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Abstract: Crack assessment is an essential process in the maintenance of concrete structures.
In general, concrete cracks are inspected by manual visual observation of the surface, which is
intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming,
expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned
aerial vehicle (UAV) technologies combined with digital image processing have recently been
applied to crack assessment to overcome the drawbacks of manual visual inspection. However,
identification of crack information in terms of width and length has not been fully explored in
the UAV-based applications, because of the absence of distance measurement and tailored image
processing. This paper presents a crack identification strategy that combines hybrid image processing
with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module,
the system provides the image of cracks and the associated working distance from a target structure
on demand. The obtained information is subsequently processed by hybrid image binarization
to estimate the crack width accurately while minimizing the loss of the crack length information.
The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the
maximum length estimation error of 7.3%.

Keywords: concrete structure; crack identification; digital image processing; structural health
monitoring; unmanned aerial vehicle

1. Introduction

Concrete is one of the most widely used materials for civil infrastructure such as bridges, buildings,
and nuclear power plants because of its cost-effectiveness and convenience for molding into desired
shapes. However, concrete structures inevitably suffer from cracks caused by creep, shrinkage,
and loading that potentially degrade structural soundness. Indeed, cracks are an important indicator
of structural health; consequently, crack monitoring is considered an essential maintenance process for
civil infrastructure.

In general, cracks on concrete structures are inspected by manual visual observation of the surface.
The observed information, including the length, direction, and width of the cracks are tracked over
time to evaluate the current condition of the structure and anticipate crack growth, which is used
to assist with maintenance plans. Although manual visual inspection is the most common practice
applied to monitor concrete cracks, this method is intrinsically inefficient as it is time-consuming,
expensive, and even unsafe for inspectors in the case of inaccessible structural members.

Recent advances in unmanned aerial vehicle (UAV) technologies have produced low-cost
and high-mobility UAVs, rapidly broadening their real-world civil engineering application [1–7].
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For example, aerial images taken by UAVs have been used to construct three-dimensional
structural models [8–11], evaluate road conditions [12–14], and conduct traffic surveillance and
management [15–17]. Furthermore, the use of UAVs in conjunction with digital image processing
has also shown great potential to overcome the disadvantages of visual inspection for concrete crack
monitoring [18–22]. UAVs enable the taking of images in proximity to surface cracks in full-scale
civil engineering structures, facilitating better crack identification results. However, to the best of
our knowledge, quantitative assessment of the crack width and length has not been reported in
a UAV-based application.

Various image processing techniques have been implemented for effectively extracting the crack
information from images. For example, edge detection has been utilized to provide a boundary between
a crack and its background [23–25] and image binarization to transform the crack and background
into black and white pixels [26,27]. In addition, mathematical morphology has been implemented
to improve overall shape of cracks in images [28,29]. Cha et al. [30] used a deep learning approach
to determine the existence of cracks from a concrete surface image; edge detection algorithms were
further applied to localize cracks for width estimation. A wide variety of image processing algorithms
for crack identifications are summarized in [31].

Image binarization is known to be one of the most commonly used image processing methods.
In the binarization process, crack objects are identified by categorizing the pixels whose values are
less than a specified threshold into black. Thus, the binary objects considered cracks can be used
to determine the crack width and length with an associated working distance. However, although
image binarization is useful for separating cracks and backgrounds, the crack assessment is difficult
to standardize due to a high dependence of binarization on the parameters determined by users.
Kim et al. [32] conducted parametric analysis to determine the optimal parameters of binarization
for accurate crack width estimation. However, they found that using binarization with the optimal
parameters often resulted in them being unable to find small cracks in blurred images. Thus, finding
cracks with accurate width and complete length information is challenging in image processing. Indeed,
existing UAV-based crack identification approaches have not conducted quantitative assessment of
both crack width and length.

This paper presents a hybrid image processing-based crack identification using UAV.
The UAV-based system designed in this study is capable of image and distance sensing, as well
as wireless communication, which makes it possible to control sensing and data transmission while the
UAV is in the air. The obtained information is subsequently processed by the proposed hybrid
image processing to identify crack width accurately while minimizing the loss of crack length.
The performance of the crack identification strategy using UAV is experimentally validated using
a concrete wall with various types of cracks.

2. Background

2.1. Crack Width Estimation via Image Binarization

The first step in crack width calculation based on image binarization is to convert the RGB image
to grayscale. Subsequently, a threshold is calculated using the statistical properties of the grayscale
values (e.g., mean and standard deviation) to categorize each grayscale pixel into black and white.
For example, as shown in Figure 1, the thresholds in each pixel are evaluated in 3 × 3 windows.
When the grayscale pixel value is lower than the corresponding threshold, such as in pixel (a)
in Figure 1, the binarization result is zero (black). In contrast, the binarization result for pixel (b)
in Figure 1 is one (white) because the pixel value is higher than the threshold.
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Figure 1. Demonstration of the binarization process in 3 × 3 windows (thresholds are determined 

simply using mean values) [32]. 
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from images [33–37]. Sauvola’s method [35], one of the most widely used binarization methods, is 

specifically designed to identify text from noisy backgrounds. Sauvola’s method is carefully selected 

in this work because concrete cracks have a similar shape to text and the crack images also have noisy 

backgrounds due to aggregates, dust, shadows, and holes. In Sauvola’s method, the threshold is 

calculated using Equation (1): 
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where Wr is the real crack width in metric (mm), Dp is the resolution of the imaging system, Wp is the 

obtained crack width in pixel, Dw is the working distance in mm, Pc is the pixels per centimeter of the 

used camera sensor, and Lf is the focal length of the camera in mm. 
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Figure 1. Demonstration of the binarization process in 3 × 3 windows (thresholds are determined
simply using mean values) [32].

A wide variety of image binarization methods have been developed primarily for text detection
from images [33–37]. Sauvola’s method [35], one of the most widely used binarization methods,
is specifically designed to identify text from noisy backgrounds. Sauvola’s method is carefully selected
in this work because concrete cracks have a similar shape to text and the crack images also have
noisy backgrounds due to aggregates, dust, shadows, and holes. In Sauvola’s method, the threshold
is calculated using Equation (1):

T = m
[
1 + k

( s
R
− 1
)]

(1)

where m is the mean in each selected window, s is the standard deviation, R is the dynamic range
for normalizing s, and k is the sensitivity to control the contribution of the statistical parameters.
Since the thresholds highly depend on two user-defined parameters of window size and sensitivity,
these parameters should be appropriately selected for accurate binarization results.

The binary images are subsequently processed by skeleton and edge detection and crack width
calculation. Each group of connected black pixels, representing a crack segment, is decomposed into
a skeleton and edges using the thinning method [38] and edge detection method [39], respectively.
The skeleton is a group of central pixels of a crack segment with crack length and direction information,
and the edges are two collections of outer pixels of the crack segment containing the width information
(see Figure 2). To obtain the crack width for a certain pixel in the skeleton, the crack direction is
identified based on the connectivity of the pixel and its adjacent pixels; subsequently, edge pixels
nearest to the skeleton pixel are sought in the skeleton direction. The directional information is
particularly necessary when the skeleton is bent, as the nearest edge pixel could be located in a wrong
direction. The crack width is obtained as the distance between both edge pixels nearest to the skeleton
pixel. It is then converted to metric using the following pinhole camera equation [32]:

Wr = DpWp =
10Dw

PcL f
Wp (2)

where Wr is the real crack width in metric (mm), Dp is the resolution of the imaging system, Wp is the
obtained crack width in pixel, Dw is the working distance in mm, Pc is the pixels per centimeter of the
used camera sensor, and Lf is the focal length of the camera in mm.
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Figure 2. Illustration of crack width and length calculation. 
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Figure 3. Binarization result of Sauvola’s method from different window sizes and sensitivities:  

(a) original grayscale image; (b) 80 × 80 window and sensitivity of 0.3 (Some cracks are unidentified); 

and (c) 100 × 100 window and sensitivity of 0.1 (the crack width is overestimated). 

3. Hardware Configuration for Crack Information Acquisition 

The UAV-based prototype used in this study is designed to effectively acquire necessary data 

for crack identification [40]. The prototype is developed based on an off-the-shelf quadcopter, the 

Parrot AR.Drone 2.0 (Parrot, Paris, France), because of its cost-effectiveness, high mobility, and 

convenient control interface using a smartphone. The UAV is equipped with four essential 

components: a sensing and communication controller, a camera, an ultrasonic displacement sensor, 

and a WiFi module, as shown in Figure 4 and Table 1. 
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Figure 2. Illustration of crack width and length calculation.

2.2. Issues in Image Binarization for Crack Identification

Image binarization has to be cautiously applied to crack assessment because of its dependence
on user-defined parameters. Image binarization is capable of effectively extracting crack information
using a simple equation, such as Equation (1); however, the measurement accuracy of the detected
crack width and length is generally affected by the image binarization parameters initially provided
by the user. For example, as shown in Figure 3, when the same crack image is processed using the
image binarization method, the obtained crack information can be different according to the used
binarization parameters. In Figure 3b, while the crack width is accurately detected, some small cracks
are unidentified. Whereas the existence of cracks is better detected as shown in Figure 3c, the crack
width is overestimated. Thus, it is difficult to exactly obtain crack widths while minimizing the loss of
length information using a specific set of binarization parameters. Note that the non-crack elements
marked as black pixels, as shown in Figure 3b,c, can be removed based on their eccentricity and size.
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Figure 3. Binarization result of Sauvola’s method from different window sizes and sensitivities:
(a) original grayscale image; (b) 80 × 80 window and sensitivity of 0.3 (Some cracks are unidentified);
and (c) 100 × 100 window and sensitivity of 0.1 (the crack width is overestimated).

3. Hardware Configuration for Crack Information Acquisition

The UAV-based prototype used in this study is designed to effectively acquire necessary data for
crack identification [40]. The prototype is developed based on an off-the-shelf quadcopter, the Parrot
AR.Drone 2.0 (Parrot, Paris, France), because of its cost-effectiveness, high mobility, and convenient
control interface using a smartphone. The UAV is equipped with four essential components: a sensing
and communication controller, a camera, an ultrasonic displacement sensor, and a WiFi module,
as shown in Figure 4 and Table 1.
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Table 1. System components.

Component Model Specification

UAV Parrot AR.Drone 2.0
Dimensions: 58 cm × 13 cm × 58 cm
Weight: 1.8 kg

Sensing and communication controller Raspberry Pi B+
CPU: 700 MHz single-core
Memory: 512 MB
Weight: 45 g

Camera LS-20150

Resolution: 2592 pixels × 1944 pixels
Focal length: 2.8 mm
F-number: 2.8
Weight: 10.3 g

Ultrasonic displacement sensor HC-SR04
Measurable distance: 2 cm–4 m
Resolution 0.3 cm
Weight: 8.5 g
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Figure 4. UAV-based system for crack information acquisition.

Raspberry Pi B+, a low-cost low-power single-board computer running Linux, is utilized to control
sensing and communication. The Raspberry Pi is interfaced with the camera, the displacement sensor,
and the USB WiFi module. The Raspberry Pi B+ takes images using the camera, measures the working
distance between the camera and the concrete structure, and is controlled by and sends data to a remote
computer using the WiFi module. The USB WiFi module mounted on the Raspberry Pi provides
wireless connection between the UAV-based system and the operator’s computer through a WiFi router.
Remote access to the Raspberry Pi of the UAV-based system allows operators to acquire image and
distance information when desired and to wirelessly transmit the acquired data. The operator can
monitor the video being taken by the camera, and instantly acquire image and distance data that are
wirelessly transmitted to the operator’s computer.

The camera module (LS-20150) and the ultrasonic displacement sensor (HC-SR04) provide
crack images and the corresponding working distances, which are required to determine crack sizes.
In previous studies [18–22], quantitative assessment of cracks was ineffective or unavailable because
measured distance information was not obtained. The camera module has a maximum resolution of
five million square pixels, which is adequate for crack image acquisition, despite its light weight of
10.3 g. The small focal ratio (F-number) of the camera module enables the highest shutter speed; thus,
any effect of the movement and vibration of the UAV on the crack images is minimized. The obtained
crack images can be blurred because of the intrinsic vibration and movement of the UAV and, thus,
the image blur is an important issue that has to be addressed. The image blur is closely related to
the exposure time of the camera shutter when capturing images, and can be alleviated by increasing
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the shutter speed, resulting in low brightness. Thus, an optimal shutter speed has to be selected
considering the trade-off; a shutter speed of 1/1000 s for the LS-20150 camera module is sufficiently
fast to produce bright and clear images in most cases.

All the components of the proposed system are selected to be low-cost and lightweight.
The total weight of the sensing and communication components (i.e., Raspberry Pi with the camera,
the ultrasonic displacement sensor, and the WiFi module) is approximately 60 g, which does not
significantly affect the flight of the UAV. To further reduce the weight, the sensing and communication
components are designed to share the UAV’s battery. The power consumption of the Raspberry Pi is
approximately 2 W, which is significantly less than that of the UAV (70 W).

4. Hybrid Image Processing Strategy for Crack Identification

In addition to the hardware described in Section III, an image processing strategy tailored to the
UAV-based system is developed in this study. The main idea underlying the strategy is to consider
a combination of different sets of binarization parameters for accurately extracting the crack width
while minimizing loss of length. The proposed hybrid image processing strategy comprises two stages:
(1) image pre-processing to prepare the image for further analysis and (2) crack width estimation using
the hybrid approach.

4.1. Image Pre-Processing

The image pre-processing stage consists of two steps: (1) image undistortion and (2) conversion
from color image to grayscale image. As shown in Figure 5a, the selected low-cost lens produces
a distorted image, from which crack width estimation can be seriously impaired. To calibrate this
image [41], a black and white checker board is captured using the camera with different angles and
distances, to estimate the intrinsic and extrinsic parameters. After determining the camera parameters,
the image taken by that camera is undistorted, as shown in Figure 5b. Subsequently, the calibrated
image is converted to grayscale, as the image colors are unnecessary for identifying cracks.
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Figure 5. Illustrative example for the image calibration algorithm: (a) image distortion resulted from
wide-angle lens; and (b) image undistortion using image calibration.

4.2. Crack Width Estimation

Hybrid image processing is applied to the pre-processed image to determine crack width and
length accurately. As stated in Section 2, a set of binarization parameters of sensitivity and window size
is difficult to estimate crack width and length simultaneously. Thus, the hybrid approach employs two
sets of binarization parameters, each of which provides the least error in width and length estimations,
respectively. Let Pw and Pl designate these two sets:

• Pw: optimal parameters minimizing estimation errors in crack width; and
• Pl: optimal parameters minimizing estimation errors in crack length.
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Pw and Pl are then separately employed to generate two binary images using Sauvola’s method.
Pl inevitably results in a higher threshold than that of Pw to convert more pixels to crack elements.

The binary images are subsequently processed using the steps for skeleton and edge detection
and crack width calculation, as described in Section 2. Following width estimation, the obtained width
information is recorded in each location of the skeleton pixels. The sets of skeleton pixels and their
related crack width are defined as follows:

• Sw: set of skeleton pixels obtained using Pw;
• Sl: set of skeleton pixels obtained using Pl; and
• w(P, S): crack width at location S obtained using P.

where P is either Pw or Pl, and S is a set of skeleton pixels. Selecting Pw to produce the accurate
crack width of w(Pw, Sw) results in more unidentified crack elements than Pl. Thus, Sw is a subset of Sl,
because the obtained thresholds of Pl are greater than those of Pw. However, the calculated widths
obtained using Pl (i.e., w(Pl, Sl)) are overestimated owing to the high thresholds.

The final crack widths are a combination of w(Pw, Sw) and w(Pl, Sl − Sw), which are the crack
widths using Pw at Sw and Pl at Sl − Sw, respectively. The overestimated crack width w(Pl, Sl − Sw)
has to be corrected, which enables the simultaneous generation of accurate crack width and length.
The calibration for the overestimated w(Pl, Sl − Sw) can be performed by utilizing the ratio of w(Pw, Sw)
and w(Pl, Sw), as defined in Equation (3):

α =
1
N

N

∑
i=1

wi(Pw, Sw)

wi(Pl , Sw)
(3)

where α is the calibration factor, N is the number of skeleton pixels in Sw, and wi is the crack width
at the ith skeleton pixel. The calibration factor α is then multiplied by w(Pl, Sl − Sw) to correct the
overestimation. The crack widths of w(Pw, Sw) and αw(Pl, Sl − Sw) are combined to provide complete
width and length information in Sl. The overall procedure of the proposed hybrid image processing
strategy is summarized in Figure 6.
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where α is the calibration factor, N is the number of skeleton pixels in Sw, and wi is the crack width at 

the ith skeleton pixel. The calibration factor α is then multiplied by w(Pl, Sl − Sw) to correct the 

overestimation. The crack widths of w(Pw, Sw) and αw(Pl, Sl − Sw) are combined to provide complete 

width and length information in Sl. The overall procedure of the proposed hybrid image processing 

strategy is summarized in Figure 6. 
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Figure 6. Schematic outline of the hybrid image processing strategy.
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5. Experimental Validation

A field testing is conducted to demonstrate the validity of the proposed hybrid image processing
in conjunction with the UAV. First, parametric analysis was conducted to determine the two sets of
optimal parameters, Pw and Pl. Subsequently, crack identification by hybrid image processing was
performed using crack images obtained from the UAV-based system.

5.1. Determination of Optimal Parameters

In the parametric analysis, 20 crack images with different surface textures, crack widths, lengths,
directions, and sizes, were prepared to address various concrete conditions. The collected image
pool was processed using Sauvola’s method with a wide range of binarization parameters. Then,
crack width and length information was obtained using the procedure presented in Section 2. Figure 7
shows a typical image included in the image pool. An optical microscope was used to measure
reference widths at the specific locations, where the color targets were attached, as shown in Figure 7.
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Two cost functions were defined to determine the optimal parameters in terms of crack width
and length. The first cost function Jw, for optimal width, is defined as:

Jw =
1

NpNt

Np

∑
i=1

√√√√ Nt

∑
j=1

(
we − wm

wm

)2
(4)

where Np is the total number of images in the pool, Nt is the number of color targets, we is the estimated
crack width from Sauvola’s method, and wm is the width measured by the optical microscope. The
second cost function Jl, for optimal length, is defined as:

Jl =
1

Np

Np

∑
i=1

(∣∣∣∣ le − lt
lt

∣∣∣∣+ Cd
Ct

)
(5)

where le is the estimated crack length from Sauvola’s method, and lt is the total length verified visually
in the grayscale image. Cd and Ct are the numbers of detected crack and total pixels in the entire binary
image, respectively. The second term in Equation (5) prevents all the pixels from being converted
into cracks.

The cost function values of each crack information set (i.e., crack width and length) are analyzed
with respect to the binarization parameters, as shown in Figure 8, to determine the two sets of optimal
parameters. From the results, the sensitivity is observed as a governing factor rather than the window
size in both cost functions. The lowest cost function values in each case, marked as the blue circles, are
selected to determine the optimal parameters summarized in Table 2.
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Table 2. Optimal crack width and length parameters.

Sensitivity Window Size Cost Function

Pw 0.42 70 0.057
Pl 0.18 180 0.065

5.2. Crack Identification Using the Hybrid Image Processing Strategy

Field testing was conducted on a concrete wall in the gymnasium building on the UNIST campus
(see Figure 9). The concrete wall has cracks with diverse shapes and sizes due to creep, shrinkage,
and loads. The UAV-based system acquired the crack images and the corresponding working distances
using the Raspberry Pi camera and the displacement sensor, while flying in front of the concrete
wall. Note that the crack widths were also measured using the optical microscope as the reference to
compare with those from the UAV-based crack identification system.
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Figure 9. Experimental validation using concrete wall.

The crack identification using the hybrid image processing is applied to the captured images.
To validate the performance of the proposed hybrid method, the binarization results were compared
with the results of Sauvola’s method with default parameters adopted from [35]. As shown in
Figure 10, it is clear that the hybrid method better located the cracks than with only the default
parameters. Note that the black objects on the bottom side of the captured images are the part of the
UAV. Quantitative comparisons of crack widths and lengths are conducted at a total of 15 points in
three crack regions as presented in Tables 3 and 4. With the default values, cracks with widths less
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than 0.25 mm were typically unidentified or underestimated. In contrast, the hybrid method measured
all range of crack widths reliably, because small cracks unidentified by Sauvola’s method using Pw can
also be detected and calibrated accurately.
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Figure 10. Crack identification results: (a) region I, Sauvola’s method with default parameter; (b) region
I, hybrid method; (c) region II, Sauvola’s method with default parameter; (d) region II, hybrid method;
(e) region III, Sauvola’s method with default parameter; and (f) region III, hybrid method.

Table 3. Comparison of obtained crack lengths.

Region
Total Crack Length Calculation (mm)

Default (Error) Hybrid (Error) Manual

I 37.49 (52.3%) 72.86 (7.3%) 78.57
II 79.18 (42.0%) 128.75 (5.7%) 136.50
III 95.01 (18.8%) 115.99 (0.9%) 117.02
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Table 4. Comparison of obtained crack widths.

Region Location
Crack Width Calculation (mm)

Default (Difference) Hybrid (Difference) Microscope

I

1 N/A * 0.14 (0.02) 0.12
2 N/A * 0.14 (0.02) 0.12
3 0.15 (−0.07) 0.20 (−0.02) 0.22
4 0.15 (−0.08) 0.20 (−0.03) 0.23
5 N/A * 0.13 (−0.01) 0.14

II

6 N/A * 0.22 (0.03) 0.19
7 0.20 (−0.03) 0.25 (0.02) 0.23
8 0.30 (−0.02) 0.30 (−0.02) 0.32
9 0.25 (0.01) 0.25 (0.01) 0.24
10 0.35 (−0.04) 0.40 (0.01) 0.39

III

11 N/A * 0.22 (0.03) 0.19
12 0.49 (−0.04) 0.49 (−0.04) 0.53
13 0.49 (−0.01) 0.49 (−0.01) 0.50
14 0.59 (0.04) 0.59 (0.04) 0.55
15 0.59 (0.04) 0.59 (0.04) 0.55

* The crack is unidentified.

Cracks thinner than about 0.1 mm, which can be seen with the naked eye, are not found even
with the hybrid image processing as shown in Figure 10. Although accuracy of the image processing
is not as good as the manual visual observation, its efficiency in terms of identification time would be
critical particularly when a number of crack images are to be processed. The accuracy-related issue
can be resolved by preparing appropriate hardware of camera and lens that can detect cracks thicker
than the minimum width of interest for maintenance purposes.

5.3. Discussion

The minimum detectable crack size is reported as the most important parameter of the inspection
method [42]. From the experimental validation on a concrete wall, the proposed approach has shown
to accurately measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%.
According to American Concrete Institute ACI 224R-90 [43], tolerable crack width is designed with
regard to the exposure condition as shown in Table 5. Therefore, the proposed approach can be applied
except for water retaining structures.

Table 5. Tolerable crack widths for exposure conditions of ACI 224R-90 [43].

Exposure Condition Tolerable Crack Width (mm)

Dry air protective membrane <0.40
Humidity, moist air, soil <0.30

Deicing chemicals <0.18
Seawater and seawater spray; Wetting and drying <0.15

Water retaining structures <0.10

When a UAV is used with computer vision, parallax during image acquisition is an important
issue [44]. As this study primarily focuses on developing the image processing approach for
identification of crack width and length, crack images are taken while UAV is flying near the concrete
surface to minimize the effect of parallax.

6. Conclusions

This paper presented the crack identification using the hybrid image processing strategy with
a UAV. A prototype of the UAV-based system was built using a Raspberry Pi connected to a camera,
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an ultrasonic displacement sensor, and a WiFi module. The Raspberry Pi controlled sensing and
wireless communication, providing crack images with associated distances on demand. The obtained
information was subsequently processed by the hybrid image processing method using two sets of
optimal parameters Pw and Pl, to accurately detect crack widths while minimizing loss of crack lengths.
The results of the experimental evaluation can be summarized as follows:

(1) While the crack widths less than 0.25 mm were typically unidentified or underestimated in case
of the default values, the proposed hybrid method measured all ranges of crack widths reliably.

(2) The maximum length estimation errors were 7.3% and 52.3% for the hybrid method and
Sauvola’s binarization with the default parameters, respectively, proving significant performance
improvement by the hybrid method.

Consequently, the results of experimental evaluation on a concrete wall show that the proposed
UAV and hybrid image processing-based crack identification strategy effectively and reliably
identifies cracks.
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