to compute a new set of

shares m′′i, j that reconstruct to m′i,k. Given Np as the total number of proxies and t

as the threshold for the shares mi,j , the voter has to replace at least Np − t + 1 shares

mi,j with m′′i,j . The voter then finds the corresponding values r′′i,j , u
′′
i,j , so that computing

the commitments given the values the values m′′i, j, r′′i,j , u
′′
i,j results in the same values

ci,j = (c
(1)
i,j , c

(2)
i,j ). Namely, it should hold, c

(1)
i,j = g

r′′i,j
i h

u′′i,j
i , c

(2)
i,j = g

m′′i,j
i h

r′′i,j
i . Given that

the voter knows the value of xi with hi = gxi , she can compute such r′′i,j , u
′′
i,j , so that

xiri,j +mi,j = xir
′
i,j +m′i,j and xiui,j + ri,j = xiu

′
i,j + r′i,j . Hence, as long as the adversary

does not get access to the real shares mi,j that were replaced by the voter with m′′i,j (i.e.

as long as at least t proxies are honest), she would not be able to distinguish between the

fake receipt and the real values mi, mi,j , m
′
i,j , ri,j , ui,j .

We furthermore consider receipt-freeness for proxies by allowing the proxies to cast

dummy ballots for delegated ballots as well. Recall, that for casting a delegated ballot on

behalf of the voter idi, the proxy idj broadcasts a tuple (ê
(d)
i,j , E

(d)
i,j , πi,j) with ê

(d)
i,j as an
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encryption of the value g
m′i,j
i as received from the voter (which is the shared value gmi

i if

idj is the proxy chosen by idi or a random value otherwise), E
(d)
i,j as an encryption of a

chosen voting option, and πi,j as the proof of knowledge of plaintext discrete logarithm

m′i,j for ê
(d)
i,j . Note, that at this point in the scheme, the value e

(d)
i which is an encryption

of gmi
i is available to all the proxies; hence, the proof of knowledge of plaintext discrete

logarithm ensures, that the proxy does not simply submit a re-encryption of e
(d)
i .

The proof of knowledge of plaintext discrete logarithm, however, could be replaced by

a disjunctive proof that either the proxy knows the plaintext discrete logarithm of ê
(d)
i,j , or

she is casting a null vote, encrypted in E
(d)
i,j . In this way, if she wants to casts a dummy

delegated ballot, she calculates ê
(d)
i,j as a re-encryption of e

(d)
i . The dummy delegated

ballots are then cast by other proxies on behalf of each delegating voter idi and each

proxy idj , while the proxy that wants to deniably update her delegating vote does so by

sending her new ballot to another trusted proxy, who in turn casts it instead of a dummy

ballot. Afterwards, for each delegating voter idi and proxy idj , all the encrypted votes

cast on behalf of idi, idj are multiplied together and processed further as described in

Chapter 5, with PETs replacing distributed threshold decryption at the end.

6.8 Summary and Future Work

The final contribution of this thesis extends Helios-Base by introducing several privacy

improvements. First, this extension preserves participation privacy by hiding which voters

has cast their vote in the election, while at the same time providing means to verify

that only the votes from eligible voters are included in the tally. The second privacy

improvement introduces receipt-freeness by preventing the voters constructing receipts

that prove to a third party how they voted.

6.8.1 Summary

The main idea behind our extension that allows preserving participation privacy and

receipt-freeness, as well as the security requirements such as vote privacy, vote integrity

and eligibility from the original Helios-Base, is the introduction of dummy ballots. A

random number of the dummy ballots is cast by a new kind of entity, the posting trustee,

on behalf of each voter. Hence, by obfuscating the real ballots cast by the voters them-

selves, the dummy ballots ensure participation privacy. Receipt-freeness is ensured due to

deniable vote updating, as the voter can change their vote by casting a new ballot, while

the presence of dummy ballots allows her to deny doing so.

We have formally evaluated the security of the proposed extension. Namely, we have

proven that it satisfies vote privacy, vote integrity and eligibility by relying the definitions

from [BCG+15, CGGI14] adjusted to the context of our extension. Furthermore, we pro-

posed a probabilistic abstract definition of (δ, k)-participation privacy, with δ representing
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the adversarial advantage in distinguishing whether a particular honest voter has cast up to

k ballots in the election. We also proposed a probabilistic abstract definition of δ-receipt-

freeness for voting schemes based on deniable vote updating. We proposed instantiations

of both (δ, k)-participation privacy and δ-receipt-freeness definitions for KTV-Helios and

determined the value of δ as the adversarial advantage for both of these properties. We

furthermore proposed a formal definition of fairness followed by the security evaluation of

KTV-Helios, and conducted an informal evaluation for robustness.

We furthermore discussed the issue of extending the technique of dummy ballots to im-

prove the security of other extensions that we proposed in this work. As such, we proposed

the way to adjust the scheme in Chapter 3 to ensure receipt-freeness in boardroom voting

setting. We also described the adjustments to the schemes in Chapter 4 and Chapter 5 to

ensure participation privacy and receipt-freeness in the context of proxy voting and proxy

boardroom voting for voters casting a direct ballot, as well as for the voters delegating to

a proxy.

6.8.2 Future Work

While we have provided formal proofs for our extension in the thesis, several of these

proofs assumed that both the tabulation teller and the posting trustee are implemented

as a single entity each. Our extension, however, also supports implementing both of these

entities in a distributed way, whereby multiple posting trustees cast dummy ballots inde-

pendently from each other, and multiple tabulation tellers jointly generate the election key

via distributed threshold secret sharing and perform the tally with distributed threshold

decryption. Although we provided an informal argument that the results of the formal

proofs remain valid for multiple entities as well, it would be useful to provide more rigorous

formal proofs for this claim.

Furthermore, as we only briefly discussed the proposals to introduce the privacy im-

provements of participation privacy and receipt-freeness in our extensions proposed in

Chapters 3 to 5, one direction of future work would be to conduct a more detailed security

analysis for our proposals.

Other directions of future work can focus on the further security improvements of the

scheme. As such, as mentioned in Section 6.4.5, the scheme in Section 6.3 is vulnerable to

board flooding, that considerably hinders the efficiency of the election, or even stop the

tally from being computed. Extensions designed to solve this problem for other Internet

voting schemes with anonymous channel for voting has been proposed [KHF11, HK13],

however, it alters the adversarial model by requiring additional trust assumptions and

probabilistically increasing the adversarial advantage.

Another issue that can be improved lies in the trusted platform problem. Helios-Base

offers the method of verification to ensure that their vote has been encrypted correctly

using a second device. This method, however, only offers probabilistic assurance, and

requires a series of complex actions from the voter, thus substantially lowering the usabil-
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ity of the voting process. Furthermore, in KTV-Helios, the vote integrity requirement is

further hindered in case of malicious voting device, in that it can cast ballots on behalf

of the voter without being noticed, thus altering the vote that is included in the tallying.

Note, that this vulnerability is also present in other schemes that rely on deniable voter

updating [LH16,LHK16,AKLMQ15] or on the voter being able to cast a vote unnoticed to

the adversary [CCM08,SKHS11]. One way to solve this could be integrating the solution

of Guasch et al. [GM16] for improving the vote integrity in Helios. This approach involves

two devices that are used for casting a ballot, together with the designated-verifier proofs.

Applying it to our scheme would improve the vote integrity assurances, in that the adver-

sary now has to corrupt both devices for manipulating the ballot during voting. However,

the security requirements related to privacy (vote privacy including receipt-freeness, fair-

ness and participation privacy) suffer: in case at least one of the devices is corrupted, all

of these requirements would be broken.

A possible solution to both the trusted platform and board flooding problems could

be integrating the idea of posting tokens, that are required for casting each ballot, while

distributing them via non-electronic channel. As such, they might be distributed via post,

each token printed on a separate paper as a QR code, and the voter required to scan the

code each time she wants to cast a ballot. In order to preserve the security of the scheme,

however, the link between the voter and the assigned tokens has to be private, as well as

the number of tokens each voter has received. For ensuring this, the methods described by

Haenni et al in [HK13]. can be applied as adjusted towards paper-based tokens; however,

the issue of the resulting adversarial model still has to be considered.

Aside from the security issues, one also has to consider the challenges in usability and

understandability of the proposed scheme. For example, the voters might get confused

seeing several ballots cast next to their identity, thus leading to distrust in the system. It

is also probable that the need to remember the plaintexts of all the previously cast ballots

in order to be able to update them would become an issue. Many of the complexities of the

protocol could be hidden behind a helpful user interface, for example one that remembered

what votes had been cast before. Nevertheless the trade-offs between security, public

understanding, and ease of use remain challenging, and require further exploration (for

example, in forms of user studies).



Chapter 7

Conclusion

The Helios voting system has been originally proposed by Adida in 2008 [Adi08]. Helios

has since then been widely studied in the literature and used for many real-world elec-

tions, including the IACR annual internal elections [IAC16]. However, there are election

settings where Helios cannot be employed, such as the four election settings addressed

in this thesis. For each one of those settings we proposed a corresponding extension to

Helios, more precisely, to Helios-Base, a modified version that incorporates some of its

later developments and security extensions is used (see Section 2.3.3).

The ideas employed in designing the extensions can also be used in order to extend

other Internet voting schemes. As such, the constructions of delegation tokens introduced

in Chapter 4 and Chapter 5 can be used to enable proxy voting in other schemes that

rely on the security models different from Helios, such as the JCJ scheme [JCJ05] that

enables coercion resistance. The concept of dummy ballots introduced in Chapter 6 can

be used to introduce participation privacy and receipt-freeness both in the other schemes

described in this thesis in Chapters 3 to 5 and in other schemes, such as the ones used in the

Internet voting systems in practice (e. g. in Estonia [HW14] or in Switzerland [GGP15]).

Hence, the concepts described in the thesis can further contribute to opening additional

possibilities to conduct secure Internet voting in further election settings.

Another contribution of this thesis are the new formal security definitions for partici-

pation privacy, fairness and receipt-freeness provided in Chapter 6 and used for formally

proving the security of the extension proposed in this chapter. These definitions can also

be used to provide formal security proofs for other schemes. Hence, in addition to poten-

tially enabling Internet voting in additional settings, the contributions of this thesis can

be employed to achieve more confidence in the security claims of Internet voting schemes.
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