1,641 research outputs found

    Probabilistic Musculoskeletal Simulation Methods to Address Intersegmental Dependencies of the Knee, Hip, and Spine

    Get PDF
    Orthropaedic clinical practice in the area of the knee, hip, and spine has benefited from the concept of regional interdependence, where interventions applied to one region can influence the outcome and function of other regions of the body that may be seemingly unrelated to the applied intervention. An understanding of the biomechanical mechanisms that describe clinical practice involving knee, hip, and spine regional interdependence can improve treatment of a wide range of pathological conditions. Improvement in this area can be particularly impactful on the outcomes of patients with total joint replacement, where pathology and compensatory strategies develop during multi-joint interactions. Additionally, probabilistic methods are well suited to address knee, hip, and spine regional interdependence by using input distributions to quantify the impact of variability on the range of possible output variables. Outputs from probabilistic methods include variable interaction effects and provides sensitivity information, resulting in a more comprehensive evaluation of a system The main objectives of the work presented in this dissertation were to further our understanding of the interdependencies of the knee, hip, and spine with probabilistic musculoskeletal modeling. These objectives were achieved by developing a probabilistic plugin for use in OpenSim and performing investigations of the regional interdependence of the knee, hip, and spine involving patients with total joint replacement. An initial study identified how uncertainty in musculoskeletal simulation inputs can propagate through the stages of analysis and impact interpretation of outputs from a simulation of gait. Second, improvements to current modeling methodology for patients with total hip arthroplasty were made through the implementation of patient-specific strength scaling and input uncertainty assessment. The third study then applied these methods in an investigation of knee, hip, and spine regional interdependence in rehabilitation of patients with total hip arthroplasty to quantify the influence of simulated strengthening of hip musculature on the dynamic and mechanical interdependencies of the knee, hip and spine. A final study demonstrated how population-based musculoskeletal modeling can further impact the study of knee, hip, and spine regional interdependence by presenting the feasibility study of performing population-based musculoskeletal modeling. These studies include several novel methods for investigating the regional interdependencies of the knee, hip, and spine that have been used to translate outputs from musculoskeletal simulations into rehabilitation practice

    Visually-guided walking reference modification for humanoid robots

    Get PDF
    Humanoid robots are expected to assist humans in the future. As for any robot with mobile characteristics, autonomy is an invaluable feature for a humanoid interacting with its environment. Autonomy, along with components from artificial intelligence, requires information from sensors. Vision sensors are widely accepted as the source of richest information about the surroundings of a robot. Visual information can be exploited in tasks ranging from object recognition, localization and manipulation to scene interpretation, gesture identification and self-localization. Any autonomous action of a humanoid, trying to accomplish a high-level goal, requires the robot to move between arbitrary waypoints and inevitably relies on its selflocalization abilities. Due to the disturbances accumulating over the path, it can only be achieved by gathering feedback information from the environment. This thesis proposes a path planning and correction method for bipedal walkers based on visual odometry. A stereo camera pair is used to find distinguishable 3D scene points and track them over time, in order to estimate the 6 degrees-of-freedom position and orientation of the robot. The algorithm is developed and assessed on a benchmarking stereo video sequence taken from a wheeled robot, and then tested via experiments with the humanoid robot SURALP (Sabanci University Robotic ReseArch Laboratory Platform)

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Scaled Autonomy for Networked Humanoids

    Get PDF
    Humanoid robots have been developed with the intention of aiding in environments designed for humans. As such, the control of humanoid morphology and effectiveness of human robot interaction form the two principal research issues for deploying these robots in the real world. In this thesis work, the issue of humanoid control is coupled with human robot interaction under the framework of scaled autonomy, where the human and robot exchange levels of control depending on the environment and task at hand. This scaled autonomy is approached with control algorithms for reactive stabilization of human commands and planned trajectories that encode semantically meaningful motion preferences in a sequential convex optimization framework. The control and planning algorithms have been extensively tested in the field for robustness and system verification. The RoboCup competition provides a benchmark competition for autonomous agents that are trained with a human supervisor. The kid-sized and adult-sized humanoid robots coordinate over a noisy network in a known environment with adversarial opponents, and the software and routines in this work allowed for five consecutive championships. Furthermore, the motion planning and user interfaces developed in the work have been tested in the noisy network of the DARPA Robotics Challenge (DRC) Trials and Finals in an unknown environment. Overall, the ability to extend simplified locomotion models to aid in semi-autonomous manipulation allows untrained humans to operate complex, high dimensional robots. This represents another step in the path to deploying humanoids in the real world, based on the low dimensional motion abstractions and proven performance in real world tasks like RoboCup and the DRC

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions

    Get PDF
    Welcome to ROBOTICA 2009. This is the 9th edition of the conference on Autonomous Robot Systems and Competitions, the third time with IEEE‐Robotics and Automation Society Technical Co‐Sponsorship. Previous editions were held since 2001 in Guimarães, Aveiro, Porto, Lisboa, Coimbra and Algarve. ROBOTICA 2009 is held on the 7th May, 2009, in Castelo Branco , Portugal. ROBOTICA has received 32 paper submissions, from 10 countries, in South America, Asia and Europe. To evaluate each submission, three reviews by paper were performed by the international program committee. 23 papers were published in the proceedings and presented at the conference. Of these, 14 papers were selected for oral presentation and 9 papers were selected for poster presentation. The global acceptance ratio was 72%. After the conference, eighth papers will be published in the Portuguese journal Robótica, and the best student paper will be published in IEEE Multidisciplinary Engineering Education Magazine. Three prizes will be awarded in the conference for: the best conference paper, the best student paper and the best presentation. The last two, sponsored by the IEEE Education Society ‐ Student Activities Committee. We would like to express our thanks to all participants. First of all to the authors, whose quality work is the essence of this conference. Next, to all the members of the international program committee and reviewers, who helped us with their expertise and valuable time. We would also like to deeply thank the invited speaker, Jean Paul Laumond, LAAS‐CNRS France, for their excellent contribution in the field of humanoid robots. Finally, a word of appreciation for the hard work of the secretariat and volunteers. Our deep gratitude goes to the Scientific Organisations that kindly agreed to sponsor the Conference, and made it come true. We look forward to seeing more results of R&D work on Robotics at ROBOTICA 2010, somewhere in Portugal
    corecore