30,240 research outputs found

    Designing a novel virtual collaborative environment to support collaboration in design review meetings

    Get PDF
    Project review meetings are part of the project management process and are organised to assess progress and resolve any design conflicts to avoid delays in construction. One of the key challenges during a project review meeting is to bring the stakeholders together and use this time effectively to address design issues as quickly as possible. At present, current technology solutions based on BIM or CAD are information-centric and do not allow project teams to collectively explore the design from a range of perspectives and brainstorm ideas when design conflicts are encountered. This paper presents a system architecture that can be used to support multi-functional team collaboration more effectively during such design review meetings. The proposed architecture illustrates how information-centric BIM or CAD systems can be made human- and team-centric to enhance team communication and problem solving. An implementation of the proposed system architecture has been tested for its utility, likability and usefulness during design review meetings. The evaluation results suggest that the collaboration platform has the potential to enhance collaboration among multi-functional teams

    SIMDAT

    No full text

    Innovation and communication technologies + Problem based learning: a new approach for teaching architecture

    Get PDF
    This article presents the results obtained during its first year of application in the educational innovation project called “New frameworks of teaching: ICT applied to problem based learning in technical bachelors” (PIE 15-166) developed at the School of Architecture in the University of Malaga. This has been focused on the development of educational strategies based on exploiting the potential of ICT, taking as a framework the ABP. Its application on subjects from different areas of knowledge (architectural composition, urban planning, projects and architectural constructions) has allowed assessing the adaptability of this methodology depending on the content. Among the obtained results can be highlighted the improvement in cross curricular coordination between subjects from different fields of studies, providing different ways of synchronous and asynchronous communication between students and teachers to generate a greater interaction between all the involved subjects; increasing in addition the interest and an improvement of the results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Modified Stage-Gate: A Conceptual Model of Virtual Product Development Process

    Full text link
    In today s dynamic marketplace, manufacturing companies are under strong pressure to introduce new products for long-term survival with their competitors. Nevertheless, every company cannot cope up progressively or immediately with the market requirements due to knowledge dynamics being experienced in the competitive milieu. Increased competition and reduced product life cycles put force upon companies to develop new products faster. In response to these pressing needs, there should be some new approach compatible in flexible circumstances. This paper presents a solution based on the popular Stage-Gate system, which is closely linked with virtual team approach. Virtual teams can provide a platform to advance the knowledge-base in a company and thus to reduce time-to-market. This article introduces conceptual product development architecture under a virtual team umbrella. The paper describes all the major aspects of new product development (NPD), NPD process and its relationship with virtual teams, Stage-Gate system finally presents a modified Stage-Gate system to cope up with the changing needs. It also provides the guidelines for the successful implementation of virtual teams in new product development.Comment: 24 page

    A conceptual model of virtual product development process

    Get PDF
    In today’s dynamic marketplace, companies are under strong pressure to introduce new products for long-term survival with their competitors. Besides, every company cannot cope up progressively or immediately with the market requirements due to knowledge dynamics being experienced in competitive milieu. Increased competition and reduced product life cycles put force upon companies to develop new products faster. In response to this pressing need there should be some new approach compatible in flexible circumstances. This paper presents a solution based on the Stage-Gate system, which is closely linked with virtual team approach. Virtual teams can provide a platform to advance the knowledge-base in a company and thus to reduce time-to-market. This article introduces conceptual product development architecture under a virtual-team umbrella. The paper describes all the major aspects of new product development (NPD), NPD process and its relationship with virtual team, Stage-Gate system and finally presents a modified Stage-Gate system. It also provides the guidelines for the successful implementation of virtual team in new products development.Modified Stage-Gate System, Virtual Product Development, Conceptual Model

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor

    A State-of-the-art Integrated Transportation Simulation Platform

    Full text link
    Nowadays, universities and companies have a huge need for simulation and modelling methodologies. In the particular case of traffic and transportation, making physical modifications to the real traffic networks could be highly expensive, dependent on political decisions and could be highly disruptive to the environment. However, while studying a specific domain or problem, analysing a problem through simulation may not be trivial and may need several simulation tools, hence raising interoperability issues. To overcome these problems, we propose an agent-directed transportation simulation platform, through the cloud, by means of services. We intend to use the IEEE standard HLA (High Level Architecture) for simulators interoperability and agents for controlling and coordination. Our motivations are to allow multiresolution analysis of complex domains, to allow experts to collaborate on the analysis of a common problem and to allow co-simulation and synergy of different application domains. This paper will start by presenting some preliminary background concepts to help better understand the scope of this work. After that, the results of a literature review is shown. Finally, the general architecture of a transportation simulation platform is proposed
    • 

    corecore