5,004 research outputs found

    Development of canopy vigour maps using UAV for site-specific management during vineyard spraying process

    Get PDF
    Site-specific management of crops represents an important improvement in terms of efficiency and efficacy of the different labours, and its implementation has experienced a large development in the last decades, especially for field crops. The particular case of the spray application process for what are called “specialty crops” (vineyard, orchard fruits, citrus, olive trees, etc.)FI-DGR grant from Generalitat de Catalunya (2018 FI_B1 00083). Research and improvement of Dosaviña have been developed under LIFE PERFECT project: Pesticide Reduction using Friendly and Environmentally Controlled Technologies (LIFE17 ENV/ES/000205)This research was partially funded by the “Ajuts a les activitats de demostració (operació 01.02.01 de Transferència Tecnològica del Programa de desenvolupament rural de Catalunya 2014-2020)” and an FI-DGR grant from Generalitat de Catalunya (2018 FI_B1 00083). Research and improvement of Dosaviña have been developed under the LIFE PERFECT project: Pesticide Reduction using Friendly and Environmentally Controlled Technologies (LIFE17 ENV/ES/000205).This research was partially funded by the “Ajuts a les activitats de demostració (operació 01.02.01 de Transferència Tecnològica del Programa de desenvolupament rural de Catalunya 2014-2020)” and an FI-DGR grant from Generalitat de Catalunya (2018 FI_B1 00083). Research and improvement of Dosaviña have been developed under LIFE PERFECT project: Pesticide Reduction using Friendly and Environmentally Controlled Technologies (LIFE17 ENV/ES/000205)Postprint (updated version

    AltURI: a thin middleware for simulated robot vision applications

    Get PDF
    Fast software performance is often the focus when developing real-time vision-based control applications for robot simulators. In this paper we have developed a thin, high performance middleware for USARSim and other simulators designed for real-time vision-based control applications. It includes a fast image server providing images in OpenCV, Matlab or web formats and a simple command/sensor processor. The interface has been tested in USARSim with an Unmanned Aerial Vehicle using two control applications; landing using a reinforcement learning algorithm and altitude control using elementary motion detection. The middleware has been found to be fast enough to control the flying robot as well as very easy to set up and use

    New tecnologies for mobile mapping

    Get PDF
    This paper deals with the development of a low cost UAV (Unmanned Aerial Vehicle) devoted to early impact phase in case of environmental disasters, based on geomatics techniques. "Pelican" is a low-cost UAV prototype equipped with a photogrammetric payload that will allows reconnaissance operations in remote areas and rapid mapping production. Different digital sensors installed in the payload allow to acquire high resolution frame images. Furthermore a GPS/INS unit will enable an automated navigation (except take-off and landing). The project is supported by ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action), an association founded by Politecnico di Torino and SiTI (Istituto Superiore sui Sistemi Territoriali per l'Innovazione) in cooperation with WFP (World Food Programme) and some private and public organisms, with the main goal to carry on operational and research activities in the field of geomatics for analysis, evaluation and mitigation of natural and manmade hazards. The main technical features of the UAV and the on-board payload are detailed described in the first part of the paper. Furthermore first results of stereopairs orientation, case studies and further developments are presented

    Real Time Airborne Monitoring for Disaster and Traffic Applications

    Get PDF
    Remote sensing applications like disaster or mass event monitoring need the acquired data and extracted information within a very short time span. Airborne sensors can acquire the data quickly and on-board processing combined with data downlink is the fastest possibility to achieve this requirement. For this purpose, a new low-cost airborne frame camera system has been developed at the German Aerospace Center (DLR) named 3K-camera. The pixel size and swath width range between 15 cm to 50 cm and 2.5 km to 8 km respectively. Within two minutes an area of approximately 10 km x 8 km can be monitored. Image data are processed onboard on five computers using data from a real time GPS/IMU system including direct georeferencing. Due to high frequency image acquisition (3 images/second) the monitoring of moving objects like vehicles and people is performed allowing wide area detailed traffic monitoring

    A Systematic Literature Survey of Unmanned Aerial Vehicle Based Structural Health Monitoring

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are being employed in a multitude of civil applications owing to their ease of use, low maintenance, affordability, high-mobility, and ability to hover. UAVs are being utilized for real-time monitoring of road traffic, providing wireless coverage, remote sensing, search and rescue operations, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. They are the next big revolution in technology and civil infrastructure, and it is expected to dominate more than $45 billion market value. The thesis surveys the UAV assisted Structural Health Monitoring or SHM literature over the last decade and categorize UAVs based on their aerodynamics, payload, design of build, and its applications. Further, the thesis presents the payload product line to facilitate the SHM tasks, details the different applications of UAVs exploited in the last decade to support civil structures, and discusses the critical challenges faced in UASHM applications across various domains. Finally, the thesis presents two artificial neural network-based structural damage detection models and conducts a detailed performance evaluation on multiple platforms like edge computing and cloud computing

    Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing

    Get PDF
    Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%

    A Simple Aerial Photogrammetric Mapping System Overview and Image Acquisition Using Unmanned Aerial Vehicles (UAVs)

    Get PDF
    Aerial photogrammetry is one of the Alternative technologies for more detailed data, real time, fast and cheaper. Nowadays, many photogrammetric mapping methods have used UAV / unmanned drones or drones to retrieve and record data from an object in the earth. The application of drones in the field of geospatial science today is in great demand because of its relatively easy operation and relatively affordable cost compared to satellite systems especially high - resolution satellite imagery.  This research aims to determine the stage or overview of data retrieval process with DJI Phantom 4 (multi - rotor quad - copter drone) with processing using third party software. This research also produces 2 - dimensional high resolution image data on the research area. Utilization of third party software (Agisoft PhotoScan) making it easier to acquire and process aerial photogrammetric data. The results of aerial photogrammetric recording with a flying altitude of 70 meters obtained high resolution images with a spatial resolution of 2 inches / pixels.&nbsp

    ROADS—Rover for Bituminous Pavement Distress Survey: An Unmanned Ground Vehicle (UGV) Prototype for Pavement Distress Evaluation

    Get PDF
    Maintenance has a major impact on the financial plan of road managers. To ameliorate road conditions and reduce safety constraints, distress evaluation methods should be efficient and should avoid being time consuming. That is why road cadastral catalogs should be updated periodically, and interventions should be provided for specific management plans. This paper focuses on the setting of an Unmanned Ground Vehicle (UGV) for road pavement distress monitoring, and the Rover for bituminOus pAvement Distress Survey (ROADS) prototype is presented in this paper. ROADS has a multisensory platform fixed on it that is able to collect different parameters. Navigation and environment sensors support a two-image acquisition system which is composed of a high-resolution digital camera and a multispectral imaging sensor. The Pavement Condition Index (PCI) and the Image Distress Quantity (IDQ) are, respectively, calculated by field activities and image computation. The model used to calculate the I-ROADS index from PCI had an accuracy of 74.2%. Such results show that the retrieval of PCI from image-based approach is achievable and values can be categorized as "Good"/"Preventive Maintenance", "Fair"/"Rehabilitation", "Poor"/"Reconstruction", which are ranges of the custom PCI ranting scale and represents a typical repair strategy

    Analysis of Autonomous Unmanned Aerial Systems based on Operational Scenarios using Value Modelling

    Get PDF
    In recent years, the use of UAS (Unmanned Aerial Systems) has moved beyond the realm of military operations and has made its way into the hands of consumers and commercial industries. Although the applications of UAS in commercial industries are virtually endless, there are many issues regarding their operations that need to be considered before these valuable pieces of equipment are allowed for widespread civil use. Currently, UAS operations in the public domain are guided and controlled by the FAA Part 107 rules after overwhelming public pressure caused by the earlier 333 exemption. In order to approach such larger issues, this paper will exploit the use of value models, which will help to quantify how the different environmental and operational scenarios play a role in UAS operations based on the task being performed. The primary aim of this research is to use the attributes from key factors of the UAS such as the autonomy levels (AL) and technology readiness levels (TRL) along with their operating scenario factors, such as the environmental complexity and task complexity, based on the operating environment in which a UAS performs its task. To analyze the performance of autonomous UAS in different operational scenarios, the physical characteristics and class of a UAS may be linked to its AL and TRL. Using these parameters, the risks faced by the UAS in a particular mission are quantified and a value is assigned to the abstract entities involved. Although there are many critical questions with respect to good practices to be followed by UAS operators in order to obtain valuable data and information on the structures being scanned and monitored, there are many other challenges with regards to large scale operations of UAS such as the ethical, legal and societal implications that have to be addressed
    corecore