
altURI – a Thin Middleware for Simulated Robot Vision Applications

Mark N R Smith, Marwan Shaker, Shigang Yue, Tom Duckett

Centre for Vision and Robotics Research

University of Lincoln

Lincoln, UK

e-mail: mnsmith@lincoln.ac.uk

Abstract— Fast software performance is often the focus when

developing real-time vision-based control applications for

robot simulators. In this paper we have developed a thin, high

performance middleware for USARSim and other simulators

designed for real-time vision-based control applications. It

includes a fast image server providing images in OpenCV,

Matlab or web formats and a simple command/sensor

processor. The interface has been tested in USARSim with an

Unmanned Aerial Vehicle using two control applications;

landing using a reinforcement learning algorithm and altitude

control using elementary motion detection. The middleware

has been found to be fast enough to control the flying robot as

well as very easy to set up and use.

Keywords-middleware; robot; vision; USARSim

I. INTRODUCTION

This work is concerned with developing real-time vision
based control applications for a long term project using
simulated and real flying robots. This led to requirements for
a suitable simulator for flying robots, and a high performance
middleware with a 'constant' interface suitable for long term
work. The 'environment' for the controlling application, in
terms of hardware and software, was also required to be
easily available for the foreseeable future.

Using a simulation environment for developing robot
control applications has many advantages over using a real
robot. Craighead [6] surveys many of the currently available
simulator environments for unmanned vehicles and, building
on previous work, suggests criteria for selecting a simulator;
physical fidelity, functional fidelity, ease of development,
and cost.

In the long term the overall 'product life' of a simulator
and associated software becomes a factor, particularly for
free, typically Open Source, simulation environments. There
are several examples of free simulators that are no longer
active or have become a commercial product [16] [20] [21].

The existing simulators and middleware applications
were examined as candidates for use in developing real-time
vision based control applications and they were found to
have some important disadvantages. The existing
middleware was either too closely tied to a particular,
sometimes unsuitable, simulator or had significant
performance or computing environment implications.

To achieve the required performance and remove the
dependency on a particular simulator a new middleware
toolset has been developed; altURI (alternative USARSim
Robot Interface). This work initially targets the USARSim

[33] simulator which was selected against criteria of ease of
development and to be very low cost, whilst having high
physical and functional fidelity. However altURI could be
used with any Windows simulator that uses TCP/IP socket
commands and sensor feedback.

USARSim has implemented a robot simulator on a game
which has many advantages; games offer some of the most
advanced 3D graphics and physics simulations available,
provide environment mapping and modeling tools, have
efficient multi-user networking and cost very little [19].
Other examples of games based simulators are NERO [31],
Faust [7] and SARGE [5].

The altURI middleware is for Windows computers, is
fully Open Source under the terms of the BSD License.

II. RELATED WORK

The initial motivation for using middleware was to allow
a robot control application to work with both the simulation
and a real robot. Moving between virtual and real
environments has challenged work in evolutionary robotics
for many years [11] [24] due to issues of uncertainty and
noise; the so called "reality gap" [13]. These issues have
been somewhat mitigated by advances in simulator
technology [26] [28].

The use of middleware for real robots is well established
and is surveyed by Mohamed et al. [25]. Middleware is also
available for simulators and sometimes for both real and
simulated environments. Middleware that works with
simulators includes: CoRoBa [4], MRDS [23], MOAST [29],
OpenRDK [3], Player [8], URBI [2], URSF [15], WURDE
[12] and YARP [22]. These examples of middleware cover a
very wide range of functions that may be useful when
controlling robots and are briefly discussed below.

A. CoRoBa - Controlling Robots with CORBA

 CoRoBa works with its own simulator, MoRoS3D, and
is a multi-robot framework which controls several robots
communicating via CORBA. It initially implemented three
robots, their actuators and several sensors. A few high level
algorithms such as goal and obstacle navigation have also
been implemented. The implementation is strongly standards
based and consequently supports extensions to new robots
and computing environments well. CoRoba was not
considered suitable for this work because it is tied to its
simulator (RIDE) and the inter-process communication using
CORBA was considered an unnecessary performance (and
complexity) overhead when using a single robot.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/16497915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B. MRDS - Microsoft Robotics Development Studio

MRDS is an integrated robot programming environment
with its own simulator (VSE). MRDS consists of service
oriented components, a .NET based concurrency library and
a visual programming environment using the Visual Studio
programming environment. The environment builds on the
strengths of its visual programming tools, many robots and
sensors are implemented and the support and user base is
well resourced. MRDS was not considered suitable because
it is not Open Source and is dependent on a single corporate
supplier.

C. MOAST - Mobility Open Architecture Simulation and

Tools

 MOAST works the USARSim simulator and is a design
based on the NIST hierarchical 4-D/RCS Reference Model
Architecture [1] which hierarchically distributes
responsibility for different aspects of robot control and
behavior. The implementation enables very complete
modeling of the simulator and sensor environment with
sophisticated inter-modular communication. The framework
also builds on the wide implementation of robots,
environments and user base of the USARSim simulator.
MOAST was not considered suitable because of the
performance (and complexity) overhead of its message
passing modular design, it being very highly integrated with
USARSim and its dependency on Linux components.

D. OpenRDK - Open Robot Development Kit

OpenRDK is modular framework for controlling robot
sensors and actuators that can use several simulators
(USARSim, Stage/Gazebo [17], Webots [21] and VSE).
OpenRDK implements software processes as agents which
instantiate modules that form building block to implement
robot systems. OpenRDK was not considered suitable
because of its Linux based implementation (users are warned
a Windows version is not supported). OpenRDK does
include concurrency and information sharing mechanisms
but they appear less onerous than other frameworks.

E. Player

The central tool of the Player/Stage/Gazebo (P/S/G)
system uses the Stage and Gazebo simulators and is one of
the most widely used robot frameworks. Player provides
modules to act as servers and subscribers using network
communication layers to connect robot and sensor hardware.
Many robots and sensors are supported and several higher
level algorithms; goal seeking, localization and path
planning. The P/S/G system is well supported by active
users. In a similar way to MOAST, P/S/G was not
considered suitable because of the performance (and
complexity) overhead of its message passing modular design
and it does not currently run on Windows.

F. URBI - Universal Robotic Body Interface

URBI is a client server based framework that can use the
Webots simulator. It includes a low level 'C'-like scripted
language for controlling humanoid and animal-like robots
via TCP/IP commands. Several robots are supported as

server implementations and an extensible object library is
also provided. URBI designers emphasize simplicity and it is
well supported by active users. URBI was not considered
suitable because the Webots simulator is relatively expensive
and it geared to humanoid and animal-like robots.

G. URSF - Ubiquitous Robot Simulation Framework

URSF is a framework to control and sense people,
appliances, sensors and robots in a virtual simulator and in
the real world. The framework builds a world model by
interpreting contextual data streams and uses web services
standards to communicate between component interfaces. It
also provides higher level mapping and path planning
features. URSF is a specialized framework tailored to
'ubiquitous' robotic applications so is not considered suitable.

H. WURDE - Washington University Robotics

Development Environment

WURDE is a modular tasking and control interface that
can use the Stage simulator component of P/S/G. It also
contains a control interface for controlling many robots. The
WURDE architecture uses four layers of abstraction:
Communications, Interfaces, applications, and Systems using
message passing inter-process communication. WURDE was
not considered suitable because of the performance (and
complexity) overhead of its message passing modular design
and it does not currently run on Windows.

I. YARP- Yet Another Robot Platform

YARP is middleware that can use the iCub [32] and
Webots simulators for controlling humanoid robots
implemented as a set of modular processes running on one or
more computers. The framework emphasizes code re-use and
maintainability and supports inter-process communications,
image processing and a class hierarchy. YARP is not
considered suitable because of the performance (and
complexity) overhead of the message passing modular
design and the focus on humanoid robots.

TABLE I. ROBOT MIDDLEWARE COMPARISON

Middleware Complexity Support OS Open

CoRoBa High Low Win Yes

MRDS High High Win No

MOAST High High Win, Linux Yes

OpenRDK Medium High Unix Yes

Player Medium High Unix, Mac Part

URBI High Medium Linux, Mac, Win Part

URSF High Low Unix No

WURDE Medium Low Unix Yes

YARP Medium High Multi Yes

altURI Low ? Win Yes

The available middleware for use with robot simulators
implements sophisticated concurrency mechanisms and
sophisticated information sharing mechanisms.

This paper proposes that it is possible to implement a
high performance simulator middleware where very simple
concurrency and information sharing features are sufficient
for real-time control of a vision-based simulator robot.

III. SOFTWARE DESIGN

The design goals for altURI are derived from the
requirements for vision based middleware for robot
simulation; high performance, maximal simulator decoupling
and running in an easily available environment were:

 To provide modules that are fast, flexible and easily
available to as wide as possible range of robot
control application development platforms.

 To support image acquisition, robot commands and
sensor output for development applications that
works with USARSim using a superset of simulator
interfaces.

A. Architecture

The altURI software contains two components and two
support programs. The two components are the vision
acquisition module and the command/sensor module.

The vision acquisition module obtains images from the
simulator game graphics engine and makes them available to
robot control applications. Images are supplied at the same
resolution as the simulator but smaller or partial images
(multi-view) are available. A command-line support program
to start the simulator and load the vision component into a
graphics process is provided.

A command/sensor module instance is specific to a robot
type (model) and controls a single robot in the simulator. The
commands that can be sent and the sensor values that can be
received are specified in a configuration file.

The other support component is a test application which
loads both modules and can display images retrieved and
validate the control and sensor configurations.

Fig. 1 below shows the software modules in context with
existing software components of USARSim as well as
example controlling application (Matlab)

Figure 1. altURI Software Components.

B. Software Implementation

The design goals were met by implementing the altURI
modules as Windows Dynamic Link Libraries (DLL). The
image processing module can supply images from 32-bit and
64-bit graphics applications (i.e. simulators) using DirectX8,
DirectX9, DirectX10, DirectX11 or OpenGL graphics for
any Windows operating system.

Fig. 2 shows the pseudo code for the hook DLL that
captures the images when loaded into a graphics application.

graphicsPresent()

1. {

2. if (frame_requested)

3. CopyGraphicsBufferToOpenCVImage();

4. frame_requested = false; // signal frame available

5. CallGraphicsPresent();

6. }

Figure 2. altURI Host DLL (Graphics Present) Pseudocode.

Fig. 3 shows the pseudo code for the client DLL that
requests and receives images from the robot control
application.

getFrame()

1. {

2. GetSharedMemoryFrameAddress();

3. waited=0;

4. frame_requested = true;

5. while (frame_requested)

6. wait 1 ms;

7. waited = waited + 1;

8. if (waited > 200) // error timeout

9. return null;

10. return frame; // from shared memory

11. }

Figure 3. altURI Client DLL (GetFrame) Pseudocode.

Images can be supplied as OpenCV [27], USARSim
FrameData and Matlab (using the control/sensor module)
formats via shared memory or as web images using HTTP
requests. The vision component web server can supply
images in PNG, JPG or TIFF formats and display a
continuous 'movie' of the simulator view.

The altURI modules support a superset of simulator
interfaces by working with most graphics engines and by
implementing a TCP/IP socket system that can send
configured commands with associated numerical values, and
retrieve sensor values by parsing returned sensor message
text.

C. Realisation

The altURI software image acquisition module can
retrieve 640x480 pixel images in excess of 30 frames per
second from USARSim using a desktop Windows PC. The
software has only a small impact on the use of processing

power, about 5% and has a memory footprint of about 10Mb.
The software can run on a netbook PC without any issues.

The modules are flexible because they work with
USARSim on UT2004 and UT3 but can also acquire images
from most other games based environments.

The software works well with USARSim and has been
used on projects discussed below. Fig. 4 and Fig. 5 shows
the test harness running USARSim displaying captured
images. Fig. 6 shows a browser displaying captured images
via a network.

Figure 4. altURI Test Application showing 640x480 pixel image

USARSim UT2004 TallTestWorld from AirRobot Camera.

Figure 5. altURI Test Application showing 800x600 pixel image:

USARSim UT3 Conveyor map with P3AT Robot.

Figure 6. Google Chrome Browser showing 800x600 pixel image, 'movie'

refreshing twice every second: USARSim UT3 Conveyor map with P3AT

Robot.

IV. APPLICATIONS

A. Vision Based Reinforcement Learning

The altURI system has been used for a study [30] of
using a reinforcement learning algorithm for a vision-based
approach to landing an Unmanned Aerial Vehicle (UAV).
Landing is a difficult challenge for a UAV and the
prevalence of accidents during landing justifies the use of a
reliable automatic landing system. Difficulties with
constructing an accurate model for autonomous control mean
that a suitable general learning framework, such as
reinforcement learning (RL), is a promising technique.

altURI is used in a visual servoing system where a robot
camera keeps track of a visual target while the UAV is
steered towards it. An extension of the RL algorithm Least-
Squares Policy Iteration [18] is used for the control problem.

The approach was tested with altURI in the USARSim
environment with the AirRobot model in an empty NIST
Reference Arena [14] using three variations of the algorithm
each tested 100 times.

Figure 7. Samples of Learned Paths and USARSim image of the UAV

flying toward the target [30].

During this work the middleware providing the images in
OpenCV format which worked well with the C++ control
application. OpenCV was used for further image processing
and this format is useful for ongoing work to transfer the
algorithm to the real robot. The middleware was found to be
easy to set up and use.

B. Altitude Control Using Elementary Motion Detection

The altURI system is being used for a study using
Elementary Motion Detection [35] (EMD) for a vision-based
approach to controlling altitude when flying an UAV.
Previous work [9] has shown that biologically inspired
neural optic flow processing can successfully be used to
control aerial robots. However the existing approaches
generally use custom neural processing image sensors. This
work is investigating other approaches, initially within the
USARSim environment.

Motion detection using EMD is calculated using a
comparison of two successive images, matrices of point
coordinates x and y. The first matrix is used to calculate
matrices pixel shifted in the x and y directions respectively
(denoted y1x, y1y etc.). Matrices of motion in the x and y
directions are:

 Mx = x2.*y1x - x1.*y2x 

 My = x2.*y1y - x1.*y2y 

The magnitude of motion is calculated:

 Mxy = √(Mx.
2
 + My.

2
) 

The direction of motion is calculated:

 Mq = atan2(My, Mx) 

This work, in its early stages, uses altURI to implement a
visual servoing system based on EMD. The servo processing
and EMD are written in Matlab.

Figure 8. Screenshot: USARSim TallTestWorld, Matlab Real-time

640x480 pixel image and EMD intensity plot for AirRobot UAV camera
view.

V. CONCLUSION

In this paper we have described some new middleware
for robot simulators that works well with USARSim. By
implementing the thinnest possible layer of software the
middleware achieves good performance when used for
vision-based robot control applications. The software works
with most software development environments in Windows
and can support other simulators without much effort. The
software is very easy to use, it is possible to implement a
simple robot control program in less than an hour and add a
new robot type in less time.

The altURI software is being used for vision based
research now, including a long term research project over the
next five years. The software is available for download at:
http://webpages.lincoln.ac.uk/mnsmith/altURI.htm. Work
will continue to improve and refine the software as a result
of user feedback.

REFERENCES

[1] J. Albus, ―4-d/rcs reference model architecture for unmanned ground
vehicles,‖ in Proceedings IEEE International Conference on Robotics
and Automation, pp 3260-3265., 2000.

[2] J. Baillie, ‖URBI: A universal language for robotic control,‖ in
International Journal of Humanoid Robotics, 2004.

[3] D. Calisi, A. Censi, L. Iocchi, D. Nardi, ―OpenRDK: a modular
framework for robotic software development,‖ in Proceedings of
International Conference on Intelligent Robots and Systems (IROS),
pp 1872–1877, September 2008.

[4] E. Colon, H. Sahli, Y. Baudoin, ―CoRoBa, a multi-mobile robot
control and simulation framework,‖ in Special Issue on "Software
Development and Integration in Robotics" of the International Journal
on Advanced Robotics, Volume 3, Number 1, March 2006, pp 73-78.

[5] J. Craighead, J. Burke, R. Murphy, ―Using the Unity Game Engine to
Develop SARGE: A Case Study,‖ in Proceedings of International
Conference on Intelligent Robots and Systems (IROS), September
2008.

[6] J. Craighead, R. Murphy, J. Burke, B. Goldiez, ―A Survey of
Commercial & Open Source Unmanned Vehicle Simulators,‖ in
Proceedings: ICRA 2007, pp 852-857.

[7] J. Faust, C. Simon, W. D. Smart, ―A Video Game-based Mobile
Robot Simulation Environment,‖ in Proceedings of IEEE
International Conference on Intelligent Robots and Systems
(IROS’06), Beijing, China 2006.

[8] B.P. Gerkey, R.T. Vaughan, K. Stoy, A. Howard, G.S. Sukhatme,
M.J. Mataric, ―Most Valuable Player: A Robot Device Server for
Distributed Control,‖ in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2001) pp 1226-
1231.

[9] W.E. Green, P.Y. Oh, G. Barrows, ―Flying insect inspired vision for
autonomous aerial robot manoeuvres in near-earth environments,‖ in
Proceedings of IEEE International Conference Robotics &
Automation New Orleans. LA. April 2004.

[10] J. Go, B. Browing, M. Veloso, ―Accurate and flexible simulation for
dynamic, vision-centric robots,‖ in Proceedings of the International
Joint Conference on Autonomous Agents and Multi-Agent Systems,
AAMAS’04 2004.

[11] I. Harvey, P. Husbands, D.T. Cli, ―Issues in evolutionary robotics,‖ in
Proceedings of the Second International Conference on Simulation of
Adaptive Behaviour, SAB92.

[12] F. Heckel, T. Blakely, M. Dixon, C. Wilson, W.D. Smart, ―The
WURDE Robotics Middleware and RIDE Multi-Robot Tele-
Operation Interface,‖ AAAI Mobile Robot Competition 2006: Papers
from the AAAI Workshop, pp 10-14, July 2006.

http://webpages.lincoln.ac.uk/mnsmith/altURI.htm

[13] N. Jakobi, P. Husbands, I. Harvey, ―Noise and the reality gap : the
use of simulation in evolutionary robotics,‖ in Lecture Notes in
Computer Science 1995.

[14] A. Jacoff, E. Messina, B.A. Weiss, S. Tadokoro, Y. Nakagawa, ―Test
Arenas and Performance Metrics for Urban Search and Rescue
Robots,‖ in Proceedings of International Conference on Intelligent
Robots and Systems IROS 2003.

[15] M. Jang, J. Kim, M. Lee, J. Sohn, ―Ubiquitous robot simulation
framework and its applications.‖ In IEEE/RSJ International
conference on robots and intelligent systems, pages 3213–8,
Edmonton, August 2005.

[16] D. Jung, ―OpenSim‖ http://opensimulator.sourceforge.net/, accessed:
15/03/2011

[17] N. Koening, A. Howard, ―Gazebo — 3D Multiple Robot Simulator
With Dynamics‖,
http://playerstage.sourceforge.net/index.php?src=gazebo.

[18] M.G. Lagoudakis, R. Parr, ―Least-squares policy iteration,‖ in Journal
of Machine Learning Research, 4:2003.

[19] M. Lewis, J. Jacobson, ―Game engines in scientific research,‖
Communications of the ACM, Volume 45, Number 1, pp 27–31
2002.

[20] O. Michel, ― Khepera Simulator v. 2 User Manual,‖ University of
Nice-Sophia, Antipolis, 1996

[21] O. Michel, ―Webots: Symbiosis between virtual and real mobile
robots,‖ in Proceedings of the First International Conference on
Virtual Worlds, Paris, France, pp 254-263. Springer Verlag, 1998.
See also http://www.cyberbotics.com/webots.

[22] G. Metta, P. Fitzpatrick, L. Natale, ―YARP: yet another robot
platform,‖ in International Journal on Advanced Robotics Systems,
Vol.3, No. 1, pp 43-48, March 2006.

[23] Microsoft Corporation, Microsoft Robotics Development Studio,
http://www.microsoft.com/robotics/ accessed 15/03/2011 (2008)

[24] O. Miglino, H. H. Lund, S. Nolfi, ―Evolving Mobile Robots in
Simulated and Real Environments,‖ Artificial Life, 2, pp 417–434.
1996.

[25] N. Mohamed, J. Al-Jaroodi, I. Jawhar, ―Middleware for Robotics: A
Survey,‖ in Proceedings. of The IEEE International Conference on
Robotics, Automation, and Mechatronics (RAM 2008), pp 736-742.

[26] S. Okamoto, K. Kurose, S. Saga, K. Ohno, S. Tadokoro, ―Validation
of simulated robots with realistically modelled dimensions and mass
in USARsim,‖ in Safety, Security and Rescue Robotics, SSRR 2008.
IEEE International Workshop on, Oct. 2008, pp 77–82.

[27] OpenCV, http://opencv.willowgarage.com/wiki/ acessed 15/03/2011.

[28] C. Pepper, S. Balakirsky, C. Scrapper, ―Robot Simulation Physics
Validation,‖ in Proceedings of PerMIS’07.

[29] C. Scrapper, S. Balakirsky, E. Messina, ―MOAST and USARSim - A
Combined Framework for the Development and Testing of
Autonomous Systems,‖ in Proceedings of the SPIE Defense and
Security Symposium 2006.

[30] M. Shaker, M. N. R. Smith, S. Yue, T. Duckett, "Vision-based
landing of a simulated unmanned aerial vehicle with fast
reinforcement learning," in International Symposium on Learning
and Adaptive Behaviour in Robotics Systems (LAB-RS 2010), 6-7
September 2010, Canterbury, UK.

[31] K. Stanley, B. Bryant, R. Miikkulainen, ―Evolving Neural Network
Agents in the NERO Video Game,‖ in Proceedings of the IEEE 2005
Symposium on Computational Intelligence and Games (CIG’05).
Piscataway, NJ.

[32] V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G Metta, L Natale, F. Nori
―An open-source simulator for cognitive robotics research: The
prototype of the iCub humanoid robot simulator,‖ in Proceedings of
IEEE workshop on performance metrics for intelligent systems
workshop, 2008.

[33] J. Wang, M. Lewis, J. Gennari, ―USAR: A game based simulation for
teleoperation,‖ in Proceedings of the 47th Annual Meeting of the
Human Factors and Ergonomics Society 2003.

[34] J. Wang, M. Lewis, S Hughes, M Koes, S Carpin, ―Validating
USARsim for use in HRI research,‖ in: Proceedings of the Human
Factors and Ergonomics Society 49th Annual Meeting, pp 457–461
2005.

[35] J. M. Zanker, ―On the elementary mechanism underlying secondary
motion processing,‖ Phil. Trans. R. Soc. London B 351: 1725-1736
1996.

