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ABSTRACT 

 

Orthropaedic clinical practice in the area of the knee, hip, and spine has benefited 

from the concept of regional interdependence, where interventions applied to one region 

can influence the outcome and function of other regions of the body that may be 

seemingly unrelated to the applied intervention. An understanding of the biomechanical 

mechanisms that describe clinical practice involving knee, hip, and spine regional 

interdependence can improve treatment of a wide range of pathological conditions. 

Improvement in this area can be particularly impactful on the outcomes of patients with 

total joint replacement, where pathology and compensatory strategies develop during 

multi-joint interactions. Additionally, probabilistic methods are well suited to address 

knee, hip, and spine regional interdependence by using input distributions to quantify the 

impact of variability on the range of possible output variables. Outputs from probabilistic 

methods include variable interaction effects and provides sensitivity information, 

resulting in a more comprehensive evaluation of a system  The main objectives of the 

work presented in this dissertation were to further our understanding of the 

interdependencies of the knee, hip, and spine with probabilistic musculoskeletal 

modeling. These objectives were achieved by developing a probabilistic plugin for use in 

OpenSim and performing investigations of the regional interdependence of the knee, hip, 

and spine involving patients with total joint replacement. An initial study identified how 
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uncertainty in musculoskeletal simulation inputs can propagate through the stages of 

analysis and impact interpretation of outputs from a simulation of gait. Second, 

improvements to current modeling methodology for patients with total hip arthroplasty 

were made through the implementation of patient-specific strength scaling and input 

uncertainty assessment. The third study then applied these methods in an investigation of 

knee, hip, and spine regional interdependence in rehabilitation of patients with total hip 

arthroplasty to quantify the influence of simulated strengthening of hip musculature on 

the dynamic and mechanical interdependencies of the knee, hip and spine. A final study 

demonstrated how population-based musculoskeletal modeling can further impact the 

study of knee, hip, and spine regional interdependence by presenting the feasibility study 

of performing population-based musculoskeletal modeling. These studies include several 

novel methods for investigating the regional interdependencies of the knee, hip, and spine 

that have been used to translate outputs from musculoskeletal simulations into 

rehabilitation practice.  
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CHAPTER 1 – INTRODUCTION AND DISSERTATION OVERVIEW 

1.1: Knee, Hip, and Spine as an Interdependent System.  

There have been major advances in the biomechanical assessments of knee, hip 

and spine joint behavior using multi-scale approaches that combine experimental data 

with high fidelity computational models. For example, studies that evaluate the behavior 

associated with anterior cruciate ligament injury (Fernandez et al., 2011), osteoarthritis 

(Fregly et al., 2007), total joint replacement (Fitzpatrick et al., 2011) and spinal stability 

(Tanaka et al., 2010) have been successful at informing clinical decisions and improving 

patient outcomes. These studies contributed largely to our understanding of healthy and 

pathological function at the knee, hip and spine. However, often times the primary focus 

of the investigation is on the affected joint in isolation.  

Improvements to the combined experimental and computational approach to 

assessing joint function can be made by considering the knee, hip and spine as an 

interdependent system. Clinical practice in the area of the knee, hip and spine has 

benefited from the concept of regional interdependence, where interventions applied to 

one region can influence the outcome and function of other regions of the body that may 

be seemingly unrelated to the applied intervention. Biomechanically, a perturbation or 

disturbance to any one anatomical body or musculoskeletal structure can influence the 

dynamics of a body segment (the forces, torques and resulting motion of  
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that segment) in which the perturbation/disturbance was not directly applied. Complex 

joint pathology in the knee, hip and spine, such as osteoarthritis, likely develops and 

progresses as a result of multi-joint interactions. Quantification of the knee, hip and spine  

interdependence in healthy and pathological populations can offer valuable insight for 

improved understanding of joint disease and treatment methods.   

 

1.2: Musculoskeletal Modeling of Knee, Hip, and Spine Interdependence 

Whole-body movement is often assessed through the use of the musculoskeletal 

modeling software platforms such as OpenSim (Delp et al., 2007) and Anybody 

(AnyBody Technology, Aalborg, Denmark). Musculoskeletal modeling is used to 

calculate joint kinematics and moments and as well as intersegmental joint loads and 

muscle forces. Musculoskeletal simulation offers valuable data to clinicians and 

researchers assessing pathological conditions and understanding human movement. 

Simulation of human movement has significantly impacted approaches to clinical 

treatment of cerebral palsy, lower extremity amputees, and osteoarthritis (Delp et al., 

1996; Fregly et al., 2007; Silverman and Neptune, 2012) as well as basic science related 

to the understanding of movement progression and control during dynamic tasks 

(Anderson et al., 2004; Neptune et al., 2009; Zajac et al., 2002). There have been a 

number of impactful innovations in simulation methods from sophisticated subject-

specific models with highly accurate anatomic detail (Arnold et al., 2010), to creation of 

efficient forward dynamics simulations using computed muscle control (Thelen and 

Anderson, 2006).  
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The only musculoskeletal modeling methods specifically related to regional 

interdependence use forward dynamic simulations and induced acceleration analysis to 

identify how individual muscles contribute to joint accelerations throughout the body 

(Neptune et al., 2001). This approach has been applied in a wide range of basic science 

applications (Anderson et al., 2004; Dorn et al., 2012; Liu et al., 2008) and has furthered 

our understanding of knee, hip and spine dynamics by identifying important non-hip 

spanning muscles with large contributions to hip joint function (Pandy, 2001; Zajac and 

Gordon, 1989). Similarly, continued innovation to musculoskeletal modeling through the 

addition of probabilistic methods, that are uniquely well-suited to address multi-joint 

interactions, can be used to expand our clinical understanding of knee, hip and spine 

regional interdependence and also provide a valuable tool to the musculoskeletal 

community. 

 

1.3: Combining Probabilistic Methods with Musculoskeletal Modeling 

Probabilistic methods use input distributions to quantify the impact of variability 

on the range of possible output variables. This approach includes variable interaction 

effects and provides sensitivity information, resulting in a more comprehensive 

evaluation of a system. Developers of musculoskeletal models are mindful that 

simulation outputs are dependent on inputs that have inherent variability and uncertainty 

in which there are currently no openly available methods to quantify the effects of this 

inherent variability. In addition to quantifying the impact of variability and uncertainty on 

model outputs, probabilistic methods offer the ability to quantify the interdependence of 

the knee, hip and spine. This can be achieved by evaluating the influence of perturbations 
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to the parameters of one segment on the output dynamics (the forces, torques and 

resulting motion of that segment) other segments in which the perturbation was not 

directly applied. 

Accordingly, the main objectives of this dissertation were to further our 

understanding of the interdependencies of the knee, hip and spine with probabilistic 

musculoskeletal modeling. These objectives were achieved by developing a probabilistic 

plugin for use in OpenSim and performing investigations of the regional interdependence 

of the knee, hip and spine involving patients with total joint replacement, where these 

methods can have clinical impact and improve patient outcomes. 

 

1.4: Dissertation Overview 

Chapters 1-4 will cover foundational concepts and an experimental study that 

support the theory and methodology of the dissertation. Chapters 5-7 demonstrate the 

application of the theory and methodology from the early chapters in musculoskeletal 

simulation studies. Chapter 2 will expand on the clinical and scientific importance of 

regional interdependence and review the literature that has demonstrated the vital role of 

the hip musculature in influencing joint function of the knee, hip and spine. Chapter 3 is 

an experimental investigation of the regional interdependence of the knee, hip, and spine 

through the use of an external support garment. An overview of the probabilistic methods 

and interpretations used extensively throughout this dissertation is provided in chapter 4. 

Following a review of these methods, the dissertation will focus on the application of 

these methods.  
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Chapters 5-7 will describe the application of the probabilistic plugin that was 

designed for use in OpenSim. Chapter 5 is a study that assessed how uncertainty in 

standard musculoskeletal simulation inputs can propagate through the stages of analysis 

and impact interpretation of outputs from a simulation of gait. Chapter 6 contains two 

studies that 1) use the OpenSim probabilistic plugin to improve on current modeling 

methodology for patients with total hip arthroplasty and 2) apply those methods in a 

study to quantify the influence of simulated strengthening of hip musculature on lower 

extremity and spine loads. Chapter 7 introduces how population-based musculoskeletal 

modeling can further impact the study of knee, hip and spine regional interdependence 

and presents a feasibility study to address challenges in performing population-based 

modeling in OpenSim. The appendix includes the user manual for the probabilistic plugin 

with tutorial examples and recommendations for best practices. 
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CHAPTER 2 – A REVIEW OF KNEE, HIP, AND SPINE REGIONAL 

INTERDEPENDENCE AND THE VITAL ROLE OF THE HIP MUSCULATURE 

This chapter will introduce the concept of regional interdependence by defining it 

and describing examples from the clinical literature where the concept has been applied 

for pathological interpretation and/or treatment. Additionally, the role of the hip 

musculature in influencing knee, hip and spine mechanics is described along with 

methods that have been used to quantify the interdependence of the knee, hip and spine 

using musculoskeletal modeling.  

 

2.1 Regional Interdependence Definition 

There is a growing body of literature demonstrating that interventions applied to 

one anatomical region of the body can influence the outcome and function of other 

regions of the body that may be seemingly unrelated to the applied intervention. This is a 

concept known as regional interdependence that has emerged primarily in the clinical 

literature. Regional interdependence was originally defined as a concept that unrelated 

impairments in remote anatomical regions could contribute to a patient’s primary 

complaint. A proposed more comprehensive definition of regional interdependence was 

that a patient’s primary musculoskeletal symptoms may be directly or indirectly 

influenced by impairments from various body regions and systems regardless of 

proximity to the primary symptoms (Sueki et al., 2013; Wainner et al., 2007).  
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These definitions remain rooted in the clinical observations that gave rise to the 

concept of regional interdependence. In order to address the mechanisms that produce the 

concept from a biomechanical perspective, it is necessary to further develop the 

definition in terms of musculoskeletal system dynamics. The concept in these terms is 

defined as: a perturbation or disturbance to any one anatomical body or musculoskeletal 

structure can influence the dynamics of a body segment (the forces, torques and resulting 

motion of that segment) in which the perturbation/disturbance was not directly applied.    

 

2.2 Clinical Examples of Regional Interdependence 

The definition of regional interdependence is best illustrated using examples from 

the clinical literature. The majority of literature supporting the concept of regional 

interdependence is related to the knee, hip, and spine region. Clinicians have identified 

practices that rely on the concept of regional interdependence to treat a range of 

pathologies that affect the knee, hip and spine. Patients with primary low back pain and 

knee complaints have received treatment directed at the hip and experienced positive 

outcomes (Currier et al., 2007; Deyle et al., 2005, 2000). Additionally, interventions 

targeting the lumbar spine have been reported in the management of patients who have 

primary complaints of hip and knee pain (Suter et al., 2000). A relationship has even been 

proposed between the foot and ankle and the lumbosacral region (Cibulka, 1999; 

Rothbart and Estabrook, 1999). While many of these relationships have been identified in 

individual case studies, there are various examples of successful patient outcomes 

resulting from relationships of regional interdependence in randomized controlled trials.  
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Low back pain has been associated with pathologies of the hip that include, 

osteoarthritis, bone fractures and total hip replacement (Porter and Wilkinson, 1997; 

Reiman et al., 2009). Over thirty years ago, concurrent pathology at both the hip and 

spine was identified in older populations and labeled as ‘hip-spine syndrome’ (Offerski 

and MacNab, 1983). In an early case study, a female patient was diagnosed with what 

was called ‘secondary hip-spine syndrome’. Her symptoms were low back pain, 

accompanied by anterior thigh pain, denegation in the lumbar spine and osteoarthritis in 

both hips. In more recent studies, investigators have identified that severe hip 

osteoarthritis can result in abnormal spinal alignment, particularly in the sagittal plane, 

that results in adverse changes to muscle length and joint contact forces (Reiman et al., 

2009). Further, Yoshimoto et al. (2005) identified higher pelvic incidence, and associated 

higher lumbar lordosis, as a predictor for hip osteoarthritis later in life. In patients with 

late stage hip osteoarthritis, total hip arthroplasty is commonly performed, resulting in 

reductions in hip pain and higher levels of overall function. In addition, both spinal 

alignment and low back pain have been found to improve following total hip arthroplasty 

(Ben-galim et al., 2007; Parvizi et al., 2010).    

 Clinical relationships between the hip and spine have also been identified in less 

severe, pre-arthritic conditions as well. Clinicians have used the relationship between the 

hip and spine in treatment strategies that involve non-surgical methods, as well as 

minimally invasive hip arthroscopic surgical procedures in some cases. For example, 

runners with chronic hip pain demonstrate significant reductions in pain and increases in 

mobility with the use of lumbar back manipulation techniques (Cibulka and Delitto, 

1993). Conversely, imbalances in hip range of motion have been identified in patients 
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with low back pain (Ellison et al., 1990; Esola et al., 1996; Porter and Wilkinson, 1997; 

Sjolie, 2004). It has been hypothesized that alterations in hip range of motion can lead to 

increased stress on the sacroiliac joint and lumbar spine and lead to the development of 

pain in these areas. Physical therapy designed to correct these imbalances through 

stretching and strengthening has been shown to effectively reduce low back pain in 

certain patients (Winter, 2015). In cases when physical therapy is ineffective, 

arthroscopic hip surgery has become a well-recognized treatment option for multiple 

pathologic processes in and around the hip joint. A study by Kelly et al. (2012) showed 

improvement in hip internal rotation after arthroscopic treatment of femoroacetabular 

impingement, which has been demonstrated to reduce low back pain in patients with 

coexisting spinal pathologies (Redmond et al., 2014).  

In further investigation of the concept of regional interdependence, there has also 

been a relationship identified between the lumbar spine and the presence of knee 

pathologies (Boyle et al., 2014). Low back pain is present in 54.6% of patients with knee 

osteoarthritis and almost every knee osteoarthritis clinical status measure is worse in the 

patients with low back pain (Wolfe et al., 1996). This may be partially explained by the 

influence of spinal kinematics on knee range of motion.  In 365 patients with pain in the 

knee and/or low back pain, a significant relationship was  indicated between lower 

degrees of lumbar lordosis and reduced knee flexion/extension range of motion (Murata 

et al., 2003). Successful treatment of these patients has targeted both the hip and spine. 

Cliborne et al. (2004) demonstrated that subjects with knee osteoarthritis experienced an 

average decrease in pain and improved knee range of motion after receiving physical 

therapy treatments that targeted hip mobility. Additionally, spinal manipulation of the 
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sacroiliac joint has been used to effectively increase knee extensor muscle activity in 

patients with anterior knee pain and proposed as a method for treating a broad range of 

knee pathologies (Suter et al., 2000).  

Clinical cases, interventions and clinical decision making focused on a single 

pathological structure have often resulted in poor outcomes (Bogduk, 2000; van Tulder et 

al., 1997). The studies discussed have reported positive patient outcomes when targeting 

areas or structures not seemingly involved in the primary complaint. However, it has 

been commonly noted in the cited work that when using treatments attempting to 

influence regions away from the primary symptoms, individual responses can be highly 

variable. The underlying mechanisms that lead to improved patient outcomes when using 

treatment models that rely on regional interdependence are not well understood. To better 

understand these mechanisms, it is necessary to identify the major muscles and 

musculoskeletal structures involved in knee-hip-spine regional interdependence and 

derive methods that can be used in the quantification of the mechanical relationships that 

explain knee-hip-spine regional interdependence.  

 

2.3 Influence of the Hip Abductor Musculature in Knee, Hip, and Spine 

Regional Interdependence 

Previous investigations have identified the ability of the hip abductor muscle 

group to influence the function of the knee, hip and spine. The hip abductor muscle group 

is made up of the gluteus maximus, gluteus medius, gluteus minimus, tensor fasciae latae, 

piriformis and gemellus (Figure 2.1). The attachment sites for these muscles include the 

sacrum, pelvis and the femur.  The architecture of the muscles of the hip abductor group 
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enable their influence on the three-dimensional orientation of the pelvis during 

movement, which determines each muscles force generating parameters (i.e., muscle 

length, moment arm length). The relationship between pelvic orientation and hip 

abductor muscle function has been hypothesized to be a key component in knee-hip-spine 

regional interdependence. Previous studies on whole body balance have suggested that 

hip muscle force production is crucial in minimizing the acceleration of the body center 

of mass in response to postural perturbations (Aramaki et al., 2001). In pathological 

studies of this relationship, several studies have reported that individuals with 

patellofemoral pain syndrome demonstrate deficits in hip abductor muscle strength and 

exhibit greater degrees of hip adduction and internal rotation during dynamic activities 

such as landing from a jump (Lee et al., 2012; Powers, 2010; Salsich and Long-Rossi, 

2011). 

 Of the hip abductor muscles, the gluteus medius has been specifically linked to 

knee-hip-spine regional injury and dysfunction. The gluteus medius is one of the 

strongest lower extremity muscles based on physiological cross-sectional area and its 

architecture has lines of action in multiple movement planes. Gluteus medius dysfunction 

has been associated with injuries superior to the pelvis in the upper extremities (Oliver, 

2014; Plummer and Oliver, 2014) and lower back (Nelson-Wong et al., 2008), as well as 

inferior to the pelvis at the hip (Bolgla and Uhl, 2005), knee (Crossley et al., 2012), and 

ankle (Beckman and Buchanan, 1995). The link between the gluteus medius muscle 

function and injury risk may be a result of weakness in this muscle, which results in poor 

stability (Wilson, 2005) and excessive hip, pelvic, and trunk kinematics during weight-

bearing activities (Powers, 2010; Souza and Powers, 2009; Thijs et al., 2007). Alterations 
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in the neuromuscular control parameters of the gluteus medius characterized by reduced 

activation, delayed onset, and decreased activation duration (Aminaka et al., 2011; 

Beckman and Buchanan, 1995; Brindle et al., 2003; Cowan et al., 2009; Santos et al., 

2013; Willson et al., 2011) are also associated with abnormal hip, pelvic, and trunk 

kinematics for individuals with movement based problems (Barton et al., 2013). To 

further investigate the role of the gluteus medius, in the next chapter, we present an 

investigation of knee-hip-spine regional interdependence using biomechanical variables 

related to core control and dynamic stability and supportive technology designed to 

enhance the function of the gluteus medius.  

 

2.4 Quantifying the Role of Hip Abductors in Regional Interdependence 

Defining the mechanisms of regional interdependence in terms of the 

musculoskeletal system dynamics could improve outcomes from rehabilitation strategies 

that incorporate the concept of regional interdependence. In order to do this, it is 

necessary to use a musculoskeletal model that includes detailed geometry and 

musculature of the hip and pelvis. There have been studies that have demonstrated the 

interdependencies of the knee, hip and spine using musculoskeletal models.   

The dynamic coupling between body segments has been represented by 

calculating how individual muscle forces contribute to the angular accelerations of all 

joints at each instant of a dynamic motion (Pandy, 2001; Zajac and Gordon, 1989). For 

example, Correa et al., (2010) demonstrated during gait, that the vasti, soleus and 

gastrocnemius contribute  greater than 0.5 BW to hip contact force. Because the articular 

contact forces are a function of the joint angular accelerations, each muscle force also 
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contributes to the contact force transmitted by each joint. Therefore, muscles that do not 

cross a specific joint are capable of contributing to the contact force at that joint.  

The probabilistic methods that will be described in chapter 4 are uniquely suited 

to quantify the mechanisms of regional interdependence when combined in a 

musculoskeletal modeling framework. These methods allow for systematic perturbations 

to be made to one specific anatomic area or structure, while quantifying the impact on 

any other segment or structure in the model. A previous investigation did demonstrate the 

feasibility of this method in a probabilistic approach; however it did not specifically 

address regional interdependence. Valente et al. (2013) simulated the effect of hip 

abductor weakness by reducing the maximum force generating capacity of the muscles in 

a probabilistic framework and evaluating the effects on hip and knee joint loading. Their 

results demonstrated that there were greater increases in the peak knee joint load than in 

the load at the hip. Additionally, the gluteus medius was the abductor muscle with the 

most influence on hip and knee loads. This study demonstrates how a probabilistic 

approach can evaluate regional independence and how the further advances discussed in 

this dissertation can describe the mechanisms that contribute to knee-hip-spine regional 

interdependence to influence clinical decision making.   
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Figure 2.1: Hip abductor muscle group 



15 
 

CHAPTER 3 –THE EFFECTS OF EXTERNAL CORE SUPPORT ON 

PROPRIOCEPTION AND DYNAMIC STABILITY 

This chapter describes an experimental study that evaluated the effect of an 

external core support garment designed to enhance the function of the hip abductor group 

on proprioception and dynamic stability. Data from this study was used in the 

probabilistic simulations described in the chapters to follow.  

 

3.1 Abstract 

The study design was a randomized cross-over design comparing two support 

conditions during dynamic tasks of varying difficulty. Core stability dysfunction is linked 

to musculoskeletal pathologies that range from lower extremity joint disease and injury to 

low back pain.  The object of this study was to determine the effects of a novel support 

garment designed to enhance the function of the gluteus medius on core proprioception 

and dynamic stability. Fourteen healthy participants (9 male, 5 female) performed a core 

proprioception unstable sitting task and a dynamic landing task while wearing form-

fitting, athletic shorts with built in core support (CS) and without support (WOS). Each 

participant sat on an unstable surface with the eyes open, and with the eyes closed and 

under two levels of task difficulty. Performance was represented by the average 

velocityof the 3D marker path length. Each participant performed single leg landings 

onto a force platform and kinematics and kinetics of the lumbar spine, pelvis, hip, knee, 
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and ankle segments were calculated. The frontal plane moment arm of the groundreaction 

force was calculated throughout the landing task at the ankle, knee and hip. The average 

velocity of 3D path length significantly increased with increasing task difficulty for each 

unstable sitting condition (P<0.001). However, the increase when visual input was 

removed was 19.1% smaller with the addition of core support (P=0.040). The peak hip 

abductor moment was reduced on average by 6.3% when landing with CS (WOS: -123.4 

± 35.8 Nm vs. CS: -115.0 ± 25.4 Nm; P=0.041). The moment arm at peak GRF was 

reduced with core support by an average of 0.9 cm at the knee joint (CS: -1.22±1.16 vs. 

WOS: -2.27±1.68 cm; P<0.001) and 1.9 cm at the hip joint (CS: -4.71±1.64 vs. WOS: -

6.79±1.53 cm; P<0.001). Core support designed to enhance the function of the gluteus 

medius resulted in significant improvements in core proprioception and dynamic 

stability. Use of supportive technology that enhances the role of the hip abductors may 

lead to improved clinical outcomes and decreased injury rates during high-demand 

dynamic tasks. 

 

3.2 Introduction 

 Core stability dysfunction is associated with a number of musculoskeletal 

pathologies that range from lower extremity joint disease and injury (Grimaldi et al., 

2009; S. P. Lee et al., 2012; Leetun, 2004) to low back pain (Jo et al., 2011; D. C. Lee et 

al., 2012; Radebold et al., 2001; You et al., 2014). The musculoskeletal core of the body 

includes the passive contributions of the hip, pelvis, and thoracolumbar spine, as well as 

the active contributions of the musculature in this region. The core provides the proximal 

stability for the control and function of the extremities that is developed in a proximal to 
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distal progression (Hodges and Richardson, 1997). This proximal core stability is 

maintained by the central nervous system and the complex interrelationship between 

sensory information obtained from the somatosensory, visual, and vestibular systems (Xu 

et al., 2010). Proprioception is a key component of the somatosensory system’s 

contribution to core stability, and poor proprioception is linked to reduced control of the 

lumbar spine and longer trunk muscle response times in patients with low back pain 

compared to healthy individuals (Radebold et al., 2001). Additionally, lower extremity 

function can be compromised when core proprioception is poor. For example, recent 

prospective studies reported that female athletes with impaired core proprioception had a 

higher incidence of lower extremity injury compared to those with normal core 

proprioception (Beynnon et al., 2001; Zazulak et al., 2007). 

 Core stability is also influenced by the regional interdependence of the hip, pelvis, 

and lumbar spine, in which perturbations or interventions to any one region of the core 

can influence the function and outcome of other regions not directly affected (Sueki et al., 

2013; Wainner et al., 2007). The three-dimensional orientation of the pelvis during 

movement is a key component in hip/spine regional interdependence given its influential 

role on the muscle force parameters (i.e., muscle length, moment arm length) of the hip 

abductors (Delp et al., 1999; Kibler et al., 2006). Using a simulated hip model, Merchant, 

(1965) demonstrated that abnormal hip rotation (both internal and external) reduced the 

mechanical advantage of the hip abductor muscles and presented a greater challenge for 

these muscles to control pelvis and trunk orientation during weight bearing.   

 Of the hip abductor muscles, the gluteus medius plays a significant role in core 

stability, and is linked to regional injury and dysfunction. The gluteus medius is one of 
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the strongest lower extremity muscles based on physiological cross-sectional area and 

architecture with lines of action in multiple movement planes. The gluteus medius is 

made up of three nearly equal sized sections in a fanned shape with origins that span the 

outer surface of the ilium and insert at the superior region of the greater trochanter (Ward 

et al., 2009). Because of the size and architecture, gluteus medius dysfunction has been 

associated with injuries superior to the pelvis in the upper extremities (Oliver, 2014; 

Plummer and Oliver, 2014) and lower back (Nelson-Wong et al., 2008), as well as 

inferior to the pelvis at the hip (Bolgla and Uhl, 2005), knee (Crossley et al., 2012), and 

ankle (Beckman and Buchanan, 1995). The link between the gluteus medius muscle 

function and injury risk may be a result of weakness in this muscle, which results in poor 

core stability (Wilson, 2005) and excessive hip, pelvic, and trunk kinematics during 

weight-bearing activities (Powers, 2010; Souza and Powers, 2009; Thijs et al., 2007). 

Alterations in the neuromuscular control parameters of the gluteus medius characterized 

by reduced activation, delayed onset, and decreased activation duration (Aminaka et al., 

2011; Beckman and Buchanan, 1995; Brindle et al., 2003; Cowan et al., 2009; Santos et 

al., 2013; Willson et al., 2011) are also associated with abnormal hip, pelvic, and trunk 

kinematics for individuals with movement based problems (Barton et al., 2013).  

The function of the gluteus medius to regulate core stability during movement 

may be enhanced with the use of external support. Traditional attempts to treat pathology 

associated with gluteus medius has focused on strength training. Although strength 

training has demonstrated short-term success in relieving pain and improving joint 

kinematics, it may not be effective at preventing these issues from recurring (Blond and 

Hansen, 1998; Ferber et al., 2010). Hip abduction bracing has long been used in 



19 
 

rehabilitation following hip surgery to provide mechanical assistance with joint stability 

as well as improved proprioceptive feedback to enhance joint positional awareness 

(DeWal et al., 2004; Kelly et al., 2005). However, bracing can be cumbersome and 

restrict joint mobility. A more recent approach to external support incorporates two or 

more fabrics with varying mechanical properties that when combined in a garment 

applies a directional pattern of compression to the body. A recent study demonstrated that 

these garments reduced the demand on hip musculature during high-demand tasks 

(Chaudhari et al., 2014), but the influence on kinematics and kinetics remains unknown.  

It may be possible for external support of the gluteus medius through directional 

compression to improve sensory feedback and mechanical stability within the core. 

Therefore, the objective of this study was to assess the effects of a novel support garment 

with directional compression on core proprioception and dynamic stability during 

dynamic tasks. We hypothesized that (1) core support would improve performance during 

a proprioception-based task of unstable sitting and that (2) core support would alter the 

kinematics and kinetics of the lower extremity by redirecting ground reaction forces 

during a single leg landing task.  

 

3.3 Methods 

Fourteen healthy participants (9 male, 5 female) that were free of neurological 

illness and musculoskeletal injury performed unstable sitting and single leg landings with 

(CS) and without (WOS) external core support. During the WOS condition, each 

participant wore a standard form-fitting short (Under Armour, Inc., Baltimore, MD). 

During the CS condition, each participant wore the CoreTec short (Opedix LLC, USA) 
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that was designed to provide directional compression that replicates the function of the 

hip abductor muscles with diagonal bands of fabric with low elasticity spiraling 

downwards from the waist and hips to the thighs.  This banding pattern is overlaid onto a 

standard compression base layer with high elasticity (Figure 3.1). Fit was determined 

based on manufacturer’s guideline using the waist circumference of the participant. To 

prevent systematic bias in the data, task order was randomly selected and order of core 

support was balanced across the participants. All procedures were approved by the 

Institutional Review Board and all participants signed an informed consent form prior to 

participation.  

 

3.3.1:Unstable Sitting 

Core proprioception was assessed while each participant sat on an unstable 

surface composed of a chair affixed on a hemisphere (Figure 3.2). The center of the 

hemisphere was placed behind the front edge of the chair at 75% of the participant’s 

femur length. To prevent lower-body movement while sitting on the chair, leg and foot 

supports were adjusted so that the feet were flat and both ankle and knee angles were 90º 

in the sagittal plane. The feet were aligned to the posterior edge of the foot support. To 

balance the mass of the chair supports with the mass of the feet and legs of the 

participant, a 12-kg mass was placed on a horizontal arm that extended posteriorly from 

the leg and foot support and centered along the medial/lateral axis of the chair. The 

location of the mass was adjusted in the anterior or posterior direction so that each 

participant could maintain an upright torso when the chair surface was level. A horizontal 
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safety railing was positioned in front of the chair and vertically adjusted to chest height 

while the participant was seated.  

Each participant grasped the safety railing between the trials to prevent additional 

learning between trials. At the initiation of each trial, the participant released the safety 

railing, immediately crossed their arms in front of them with their hands on their 

shoulders with arms tucked in, and kept the chair as still as possible for 10 seconds while 

maintaining an upright torso posture. Three trials with eyes open (EO) and eyes closed 

(EC) were collected under two levels of task difficulty by changing the diameter of the 

sphere: 39 cm diameter (more difficult) and 44 cm diameter (less difficult). Retro-

reflective markers were placed on the corners of the chair surface. Two variables that 

describe core proprioception performance were calculated during the first five seconds of 

each sitting trial: average velocity and maximum displacement of the three-dimensional 

location of the markers. 

 

3.3.2: Single Leg Landing 

Each participant performed three single leg landings by jumping with their 

dominate leg onto a force platform from a horizontal distance equal to their greater 

trochanter height. Each participant was instructed to jump and land on a target located on 

the force plate, balance as fast as possible, and remain balanced for five seconds. Trials 

wherein the participants missed the landing target or demonstrated a loss of balance that 

included a touch down with their non-weight-bearing leg were recollected. 

Each participant was instrumented with 44 retro-reflective markers and three-

dimensional coordinates were captured (100 Hz) with an eight-camera motion capture 
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system (Vicon, Centennial, CO). Ground reaction forces under the landing leg were 

measured (1000 Hz) with a force platform (Bertec, Columbus, OH). Kinematics and 

kinetics of the lumbar spine, pelvis, hip, knee, and ankle between ground contact and five 

seconds following contact were calculated using the gait2392 model in OpenSim (Delp et 

al., 2007). Models were scaled for each participant based segment dimensions calculated 

from marker locations.  

The frontal plane moment arm of the ground reaction force was calculated at the 

ankle, knee, and hip (Shelburne et al., 2008, 2006) by projecting the ground reaction 

force vector to the height of the joint and calculating the horizontal distance between the 

ground reaction force vector and joint center (Figure 3.3). Four variables that described 

the moment arm were calculated: average moment arm, standard deviation of the moment 

arm, maximum excursion during the landing task, and the moment arm at peak ground 

reaction force. 

 

3.3.3: Data Analysis 

 For the variables from each task (single leg landing, unstable sitting), the three 

trials collected for each participant were averaged with each condition to create the 

dependent variables used in the statistical analyses. Paired t-tests were used to assess the 

effect of external core support conditions (CS, WOS) on the single leg landing task (peak 

ground reaction forces, moment arm variables, kinematics, and joint kinetics). A three-

way repeated measures ANOVA with Bonferroni post-hoc comparisons were used to 

compare the effects of external core support (CS, WOS), visual input (EO, EC), and task 

difficulty (less difficult, more difficult) on core proprioception performance during 
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unstable sitting (average velocity, maximum displacement). Alpha level was set at 0.05 

for all inferential comparisons. 

 

 

3.4: Results 

3.4.1: Unstable Sitting 

The average velocity of 3D path length significantly increased with increasing 

task difficulty for each condition (P<0.001) (Figure 3.4). A greater increase in 3D path 

length velocity was observed between eyes open/closed conditions (avg: 71.1% 

difference; P<0.001) than more/less difficult sphere (avg: 20.6% difference; P <0.001). 

However, the increase in average path length velocity that occurred when visual input 

was removed was 19.1% smaller on average with the addition of core support (P=0.040). 

The reduction in average velocity of the 3D path length by CS was the greatest when task 

difficulty was the highest with the more difficult sphere and when visual input was 

removed (23.2 vs. 19.9 mm/s; P=0.028). Additionally, the maximum 3D path length 

increased with greater task difficulty (P<0.001) and the increase was an average of 

18.9% less with CS across all conditions (P=0.010). 

 

3.4.2: Single leg Landing 

The jump that proceeded the single leg landing was performed the same in both 

external support conditions as indicated by the lack of statistical differences in all initial 

contact kinematics. During the single leg landing, frontal plane hip range of motion and 
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pelvis range of motion were not statistically different between external support conditions 

(hip: P=0.450; pelvis: P=0.800) (Table 3.1). 

The peak hip abductor moment was reduced on average by 6.3% when landing 

with CS (WOS: -123.4 ± 35.8 Nm vs. CS: -115.0 ± 25.4 Nm; P=0.041;) (Table 3.2). 

Further analysis revealed that the magnitude of the peak vertical and mediolateral ground 

reaction forces were reduced 6.5% and 10.8% during the CS condition (vertical, 

P=0.033; mediolateral, P=0.098) (Figure 3.5). 

Lower extremity joint moments were affected by the direction of the GRF relative 

to each joint center. Frontal plane GRF moment arm at the ankle joint was not 

significantly different between core support conditions; however, the knee and hip joint 

moment arms decreased with core support (Figure 3.6). There were significant reductions 

in the excursion of the moment arm over the landing task at the knee (CS: -3.28±1.56 vs. 

WOS: -3.83±1.84 cm; P=0.030) as well as the amount of variability in the moment arm 

values at the knee (CS: 0.83±0.41 vs WOS: 1.08±0.46 cm; P=0.049) and hip (CS: 

1.15±0.52 vs. WOS: 1.77±0.66 cm; P<0.001). Notably, the moment arm at peak GRF 

reduced by an average of 0.9 cm at the knee joint (CS: -1.22±1.16 vs. WOS: -2.27±1.68 

cm; P<0.001) and 1.9 cm at the hip joint (CS: -4.71±1.64 vs. WOS: -6.79±1.53 cm; P 

<0.001) with core support.  

Differences in forces and moments during the landing task may have been 

associated with small differences observed in lumbar angles between the CS and WOS 

conditions. There was an average 7.5% reduction in lateral bending excursion with CS 

(P=0.030). Additionally, there was a trend toward a reduction in the overall amount of 

variability in lateral bending throughout the landing task (Table 3.3). 
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3.5: Discussion 

Core support designed to support gluteus medius function produced significant 

improvements in core proprioception and dynamic stability during unstable sitting and 

single leg landing, respectively. This study was designed to assess the proprioceptive 

effects of the support garment during an isolated core activity, and the mechanical effects 

on the lower extremity during a whole-body dynamic task. Expected decreases in 

unstable sitting performance due to the removal of visual input and increased task 

difficulty were reduced with core support. During the single leg landings, core support 

resulted in subtle but significant reductions in the vertical ground reaction force and the 

peak frontal plane hip moment. These findings indicate that core support directed at the 

proprioceptive and mechanical contributions of the hip abductor group may be beneficial 

in avoiding injuries and pathological conditions that arise from a lack of core stability.  

A significant improvement in unstable sitting performance occurred with external 

core support, and indicates the importance of support location when targeting core 

proprioception. During unstable sitting, the muscles of the trunk are considered to be the 

primarily stabilizers, with pelvis and lower extremity muscles functioning in a secondary 

role. Although the primary purpose of the garment design was to influence the gluteus 

medius muscle, a substantial proprioceptive effect occurred. In contrast, a prior 

investigation on lumbar bracing and unstable sitting did not find the same proprioceptive 

effect (Reeves et al., 2006). This may indicate that the central nervous system is more 
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sensitive to external support that interacts with the hip and pelvis than the lumbar region 

alone. 

Changes in single leg landing performance with external support demonstrated the 

regional effects of the core support and the ability to alter the mechanical influence of the 

gluteus medius during the landing. A single leg landing is a high-demand task that 

requires the hip abductor group to maintain lateral balance, and is often used as a clinical 

measure of dynamic stability (Scott et al., 2005; Willson and Davis, 2008). There were no 

differences in landing task up to and including the point of initial contact, which 

demonstrates that participants maintained similar lower-extremity kinematics and kinetics 

between the two support conditions. Following initial contact, core support resulted in 

decreased vertical ground reaction force (6.5% reduction) and decreased frontal plane hip 

moment (6.3% reduction). These decreases occurred along with a redirection of ground 

forces by an average of 0.9 cm at the knee and 1.9 cm at the hip at the point of peak 

ground reaction force. Additionally, a reduction in moment arm excursion (14.1% at the 

knee) and a reduction in moment arm variability (23.1% at the knee; 35.0% at the hip) 

throughout the trial indicate that core support led to fewer large corrective movements as 

well as fewer corrective movements in general. Core support targeted at enhancing the 

function of the gluteus medius takes advantage of the fact that the gluteus medius has a 

moment arm much longer than other lower extremity muscles that control frontal plane 

movement, and is more effective than other lower extremity muscles at repositioning the 

body center of mass in response to perturbations (Hoy et al., 1990; S. P. Lee et al., 2012). 

Core support may help diminish the effects of weakened hip abductors and assist 

patients with alignment-based joint pathologies. Popovich and Kulig (2012) reported that 
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females with weak hip abductor muscles demonstrated greater peak lumbopelvic 

displacement and excursion during single leg landing, which can lead to increased 

muscular demand and loading in the lumbopelvic region. This agrees with our findings 

that without core support, participants demonstrated 7.5% greater lateral bending 

excursion and greater lateral bending variability during the single leg landing. Lee et 

al.,(2012) demonstrated that hip abductor weakness was associated with poor 

performance during a single leg step down task. Performance for these individuals was 

improved with the addition of a hip abductor stabilizing brace. Radebold et al.,(2001) 

demonstrated that patients with low back pain perform worse than healthy controls during 

unstable sitting and that the differences between groups were greatest when task 

difficulty was the highest and visual input was removed. Similar to our findings in 

healthy participants, core stability in low back pain patients may improve with the use of 

core support.   

There are limitations to this investigation that should be noted when interpreting 

the results. First, the model used to quantify single leg landing kinematics and kinetics 

did not include multiple degrees of freedom at the ankle and knee. The model was 

intended to address the primary focus of this investigation: the hip, pelvis, and lumbar 

region. Second, the effects of core support were noted only for a single laboratory 

session. Participants did not have multiple days to acclimate to the effect of the external 

support. This investigation demonstrated an immediate motor adaptation to core support 

that now warrants further investigation to assess the influence of core support on motor 

learning over longer experimental durations.  
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3.6 Conclusion 

A novel external core support garment demonstrated significant improvements in 

core proprioception in addition to changes in both upper and lower extremity mechanics 

during dynamic stabilizing tasks. Continued used of clinical practices and supportive 

technology that take advantage of the interdependence of the lumbopelvic region and the 

vital role of the hip abductors may lead to improved clinical outcomes and decreases in 

injury rates.  

3.6.1 Key Points 

FINDINGS: Core support designed to enhance the function of the gluteus medius 

produced an immediate motor adaptation resulting in significant improvements in 

dynamic stability and core proprioception. 

IMPLICATIONS: Core support can enhance the function of the hip abductors and 

assist patients with alignment based joint pathologies. 

CAUTION: Participants did not have multiple days to acclimate to the effect of 

the external support and further investigation is needed to determine the influence 

of core support over longer experimental durations. 
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Table 3.1: Average kinematics at the point of initial contact ±1 standard deviation. P-

values from the paired t-tests used to compare core support (CS) and without core support 

(WOS). * indicates significance of P<0.05. 

  

Without Core 

Support  
Core Support 

 
P 

Hip Flexion Angle (deg) 
 

-28.1±7.4 
 

-29.8±8.2 
 

0.308 

Hip Adduction Angle (deg) 
 

-8.3±3.8 
 

-7.9±4.5 
 

0.698 

Knee Flexion Angle (deg) 
 

-21.5±6.0 
 

-22.2±7.9 
 

0.633 

Ankle Flexion Angle (deg) 
 

4.8±6.8 
 

6.1±5.0 
 

0.330 

Pelvis COM Contact Velocity 

- Vertical (m/s)  
0.33±0.11 

 
0.36±0.08 

 
0.242 

Pelvis COM Contact Velocity 

- AP (m/s)  
0.60±0.12 

 
0.61±0.10 

 
0.355 

 

Table 3.2: Average peak joint moments ±1 standard deviation at the ankle, knee, and hip 

without core support and with core support. P-values from the paired t-tests used to 

compare core support (CS) and without core support (WOS). * indicates significance of 

P<0.05. 

 

Without Core Support 

 

Core Support 

 

P 

Sagittal Hip 148.3±59.6 

 

147.5±57.9 

 

0.827 

Frontal Hip -125.6±35.7 

 

-117.7±25.7 

 

*0.044 

Sagittal Knee 181.1±49.2 

 

189.7±59.5 

 

0.309 

Sagittal Ankle 142.1±56.1 

 

129.5±51.2 

 

*0.035 
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Table 3.3: Average ±1 standard deviation position throughout the landing task, the 

average amount of variability over the task and the average excursion of lumbar angles 

for flexion, lateral bending, and twisting in degrees. * indicates significance of P<0.05. 

Lumbar Flexion 

Without Core  

Support 

 

Core Support P 

Mean 27.97±9.21 

 

25.84±6.47 0.250 

Mean Variability (Std) 2.64±1.19 

 

3.02±1.33 0.159 

Excursion 11.58±4.05 

 

12.83±4.70 0.281 

Lumbar Bending 

Without Core  

Support 

 

Core Support P 

Mean 4.64±4.39 

 

3.37±4.34 0.099 

Mean Variability (Std) 2.42±1.48 

 

2.25±1.46 0.053 

Excursion 11.44±5.15 

 

10.63±4.85 *0.031 
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Figure 3.1:  The CoreTec short (Opedix LLC, USA) with arrows indicating the design 

providing directional compression that replicates the function of the hip abductor muscles 

with diagonal bands of fabric with low elasticity spiraling downwards from the waist and 

hips to the thighs.  This banding pattern is overlaid onto a standard compression base 

layer with high elasticity and is designed to facilitate neuromuscular control of pelvic 

orientation, hip adduction, and hip external rotation. 
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Figure 3.2: Unstable sitting experimental setup (left). A chair was affixed 

over an adjustable hemisphere (top right) while an adjustable 12-kg counter 

weight was attached to the foot plate of the chair (bottom right) to offset the 

mass of the feet and legs. 
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Figure 3.3: Ground reaction force moment arm was assessed at the ankle, knee, and hip 

by calculating the horizontal distance between the projection of the ground reaction force 

vector and the joint center location in the frontal plane. A distance of zero indicates that 

the ground reaction force passed directly through the joint center, a positive value 

indicates the ground reaction force vector was medial to the joint center, and a negative 

value indicates the ground reaction force vector was lateral to the joint center. 
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Figure 3.4: Average velocity and average maximum displacement ±1 

standard deviation of three-dimensional path length during unstable 

sitting for each combination of the four task difficulty conditions; easy 

or hard sphere size and eyes open or eyes closed 
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 Without Support 

Core Support 

Figure 3.5: Average ± 1 standard deviation of the vertical ground reaction force across 

three landing trials without core support and with core support for a representative 

participant. The vertical ground reaction force was reduced by 6.3% on average with 

core support compared to without core support. 
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Figure 3.6: Average ± 1 standard deviation excursion (top left), ground reaction force 

(GRF) moment arm length (top right), variability (bottom left), and value at peak 

ground reaction force (bottom right) for the ground reaction force moment arm at the 

ankle, knee, and hip. 
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CHAPTER 4 – A REVIEW OF PROBABILISITIC METHODS AND THEIR 

APPLICATIONS IN ORTHOPAEDIC AND MUSCULOSKELETAL MODELING 

This chapter will introduce the probabilistic approach and describe the theory and 

methodology involved in implementing two probabilistic methods that are used in this 

dissertation and applied to the concept of regional interdependence using musculoskeletal 

modeling. It further discusses the application of these methods in orthopaedic 

investigations and software tools for the implementation of the probabilistic approach.  

 

4.1 Introduction to Probabilistic Approach 

Variability is present in many aspects of biomechanics and orthopaedics. 

Additionally, many of the tools and methods that are used are influenced by measurement 

error and uncertainty. Factors such as patient anthropometry, joint kinematics, soft tissue 

material properties and joint loading are all inherently variable and subject to error during 

assessment. The use of probabilistic methods allows investigators to quantify the impact 

of uncertainty and patient variability as well as determine the most important factors that 

influence the resulting outputs.  

Probabilistic methods use input distributions defined by the investigator to predict 

an output distribution for a given model (Figure 1). The identification of the input 

distributions is crucial because there is a direct effect on the predicted output distribution. 

This approach is in contrast to a more standard study design that would take a 
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deterministic approach to exactly determine an output for a specific set of given inputs. In 

probabilistic studies, each of the input parameters is represented as a distribution instead 

of a single value. The distribution characterizes the range of possible outcomes and the 

likelihood associated with those outcomes. It is then possible to determine model output 

sensitivity by identifying the most influential input parameters in determining the range 

of possible outcomes and explore how different input and output responses interact 

together. This is in contrast to a traditional sensitivity study that in somewhat limiting by 

individually varying a single input by a fixed magnitude and measuring the resulting 

change in the output (Scovil and Ronsky, 2006).  Probabilistic modeling was developed 

for applications in structural reliability (Melchers, 2001; Riha et al., 2006; Thacker et al., 

2006) but there have been more recent applications in orthopaedic (Fitzpatrick et al., 

2011; Laz et al., 2006)  and musculoskeletal modeling (Langenderfer et al., 2008; 

Reinbolt et al., 2007; Valente et al., 2013). 

 

4.2 Outputs from the Probabilistic Approach 

Two commonly used results from a probabilistic approach, which are used 

throughout this dissertation, are confidence bounds and sensitivity factors.  

4.2.1: Confidence Bounds 

 Confidence bounds represent a two-sided bound that provides the probable range 

in which the output of the model will occur. Different values can be selected for the 

probabilities that the bounds represent depending on the size of the distribution that the 

investigator is intending to quantify, with common approaches using 1-99% (Pal et al., 



39 
 

2007) or 5-95% (Fitzpatrick et al., 2012a). Currently, standards do not exist on selection 

of confidence bound sizes. If the 5-95% confidence bounds are identified, this indicates 

there is a 90% probability that that true model output lies between the lower and upper 

confidence bounds. Confidence bounds should be distinguished from confidence 

intervals. Confidence bounds approximate the value of a model output and are calculated 

from repeated numerical simulations, where confidence intervals typically approximate 

the mean of an entire population based on a sample data set that includes multiple 

participants. However, when the output distribution of a probabilistic simulation is 

Gaussian, the two-sided confidence bounds can be interpreted in a similar manner as a 

confidence interval (Curran-Everett, 2009). Quantifying the range of possible outcomes 

for any model output based on the variability in the inputs provides researchers and 

clinicians with a complete assessment of model performance when using outputs to test 

hypotheses and inform clinical decisions.   

4.2.2 Sensitivity  

In addition to the value offered from the calculation of confidence bounds, 

another strength of the probabilistic approach is the insight into model sensitivity that can 

be gained. Models are determined to be sensitive to input parameters if the variability or 

uncertainty associated with an input parameter is propagated through the model and 

results in a large contribution to the overall output variability (Hamby, 1994). 

Probabilistic methods can generate relative or absolute sensitivities depending on the 

method that is used. A common way to quantify relative sensitivity is to calculate 

Pearson Product-Moment Correlations between the input values selected from the defined 
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distribution and the resulting output values.   A correlation coefficient represents the 

degree of linear dependence between variables; a value of 1 or -1 represents a direct 

relationship between an input variable and an output measure, while a value of 0 

represents no influence of the input variable on the output measure.  Further distinction 

can be made to categorize the degree of the sensitivity relationship with correlations 

coefficients using: weakly sensitive (r=0.2-0.4), moderately sensitive (r=0.4-0.6) and 

highly sensitive (r=0.6-1.0). In addition, the slope of the regression provides information 

about what the expected change in the output is for a given change in the input.  

Importance factors may be evaluated that give the change in probability with 

respect to the mean and standard deviation (Wu, Y et al., 1990). Importance factors are 

commonly generated from probabilistic approximation methods, are non-dimensional and 

allow comparisons to be made between all of the variables considering the characteristics 

of each variable’s input distribution. These sensitivities indicate how much the mean and 

standard deviation of each random variable contributes to the variability in the output. 

 

4.3 Probabilistic Methods 

While there are many methods that can be used to calculate confidence bounds 

and sensitivity factors in a probabilistic approach, the two that will be a focus throughout 

this dissertation are Monte Carlo and the approximation method of Advanced Mean 

Value (AMV). 
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4.3.1 Monte Carlo 

The Monte Carlo method is a commonly applied method in many fields of science 

and engineering that involves randomly sampling values for each variable of interest 

according to a predefined distribution and predicting the distribution of the output 

through repeated trials. The Monte Carlo method requires that the distributions of all 

included probabilistic variables be known completely. The methodology consists of 

selecting a single random sample for the assumed probability distribution of each 

parameter, which then is treated deterministically, to provide one realization (trial) of the 

output. The Monte Carlo method is referred to as the ‘gold standard’ because it will 

always converge to the correct solution. However it is computationally expensive as the 

accuracy of the solution is dependent on the number of trials.  

It should be noted that a variation of Monte Carlo simulation that offers greater 

efficiency is Latin hypercube sampling. In the random sampling of Monte Carlo 

simulation, new samples are generated without accounting for previously sampled points 

and it is not necessary to know beforehand how many sample points are needed. In Latin 

hypercube sampling, sample points are spread evenly across the possible values. The 

range of potential inputs is partitioned into intervals of equal probability and a sample is 

selected from each interval. Latin hypercube sampling can be used to offset the cost of 

the Monte Carlo method and provide similar results.      

Various studies that used the Monte Carlo method in orthopaedic and 

musculoskeletal modeling applications were instrumental in the design of the methods 

used in this dissertation. Fitzpatrick et al., (2012) combined finite element and 
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probabilistic methods in four separate Monte Carlo simulations to assess the impact of 

variability from sources that included patient, surgical procedure and implant design on 

total knee replacement performance. This method allows for the source of uncertainty 

with the greatest influence to be identified as well as the individual parameters within that 

source to be identified. Reinbolt et al., (2007) implemented a two staged approach that 

applied optimization and Monte Carlo analysis to evaluate the importance of joint 

parameters (axis positions and orientations) and inertial parameters (segment masses, 

mass centers, and moments of inertia) for obtaining accurate inverse dynamics results of 

gait. The study found that inverse dynamics solutions were impacted more by joint axis 

positions and orientations that are commonly defined by markers placed on the skin than 

by segment inertial parameters. Valente et al., (2013) performed a Monte Carlo analysis 

on OpenSim simulations of gait to simulate weakness in the hip abductor muscles of 

healthy subjects. This study identified that hip muscle weakness had a greater influence 

on knee loading that on hip loading which may be a factor is osteoarthritis. However, it 

was noted as a limitation that it required over 250 hours of computational time to 

generate the results for this study.  

4.3.2: Advanced Mean Value Approximation Method 

Approximation methods offer a means to perform probabilistic studies with 

greater efficiency. Models that are highly complex can prohibit the use of sampling 

techniques, such as Monte Carlo and Latin hypercube, because of long model run times. 

The most probable point (MPP) approximation methods are considerably more efficient 

than the Monte Carlo simulation because fewer iterations are necessary to generate 
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similar outputs. While these methods are approximations, they have been shown to be 

accurate in comparison to Monte Carlo.  

The MPP represents the combination of input parameter values that predict the 

model output at a specific probability level. The mean value method is one of the MPP 

methods that maps the original random variables into independent standard normal 

variables and constructs a mean-based response function to compute the MPP for the 

specified probability levels (Figure 2). It is a first-order method that can provide a good 

approximation of the solution near the mean, but can deviate significantly for probability 

levels in the outer tails for non-linear problems.  

The mean value method requires n+1 trials, where n is the number of random 

variables. The AMV method (Wu, Y et al., 1990) uses higher-order terms to achieve a 

better representation of the output and requires n+1+m trials, where m is the number of 

specified probability levels (Laz and Browne, 2010). Confidence bounds are calculated 

by specifying the desired probability level for the upper and lower bound. Sensitivity 

factors are calculated from the unit vector specifying the MPP in the transformed 

standard normal variate space (Haldar and Mahadevan 2000; Easley et al. 2007) 

 Langenderfer et al. (2009) used AMV to calculate 1-99% bounds in shoulder 

kinematics that considered the impact of uncertainty in anatomical landmark location and 

performed a comparison with Monte Carlo to assess the accuracy of AMV for this model. 

Excellent agreement was found between results obtained with the AMV and Monte Carlo 

methods with an average difference of 0.188 deg between the 1-99% bounds in shoulder 
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angles between the two methods. Convergence of the AMV analysis to the Monte Carlo 

results in this study was based on 2500 trials. Pal et al. (2007) implemented the AMV 

method with a finite element based musculoskeletal model of the lower extremity to 

assess the effects of uncertainty in origin-insertion and kinematic variability on moment 

arm calculations in major lower extremity muscles. In this study design, the AMV 

method required 189 iterations to generate 1-99% bound in comparison to the greater 

than 1000 Monte Carlo trials that would have been necessary.  

The AMV method cannot be used in every musculoskeletal modeling application 

because of tradeoffs between accuracy and efficiency. As the need to assess results from 

multiple input variables at many different probability levels increases, the computational 

savings of AMV is reduced and the more robust Monte Carlo method should be used. 

Additionally, when multiple combinations of input parameters result in the same output, 

the AMV method will have difficulty converging on a meaningful solution. It is 

recommended that prior to proceeding with the use of the AMV method with models that 

is has not been previously validated on, the outputs should be compared to those from a 

Monte Carlo simulation.  

 

4.4 The OpenSim Probabilistic Plugin  

 

A probabilistic study will generate large volumes of output data that must be 

reduced to the key results and effectively visualized to be most beneficial to investigators 

and clinicians. The continued development of accurate probabilistic analysis methods and 
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the software tools capable of interfacing these methods with modeling platforms can 

greatly improve the use and interpretation of modeling outputs. 

The need for software tools capable of integrating probabilistic methods with 

modeling tools has been around for over twenty years.  The Southwest Research Institute 

has been addressing the need for efficient probabilistic analysis methods through the use 

of the NESSUS probabilistic analysis software (SwRI, San Antonio, TX). NESSUS can 

be used to simulate uncertainties in loads, geometry, material behavior, and other user-

defined random variables to predict the probabilistic response, reliability and 

probabilistic sensitivity measures of a wide range of systems. NESSUS allows the user to 

perform probabilistic analysis with analytical models, external computer programs such 

as commercial finite element codes, and general combinations of the two. Many of the 

studies referenced above used the NESSUS software to interface with a modeling 

platform and generate their probabilistic outputs. Eleven probabilistic algorithms are 

available in NESSUS including the Monte Carlo and AMV methods (Thacker et al., 

2006). 

 NESSUS is a commercial software product, where recently there have been large 

increases in both the amount and complexity of musculoskeletal modeling that is being 

done in the open source environment of OpenSim. OpenSim does not currently include 

the capability to perform probabilistic analyses within the software. To achieve the 

objectives of this dissertation, a probabilistic plugin was modeled after NESSUS and 

designed to interface with OpenSim to implement the probabilistic methods of Monte 

Carlo and AMV. The plugin functions with any of the OpenSim tools (e.g. Inverse 

Dynamics, Static Optimization, ect.) and provides a graphical user interface to guide 
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users through the setup of probabilistic analyses and generate visualizations of results for 

interpretation. A user manual with tutorial examples was created (Appendix) and the tool 

was made available to OpenSim users (simtk.org/prob_tool). The following chapters will 

use the OpenSim probabilistic plugin and describe studies where it was applied.      

 

 Figure 4.1: Illustration of the probabilistic approach in which inputs are defined as 

distributions and the resulting output distributions are predicted for a given model. 

  

Figure 4.2:  The most probable point (MPP) methods find the MPP along the limit state 

equation. The MPP represents the shortest distance to the origin in the standard normal 

space and the highest frequency along the limit state equation (NESSUS Theoretical 

Manual, 2001). 
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CHAPTER 5 – A PROBABILISTIC APPROACH TO QUANTIFY THE IMPACT OF 

UNCERTAINTY PROPAGATION IN MUSCULOSKELETAL SIMULATIONS 

 

This chapter is the initial application of the application of the probabilistic tool 

described in the Appendix. This chapter is a study that assessed the propagation of 

uncertainty in a musculoskeletal simulation of gait.  

 

5.1: Abstract 
 

Uncertainty that arises from measurement error and parameter estimation can 

significantly affect the interpretation of musculoskeletal simulations; however, these 

effects are rarely addressed. The objective of this study was to develop an open-source 

probabilistic musculoskeletal modeling framework to assess how measurement error and 

parameter uncertainty propagate through a gait simulation. A baseline gait simulation was 

performed for a male subject using OpenSim for three stages: inverse kinematics, inverse 

dynamics, and muscle force prediction. A series of Monte Carlo simulations were 

performed that considered intrarater variability in marker placement, movement artifacts 

in each phase of gait, variability in body segment parameters, and variability in muscle 

parameters calculated from cadaveric investigations. Propagation of uncertainty was 

performed by also using the output distributions from one stage as input distributions to 

subsequent stages. Confidence bounds (5-95%) and sensitivity of outputs to model input 

parameters were calculated throughout the gait cycle. The combined impact of 
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uncertainty resulted in mean bounds that ranged from 2.7 to 6.4 deg in joint kinematics, 

2.7 to 8.1 N•m in joint moments, and 35.8 N to 130.8 N in muscle forces. The impact of 

movement artifact was 1.8 times larger than any other propagated source. Sensitivity to 

specific body segment parameters and muscle parameters were linked to where in the gait 

cycle they were calculated. We anticipate that through the increased use of probabilistic 

tools, researchers will better understand the strengths and limitations of their 

musculoskeletal simulations and more effectively use simulations to evaluate hypotheses 

and inform clinical decisions. 

 

5.2: Introduction 

Simulation of human movement has significantly impacted approaches to clinical 

treatment of cerebral palsy, lower extremity amputees, and osteoarthritis(Delp et al., 

1998, 1996; Fregly et al., 2007; Shelburne and Pandy, 1998; Silverman and Neptune, 

2012; Valente et al., 2013) as well as basic science related to the understanding of 

movement progression and control during dynamic tasks.(Anderson et al., 2004; Neptune 

et al., 2009; Thelen and Anderson, 2006; Zajac et al., 2002) Because these simulations 

often combine human movement data measured in the laboratory with mathematical 

models of the musculoskeletal system, accurate estimations of biomechanical outputs 

such as intersegmental joint loads, muscle activation/coordination, and muscle force are 

possible.(Fregly et al., 2012) The experimental methods used to create anatomic detail in 

musculoskeletal models have improved over the past decade through direct measurement 

of  sarcomere length(Klein Horsman et al., 2007) and increased cadaveric sample 

sizes,(Ward et al., 2009) which has led to enhanced accuracy of simulations specific to 
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individual patients. As the field of musculoskeletal simulation progresses, the use of 

simulation to create individual and population-based treatments will increase.  

Outputs from musculoskeletal simulations are affected by measurement error and 

model parameter uncertainties that are important to consider when interpreting results. A 

common approach to musculoskeletal simulations contains three sequential stages 

(inverse kinematics, inverse dynamics, and muscle force prediction); therefore, the 

uncertainty introduced at earlier stages can propagate through the process and produce a 

range of possible results within subsequent stages. In the first stage, inverse kinematics 

are commonly calculated from marker-based motion capture, where placement and 

motion of markers relative to anatomic landmarks can introduce measurement 

error.(Chiari et al., 2005; Della Croce et al., 1999; Gao and Zheng, 2008) In the second 

stage, inverse dynamics are influenced by inverse kinematics from the first stage and by 

estimates of body segment parameters (mass, center of mass, moment of inertia), which 

are commonly calculated from regression equations based on cadaveric 

investigations.(Chandler et al., 1975; Dempster, 1955) In the third stage, muscle force 

prediction utilizes the data from inverse kinematics, inverse dynamics, and a Hill-type 

muscle model that includes anatomic and physiologic parameters (maximum isometric 

force, optimal fiber length, tendon slack length, pennation angle) that are estimated from 

cadaveric investigations.(Arnold et al., 2010; Ward et al., 2009) Because each of these 

simulation inputs introduce uncertainty, it is important that interpretation and clinical 

decision-making consider that the output taken from a single set of input parameters lies 

within a range of possible solutions. 
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 Probabilistic analyses provide comprehensive methods to simultaneously quantify 

the impact of uncertainties that arise from multiple sources. These techniques were 

developed in structural reliability engineering(Melchers, 2001), and have been applied in 

other biomechanical applications.(Laz and Browne, 2010) The primary metrics for used 

to quantify the impact of uncertainty from these analyses are confidence bounds and 

sensitivity factors. Confidence bounds provide the output levels associated with specific 

probability (e.g. 5% and 95%) and sensitivity factors(Hamby, 1994) provide insight on 

how changing an input parameter affects the simulation output. The probabilistic method 

familiar to most researchers is Monte Carlo simulation, which is a repeated sampling 

method that models inputs according to predetermined probability distributions and 

presents the outputs as distributions.(Halder and Mahadevan, 2000) Recent 

musculoskeletal studies have used repeated sampling methods to quantify output 

variability and sensitivity of inverse dynamics and muscle force prediction to variability 

in model parameters.(Ackland et al., 2012; Goehler and Murray, 2010; Langenderfer et 

al., 2008; Nguyen and Reynolds, 2014; Scovil and Ronsky, 2006; Valente et al., 2013) 

Although these studies provide insight into factors that affect a particular model at a 

single stage in the simulation, the current study introduces new methodology to 

musculoskeletal simulation practices that characterizes the impact and interaction of 

multiple sources of uncertainty, and quantifies the propagation of uncertainty through 

each stage of the musculoskeletal simulation process. 

When developing musculoskeletal simulations for research or clinical decision 

making, understanding and reporting the output confidence and sensitivity to a range of 
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known possible inputs should be standard practice. However, an accessible toolset and 

standard methods to report these results currently do not exist in the musculoskeletal 

community. The objective of this investigation was to develop an open-source 

probabilistic musculoskeletal modeling framework to assess how measurement error and 

parameter uncertainty propagates through the outputs of each simulation stage: (1) joint 

angles from inverse kinematics, (2) joint moments from inverse dynamics, and (3) muscle 

forces from static optimization. The probabilistic framework was developed for 

OpenSim(Delp et al., 2007), a platform with widespread use among biomechanics 

researchers and clinicians and the ability to interact with the simulation through an open 

source application programming interface (API). The probabilistic tool developed is 

available for download at simtk.org/home/prob_tool. We anticipate that regular use of 

systematic uncertainty analysis within the musculoskeletal simulation community will 

allow researchers to interpret simulation outputs with confidence,  refine new model 

development, and more effectively translate the results from musculoskeletal simulations 

to clinical decision-making and human performance assessments. 

 

5.3: Methods 

5.3.1: Experimental Setup and Baseline Simulation 

Following approval from the institutional review board, a single male participant 

(mass: 68.2, height: 154.5 cm) walked at a self-selected pace while an 8-camera motion 

capture system (Vicon, Centennial, CO) tracked 40 markers at 100 Hz on the torso, 

pelvis, thigh, shank, and foot. Marker clusters were fixed to each segment and used to 

define baseline (unperturbed) segment reference frames throughout the gait cycle, but 
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were not included in the OpenSim model for tracking and calculation of joint kinematics. 

Two force platforms (Bertec Corp, Columbus, Ohio) captured ground reaction forces 

sampled at 1000 Hz for a complete gait cycle that began and ended with a right foot heel 

strike. Body segment parameters (BSPs) and muscle properties were scaled to the subject 

for the baseline simulation using scale factors calculated from marker positions. OpenSim 

was used to generate baseline joint kinematics, moments, and muscle forces using the 

gait2392 model.(Delp et al., 1990) A custom interface using the OpenSim/Matlab API 

was developed to perturb the baseline simulation by altering input files within a Monte 

Carlo simulation. All input perturbations were sampled from Gaussian distributions 

created from means and variance reported in the relevant experimental literature (Tables 

5.1 and 5.2).(Benoit et al., 2006; Della Croce et al., 1999; Friederich and Brand, 1990; 

Rao et al., 2006; Ward et al., 2009) Propagation of uncertainty was performed by using 

output files of results from the previous OpenSim stage as input in the subsequent stage 

during each trial of the Monte Carlo simulation (Figure 5.1). 

 

5.3.2: Stage 1 – Probabilistic Inverse Kinematics 

Marker placement and movement artifact, two sources of measurement error that 

influence the results of inverse kinematics, were modeled and combined for each of the 

40 markers used in the simulation. This was accomplished by generating a perturbed 

trajectory for each marker as input into the Inverse Kinematics Tool within each trial of 

the Monte Carlo simulation.  

Marker placement error results from the inability of an investigator to locate an 

anatomic landmark through palpation. Therefore, the error is a placement that is 
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constantly offset from the anatomic location it is intended to mark. This was modeled by 

sampling the magnitude of this offset in each plane from a distribution created by 

previously reported intrarater variances (Table 5.1).(Della Croce et al., 1999) For marker 

placements in which intrarater variance was unavailable, the mean variance for markers 

on the corresponding segment was used to define the input distribution. The Monte Carlo 

simulation generated a random perturbation for each marker coordinate from the 

distributions and applied it as a constant perturbation to every sample during the gait 

cycle. Each perturbation was performed in baseline segment coordinate systems that were 

consistent with those defined in Della Croce el al.
8
 The perturbed trajectory was 

transformed into the lab coordinate system to produce a trajectory that was constantly 

offset from the original within the segment (Figure 5.2). 

Marker movement artifact occurs when skin and soft tissues move relative to the 

underlying bone during limb movement. The magnitude of the marker movement varies 

with time based on the character of the motion, location of the marker placement, and the 

anatomy of the subject. Movement artifact was modeled by perturbing each marker 

uniquely within each of the eight traditional phases of the gait cycle (e.g. between ‘heel 

off’ and ‘opposite initial contact’).(Perry, 1992) The Monte Carlo simulation sampled a 

perturbation from a distribution constrained with a maximum resultant artifact of 15 

mm.(Benoit et al., 2006; Gao and Zheng, 2008) Smoothness at the phase transition was 

enforced by applying a 4th-order low pass Butterworth filter with a 20 Hz cutoff 

frequency to the trajectory. The movement artifact uncertainty was combined with the 

marker placement uncertainty for each of the 40 markers and a new marker trajectory file 

was generated for use by the Inverse Kinematics Tool. Joint angles from the right side 
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were analyzed for the following degrees of freedom: ankle plantarflexion/dorsiflexion, 

knee flexion/extension (flex/ext), hip flex/ext, hip adduction/abduction (add/abd), and hip 

internal/external (int/ext) rotation. 

 

5.3.3: Stage 2 – Probabilistic Inverse Dynamics 

Uncertainties in BSPs were modeled by perturbing the baseline model inputs for 

segment mass, moment of inertia, and center of mass location. The input distributions 

were defined using baseline model parameters as the means and variances were defined 

by coefficients of variation measured by Rao et al.(Rao et al., 2006) and Pavol et 

al.(Pavol et al., 2002) (Table 5.2). Each trial of the Monte Carlo simulation combined a 

perturbed model file with randomly generated body segment parameters with the 

kinematic output created from the inverse kinematics tool and measured ground reaction 

forces to generate joint moments at each degree of freedom.  

 

5.3.4:Stage 3 – Probabilistic Muscle Force Prediction  

Uncertainties in muscle parameters were modeled by perturbing the baseline 

model inputs for maximum isometric force, tendon slack length, and pennation angle. 

The input distributions were defined using the baseline model parameters as the means 

and variances were defined by coefficients of variation measured by Friederich and 

Brand(Friederich and Brand, 1990) and Ward et al.(Ward et al., 2009) (Table 5.2). 

Muscle forces were predicted using static optimization with the objective function that 

minimized the sum of muscle activation squared.(Anderson and Pandy, 2001) Eight 

lower-extremity muscles on the right side were assessed: gluteus maximus, gluteus 
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medius, rectus femoris, vastus medialis, vastus lateralis, semitendinosus, biceps femoris 

long head, and medial gastrocnemius. Because the gluteus medius and gluteus maximus 

muscles were each modeled using three fascicles with different paths, each fascicle 

received unique input parameters for each trial in the Monte Carlo simulation. The force 

generated by each muscle fascicle was summed to obtain a single muscle force output for 

gluteus medius and gluteus maximus, respectively.  

 

5.3.5: Data Analysis 

To assess the individual contributions and the combined effects of the sources of 

input uncertainty on simulation outputs, a series of Monte Carlo simulations of 3000 

trials were performed separately considering all combined sources of uncertainty and for 

each individual source of uncertainty.(Fitzpatrick et al., 2012) The 5 and 95 confidence 

bounds were calculated for joint kinematics for each degree of freedom, joint moments 

for each degree of freedom, and muscle forces. These bounds indicate a 90% probability 

that the true result of the simulation output lies between the lower and upper confidence 

bounds. For joint kinematic and joint moment outputs, mean and standard deviation for 

the 5-95 confidence bounds were calculated for the entire gait cycle, and separately for 

the stance and swing periods. For muscle force outputs, the mean and standard deviation 

for the 5-95 confidence bounds were calculated over the time period(s) when the muscles 

were active. The outputs for each simulation stage were reported in actual units (not 

normalized) to maintain the interpretability. Mean and standard deviation of peak muscle 

force timing was calculated for each muscle. Using similar methods as Valente et 

al.,(Valente et al., 2013) Monte Carlo simulations of 3000 trials were sufficient for 
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convergence with differences in the mean confidence bounds of less than 0.1 deg for joint 

angles, 0.1 N•m for joint moments, and 0.5 N for muscle force. 

 Sensitivity of joint moment and muscle force outputs to individual BSPs and 

muscle parameters were quantified by Pearson Product-Moment Correlation between the 

input parameter and the maximum value of each output. To objectively assess if a 

correlation was meaningful, a 95% confidence interval (CI) was calculated for the 

correlation coefficient. Correlations were considered statistically significant when the CI 

did not include zero with an alpha level of 0.05.(Curran-Everett, 2009) Strengths of the 

correlations that were statistically significant were categorized as weakly sensitive 

(r=0.2-0.4), moderately sensitive (r=0.4-0.6), or highly sensitive (r=0.6-1.0). The slope of 

each relationship was calculated and multiplied by the standard deviation of the input 

parameter from Table 5.2. This additional scaling places the slope in the context of the 

potential variance of the input parameter. To assess if calculating sensitivity at the 

maximum value of the output is a consistent representation of sensitivity throughout the 

gait cycle, a Pearson Product-Moment Correlation was calculated for the input parameter 

and the generated range of outputs at each individual time point.  

 

5.4: Results 

5.4.1: 5-95 Confidence Bounds 

 The impact of marker placement error and movement artifact on joint kinematics 

can be observed by the size of the 5-95 confidence bounds for each joint angle output 

(Figure 5.3, Stage 1). The knee flex/ext joint angle exhibited the smallest bounds (2.7±0.3 

deg), but the largest motion during the gait cycle. The relative bound sizes for hip angle 
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in add/abd (3.0±0.3 deg) and int/ext (5.1±1.0 deg) were large considering the smaller 

motions in these degrees of freedom. 

 When considering the combined effects of marker error (marker placement and 

movement artifact) and body segment parameter uncertainty, bounds for hip flex/ext 

(8.0±2.8 N•m) and add/abd (7.4±2.8 N•m) moments were substantially larger than any 

other degree of freedom (ankle: 2.7±1.8 N•m; knee: 4.4±1.4 N•m; hip int/ext: 1.8±1.0 

N•m)(Figure 5.3, Stage 2). Joint moment bound sizes during the swing period were 

81.7% smaller in the ankle and 16.5% smaller in the knee compared to the stance period; 

however, bound sizes in hip degrees of freedom were 42.9% larger on average in the 

swing period compared to the stance period. 

The combined effect of all sources of uncertainty had the greatest impact on 

medial gastrocnemius (142.3±110.8 N) and the gluteus medius (130.8±89.2 N), which 

demonstrated the largest bounds for muscle force output (Figure 5.3, Stage 3). 

Gastrocnemius and gluteus medius also generated the largest peak forces during the gait 

cycle (gastrocnemius: 663.1 ± 105.5 N; gluteus medius: 1025.4 ± 62.9 N). The average 

muscle force bound size for all eight muscles was 83.1±39.6 N. Variability was present in 

peak muscle force timing for each of the eight muscles that was on average 104±112 

msec and as high as 402 msec for the gluteus medius. 

By comparing 5-95% bounds with all uncertainty sources considered versus the 

individual sources, relative contributions of each source can be evaluated (Figure 5.4). 

For Stage 1, the impact of movement artifact was 1.8 times larger than marker placement 

on joint kinematics for all degrees of freedom, with the greatest difference occurring at 

the ankle (5.9±0.8 vs. 2.2±0.1 deg). When this uncertainty was propagated to joint 
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moment calculation in Stage 2, the relative impact of movement artifact compared to 

marker placement increased to 2.3-4.0 times, with higher impact in swing period than in 

the stance period for hip add/abd and hip int/ext. BSPs had a relatively small impact on 

joint moments compared to the impact of marker error. The exception was hip flex/ext 

during the swing period where BSP uncertainty has the largest impact and was 2.1 times 

greater during the stance period compared to the swing period (Figure 5.4).  

In Stage 3, the impact of muscle parameter uncertainty on muscle force output 

was 1.7 times greater for all muscles than movement artifact, which had the second 

largest impact. The impact of movement artifact was greater than marker placement and 

resulted in a muscle force bound size of 37.2±20.4 N on average for all muscles. BSP 

uncertainty had a relatively small impact on muscle force output in all muscles except the 

hamstrings, where BSP uncertainty had the second largest impact after muscle parameter 

uncertainty (Figure 5.4).  

 

5.4.2: Input Parameter Sensitivity 

 Statistically significant correlations existed between each BSP and hip moments. 

Hip flex/ext was highly sensitive to segment mass, with the strongest correlation at the 

shank (thigh: r=0.42, CI [0.40, 0.45]; shank: r=0.64, CI [0.62, 0.67]; foot: r=0.11, CI 

[0.08, 0.22]). Hip add/abd moment was highly sensitive to segment mass, with the 

strongest correlation at the thigh (thigh: r=0.75, CI [0.72, 0.77]; shank: r=0.33, CI [0.30, 

0.38]; foot: r=0.14, CI [0.11, 0.23]). Flex/ext moment was moderately sensitive to thigh 

moment of inertia (r=0.51, CI [0.45, 0.56]); however, add/abd moment was not sensitive 

to thigh moment of inertia. Hip add/abd was moderately sensitive to the medial/lateral 



59 
 

position of the center of mass of the thigh and weakly sensitive to the center of mass of 

the shank (thigh: r=0.47, CI [0.41, 0.56]; shank: r=0.26, CI [0.22, 0.34]; foot: r=-0.06, CI 

[-0.09, 0.11]) (Table 5.3). The joint moment-segment mass relationship produced the 

largest impact on joint moment outputs for a one standard deviation change in segment 

mass compared to the other BSPs. For example, the hip flex/ext moment would change 

1.06 N·m in response to a one standard deviation change in shank mass (Table 5.4). 

In general, muscle force outputs were highly sensitive to changes in maximum 

isometric force and tendon slack length; however, this was not consistent across muscles 

(Table 5.3).The gluteus muscles were highly sensitive to uncertainty in maximum 

isometric force (e.g. gluteus medius3: r=0.72, CI [0.70, 0.74]) and weak to moderately 

sensitive to uncertainty in tendon slack length (e.g. gluteus medius3: r=0.24, CI [0.20, 

0.27]). The gluteus muscle force would change 34.82 N in response to a one standard 

deviation change in maximum isometric force compared to 16.53 N in response to a one 

standard deviation change in tendon slack length. By contrast, the vasti muscles were 

highly sensitive to tendon slack length (e.g. vastus lateralis: r = -0.83, CI [-0.84 -0.82]), 

and would change 13.70 N in response to a one standard deviation change in tendon slack 

length compared to 3.17 N for maximum isometric force. 

For both body segment and muscle parameters, the strength and sign (+/-) of 

correlations were dependent on where in the gait cycle the sensitivity analysis was 

performed. During the initial portion of the gait cycle, hip flexion moment was most 

sensitive to uncertainty in thigh mass with little sensitivity to uncertainty in shank or foot 

mass. However, after transitioning to the swing period, hip flexion moment was most 

sensitive to uncertainty in foot mass and least sensitive to uncertainty in thigh mass 
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(Figure 5.5). Although muscle force was consistently sensitive to tendon slack length 

throughout the gait cycle, the direction of the relationship (+/-) changed throughout the 

gait cycle, particularly for the medial gastrocnemius and rectus femoris (Figure 5.5). 

 

5.5: Discussion 

This study demonstrated a systematic probabilistic approach to assess the impact 

of measurement error and parameter uncertainty on outputs from musculoskeletal 

simulations. Uncertainties in simulation inputs propagate through the simulation 

workflow and result in significant impacts on joint kinematics, joint moments, and 

muscle force prediction. Mean 5-95 confidence bounds ranged from 2.7 to 6.4 deg in 

joint kinematics, 2.7 to 8.1 N•m in joint moments, and 35.8 N to 130.8 N in muscle 

forces. Muscle parameter uncertainty had the largest impact on muscle force prediction, 

greater than the uncertainty carried forward from marker placement and movement 

artifact. When measurement error was propagated through inverse dynamics and muscle 

force prediction, movement artifact had the largest impact on joint moment outputs and a 

considerable impact on muscle force prediction. Impact of movement artifact depended 

on whether the swing or stance period was considered. Similarly, sensitivity to specific 

BSPs and muscle parameters were varied, and linked to where in the gait cycle they were 

calculated. Uncertainty sources also led to a range of outputs for peak muscle force 

timing that reached as high as 402 msec for gluteus medius. The impact of uncertainty in 

BSPs and muscle parameters may be mitigated by measuring and applying in-vivo joint 

moment/joint angle data to subject-specific scaling. Probabilistic analyses can improve 
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understanding and interpretation of simulation data and can be applied to musculoskeletal 

simulations without large computational expense. 

Movement artifact impacted the range of outputs more than marker placement 

after each stage of the simulation. The effect of movement artifact varied throughout the 

gait cycle and contributed to the variable size of the 5-95 confidence bounds in both joint 

moments and muscle forces. Movement artifact is a more dynamic form of uncertainty 

than marker placement error, and can have a large influence on calculated segment 

accelerations. In this investigation, marker positions were used only for segment tracking; 

however, marker position error may result in a significant impact on joint kinematics 

when marker positions are used to identify joint center locations. For example, locating 

the hip joint center based on marker position can result in errors as high as 22% and 15% 

in hip flexion/extension moments and adduction/abduction moments, respectively.(Stagni 

et al., 2000) When evaluating which sources of uncertainty investigators can influence, 

uncertainty due to marker placement error has been reduced through the development of 

digital placement methods and marker sets designed to consider variations in subject 

populations.(Lerner et al., 2014) Reduction of movement artifact is difficult and not 

feasible in most motion capture based experiments because the markers will always be 

affixed over the skin, which highlights the need to understand its impact.  

The sensitivity of joint moments and muscle forces to uncertainty in individual 

input parameters varied throughout the gait cycle. Overall, BSP uncertainty had a greater 

impact on joint moments during the swing period compared to stance (Figure 5.5). 

During the stance period, the foot mass made small contributions to the range of hip 

flexion moment values when compared to contributions from the thigh mass. However, 
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after the transition to the swing period, the foot mass is the dominant contributor to hip 

flexion moment output range. This shift corresponds to the role that ground reaction 

forces play in joint moment calculations during each period.(Vaughan et al., 1992) 

Without the ground reaction forces in the swing period, the importance of the BSPs on 

joint moment predictions are higher compared to the stance period. Although the 

sensitivity of muscle forces to tendon slack length was statistically significant for all 

muscles, and a one standard deviation change in tendon slack length produced a muscle 

force change up to 42 N, the strength of sensitivity and direction of influence (sign of 

correlation coefficient) depended on the muscle length at the point of peak muscle force 

generation. Changes in tendon slack have a direct influence on the region of the force-

length curve a muscle operates. Therefore, the sensitivity of muscle force output to this 

parameter changes sign based on whether the muscle is on the “ascending” or 

“descending” portion of the force-length curve(Ackland et al., 2012) (Figure 5.5). 

Representing sensitivity by calculating the relationship at a single time point in the gait 

cycle or over a period (swing and stance) does not fully characterize the relationship over 

the entire motion. For the most relevant representation of sensitivity, we recommend that 

each investigator assess the strength of sensitivity at the time point of clinical or scientific 

interest. 

The highly sensitive nature of outputs to BSPs and muscle parameters highlights 

the importance of applying accurate subject-specific parameters. Parameter specification 

is commonly performed by scaling each BSP and muscle parameters based on segment 

dimensions. However, few parameters reliably scale based on segment dimensions 

alone.(Ward et al., 2005) Incorporating easily measured subject-specific parameters such 
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as joint moment/angle data into subject-specific models may limit the impact of 

uncertainties in BSPs and muscle parameters, which are difficult to determine. The joint 

moment/angle relationship(Herzog et al., 1991) and the sarcomere length/joint angle 

relationship(Lieber et al., 1997) are not uniform for all subjects. Functional scaling that 

relies on in-vivo data has been used to generate subject-specific models that accurately 

represent joint moment/angle relationships.(Garner and Pandy, 2003; Lloyd and Besier, 

2003) Another option that results in high model accuracy is to introduce length 

constraints that preserve the normalized muscle fiber length/angle relationship for each 

muscle when scaling optimum fiber length and tendon slack length.(Winby et al., 2008) 

This study uniquely considered the interaction of measurement error and 

parameter estimation, and systematically followed their impact through the processing 

stages commonly used in musculoskeletal simulation. Previous investigations have 

considered the impact of input uncertainty on results at individual simulation 

stages,(Ackland et al., 2012; Andrews and Misht, 1996; De Groote et al., 2010; 

Langenderfer et al., 2008; Nguyen and Reynolds, 2014; Reinbolt et al., 2007; Wesseling 

et al., 2014) but comparisons between studies can be difficult. De Groote et al.(De Groote 

et al., 2010) and Ackland et al.(Ackland et al., 2012) demonstrated a high level of 

sensitivity of peak force in lower-extremity muscles to tendon slack length when using 

Hill-type muscle models. Confidence bounds for muscles forces have not been previously 

reported based on uncertainty; however, the shape and magnitude of our muscle force 

predictions are similar to several studies that modeled healthy gait with subject-specific 

models. For example, maximum force for the gluteus medias has been reported to range 

from 900-1100 N during gait for subjects of similar size to the one modeled here, and 
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these values are within the 5-95% confidence bounds calculated for gluteus 

medius(Anderson and Pandy, 2001; van der Krogt et al., 2012). The confidence bounds 

calculated for joint moments as a result of uncertainty in BSPs were 25% smaller than 

bounds reported by Langenderfer et al.(Langenderfer et al., 2008) The differences are 

attributed to the use of a different bound size (1-99% versus 5-95%) and differences in 

the model used to generate joint kinematics and kinetics. Reinbolt et al.(Reinbolt et al., 

2007) demonstrated that uncertainty in BSPs had only a mild effect on peak lower-

extremity joint moments. Our data demonstrated that, for most joint moments, the impact 

of uncertainty depends on the portion of the gait cycle that is analyzed. 

Several modeling decisions were made in the design of this study that should be 

evaluated when performing similar studies using probabilistic musculoskeletal 

simulations. First, outputs at each simulation stage will be affected by the model used and 

the number and location of the markers included in the model. We chose to use the 

OpenSim gait2392 model because it is widely used in gait analysis, and provides a 

consistent and accessible platform for investigators to make future comparisons. Second, 

several methods exist to calculate inverse kinematics, inverse dynamics, and predict 

muscle forces. Although the trends in output bounds and sensitivity will likely be similar, 

variations in these components will change the predicted results and should be evaluated 

on a problem-specific basis. Third, specific to the probabilistic musculoskeletal 

simulation, the input distributions will influence the simulation results. We recommend 

that researchers base their input distributions on experimental data whenever possible. 

Last, there are many more sources of uncertainty that can influence a simulation than 

included here such as model scaling, the muscle model chosen, and the number and 
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architecture of the muscles included. The purpose of this study was to evaluate 

recognized sources of uncertainty that affect the three major stages of the simulation 

process. The open source tools developed in this study will enable the widespread use of 

probabilistic methods and an improved understanding of the impact of uncertainty in 

musculoskeletal simulation.  

In conclusion, this study demonstrated a systematic probabilistic approach to 

quantify and assess the impact of uncertainty propagation on musculoskeletal simulation 

of gait. These tools will enable researchers to perform these analyses on a variety of 

models at minimal computational cost. We anticipate that assessment of uncertainty will 

become standard practice within the musculoskeletal simulation community, allow 

researchers and clinicians to better understand the strengths and limitations of their 

musculoskeletal simulations, and improve use of computational simulations to evaluate 

hypotheses and inform clinical decisions. 
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Anatomical Landmark       Maximum amount of variability (+/- 2 standard deviations) 

Hip X (mm) Y (mm) Z (mm) 3D (mm)

Left Anterior Supior Iliac Spine 3.4 4 11 12.2

Right Anterior Supior Iliac Spine 10 11.5 14.5 21

Left Posterior Superior Iliac Spine 2.8 8.3 7.5 11.5

Right Posterior Superior Iliac Spine 5.7 10.7 4.6 13

Femur X (mm) Y (mm) Z (mm) 3D (mm)

Greater Trocanter 12.2 11.1 7 17.9

Medial Epicondyle 5.1 5 6.7 9.8

Lateral Epicondyle 3.9 4.9 7.8 10

Lateral Patella 3.8 3.9 7.8 9.5

Medial Patella 5.2 2.4 10.8 12.2

Most Distal Point of Lateral Condyle 4.7 3.4 2.9 6.5

Most Distal Point of Medial Condyle 4.4 1.4 4.4 6.4

Tibia X (mm) Y (mm) Z (mm) 3D (mm)

Tibial Tuberosity 1.2 1.8 4.3 4.8

fibula head 3.3 3.3 3.3 5.7

Medial Ridge of Medial Plateau 3.4 4.4 6.6 8.6

Lateral Ridge of the Lateral Plateau 8 2.1 5.6 10

Medial Malleolus 2.2 2.6 6.6 7.4

Lateral Malleolus 2.6 2.4 5.7 6.7

Foot X (mm) Y (mm) Z (mm) 3D (mm)

Calcaneus 7 4.9 5.7 10.3

First metatarsal head 2.6 3.2 6.9 8

Second Metatarsal Head 2.2 6.3 6 9

Fifth Metatarsal Head 0.7 2 6.5 6.8

 

Table 5.1: Maximum amount of variability (+/- 2 standard deviations) in marker placement 

expressed in coordinates of a segment coordinate system based on Della Croce et al.
9
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Table 5.2: Baseline value and (SD) of body segment and muscle parameters for each 

segment and muscle considered in the probabilistic analyses. 
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Table 5.3: Sensitivity (correlation coefficient) calculated between muscle and body segment 

parameter inputs and the resulting maximum value of each output. Sensitivity is highlighted 

based on correlation coefficient strength. Weakly Sensitive: r=0.2-0.4 (green); Moderately 

Sensitive: r=0.4-0.6 (blue); Highly Sensitive: r=0.6-1.0 (red).  

Body Segment Parameters:     Segment     

Center of Mass  Ankle Knee Hip Flex/Ext HipAdd/Abd Hip Int/Ext 

Foot Med/Lat 0.06 -0.07 0.06 -0.06 0.13 

Foot Ant/Post 0.67 0.43 0.03 -0.04 0.11 

Foot Sup/Inf -0.10 -0.13 0.19 0.02 -0.01 

Shank Med/Lat -0.02 -0.02 -0.03 0.26 -0.33 

Shank Ant/Post 0.00 0.46 0.05 -0.02 0.21 

Shank Sup/Inf 0.04 0.13 0.07 -0.06 0.05 

Thigh Med/Lat 0.00 0.00 0.01 0.47 -0.58 

Thigh Ant/Post 0.00 -0.01 0.18 0.00 0.60 

Thigh Sup/Inf 0.03 0.02 -0.28 -0.14 0.00 

Moment of Inertia Ankle Knee Hip Flex/Ext HipAdd/Abd Hip Int/Ext 

Foot AA 0.00 -0.02 0.00 0.02 -0.01 

Foot IE -0.06 -0.01 -0.03 0.00 -0.05 

Foot FE 0.44 0.07 -0.05 0.02 0.03 

Shank AA 0.03 -0.03 0.03 0.01 -0.05 

Shank IE -0.01 0.00 0.01 -0.01 -0.02 

Shank FE 0.01 0.29 -0.08 0.02 0.02 

Thigh AA 0.01 -0.01 0.01 -0.09 -0.15 

Thigh IE 0.00 -0.02 -0.02 -0.01 -0.06 

Thigh FE 0.04 0.01 0.51 0.02 0.19 

Mass Ankle Knee Hip Flex/Ext HipAdd/Abd Hip Int/Ext 

Foot 0.58 0.29 0.11 0.14 0.00 

Shank 0.03 0.64 0.64 0.33 -0.19 

Thigh 0.01 0.00 0.42 0.75 0.02 

Muscle Parameters:   Parameter   

Muscle Maximum Isometric Force Tendon Slack Length Pennation Angle 

Rectus Femoris 0.17 0.29 0.00 

Vastus Medialis 0.33 -0.63 -0.07 

Vastus Lateralis 0.28 -0.83 -0.10 

Semitendinosus 0.76 0.51 -0.05 

Biceps Femoris 0.53 0.39 -0.03 

Gastrocnemius 0.53 0.51 -0.39 

Gluteus Maximus1 0.59 -0.72 0.00 

Gluteus Maximus2 0.62 -0.70 -0.04 

Gluteus Maximus3 0.80 -0.47 -0.05 

Gluteus Medius1 0.63 -0.57 -0.15 

Gluteus Medius2 0.91 0.20 -0.12 

Gluteus Medius3 0.72 0.24 -0.44 
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Table 5.4: The slope of sensitivity relationships calculated between muscle and body segment 

parameter inputs and the resulting maximum value of each output. Each parameter-output slope 

relationship was multiplied by one standard deviation of the input parameter. Sensitivity is 

highlighted based on correlation coefficient strength. Weakly Sensitive: r=0.2-0.4 (green); 

Moderately Sensitive: r=0.4-0.6 (blue); Highly Sensitive: r=0.6-1.0 (red).  
Body Segment 

Parameters: 
Expected Change in Output for a +1 SD change in Input 

Center of Mass 
Ankle 

(N·m) 

Knee 

(N·m) 

Hip Flex/Ext 

(N·m) 

HipAdd/Abd 

(N·m) 

Hip Int/Ext 

(N·m) 

Foot Med/Lat 0.01 -0.02 0.10 -0.03 0.01 

Foot Ant/Post 0.04 0.06 0.02 -0.01 0.00 

Foot Sup/Inf -0.03 -0.07 0.62 0.02 0.00 

Shank Med/Lat 0.00 -0.01 -0.06 0.14 -0.03 

Shank Ant/Post 0.00 0.13 0.09 -0.01 0.02 

Shank Sup/Inf 0.00 0.04 0.11 -0.03 0.00 

Thigh Med/Lat 0.00 0.00 0.02 0.25 -0.05 

Thigh Ant/Post 0.00 0.00 0.30 0.00 0.05 

Thigh Sup/Inf 0.00 0.00 -0.46 -0.07 0.00 

Moment of Inertia 
Ankle 

(N·m) 

Knee 

(N·m) 

Hip Flex/Ext 

(N·m) 

HipAdd/Abd 

(N·m) 

Hip Int/Ext 

(N·m) 

Foot AA 0.00 -0.01 -0.01 0.01 0.00 

Foot IE -0.01 0.00 -0.06 0.00 0.00 

Foot FE 0.06 0.02 -0.08 0.01 0.00 

Shank AA 0.00 -0.01 0.04 0.00 0.00 

Shank IE 0.00 0.00 0.01 0.00 0.00 

Shank FE 0.00 0.08 -0.13 0.01 0.00 

Thigh AA 0.00 0.00 0.02 -0.05 -0.01 

Thigh IE 0.00 0.00 -0.04 0.00 0.00 

Thigh FE 0.01 0.00 0.84 0.01 0.01 

Mass 
Ankle 

(N·m) 

Knee 

(N·m) 

Hip Flex/Ext 

(N·m) 

HipAdd/Abd 

(N·m) 

Hip Int/Ext 

(N·m) 

Foot 0.08 0.08 0.18 0.08 0.00 

Shank 0.00 0.18 1.06 0.18 -0.02 

Thigh 0.00 0.00 0.70 0.41 0.00 

  
Muscle Parameters 

 

Muscle 
Maximum Isometric 

Force 
Tendon Slack 

Length 
Pennation 

Angle 

Rectus Femoris  (N) 0.49 0.92 0.00 

Vastus Medialis  (N) 2.83 9.83 -1.57 

Vastus Lateralis  (N) 3.53 -16.71 -2.78 

Semitendinosus  (N) 16.02 11.22 -1.32 

Biceps Femoris  (N) 29.43 22.52 -2.98 

Gastrocnemius  (N) 74.69 42.30 -27.96 

Gluteus Maximus1  (N) 13.25 -16.01 0.07 

Gluteus Maximus2  (N) 18.17 -19.74 -1.98 

Gluteus Maximus3  (N) 8.72 -5.18 -0.73 

Gluteus Medius1 (N) 12.35 -10.93 -3.68 

Gluteus Medius2  (N) 31.70 7.01 -7.12 

Gluteus Medius3  (N) 20.28 6.69 -12.19 
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Figure 5.1: A gait trial was analyzed using OpenSim across three stages: Inverse 

Kinematics, Inverse Dynamics, and Muscle Force Optimization. Distributions of sources 

of uncertainty were inputs to each tool in a probabilistic simulation. To assess the 

propagation of uncertainty, output distributions from each tool were input into the next 

tool in the workflow. Output of each tool was used to calculate 5-95 confidence bounds 

and the sensitivity of the output to each source of uncertainty. 
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Figure 5.2: Representative marker trajectory that illustrates simulation of marker 

placement uncertainty, movement artifact uncertainty, and the combination of the two 

sources. Marker placement uncertainty was modeled as a constant offset throughout the 

gait cycle. Movement artifact was modeled using a trajectory that varied within each 

phase of the gait cycle (each phase separated by vertical lines). The marker set used for 

segment tracking is represented on the right 
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Figure 5.3: 5-95 confidence bounds for each simulation stage output following inverse 

kinematics (Stage 1), inverse dynamics (Stage 2) and static optimization (Stage 3). Values 

for the calculated mean 5-95 confidence bounds are displayed. Kinematic and kinetic 

degrees of freedom were divided into stance and swing periods. The baseline simulation 

output is represented by the black line 
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Figure 5.4: Mean 5-95 confidence bounds for each individual source of 

uncertainty for kinematics, joint moments and muscle forces. 5-95 confidence bounds 

calculated for joint moments were divided into stance and swing periods. 
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Figure 5.5: Upper: Relative sensitivity of flexion/extension and adduction/abduction hip 

moments to foot, shank, and thigh body segment parameters for each time point during 

the gait cycle. Relative sensitivity is presented as the segment correlation coefficient 

divided by the sum of the foot, shank, and thigh coefficients. Segment mass to hip flexion 

moment (Left), medial lateral position of the center of mass and hip adduction moment 

(Right). Lower: Sensitivity of predicted muscle force to tendon slack length calculated at 

each time point throughout the gait cycle for medial gastrocnemius (Left) and rectus 

femoris (right). Uncertainty in tendon slack length influences the point on the force-

length curve that these two biarticular muscles operate on throughout the gait cycle. Note: 

no sensitivity reported when the muscle force is 0. 
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CHAPTER 6 – PROBABILISTIC MODELING OF REGIONAL INTERDEPENDENCE 

IN PATIENTS WITH TOTAL HIP ARTHROPLASTY 

This chapter will present two studies that use the OpenSim probabilistic tool to 

improve on current modeling methodology and demonstrate how the tool can be used to 

inform rehabilitation practice in patients with total hip arthroplasty.  

Study 1 – Incorporating Patient-Specific Strength and Parameter Uncertainty into 

Musculoskeletal Modeling of Patients with Total Hip Arthroplasty  

6.1: Abstract 

The in-vivo loading conditions predicted from musculoskeletal simulations used 

in combination with finite element analyses can be used to improve outcomes for patients 

with total hip arthroplasty (THA). Prior studies have not accounted for the significant 

patient-specific strength adaptations that occur following the surgery. Additionally, 

model input parameters and the experimental data that are used to parameterize these 

models contain uncertainty that is not typically considered. The purpose of this study was 

to develop musculoskeletal models with patient-specific muscle strength parameters in 

key hip muscle groups and characterize the impact of input uncertainty on muscle force 

and joint contact force outputs. This analysis was performed in a two-stage approach on 

five THA patients. The first stage scaled patient-specific muscle strength parameters to 
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minimize differences between model-predicted and experimental joint torques for 

maximal isometric hip flexion, extension and abduction tasks. The second stage 

generated 5-95% confidence bounds and input parameter sensitivity factors by simulating 

uncertainty in the muscle model parameters of peak muscle force, optimal fiber length 

and attachment site using a Monte Carlo simulation. Scaled models required a 

38.1±16.2% decrease in hip extensor strength, a 29.9±8.9% decrease in hip abductor 

strength and only a 4.7±14.8% change in flexor strength compared to the generic model. 

Uncertainty in attachment site had 2.7 times greater impact on joint contact force than 

optimal fiber length and 2.0 times greater impact than maximum isometric force. 

Incorporating patient specific strength and uncertainty assessments into musculoskeletal 

simulation provides robust solutions when using these outputs in combination with finite 

element analysis for informing implant design, surgical approach and rehabilitation 

strategy to improve patient outcomes.  

 

6.2: Introduction 

Studies of total hip arthroplasty (THA) that incorporate accurate muscle force and 

joint contact force predictions from musculoskeletal simulation into finite element 

modeling can be used to perform in-vivo analyses on implant design, surgical approach 

and rehabilitation practices and improve patient outcomes.  Outputs calculated from 

musculoskeletal simulation have been valuable in combination with high fidelity finite 

element models to provide realistic loading conditions in innovative approaches to 

calculate soft tissue loading in pathologies such as osteoarthritis and ACL injury 
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(Fernandez et al., 2011; Shelburne et al., 2011). Fernandez et al. (2011) used lower limb 

muscle force predictions from a musculoskeletal model in combination with ground 

reaction forces and joint kinematics as inputs to a 3D deformable model of the knee to 

determine magnitudes and locations of the contact forces and pressures. They were able 

to identify cartilage loading conditions that are associated with patellar tendon adhesion 

and may be responsible for initiating the patellofemoral pain and knee joint structural 

damage observed following ACL reconstruction. There are examples of the integration of 

musculoskeletal simulation outputs with ground reaction forces into finite element 

analyses at the hip joint (Heller et al., 2005), but further developments can increase the 

impact of this approach on pathological conditions.  

Postoperatively, the muscles groups surrounding the hip can regain strength at 

different rates and to a variable extent (Di Monaco et al., 2009; Judd et al., 2014). The 

surgery is performed using either a posterior or an anterolateral approach that can lead to 

long term strength differences for the muscles affected (Gore et al., 1982). Generic 

musculoskeletal models with hip strength parameters meant to represent healthy 

individuals may not accurately characterize the loading conditions in the hip joint 

following THA surgery. Patient-specific strength adaptations that occur following THA 

surgery may be important to consider in musculoskeletal simulation to maximize the 

benefits of combining musculoskeletal simulation with finite element analyses. Several 

factors affect the available strength in the muscles that cross the hip in patients following 

THA surgery.  Variation in rehabilitation strategy can also influence the extent to which 

the muscle groups of the hip regain strength (Shih et al., 1994).  
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Additionally, model input parameters and the experimental data that are used in 

the design and validation of musculoskeletal simulation models contain uncertainty that 

is not typically considered. Uncertainty in the inputs to musculoskeletal models results 

from a variety of sources. Experimental data that is used during model parameter tuning 

to improve model predictions are subject to measurement error that results in uncertainty 

(Widler et al., 2009). Additionally, the identification of bony landmarks for muscle 

attachment sites are subject to identification errors (Kepple et al., 1994; White et al., 

1989). Finally, cadaveric specimens that provide valuable information used to 

parameterize the musculoskeletal models can be widely variable and also influenced by 

measurement error (Friederich and Brand, 1990; Ward et al., 2009).  

The purpose of this study was to 1) develop musculoskeletal models for a group 

of THA patients with patient-specific muscle strength parameters in key hip muscle 

groups and to 2) quantify the impact of input uncertainty on muscle force and joint 

contact force outputs during maximal muscle force output. 

 

6.3: Methods 

6.3.1: Patients 

Five patients who had undergone THA (2 male, 3 female; age: 61±7.9 yrs; mass: 

81.6±14.8 kg; height: 170.7±11.7 cm) participated in a laboratory testing session six 

weeks post-operatively that consisted of hip flexion, extension and abduction maximum 

isometric strength tests. Patients had received THA through a posterior approach and 

received similar rehabilitative care between the surgery and the testing session. Each 
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participant provided written, informed consent and the study was approved by the 

Colorado Multiple Institutional Review Board. Data from these patients were collect by 

researchers at the Anschutz Medical Campus at the University of Colorado under the 

direction of Dr. Cory Christensen and Dr. Jennifer Stevens-Lapsley and provided for 

further analysis in this dissertation.  

 

6.3.2: Experimental Isometric Strength Testing 

Strength of the hip flexors, extensors, and abductors was assessed using an 

electromechanical dynamomter (HUMAC NORM, CSMI Solutions, Stoughton, MA) 

connected to a Biopac
 
Data Acquisition System (Biodex Medical Systems, Inc., Shirley, 

NY) running AcqKnowledge software (v 3.8.2). Strength was measured in the affected 

limb. Hip abductor strength was measured while participants were positioned side-lying 

with 0° of hip flexion/extension and 0° of hip abduction/adduction. For hip extensor and 

flexor strength assessment, participants were positioned in supine with the hip flexed to 

40°.  

Musculoskeletal simulation analysis was performed in a two-stage approach in 

which 1) models with patient-specific muscle parameters were created and 2) parameter 

uncertainty was evaluated for each patient. 

 

6.3.3: Musculoskeletal Simulation Stage 1: Patient-Specific Strength Scaling  

In the first stage, patient-specific hip muscle strength scaling was done using 

OpenSim (Delp et al., 2007). A musculoskeletal model was used for each patient that 
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included detailed hip musculature (Shelburne et al., 2010). Additional muscles and 

wrapping were added to the lower extremity models currently available in OpenSim. 

Each model was initially scaled by patient segment dimensions and mass. Forward 

dynamic simulations of each patient performing maximum isometric hip abduction, 

extension, and flexion were generated to mimic laboratory tests in which each muscle 

activation level was set to 1.0 for the muscles that make up the hip abductors, extensors, 

and flexors (Table 6.1). Patient-specific maximum isometric strength parameters of each 

hip muscle were increased or decreased to minimize differences between model-predicted 

and the measured maximum isometric joint torques for each task. Muscles in each group 

were all scaled by the same factor to maintain the strength ratios between muscles of the 

same group. Baseline muscle force and hip joint contact force were calculated for each 

task using the model parameterized with the patient-specific hip strength.  

 

6.3.4: Musculoskeletal Simulation Stage 2: Muscle Parameter Uncertainty  

The second stage generated confidence bounds and input parameter sensitivity 

factors by simulating uncertainty in the muscle model parameters of peak muscle force, 

muscle attachment site, and optimal fiber length using a Monte Carlo simulation. To 

simulate uncertainty in isometric strength measurement, a coefficient of variation of 4.7% 

was applied to the value of maximum isometric force for each muscle based on the 

variability present in the testing during these maximum isometric tasks (Judd et al., 

2014). A coefficient of variation of 5.8% was applied to the optimal fiber length of each 

muscle based on the average variation in this parameter among all the muscles considered 
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using cadaveric data (Friederich and Brand, 1990; Ward et al., 2009). Each value applied 

to the optimal fiber length was also applied to the tendon slack length in the opposite 

direction to ensure that the overall muscle length was held constant.  A standard deviation 

of 5 mm was used for all the coordinates in reference to the segments body fixed frame 

(anterior/posterior (A/P), superior/inferior (S/I) and medial/lateral (M/L)) of the muscle 

origin and insertion sites, taken from the range of landmark location errors reported in 

literature (Kepple et al., 1994; White et al., 1989).  

 

6.3.5: Data Analysis 

The difference between model predicted and measured joint torques was 

calculated for each task (abduction, extension, and flexion) following model scaling. 

Additionally, the differences in the muscle isometric strength parameters for each muscle 

were compared between the generic model and the patient-specific scaled model. 

Confidence bounds (5-95%) were calculated for hip joint contact forces and for 

each muscle force at the point of peak force. These bounds indicate a 90% probability 

that the true result of the simulation output lies between the lower and upper confidence 

bounds. The force outputs were normalized to body weight and averaged across all five 

patients. Monte Carlo simulations of 2000 trials were sufficient for convergence with 

differences in the average confidence bounds of less than 0.5 N for muscle force and joint 

contact force. 

Sensitivity of joint contact force to individual muscle parameters was quantified 

by Pearson Product-Moment Correlation between the input parameter and the maximum 
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value of hip contact force. To objectively assess if a correlation was meaningful, a 95% 

confidence interval (CI) was calculated for the correlation coefficient. Correlations were 

considered statistically significant when the CI did not include zero with an alpha level of 

0.05 (Curran-Everett, 2009). Strengths of the correlations that were statistically 

significant were categorized as weakly sensitive (r=0.2-0.4), moderately sensitive (r=0.4-

0.6), or highly sensitive (r=0.6-1.0). The slope of each relationship was calculated and 

multiplied by the standard deviation of the input parameter to quantify the change in each 

muscle force and joint contact force output (Myers et al., 2014). Correlation coefficients, 

confidence intervals and the change in the output variable for a one standard deviation in 

the input were averaged across the five patients.  

 

6.4: Results 

6.4.1: Patient-Specific Strength Scaling 

Following the first stage model scaling, the model-predicted and experimental 

torque matched within 0.1 Nm for each isometric task. The scaled isometric force muscle 

parameters differed from the values used in the generic musculoskeletal model and varied 

across muscle group and across the five patients. On average, models required a 

38.1±16.2% decrease in hip extensor strength and a 29.9±8.9% decrease in hip abductor 

strength. Hip flexors were the least affected (4.7±14.8%), with 2 patients resulting in 

slight increases in strength to reproduce experiment hip flexion torque. 
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6.4.2: Uncertainty Impact: Muscle Force 

The impact of all uncertainty sources on muscle force varied across patients and 

depended on whether the muscle was primarily a flexor, extensor or abductor. The impact 

of uncertainty on hip muscle forces can be observed in representative force profiles from 

the maximum isometric tasks (Figure 6.1). Variability was present in the impact of the 

sources of uncertainty in hip muscles across subjects. In the representative subject, 

uncertainty in maximum isometric force had approximately the same influence as 

uncertainty in attachment site, except for in the flexors where it was 1.3 times greater 

(Figure 6.1). However, on average for all patients attachment site 5-95 bound sizes were 

2.7 times greater than optimal fiber and 1.8 times greater than maximum isometric force 

for all tasks. Additionally, 5-95 bounds in the flexor group were 5.1 times greater than 

extensors and 3.5 times greater than abductors (Figures 6.2).  

 

6.4.3: Uncertainty Impact: Hip Joint Contact Force   

On average, uncertainty had the greatest effect in flexion which produced hip 

joint reaction force confidence bounds that were 1.8 times greater than in abduction and 

2.4 times greater than in extension for all parameters considered. Uncertainty in 

attachment site had 2.7 times greater impact on joint contact force than optimal fiber 

length and 2.0 times greater impact than maximum isometric force (Figure 6.2). 
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6.4.4: Joint Contact Force Sensitivity to Individual Hip Muscles  

Statistically significant correlations between muscle parameters and hip joint 

contact force demonstrated the muscles of the abductors, extensors and flexors that had 

the greatest influence on joint contact force and quantified the magnitude of the impact 

that each source of uncertainty had on hip joint contact force. When considering the hip 

abductor muscles, hip joint contact force was most sensitive to changes in gluteus medius 

isometric force. Hip joint contact force was moderately sensitive to each section of the 

gluteus medius (glut_med1: r=0.47±0.04, CI [0.44 0.49]; glut_med2: r=0.40±0.01, CI 

[0.37 .42]; glut_med3: r=0.45±0.04 CI [0.41 0.49]) (Table 6.2) and resulted in a 

combined 0.0326±0.0126 BW change in contact force for one standard deviation change 

in gluteus medius maximum isometric force. Additionally, hip joint contact force also 

demonstrate statistically significant sensitivity to piriformis muscle properties of 

maximum isometric force (r=0.26±0.3, CI [0.21 0.31]), origin M/L (r=0.29±0.04, CI 

[0.25 0.33]), insertion S/I (r=-0.25±0.04, CI [0.20 0.29]), insertion M/L (-0.27±0.05, CI 

[0.21 0.32]) and optimal fiber length (0.25±0.11, CI [0.21 0.29]) (Table 6.1). Of these 

parameters, origin M/L location resulted in the largest change in hip joint contact force 

(0.0215±0.0079 BW) for a one standard deviation change (Table 6.3) 

When considering the hip extensor muscles, hip joint contact force was most 

sensitive to the middle fascicle gluteus maximus (glut_med2) parameters of maximum 

isometric force (r=0.67±0.10, CI [0.65 0.69]), origin S/I(r=0.40±0.11, CI [0.35 0.42]), 

insertion S/I (r=-0.34±0.15, CI [0.30 0.40]), and optima fiber length (r=0.53±0.24, CI 

[0.48 0.55]) (Table 6.4). However, statistically significant relationships between hip joint 
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contact force and hip extensors parameter resulted in, on average, 53.7% less change in 

hip joint contact force compared to abductors and 82.9% less compared to hip flexors 

(Table 6.5).  

Hip joint contact force was more sensitive to changes in the hip flexor group than 

the abductors and extensors. One standard deviation changes in statistically significant 

parameter relationships resulted changes to hip joint contact force that ranged from 

0.0176 BW to 0.0539 BW. The muscle with the greatest influence was the psoas with 

significant relationships to hip joint contact force between maximum isometric force 

(r=0.59±0.03, CI [0.55 0.61]), origin S/I (r=0.41±0.04, CI [0.37 0.43]), insertion A/P (r=-

0.36±0.03, CI [0.31 0.42]) and optimal fiber length (r=0.45±0.04, CI [0.40 0.49]) (Tables 

6.6&6.7). 

 

6.5: Discussion 

This study demonstrates a patient-specific hip muscle strength scaling approach 

that provides the ability to capture post-operative THA strength adaptions in 

musculoskeletal simulations. This approach is required to match experimental data and 

provide realistic muscle and joint force outputs in the THA patient population. Further, 

assessment of the impact of uncertainty and identification of the most influential 

parameters quantify the range of possible results for outputs to describe model confidence 

and support broader applications in combination with finite element analysis to address 

implant design, surgical planning and rehabilitation strategy.   
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The patient-specific muscle strength scaling required to minimize differences 

between model predicted torque and experimentally collected torque illustrate the 

importance of careful parameterization in each muscle group of the hip. On average, 

muscles required a 24% change in strength to reproduce experimentally collected joint 

torques to within 0.1 Nm. However, these changes differed between patients and between 

muscle groups. The large changes required for hip extensors (38.1±16.2%) compared to 

hip flexors (4.7±14.8%) may be explained by the posterior surgical approach used on 

these patients and would likely be reversed in patients with an anterolateral approach. 

Strength difference between muscle groups persist throughout the recovery period as 

patients regain strength and function to varying degrees for years following the procedure 

(Di Monaco et al., 2009).  Without scaling practices that match patient-specific 

experimentally measured joint torques, outputs from musculoskeletal simulation may not 

accurately represent loading conditions in a patient population, particularly those that 

experience significant muscular adaptations in response to pathology.   

Further highlighting the need to apply patient-specific parameters, the impact of 

uncertainty was greatest when considering variability in muscle attachment site. Muscle 

attachment has a direct relationship with the muscle moment arm (Pal et al., 2007), 

altering joint torques and contact forces. Incorporating imaging data to inform the 

location of muscle attachment site may help to reduce the impact of this source of 

uncertainty. However, this may not be feasible in all musculoskeletal simulation studies. 

Therefore, it is necessary to understand and quantify the impact of uncertainty in muscle 
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force and joint contact force outputs before incorporating into finite element analyses and 

evaluating hypotheses.  

The sensitivity of joint contact forces to individual muscle parameters identified 

the muscles with the largest influence on hip joint loading, and may be an important 

factor to consider during THA surgical planning. The muscles that resulted in the highest 

sensitivity (change in hip joint contact force for a one standard deviation change in any 

muscle parameter) all came from the flexor muscle group: psoas, rectus femoris and 

iliacus. This likely occurred because these muscles were much stronger on average than 

any in the abductor or extensor muscle groups. The analysis also identified interesting 

relationships for muscles that are considered secondary to the larger, prime movers. For 

example, the piriformis muscle, one of the weaker hip muscles based on strength, resulted 

in significant relationships to hip joint contact force for all three parameters considered. 

This is likely due to its location and orientation relative to the hip joint. The most 

influential muscles to hip joint loading may be left unaltered during surgery to improve 

patient outcomes.  

Several limitations to this study should be considered. First, this cohort may not 

represent the THA population because we considered a sample group with only five 

patients. Second, maximum isometric abduction, extension and flexion tasks were only 

performed in one position for each task, and therefore, do not serve as a validation of the 

muscle parameters in the model. For true validation of model predictions with laboratory 

observations, additional experimental maximal joint torque values in varying position 

would be necessary. Finally, the output distributions for hip joint contact force and 
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muscle forces were dependent on the input distributions selected.   We chose our 

probabilistic input parameters based on experimental data when possible and on values 

found in the literature. We recommend that other researchers select input distributions 

based on the best experimental data available. 

 

6.6: Conclusion 

Incorporating patient specific strength and uncertainty assessments into 

musculoskeletal simulation provides robust solutions when using these outputs in 

combination with finite element analysis to inform implant design, surgical approach and 

rehabilitation strategy. The patient-specific approach used in this study provides the 

ability to capture post-operative strength adaptions to generate realistic hip loading 

conditions in patients with THA.  Further, assessment of the impact of uncertainty is 

needed to improve confidence in musculoskeletal modeling and should be considered 

when using results in hypothesis testing and clinical decision making.   

Study 2 – Simulated Hip Abductor Strengthening Reduces Peak Joint Contact Forces 

During Step Down Task in Patients with Total Hip Arthroplasty 

6.7: Abstract 

It is common for lower extremity muscle strength training to be a focus of rehabilitation 

following total hip arthroplasty (THA). The strength of the hip abductor muscle group is 

an important predictor of overall function following THA due to the link between hip 

abductor function and joints other than the hip. The purpose of this study was to 



89 
 

investigate the effects of hip abductor strengthening following rehabilitation on joint 

contact forces (JCFs) in the lower extremity and low back during a high demand step 

down task. Five patients who had undergone THA performed lower extremity maximum 

isometric strength tests and a stair descent task from a height of 20 cm. Patient-specific 

musculoskeletal models were created in OpenSim using maximum isometric strength 

parameters scaled to minimize differences between model-predicted and measured 

preoperative maximum isometric joint torques in hip flexion, extension, and abduction as 

well as knee flexion and extension. A baseline forward dynamic simulation of each 

subject performing the stair descent was constructed using their corresponding patient-

specific model to predict JCFs at the ankle, knee, hip, and low back. The hip abductor 

muscle strength was increased relative to baseline over a range of possible strength 

increases (0-30%) in a probabilistic framework using the advanced mean value method to 

predict bounds (0.5-99.5%) for peak JCF at each joint.  Simulated hip abductor 

strengthening resulted in peak JCFs bounds that were reduced relative to baseline for all 

five patients at the hip (18.9-23.8±16.5%) and knee (20.5-23.8±11.2%). Four of the five 

patients had reductions at the ankle (7.1-8.5±11.3%) and low back (3.5-7.0±5.3%) with 

one patient demonstrating no change. Simulated hip abductor strengthening reduced JCF 

at the hip joint and at joints other than the hip demonstrating the dynamic and mechanical 

interdependencies of the knee, hip and spine that can be targeted in early THA 

rehabilitation and may lead to higher overall patient function. 
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6.8: Introduction 

Rehabilitation following total hip arthroplasty (THA) is designed to reduce the 

impairments associated with the surgery and to optimize overall functional recovery. It is 

common for lower extremity muscle strength training to be a focus of rehabilitation as 

strength deficits are strongly associated with decreased overall function. Through the use 

of rehabilitation, investigators have reported improvement in muscle strength in the first 

six months of recovery compared to preoperative values. Lower extremity muscle 

strength gains from rehabilitation can range from 0-30% (Suetta et al., 2008), with more 

common gains of 15-20% (Judd et al., 2014). While strength deficits relative to the 

uninvolved limb may persist, early stage strength gains may be beneficial to long-term 

function and in reducing the loading experienced by the implant. 

The strength of the hip abductor muscle group is an important predictor of overall 

function following THA. This may be due to its influence on the internal joint contact 

force (JCF), where weakness in the hip abductor group results in greater hip joint contact 

forces during walking (Valente et al., 2013). Increased joint loading can lead to loosening 

of the implanted components and overall functional deficits during tasks with high 

muscular demand (Long et al., 1993). Targeting deficits in hip abductor muscles may 

improve overall functional recovery following surgery by influencing the loading at the 

hip joint and potentially at joints other than the hip.  

A clinical link has been established between the hip abductor muscle group and 

joints other than the hip. Individuals with patellofemoral pain syndrome demonstrate 
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deficits in hip abductor muscle strength and exhibit greater degrees of hip adduction and 

internal rotation during dynamic activities such as landing from a jump or a step down 

task (Lee et al., 2012; Powers, 2010; Salsich and Long-Rossi, 2011). Hip muscle force 

production is crucial for whole body balance in minimizing the acceleration of the body 

center of mass in response to postural perturbations, which has been linked to variety of 

injury mechanisms  (Aramaki et al., 2001). However, the relationship between hip 

abductor strength and JCF in the lower extremity and lower back has not been fully 

investigated, particularly during tasks with high muscle demand. Additionally, 

identifying which abductor muscles have the most impact on JCF can direct rehabilitation 

strategy and inform surgical approach. 

The purpose of this study was to investigate the effects of typical changes in hip 

strength following rehabilitation on JCFs in the lower extremity and low back during a 

step down task. The step down task was chosen because it is representative of stair 

descent, and demands higher hip function than flat walking. We hypothesized that 

simulated increases in abductor muscle strength would influence peak JCFs at joints other 

than the hip.  

 

6.9: Methods 

Five patients with THA (2 M, 3F; age: 63±7.5 yrs; BMI: 27.5±2.0) participated in 

a preoperative laboratory testing session that was repeated six weeks postoperatively. 

Each patient provided written, informed consent and the study was approved by the 

Colorado Multiple Institutional Review Board. Data from these patients were collect by 
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researchers at the Anschutz Medical Campus at the University of Colorado under the 

direction of Dr. Cory Christensen and Dr. Jennifer Stevens-Lapsley and provided for 

further analysis in this dissertation. 

 

6.9.1: Experimental Testing Sessions 

Strength of the hip flexors, extensors, and abductors as well as the knee flexors 

and extensors was assessed using an electromechanical dynamometer (HUMAC NORM, 

CSMI Solutions, Stoughton, MA) connected to a Biopac
 
Data Acquisition System 

(Biodex Medical Systems, Inc., Shirley, NY) running AcqKnowledge software (v 3.8.2). 

Strength was measured in the affected limb. For hip flexor and extensor strength 

assessment, participants were positioned in supine with the hip flexed to 40°. Hip 

abductor strength was measured while participants were positioned side-lying with 0° of 

hip flexion/extension and 0° of hip abduction/adduction. Knee extensor and flexor 

strength was measured in a seated position with a with a shoulder harness and waist strap 

for stabilization. Patients were placed in 85° of hip flexion and 60° of knee flexion for 

testing. 

 32 reflective markers were used to define anatomical landmarks while an 8 

motion camera motion capture system  (Vicon, Centennial, CO) collected at 100 Hz. 

Patients performed a single step down task with their involved limb from a height of 20 

cm onto a force plate collecting at 2000 Hz.   
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6.9.2: Probabilistic Musculoskeletal Simulation 

Musculoskeletal simulations were performed in OpenSim (Delp et al., 2007).  A 

musculoskeletal model was used for each patient that included detailed hip musculature 

(Shelburne et al., 2010). Additional muscles and wrapping were added to the lower 

extremity models currently available in OpenSim. Each model was initially scaled by 

patient segment dimensions and mass. Patient-specific muscle maximum isometric 

strength values of each model were then scaled to minimize differences between model-

predicted and the measured maximum isometric joint torques for each task (see Study 1). 

A baseline forward dynamic simulation of each patient performing the step down 

task was constructed using their corresponding patient-specific model to predict lower 

extremity muscle forces and JCFs at the ankle, knee, hip, and low back. The hip abductor 

muscle strength for gluteus medius (glut med), gluteus minimus (glut min), anterior 

section of the gluteus maximum (glut max), tensor fasciae latae (tfl), piriformis (piri) and 

gemellus (gem) were then increased relative to baseline in a series of probabilistic 

analyses. A range of possible strength increases was simulated with a mean of 15% and a 

standard deviation of 5% to result in a ±3 standard deviation range of 0-30% of possible 

increase in abductor muscle strength.  

Probabilistic analyses were performed using both Monte Carlo methods and 

advance mean value (AMV) (Wu, Y et al., 1990). AMV is beneficial for probabilistic 

modeling involving long running simulations because it is more computational efficient 

compared to Monte Carlo. Fewer trials are necessary with AMV to obtain a solution for a 
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given probability level, resulting in decreased computational time compared to the Monte 

Carlo method. To verify convergence, data from one patient were analyzed using both the 

AMV and Monte Carlo methods and joint contact force outputs were compared. After 

confirming excellent agreement between the Monte Carlo and AMV methods for one 

patient, the AMV method was used.  

The output range of peak JCF at each joint was generated by calculating the 

values with 0.5% (lower) and 99.5% (upper) probability. These bounds represent the 

greatest range possible without including the extreme tails of the output distribution. A 

final simulation of the step down task was performed in which each patient-specific 

model was scaled to the measured strength in the hip abductor group at the six-week 

postoperative test. The peak JCFs of each patient’s strength adaptation at six weeks were 

compared to the predicted range from the probabilistic analyses 

Within the probabilistic analysis, muscle strengths were varied per muscle. This 

enabled the calculation of sensitivity factors from the advanced mean value method for 

each muscle. Sensitivity factors were calculated in the standard normal variate space as 

the unit vector from the origin to the point that represents the combination of input 

parameter values that predict performance at the two specified probability levels. The 

Sensitivity factors are a measure of the relative impact of increased strength of each 

muscle on the peak JCF. The sum of squares of all sensitivities for each joint will equal 

one.  
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6.10: Results 

6.10.1: Experimental Strength Testing 

Three of the five patients demonstrated increases in hip abductor strength postoperatively 

that were on average 11.3% greater than preoperative strength (Table 6.8).  

 

6.10.2: Simulated Strengthening 

Results generated from the AMV analysis agreed with those from a Monte Carlo 

simulation of 3000 trials. 0.5% and 99.5% bounds calculated from AMV were on average 

97.6% accurate for joint contact force estimations when compared to Monte Carlo. This 

verified the convergence of the AMV analysis to Monte Carlo. The results reported 

below were taken from the AMV analysis. 

Simulated hip abductor strengthening resulted in peak JCFs at lower and upper 

bounds that were smaller than baseline peak JCFs for all five patients at the hip (18.9-

23.8±16.5%) and knee (20.5-23.8±11.2%) (Figure 6.3). Four of the five patients had 

reductions at the ankle (7.1-8.5±11.3%) and low back (3.5-7.0±5.3%) with one patient 

demonstrating no change. Reductions at the ankle and low back were smaller than the hip 

and knee, but demonstrate the ability of the hip abductor group to influence loading at 

these joints in some patients (Figure 6.4).  

The large variability in percent reduction in JCF was associated with preoperative 

strength. In general, patients with weaker preoperative strength resulted in the greatest 

reductions in JCF in response to simulated strengthening. Further, two patients with 

weaker hip abductors at the 6-week follow up compared to preoperatively, demonstrated, 
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on average, greater hip (34.9±20.3%) and knee (20.7±7.1%) JCFs compared to baseline, 

while patients with increased strength demonstrated reductions in JCFs that were within 

the upper and lower simulated strength bounds (Figure 6.3). 

Simulated strengthening resulted in a redirection of JFCs at the lower extremity 

joints as demonstrated by changes to the force components. The largest differences 

occurred in the vertical component at each joint and accounted for 82.5±13.1% of the 

JCF reductions, on average (Table 6.9).  

The two posterior sections of the gluteus medius had a 20.3% greater effect on 

low back JCF than any other joint, while the anterior section had 46.3% greater effect on 

knee JCF than any other joint. The smaller muscles (tfl, gem) had the greatest influence 

overall for the relative increase in hip strength. Knee JCFs demonstrated sensitivity 

factors of 0.24±0.8 and 0.26±0.8 for the tfl and gem, respectively, and were the highest of 

any individual muscle-joint relationship. However, sensitivity factors varied between 

subjects, likely due to differences in anthropometry and stair descent kinematics that can 

influence moment arm and muscle mechanics (Figure 6.5).  

 

6.11: Discussion 

Simulated strengthening of the hip abductor muscle group produced reductions in 

hip and knee JCF and smaller reductions at the low back and ankle when muscle demand 

was high. This indicates that targeting this muscle group in early THA rehabilitation may 

lead to higher overall patient function with reduced JCF on the implant. In addition, JCF 

was most sensitive to simulated strengthening in what may be considered minor muscles 
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of the hip, and may play an important role in surgical approach and rehabilitation 

planning.     

Strengthening of the hip abductor group is capable of reducing JCF at joints other 

than the hip, confirming our initial hypothesis. While simulated strengthening of the hip 

abductors had the greatest influence on the hip JCF (18.9 to 23.8%), reductions in JCF 

that ranged from 3.5% to 20.5% were also demonstrated in the low back, knee and ankle. 

Increasing the strength alone, of a vital muscle group, while maintaining kinematics and 

anthropometrics, resulted in a redirection of contact forces and redistribution across 

muscles that lead to potentially beneficial force reductions. It is likely this was a result of 

dynamic coupling between the body segments where each muscle force contributes to the 

angular accelerations of all the joints at each instant of the task (Pandy, 2001; Zajac and 

Gordon, 1989). Because the articular contact forces are a function of the joint angular 

accelerations, it follows that each muscle force also contributes to the contact force 

transmitted by each joint. Therefore, muscles that do not cross a specific joint are capable 

of contributing to the contact force at that joint. For example during gait, the vasti, soleus 

and gastrocnemius contribute  greater than 0.5 BW to hip contact force (Correa et al., 

2010).   

The sensitivity factors calculated also identify the influence of the hip abductor 

muscle on each of the joints assessed. Within the same muscle, the three different 

sections of the gluteus medius were capable of influencing loading to different degrees at 

the knee, hip and low back. Likely as a result of the architecture and the moment arm of 

each section, the most anterior section of the gluteus medius had the largest influence 
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over the knee JCF, while the two posterior sections had a greater influence over the low 

back. Additionally, knee JCF demonstrated the greatest sensitivity factors to the gem and 

tfl, muscles that might be considered minor muscles of the hip in comparison the gluteal 

muscles. These sensitivity results offer clinicians muscles to target when designing 

strength based rehabilitation strategy. Surgeons may also use these data in consideration 

of surgical planning when assessing approach and the muscles that are affected to the 

greatest extent. 

This is the first study to assess the influence of simulated hip muscle 

strengthening on joint loading; however, there have been in-vitro study designs that 

support our findings. For example, the influence of the gluteal muscles on joint loading 

has been demonstrated using in-vitro models. Cristofolini et al., (1995) simulated the 

forces of ten thigh muscles during early stance in gait on cadaveric femurs and found that 

the gluteus medius and minimus had over two times greater influence on vertical femur 

strain than muscles that included gluteus maximus, the quadriceps muscles and adductor 

magnus. High demand, landing tasks have been simulated at the knee, where increasing 

quadriceps force over a physiological possible range demonstrated a redirection of 

ground reaction forces and reductions in ACL strain (Hashemi et al., 2010). While not 

specifically at the hip joint, this study also quantified evidence of the interrelationship 

between muscle forces and accelerating body segments in the presence of ground reaction 

forces during high-demand tasks. 

This study implemented the AMV approximation method to enable the use of 

probabilistic methodology with musculoskeletal simulation in an efficient and accurate 
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way. The method was originally designed for structural and aerospace applications, but 

has been used in certain orthropaedic applications (Langenderfer et al., 2009, 2008; Laz 

and Browne, 2010). AMV is attractive for applications with high computational costs like 

the forward simulations used in this study, because it requires fewer evaluations than 

Monte Carlo to generate similar outputs. However, the AMV method cannot be used in 

every musculoskeletal modeling application. The number of trials needed for AMV 

analysis is determined by n+1+m, where n is the number of random variables and m is the 

number of specified probability levels. As study complexity increases, computational 

savings is reduced and the more robust Monte Carlo method should be used. 

Additionally, when multiple combinations of input parameters result in the same output, 

the method will have difficulty converging on a meaningful solution. We recommend that 

prior to proceeding, AMV outputs should always be compared to Monte Carlo outputs.   

There are limitations to this study should be considered. First, this was a 

controlled condition that assessed only the influence of increased muscle strength. It is 

possible that step down kinematics, ground reaction forces and as well as anthropometric 

variables could change following a strengthening rehabilitation protocol which would 

influence the resulting JCFs. Second, simulated strengthening assumed that the maximum 

isometric strength of each muscle was independent. It is not known how the different 

muscles of the hip abductor group respond to typical strengthening rehabilitation. 

Additionally, this allowed for the calculation of sensitivity factors for each muscle in the 

abductor group.  
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6.12: Conclusion 

Simulated hip abductor strengthening produced reductions in JCF when muscle 

demand was high at the hip joint as well as at the knee and low back. This is evidence of 

the dynamic and mechanical interdependencies of the knee, hip and spine that can be 

targeted in early THA rehabilitation and may lead to higher overall patient function with 

reduced JCF on the implant. In addition, JFC was most sensitive to simulated 

strengthening in what may be considered minor muscles of the hip, and may play an 

important role in surgical approach and rehabilitation planning.    

 

 

 

 

 

 

 

Table 6.1: The muscles that make up the abductor, extensor and flexor groups of the hip 

with the abbreviations for each muscle. The abbreviations are consistent with those used 

in OpenSim. 

Abductors Extensors Flexors 

Gluteus Maximus: 1 fascicle 
      Anterior  (glut_max1) 
Gluteus Medius: 3 fascicles 
      Anterior  (glut_med1) 
      Middle  (glut_med2) 
      Posterior  (glut_med3) 
Gluteus Minimus: 3 

fascicles 
      Anterior  (glut_min1) 
      Middle  (glut_min2) 
      Posterior  (glut_min3) 
Piriformis  (piri) 
Tensor Fasciae Latae (tfl) 
Gemellus  (gem) 

Adductor Magnus: 3 

fascicles 
Superior (add_mag1) 
Middle (add_mag2) 
Inferior (add_mag3) 

Gluteus Maximus: 2 

fascicles 
Middle (glut_max2) 

   Posterior (glut_max3) 
Gracilis 
Quadratus femoris 

(quad_fem) 

Adductor Longus 

(add_long) 
Iliacus 
Pectineus (pect) 
Psoas 
Rectus Femoris (rect_fem) 
Sartorius (sar) 
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Table 6.2: Average correlation coefficient (SD) across five patients between hip joint 

contact force magnitude and hip muscle parameters of the abductor group.  Sensitivity 

is highlighted based on correlation coefficient strength. Weakly Sensitive: r=0.2-0.4 

(green); Moderately Sensitive: r=0.4-0.6 (yellow); Highly Sensitive: r=0.6-1.0 (red). 
 

glut_max1 glut_med1 glut_med2 glut_med3 glut_min1 glut_min2 glut_min3 piri tfl gem 

Max 

Iso 
0.29 

(0.04) 

0.47 

(0.04) 

0.40 

(0.01) 

0.45 

(0.04) 

0.18 

(0.03) 

0.19 

(0.02) 

0.23 

(0.03) 

0.26 

(0.03) 

0.17 

(0.04) 

0.14 

(0.11) 
Origin 

A/P 
0.00 

(0.03) 

0.08 

(0.04) 

0.02 

(0.04) 

0.03 

(0.02) 

-0.01 

(0.04) 

0.00 

(0.02) 

0.01 

(0.03) 

-0.12 

(0.02) 

0.01 

(0.03) 

-0.01 

(0.02) 
Origin 

S/I 
0.15 

(0.07) 

0.26 

(0.07) 

0.06 

(0.02) 

0.15 

(0.02) 

0.02 

(0.03) 

0.02 

(0.04) 

0.10 

(0.08) 

0.18 

(0.02) 

0.01 

(0.03) 

0.15 

(0.06) 
Origin 
M/L 0.06 

(0.04) 

0.13 

(0.03) 

0.10 

(0.02) 

0.09 

(0.02) 

0.02 

(0.07) 

0.01 

(0.06) 

0.02 

(0.05) 

0.29 

(0.05) 

0.00 

(0.03) 

0.17 

(0.11) 
Insert 
A/P 

0.07 

(0.01) 

-0.07 

(0.01) 

0.01 

(0.03) 

0.00 

(0.02) 

0.02 

(0.02) 

-0.01 

(0.03) 

-0.01 

(0.04) 

0.09 

(0.01) 

0.00 

(0.04) 

0.03 

(0.04) 
Insert 

S/I 
-0.11 

(0.03) 

-0.31 

(0.07) 

-0.09 

(0.02) 

-0.11 

(0.04) 

0.01 

(0.03) 

-0.02 

(0.02) 

-0.07 

(0.03) 

-0.25 

(0.04) 

0.00 

(0.03) 

-0.16 

(0.06) 
Insert 

M/L 
-0.02 

(0.03) 

-0.14 

(0.05) 

-0.05 

(0.02) 

-0.07 

(0.03) 

-0.02 

(0.02) 

0.00 

(0.02) 

-0.07 

(0.03) 

-0.27 

(0.05) 

-0.03 

(0.01) 

-0.21 

(0.09) 
Fiber 
Len 

0.58 

(0.11) 

0.31 

(0.10) 

0.05 

(0.03) 

0.14 

(0.08) 

0.19 

(0.08) 

0.00 

(0.01) 

-0.01 

(0.01) 

0.25 

(0.11) 

0.03 

(0.04) 

0.00 

(0.01) 

Table 6.3: Average change in hip contact force in BW for 1 SD change in input 

parameter (SD) across five patients between hip joint contact force magnitude and hip 

muscle parameters of the abductor group.  Sensitivity is highlighted based on 

correlation coefficient strength. Weakly Sensitive: r=0.2-0.4 (green); Moderately 

Sensitive: r=0.4-0.6 (yellow); Highly Sensitive: r=0.6-1.0 (red). 
 glut_ma

x1 

glut_me

d1 

glut_me

d2 

glut_me

d3 

glut_min

1 

glut_min

2 

glut_min

3 piri tfl gem 

Max 

Iso 

0.0072 

(0.0031) 

0.0114 

(0.0045) 

0.0100 

(0.0037) 

0.0112 

(0.0044) 

0.0043 

(0.0016) 

0.0046 

(0.0018) 

0.0056 

(0.0024) 

0.0061 

(0.0022) 

0.0039 

(0.0010) 

0.0028 

(0.0009) 

Orig

in 

A/P 

0.0006 

(0.0019) 

0.0066 

(0.0042) 

0.0017 

(0.0026) 

0.0020 

(0.0019) 

-0.0009 

(0.0031) 

-0.0005 

(0.0018) 

0.0013 

(0.0019) 

-0.0089 

(0.0035) 

0.0013 

(0.0023) 

-0.0008 

(0.0015) 

Orig
in 

S/I 

0.0122 

(0.0068) 

0.0202 

(0.0085) 

0.0048 

(0.0026) 

0.0113 

(0.0042) 

0.0015 

(0.0024) 

0.0024 

(0.0035) 

0.0080 

(0.0064) 

0.0134 

(0.0047) 

0.0007 

(0.0020) 

0.0107 

(0.0031) 

Orig
in 

M/L 

0.0035 

(0.0023) 

0.0099 

(0.0037) 

0.0074 

(0.0017) 

0.0069 

(0.0031) 

0.0047 

(0.0038) 

0.0040 

(0.0028) 

0.0045 

(0.0024) 

0.0215 

(0.0079) 

0.0019 

(0.0014) 

0.0115 

(0.0055) 

Inser

t 
A/P 

0.0051 
(0.0021) 

-0.0056 
(0.0024) 

0.0002 
(0.0015) 

-0.0004 
(0.0017) 

0.0012 
(0.0017) 

-0.0005 
(0.0023) 

-0.0007 
(0.0031) 

0.0064 
(0.0018) 

0.0002 
(0.0038) 

0.0023 
(0.0029) 

Inser

t S/I 

-0.0084 

(0.0040) 

-0.0240 

(0.0105) 

-0.0071 

(0.0026) 

-0.0091 

(0.0047) 

0.0008 

(0.0024) 

-0.0018 

(0.0019) 

-0.0055 

(0.0030) 

-0.0189 

(0.0081) 

0.0007 

(0.0026) 

-0.0108 

(0.0015) 

Inser
t 

M/L 

-0.0021 

(0.0022) 

-0.0108 

(0.0058) 

-0.0037 

(0.0018) 

-0.0052 

(0.0024) 

-0.0016 

(0.0017) 

0.0000 

(0.0014) 

-0.0057 

(0.0035) 

-0.0203 

(0.0083) 

-0.0023 

(0.0011) 

-0.0149 

(0.0057) 

Fibe
r 

Len 

0.0097 

(0.0039) 

0.0052 

(0.0028) 

0.0008 

(0.0005) 

0.0027 

(0.0021) 

0.0032 

(0.0021) 

-0.0001 

(0.0002) 

-0.0001 

(0.0001) 

0.0043 

(0.0031) 

0.0007 

(0.0006) 

0.0001 

(0.0003) 
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Table 6.5: Average change in hip contact force in BW (SD) for one standard deviation 

change in input parameter across five patients between hip joint contact force 

magnitude and hip muscle parameters of the extensor group.  Sensitivity is highlighted 

based on correlation coefficient strength. Weakly Sensitive: r=0.2-0.4 (green); 

Moderately Sensitive: r=0.4-0.6 (yellow); Highly Sensitive: r=0.6-1.0 (red). 
 

Add_mag1 Add_mag2 Add_mag3 glut_max2 glut_max3 gracilis 

Quad 

Fem 
Max 
 Iso 

0.0043 

(0.0035) 

0.0046 

(0.0036) 

0.0059 

(0.0045) 

0.0128 

(0.0060) 

0.0077 

(0.0053) 

0.0039 

(0.0036) 

0.0041 

(0.0026) 
Origin 

 A/P 
-0.0049 

(0.0038) 

-0.0038 

(0.0031) 

-0.0016 

(0.0016) 

-0.0017 

(0.0043) 

-0.0009 

(0.0009) 

-0.0009 

(0.0011) 

-0.0051 

(0.0036) 
Origin 

 S/I 
0.0028 

(0.0025) 

0.0020 

(0.0015) 

0.0004 

(0.0005) 

0.0109 

(0.0062) 

0.0010 

(0.0015) 

0.0002 

(0.0017) 

0.0045 

(0.0030) 
Origin  

M/L 
0.0038 

(0.0031) 

0.0018 

(0.0016) 

0.0006 

(0.0008) 

0.0039 

(0.0022) 

0.0011 

(0.0007) 

0.0004 

(0.0009) 

0.0011 

(0.0007) 
Insert  

A/P 
0.0022 

(0.0021) 

0.0014 

(0.0008) 

-0.0009 

(0.0007) 

0.0048 

(0.0022) 

0.0011 

(0.0014) 

-0.0001 

(0.0007) 

0.0008 

(0.0011) 
Insert 
 S/I 

-0.0057 

(0.0041) 

-0.0030 

(0.0026) 

-0.0012 

(0.0007) 

-0.0089 

(0.0045) 

-0.0013 

(0.0019) 

0.0003 

(0.0019) 

-0.0057 

(0.0035) 
Insert  

M/L 
-0.0028 

(0.0022) 

-0.0016 

(0.0021) 

-0.0013 

(0.0017) 

-0.0007 

(0.0024) 

-0.0009 

(0.0014) 

-0.0004 

(0.0003) 

-0.0009 

(0.0016) 
Fiber  

L 
0.0017 

(0.0012) 

0.0017 

(0.0012) 

0.0001 

(0.0004) 

0.0044 

(0.0019) 

-0.0001 

(0.0001) 

0.0000 

(0.0003) 

0.0001 

(0.0002) 

Table 6.4: Average correlation coefficient (SD) across five patients between hip joint 

contact force magnitude and hip muscle parameters of the abductor group.  

Sensitivity is highlighted based on correlation coefficient strength. Weakly Sensitive: 

r=0.2-0.4 (green); Moderately Sensitive: r=0.4-0.6 (yellow); Highly Sensitive: r=0.6-

1.0 (red). 
 

Add_mag1 Add_mag2 Add_mag3 glut_max2 glut_max3 gracilis 

Quad 

Fem 
Max 

 Iso 
0.20 

(0.08) 

0.22 

(0.09) 

0.30 

(0.14) 

0.67 

(0.10) 

0.39 

(0.10) 

0.21 

(0.19 

0.21 

(0.06) 
Origin 

 A/P 
-0.17 

(0.07) 

-0.13 

(0.05) 

-0.05 

(0.03) 

-0.03 

(0.11) 

-0.03 

(0.03) 

-0.04 

(0.05) 

-0.18 

(0.05) 
Origin 

 S/I 
0.09 

(0.02) 

0.07 

(0.05) 

0.01 

(0.03) 

0.40 

(0.11) 

0.06 

(0.01) 

0.01 

(0.01) 

0.16 

(0.03) 
Origin  

M/L 
0.14 

(0.07) 

0.06 

(0.03) 

0.03 

(0.03) 

0.16 

(0.09) 

0.04 

(0.02) 

0.01 

(0.02) 

0.04 

(0.02) 
Insert  
A/P 

0.07 

(0.04) 

0.06 

(0.02) 

-0.03 

(0.01) 

0.19 

(0.05) 

0.03 

(0.04) 

0.00 

(0.03) 

0.03 

(0.04) 
Insert 

 S/I 
-0.20 

(0.07) 

-0.10 

(0.06) 

-0.05 

(0.03) 

-0.34 

(0.15) 

-0.04 

(0.06) 

0.00 

(0.06) 

-0.21 

(0.06) 
Insert  
M/L 

-0.11 

(0.08) 

-0.05 

(0.07) 

-0.04 

(0.04) 

-0.02 

(0.09) 

-0.03 

(0.04) 

-0.01 

(0.01) 

-0.04 

(0.05) 
Fiber  

L 
0.22 

(0.17) 

0.22 

(0.17) 

0.01 

(0.04) 

0.53 

(0.24) 

-0.01 

(0.02) 

-0.01 

(0.03) 

0.02 

(0.01) 
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Table 6.6: Average correlation coefficient (SD) across five patients between hip 

joint contact force magnitude and hip muscle parameters of the flexor group.  

Sensitivity is highlighted based on correlation coefficient strength. Weakly 

Sensitive: r=0.2-0.4 (green); Moderately Sensitive: r=0.4-0.6 (yellow); Highly 

Sensitive: r=0.6-1.0 (red). 
 Add_Long Iliacus Pect psoas rect_fem sar 

Max 

 Iso 
0.29 

(0.00) 

0.64 

(0.02) 

0.16 

(0.05) 

0.59 

(0.03) 

0.39 

(0.01) 

0.02 

(0.01) 
Origin 
 A/P 

-0.08 

(0.03) 

-0.17 

(0.07) 

0.00 

(0.03) 

-0.14 

(0.03) 

-0.26 

(0.02) 

-0.03 

(0.03) 
Origin 

 S/I 
0.20 

(0.05) 

0.32 

(0.04) 

0.13 

(0.03) 

0.41 

(0.04) 

0.38 

(0.04) 

0.01 

(0.03) 
Origin  

M/L 
0.06 

(0.04) 

0.03 

(0.04) 

0.05 

(0.05) 

0.14 

(0.02) 

0.02 

(0.02) 

0.03 

(0.02) 
Insert  
A/P 

-0.09 

(0.03) 

-0.31 

(0.04) 

-0.07 

(0.06) 

-0.36 

(0.03) 

-0.01 

(0.01) 

-0.01 

(0.04) 
Insert 

 S/I 
-0.19 

(0.04) 

-0.10 

(0.04) 

-0.13 

(0.02) 

-0.14 

(0.04) 

-0.01 

(0.02) 

-0.03 

(0.01) 
Insert  

M/L 
-0.09 

(0.03) 

-0.11 

(0.04) 

-0.07 

(0.03) 

-0.09 

(0.02) 

0.00 

(0.03) 

-0.03 

(0.02) 
Fiber  

L 
0.32 

(0.05) 

0.33 

(0.02) 

0.17 

(0.02) 

0.45 

(0.04) 

0.71 

(0.03) 

0.02 

(0.03) 

 

Table 6.7: Average change in hip contact force in BW (SD) for one standard 

deviation change in input parameter across five patients between hip joint contact 

force magnitude and hip muscle parameters of the flexor group.  Sensitivity is 

highlighted based on correlation coefficient strength. Weakly Sensitive: r=0.2-0.4 

(green); Moderately Sensitive: r=0.4-0.6 (yellow); Highly Sensitive: r=0.6-1.0 

(red). 
 Add_Long Iliacus Pect psoas rect_fem sar 

Max 

 Iso 
0.0176 

(0.0044) 

0.0389 

(0.0096) 

0.0106 

(0.0029) 

0.0365 

(0.0070) 

0.0280 

(0.0067) 

0.0016 

(0.0012) 
Origin 

 A/P 
-0.0104 

(0.0041) 

-0.0203 

(0.0055) 

-0.0001 

(0.0027) 

-0.0171 

(0.0021) 

-0.0333 

(0.0078) 

-0.0042 

(0.0051) 
Origin 

 S/I 
0.0253 

(0.0029) 

0.0425 

(0.0143) 

0.0171 

(0.0050) 

0.0539 

(0.0185) 

0.0482 

(0.0087) 

0.0024 

(0.0038) 
Origin  

M/L 
0.0078 

(0.0048) 

0.0038 

(0.0034) 

0.0057 

(0.0042) 

0.0179 

(0.0058) 

0.0030 

(0.0030) 

0.0039 

(0.0019) 
Insert  
A/P 

-0.0111 

(0.0043) 

-0.0405 

(0.0125) 

-0.0081 

(0.0064) 

-0.0484 

(0.0171) 

-0.0005 

(0.0017) 

-0.0009 

(0.0053) 
Insert 

 S/I 
-0.0252 

(0.0109) 

-0.0135 

(0.0075) 

-0.0173 

(0.0052) 

-0.0194 

(0.0090) 

-0.0019 

(0.0027) 

-0.0039 

(0.0025) 
Insert  

M/L 
-0.0119 

(0.0045) 

-0.0146 

(0.0068) 

-0.0084 

(0.0040) 

-0.0121 

(0.0043) 

-0.0008 

(0.0035) 

-0.0038 

(0.0026) 
Fiber  

L 
0.0179 

(0.0062) 

0.0187 

(0.0055) 

0.0095 

(0.0027) 

0.0249 

(0.0071) 

0.0401 

(0.0092) 

0.0011 

(0.0018) 
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Table 6.8: Maximum isometric torque (N/kg) at each muscle group for all patients 
Subject 

# Quadriceps Hamstrings Flexors Extensors 

Pre-

Abductors 

Post-

Abductors 

1 1.40 0.43 0.91 0.33 0.81 0.55 

2 1.70 0.76 0.73 0.78 0.96 1.10 

3 1.08 0.42 0.86 0.73 0.85 0.80 

4 2.69 1.09 1.70 0.77 1.56 1.76 

5 1.42 0.50 0.78 1.04 0.61 0.65 

Avg 1.66 0.64 1.00 0.73 0.96 0.97 

SD 0.62 0.29 0.40 0.25 0.36 0.49 
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Table 6.9: Mean (SD) joint contact forces in body weight for ankle (A), knee (K), hip, 

(H) and low back (B) in anterior-posterior (x), vertical (y), and medial-lateral (z) 

components across 5 subjects. Included is the difference between the lower and upper 

(L/U) probability levels.   
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Figure 6.1: Representative muscle force outputs from each muscle group 

(abductors, extensors and flexors) from one patient.  5-95% confidence 

bounds are plotted for each source of uncertainty for two muscles in 

each group: the gluteus medius and gluteus minimus (abductors), 

adductor longus and gluteus maximus (extensors), and the psoas and 

rectus femoris (flexors).   
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Figure 6.2: Average 5-95% confidence bounds for hip joint contact force (left) 

and muscle force (right) for each muscle group and uncertainty source. 
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Figure 6.3: Hip and Knee joint contact forces (JCFs) during 

step down with preoperative (baseline) strength and with 

postoperative hip abductor strength. Shaded regions indicate 

the upper and lower bounds from simulated hip abductor 

strengthening. Reductions in JCF resulting from strengthening 

were greatest for the weaker patients (patients 1, 3, 5). 

Postoperatively, Patients that had increased hip abductor 

strength (2,4,5) demonstrated reduced hip JCFs that were 

within the upper and lower simulated strengthening bounds 

and reduced knee JCFs that were within the upper and lower 

strengthening bounds for two of the three subjects.  
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Figure 6.4: Ankle and low back joint contact forces (JCFs) during step 

down with preoperative (baseline) strength and with postoperative hip 

abductor strength. Shaded regions indicate the upper and lower bounds 

from simulated hip abductor strengthening. Reductions in JCF at the 

ankle and low back were smaller than at the hip and knee but were still 

apparent for four of the five subjects.  
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Figure 6.5: Sensitivity factors for hip abductor muscles with respect to 

ankle, knee, hip and low back joint contact forces. 
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CHAPTER 7 – POPULATION-BASED PROBABILISTIC MUSCULOSKELETAL 

MODELING 

This chapter will present a feasibility study to address challenges to performing 

population-based musculoskeletal modeling through the development of a statistical 

model using principal component analysis. The chapter describes our approach in a 

specific application on a population of patients with total knee arthroplasty, and the 

expected outcomes and future work from the application of population-based 

probabilistic musculoskeletal modeling. 

 

7.1: Introduction 

Evidence-based practice, which is defined as “the use of mathematical estimates of the 

risk of benefit and harm, derived from high-quality research on population samples, to 

inform clinical decision-making... [regarding] individual patients" (Greenhalgh, 2010), is 

the standard for clinical decision-making within rehabilitation therapy. Rehabilitation 

clinicians develop patient-specific rehabilitation strategies from properly powered 

randomized clinical trials that compare treatments across a population. Therefore, outputs 

from musculoskeletal simulations that include muscle force and joint contact forces 

would be valuable in evidence-based practice for prescription of rehabilitation and 

movement retraining in patient populations following lower extremity joint surgery. 
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 The effects of rehabilitation can be difficult to represent in musculoskeletal 

simulation studies because of high inherent inter-patient variability and widely varying 

treatment effects. Typical simulation studies are based on limited sample sizes on the 

order of 5-15 patients that attempt to extrapolate findings to draw conclusions for the 

population as a whole. Modeling populations in musculoskeletal simulation has not been 

prevalent within the musculoskeletal simulation community. Musculoskeletal modeling 

platforms are designed to create the most accurate patient-specific models possible and 

significant effort has been made to improve the anatomic detail of these models (Arnold 

et al., 2010; Ward et al., 2005). Provided the simulation is properly designed and 

parameterized, the results of a patient-specific simulation are applicable only to that 

particular patient from which the data are obtained. For example, Shull et al. (2013) 

demonstrated gait modifications that led to reduced knee adduction moments in 12 

patient-specific models; however, it is unknown how well this subset represents the 

osteoarthritis patient population.   

Generating the amount of patient-specific models necessary to represent a population 

is costly and not feasible. However, probabilistic tools that have been combined with 

musculoskeletal simulation (Myers et al., 2014; Valente et al., 2013) are capable of 

quantifying the influence of inter-patient variability in model input parameters on 

simulation outputs. The ability to realistically model treatment effects that include 

variable interactions and movement variability can improve the impact of 

musculoskeletal simulation on rehabilitation therapy (Figure 7.1). 

Previous studies demonstrate that population-based variability in measures used 

in clinical decision making can be generated from smaller patient cohorts by combining 
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probabilistic methods with principal component analysis (PCA) (Bryan et al., 2009; 

Fitzpatrick et al., 2011b; Galloway et al., 2012). PCA has been used in population-based 

applications to create statistical models from training sets of 20-30 patients that quantify 

relationships between parameters and provide predictive capability between variables that 

are related. For example, PCA has been used to predict patellofemoral kinematics and 

contact pressures using patient geometry and kinematics (Fitzpatrick et al., 2011a). 

Additionally, tibiofemoral kinetics during gait have been successfully predicted with high 

accuracy in a population of  patients  with total knee arthroplasty (TKA) using PCA 

(Galloway et al., 2012). By repeatedly sampling from these models, unique new instances 

of the variables of interest can be generated that capture the inter-patient variability from 

the training data.  Using the OpenSim probabilistic plugin, the combined probabilistic-

PCA approach could be implemented to perform population-based study designs with 

musculoskeletal simulations 

There are two key challenges to address in implementing the previously designed 

probabilistic tools in population-based musculoskeletal simulation studies. First, it is not 

known if the variables used in the generation of musculoskeletal simulations (e.g. 

anthropometry, kinematics, kinetics) are correlated to the extent that is necessary to 

establish an accurate predictive statistical model. Second, if a predictive model can be 

established, it is necessary to identify the level of accuracy that can be expected from 

using predicted variables as inputs into musculoskeletal simulation tools. Accordingly, 

the purpose of this study is to demonstrate the feasibility of population-based 

probabilistic musculoskeletal modeling by using PCA to build a statistical model of the 
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relationships between simple anthropometric variables, kinematic variables and variables 

collected from a force plate for a population of TKA patients performing a sit-to-stand 

task (STS) that can be used to predict new instances of kinematic and force plate 

variables not included in the model. An OpenSim simulation will be performed to 

determine the feasibility of using predicted values as inputs to simulations that calculate 

muscle force and joint reaction force. 

 

7.2: Methods 

Development and accuracy assessment was performed using three sequential 

stages: 1) Anthropometric, kinematic and force plate data from a sample of 28 TKA 

patients performing a STS task were collected and processed. 2) PCA was performed to 

establish a statistical model of the anthropometric, kinematic and force plate variables 

and the predictive ability of the model was assessed. 3) Predicted inputs and outputs were 

used in an OpenSim simulation of the STS task using static optimization to assess the 

accuracy of generating muscle force and joint contact force outputs.   

 

7.2.1: Experimental Sit-to-Stand Task 

Twenty-eight pre-operative TKA patients (mass: 80.9±15.6 Kg; height: 1.70±0.10 m; 

age: 67.3±8.4 yrs) performed a five time STS test as part of a larger investigation. Each 

patient provided written, informed consent and the study was approved by the Colorado 

Multiple Institutional Review Board. Data from these patients were collect by researchers 

at the Anschutz Medical Campus at the University of Colorado under the direction of Dr. 
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Cory Christensen and Dr. Jennifer Stevens-Lapsley and provided for further analysis in 

this dissertation.  

The five time STS test is a test of dynamic balance (Whitney et al., 2005) and 

measures the time it takes to stand from and sit in a chair five times (Bohannon, 2006). 

Each patient was seated in a standard chair (height 46 cm) and instructed to transfer to a 

standing position and return to a sitting position five times. Participants were instructed 

not to use the arms of the chair. For the purposes of this study, the last of the five trials 

was used as a representative STS for each patient. Thirty-two reflective markers were 

used to define anatomical landmarks while an 8 motion camera motion capture system 

(Vicon, Centennial, CO) collected at 100 Hz. Patients placed each foot on a force plate 

collecting at 2000 Hz while performing the test.   

 OpenSim was used with the gait2392 model to calculate kinematics that included 

right and left ankle plantarflexion/dorsiflexion, knee flexion/extension, hip 

flexion/extension, abduction/adduction, internal/external rotation, lumbar 

flexion/extension, lateral bending, axial rotation as well as translations and rotations of 

the pelvis relative to the ground. Models were scaled to patient mass and height. Force 

plate data collected in the lab was transformed into the OpenSim global coordinate 

system and included: right and left ground reaction forces (GRFs); anterior-posterior (Fx) 

vertical (Fy), medial-lateral (Fz), center of pressure; anterior-posterior (Px) medial-lateral 

(Pz) and the free moment (Tz). All variables were time normalized to one hundred 

percent of the task. Force moment variables were normalized to body weight, with both 

normalized and un-normalized results presented. 
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7.2.2 Predictive Model Using Principal Component Analysis 

A predictive statistical model was created by using PCA to establish the relationships 

between inputs of patient mass, height and kinematic variables and outputs of the force 

plate variables. PCA was carried out using methods described by Fitzpatrick et al., 

(2011b).  In the presence of strong correlations between input and output variables, the 

model can be used to predict new instances of inputs and outputs not included in the 

training set. Each set of patient data was arranged in a 1xn vector with each 

anthropometric, kinematic and kinetic variable (n) and combined into an Nxn training 

matrix for all subjects (N). An Nxn matrix of correlation coefficients was calculated 

between the n variables. Eigenvectors and eigenvalues were solved for the correlation 

coefficient matrix.  Principal component (PC) values were calculated as linear 

combinations of the variables from each subject, weighted according to the eigenvectors. 

PC values were mapped to their constituent variables, which consisted of both the inputs 

and outputs. A PC value for a set of variables can be divided into separate contributions 

from the input and output variables. 

The ability of the PCA approach to predict ground reaction forces, moments and 

center of pressure was assessed using a leave-one-out approach. The number of PCs 

included in the predictive model was determined by how many are necessary to represent 

95% of the variance in the model. A total of 28 repeated trials were run where the input 

and output variables for one subject were not included in the development of the model 

and were used as a validation set. The model, based on the remaining 27 subjects, was 

used to predict the kinematic variables of the validation set. Using the validation set and 

height, weight and kinematics as the inputs and force plate variables as the outputs,  
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kinematics, the ground reaction forces, moments and center of pressure were predicted. 

The root mean square (RMS) differences between validation set and predicted variables 

were calculated and averaged across the right and left side for each patient and then 

across all of the patients to calculate the prediction error.  

 

7.2.3 Accuracy of Sit-to-Stand Simulation Using Predicted Inputs 

A STS static optimization was then performed in OpenSim using the predicted 

kinematics with the predicted ground reaction forces, moment and center of pressure. The 

average residuals, which are non-physical forces and moments applied in each plane to 

the model that account for inconsistencies between experimental GRFs and joint 

accelerations estimated from experimental markers, were assessed to quantify how well 

the kinematics and kinetics agreed.   

 

7.3: Results 

Including 18 PCs represented 95.5% of the variation in the model and was used to 

predict kinematic and force plate variables. 

 

7.3.1: Kinematic Variables 

 When predicting joint angles, the average RMS error for all variables was 

2.25±0.23 deg. Average RMS error was lowest for lumbar bending (1.34±0.59 deg) and 

lumbar rotation (1.65±0.60) (Table 7.1) The kinematic and force plate data used in the 

creation of the predictive model represented a wide range in each variable, illustrating the 
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number of different ways the STS task was performed within the patient cohort (Figures 

7.2&7.3).   

 The rotations and translations of the pelvis relative to the global coordinate 

system resulted in RMS error between actual and predicted that were 25.2% less that 

joint angle error for all variables (Table 7.2).  

 

7.3.2: Force Plate Variables 

 Average RMS error for GRFs were greater in the vertical direction (0.074±0.035 

BW) compared to anterior-posterior (0.017±0.011 BW) and medial-lateral 

(0.0090±0.0033 BW) (Table 7.3). Additionally, error was greater for center of pressure 

predictions in the anterior-posterior direction (3.37±1.74 cm) compared to medial-lateral 

(2.21±1.43 cm). Average RMS error in the free moment was 0.0058±0.0028 BW. 

 

7.3.3: OpenSim Simulation from Model Predictions 

After implementing the predicted kinematic variables and force plate variables in an 

OpenSim static optimization of the STS task, average force residuals for Fx, Fy and Fz 

were 26.5 N, 34.46 N and 7.88 N respectively. Average moment residuals for Mx, My, 

Mz were 6.40 Nm, 39.4 Nm, and 7.56 Nm.  

 

7.4: Discussion 

The statistical model of anthropometric, kinematic and force plate variables created in 

this study demonstrated the capability to predict STS kinematics and force plate variables 
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that can be used to generate a population of kinematic and force plate variables to be used 

in population-based OpenSim studies. Average RMS error between actual and predicted 

variables was less than 3.5 degrees for joint angle variables and less than 0.1 BW for all 

ground reaction force variables. The results of this feasibility study indicate that this 

model can be combined with probabilistic modeling to perform population-based 

assessments of inter-patient variability in anthropometric, kinematics, and force plate 

variables that represent movement strategies used during simple tasks of daily living in 

TKA patients. However, these data also indicate that model refinement will be necessary 

to use predicted kinematic and force plate variables as inputs into musculoskeletal 

modeling tools with confidence.   

The average RMS error of predicted force plate variables generated from the model 

was below expected values based on a previous study that used a similar approach. 

Galloway et al., (2012) created a statistical model of tibiofemoral kinetic variables during 

that was capable of generating a population of new knee kinetic variables representative 

of a training data set. The median RMS error for knee force variables were 0.033 BW in 

anterior-posterior, 0.086 BW in the axial direction, and 0.008 BW in medial-lateral. 

These agree well with the average RMS error in ground reaction force components that 

we found for anterior-posterior (0.017 BW), vertical (0.074 BW) and medial-lateral 

(0.0090).  

The size of the errors between validation set and predicted set kinematic and force 

plate variables provide confidence that this is a feasible approach to performing 

population-based musculoskeletal modeling. The model established between joint 

kinematics and force plate variables could be used in a population-based application to 
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characterize the movement strategies that are associated with detrimental asymmetric 

ground reaction force loading. For example, during the STS task, patients often 

preferentially weight the uninvolved limb and adopt a large range of hip motion, that may 

be indicative of poor overall function (Doorenbosch et al., 1994).  

The model was marginally successful at predicting kinematic and force plate 

variables to a level of accuracy necessary for use as inputs in musculoskeletal modeling 

tools. The quality of an OpenSim simulation is based on the size of the residuals, or the 

non-physical forces and moments applied in each plane to the model that account for 

inconsistencies between experimental GRFs and joint accelerations estimated from 

experimental markers. The residuals from the predicted kinematics and force plate 

variables input into OpenSim were outside the range that is recommended for best 

practices (forces: less than 10 N; moments less than 30 Nm). However, the strong 

relationships identified between anthropometric, kinematic and force plates variables that 

were successful in generating an accurate predictive model provide confidence that 

similar models could be created with anthropometric and kinematic inputs and  

musculoskeletal simulation outputs of muscle force and joint contact  force that are 

valuable to clinicians. This would require the generation of 20-30 accurate patient-

specific models in simulations to use as a training set that would be costly but not 

unfeasible.      

 Improvements to the anthropometric, kinematic and force plate variable statistical 

model can be made that could improve its predictive ability. A training set that included a 

greater number of subjects would improve the predictive ability of the model. The 

kinematics were generated from a marker set that was not intended for use in 
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musculoskeletal simulation. A marker set that is designed for use with OpenSim could 

improve the quality of the kinematics generated from the inverse kinematic tool to 

include in the training set. Additionally, a marker set designed for use in musculoskeletal 

modeling would provide the opportunity to improve the scaling of the initial models used 

to generate kinematics and further improve the quality of kinematic data. 

Proposed future work is to combine the statistical model developed in this chapter 

with the previously described probabilistic tool to investigate the impact of variability in 

hip strategy on joint loading at the knee, hip and spine. Variability in the hip angle profile 

that is based on the range that was observed in the training set will be applied to the 

statistical model to fully characterize the range of potential hip angle strategies and 

repeatedly output the corresponding kinematic and force plate variables. These will then 

be used as inputs to OpenSim in order to calculate the joint loads at the knee, hip and 

spine.  Confidence bounds and sensitivity factors will then be calculated on the range of 

potential joint loads based on variability in hip angle strategy. Additionally, this method 

will quantify the interactions between the hip angle strategy and the other kinematic 

variables as well as the loading variables.  Results from this proposed study can be 

directly applied in the mathematical estimates generated during evidence-based practice 

of the risk of benefit and harm used in clinical decision making of rehabilitation and 

movement retraining in patient populations following lower extremity joint surgery. 
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7.5 Conclusion 

This study demonstrated the feasibility of performing population-based 

musculoskeletal modeling that would use principal component analysis combined with 

probabilistic methods. Population-based musculoskeletal modeling studies will improve 

the interpretation of findings from patient-specific analyses and offer high impact to 

clinicians who compare treatments across a population when designing rehabilitation 

protocol. 
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Table 7.1: Average and standard deviation of RMS errors of each joint angle 

kinematic variable (deg) 

 

Hip  

Flex/Ext 

Hip 

Add/Abd 

Hip 

Int/Ext 

Knee 

Angle 

Ankle 

Angle 

Lumbar 

Flex/Ext 

Lumbar 

Bending  

Lumbar 

Rotation 

Average 3.49 1.77 2.16 3.37 1.69 2.52 1.34 1.65 

SD 1.22 0.73 0.91 0.96 0.60 1.03 0.59 0.60 

 

 

 

Table 7.2: Average and standard deviation of RMS error between actual and 

predicted pelvic rotations and translations in all three planes about the global 

coordinate system 

  

Pelvis 

Rx (deg) 

Pelvis Ry 

(deg) 

Pelvis 

Rz (deg) 

Pelvis dx 

(cm) 

Pelvis dy 

(cm) 

Pelvis dz 

(cm) 

Average 2.82 1.15 1.41 1.81 2.13 0.76 

SD 1.14 0.46 1.05 1.07 1.11 0.37 

 

 

 

 

 

 

 

 

 

Table 7.3: Average (±SD) root mean square error between actual and predicted 

ground reaction forces in both body weight and Newtons 

  Fx Fy Fz 

Body Weight (BW) 0.017 (0.011) 0.074 (0.035) 

0.0090 

(0.0033) 

Newtons (N) 13.2 (9.0) 57.5 (27.0) 7.0 (2.5) 
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Figure 7.1: The modeling effort and impact on rehabilitation for different simulation 

study designs. 
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Figure 7.2: Comparison between validation set and predicted  set joint angles 

shown for a representative patient with errors close to the average RMS error. 

Actual and predicted data for the other patients in the population on shown in 

grey.  
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Figure 7.3: Comparison between validation set and predicted set right foot ground 

reaction forces (Fx, Fy, Fz), free moment (Tz) and center of pressure (Px,Pz) shown 

for a representative patient with errors close to the average RMS error. Actual and 

predicted data for the other patients in the population on shown in grey.  
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CHAPTER 8 – SUMMARY AND CONCLUSIONS 

The studies presented in this dissertation represent a progression of work to 

analyze the interdependencies of the knee, hip, and spine using probabilistic 

musculoskeletal modeling. An initial experimental investigation provided biomechanical 

support for how an intervention applied to the hip abductor muscle group is capable of 

altering function of joints both inferior to the pelvis and superior to the pelvis during 

dynamics tasks. In order to address knee, hip, and spine regional interdependence using 

musculoskeletal modeling and to provide an innovative tool to the modeling community, 

a probabilistic plugin was designed and developed to interface with OpenSim and 

implement the probabilistic methods of Monte Carlo and advanced mean value. The four 

studies that were performed with the use of the probabilistic plugin improve the ability to 

translate outputs from musculoskeletal models to rehabilitation practice, demonstrate 

application of the plugin in rehabilitation strategies following total joint replacement and 

provide a foundation for future investigations that implement probabilistic 

musculoskeletal methods. 

An original contribution from this dissertation was the creation of the open-source 

probabilistic plugin for OpenSim. The probabilistic plugin functions with any of the 

OpenSim tools (e.g. Inverse Dynamics, Static Optimization, etc.) and provides a 

graphical user interface to guide users through the setup of probabilistic analyses and 

generate visualizations of results for interpretation. A user manual with tutorial examples 
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was created (Appendix) and the tool was made available to OpenSim users 

(simtk.org/prob_tool). This plugin was used as the key design component to accomplish 

the objectives this dissertation. With the ability to efficiently implement probabilistic 

methods in musculoskeletal modeling, researchers and clinicians will better understand 

the strengths and limitations of their musculoskeletal simulations and more effectively 

use simulations to in complex study designs to inform clinical decisions. 

In a novel study design in Chapter 5, propagation of uncertainty was performed 

by using the output distributions from one stage of the simulation as input distributions to 

subsequent stages and calculating confidence bounds and sensitivity factors for common 

simulation inputs. An important initial step in translating the outputs from 

musculoskeletal simulations into rehabilitation applications involving knee, hip, and 

spine regional interdependence was to demonstrate how understanding and reporting the 

output confidence and sensitivity of outputs to a range of known possible inputs can 

provide clinicians with valuable metrics for use in clinical decision making. This was 

done by quantifying the impact of input uncertainty propagation in a simulation of gait. 

The results of this study demonstrated how an uncertainty source such as, movement 

artifact that is used in the calculation of joint kinematics, can propagate into the final 

simulation stage of muscle force optimization. Additionally, high sensitivity to muscle 

parameters illustrated the importance of using experimental data in model scaling to 

reduce the impact of uncertainty and best represent patient characteristics.  

When applying probabilistic methods in the analyses of a cohort of patients with 

THA, the conclusions from the initial probabilistic investigation were used to make key 
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improvements in modeling methodology beginning in the first study of Chapter 6. A two-

stage patient-specific approach was designed where the first stage scaled patient-specific 

muscle strength parameters to minimize differences between model-predicted joint 

torques and joint torques collected from individual patients with THA during maximal 

isometric hip flexion, extension and abduction tasks. The second stage simulated 

uncertainty in the muscle model parameters to generate the range of possible outputs for 

muscle force and joint contact force when patient-specific strength parameters were used. 

This patient-specific approach provides the ability to capture post-operative strength 

adaptions to generate realistic hip loading conditions that consider input uncertainty. 

Outputs from this approach are useful in combination with finite element analysis to 

inform implant design, surgical approach and rehabilitation strategy. 

The probabilistic plugin was further applied to the THA patient cohort in the 

second study of Chapter 6 on the role of hip abductor muscle strength in knee, hip and 

spine regional interdependence. This represents the first study to quantify the clinical 

concept of regional interdependence using musculoskeletal modeling. The patient-

specific models of the cohort of patients with THA were used in a probabilistic analysis 

that systematically increased the strength of the hip abductor muscle group and calculate 

the effect on lower extremity joint loads and loads at the low back during a step down 

task. Simulated hip abductor strengthening produced reductions in joint contact force 

when muscle demand was high at the hip joint as well as at the knee and low back. 

Strengthened hip muscles can account for a greater percentage of contact loads compared 

to weakened muscles and redirect those loads, providing evidence for the dynamic and 
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mechanical interdependencies of the knee, hip and spine. These interdependencies can be 

targeted in early THA rehabilitation to establish a link between reduced contact loads at 

the knee, hip and spine and higher overall patient function. 

In order to increase the impact of using outputs from musculoskeletal modeling to 

inform rehabilitation practice compared to what is possible from a patient-specific 

approach; the feasibility of performing population-based musculoskeletal modeling was 

demonstrated in Chapter 7. The study was performed on a population of patients with 

total knee arthroplasty performing a sit-to-stand task where a wide range of movement 

strategies are used. A predictive statistical model was created by using principal 

component analysis to establish the relationships between inputs of patient mass, height 

and kinematic variables and outputs of the force plate variables. The model demonstrated 

the capability to predict sit-to-stand kinematics and force plate variables that can be used 

to generate a population of kinematic and force plate variables for population-based 

OpenSim studies. By shifting away from a purely patient-specific approach, population-

based musculoskeletal modeling studies can offer high impact to clinicians who compare 

treatments across a population when designing rehabilitation protocol.  

 In summary, the use of the probabilistic plugin designed and developed in this 

dissertation represents advancement in how outputs from musculoskeletal simulations 

can be applied to rehabilitation practices. The plugin was used in studies to further our 

understanding of knee, hip, and spine regional interdependence. Future investigations 

should continue to adapt the probabilistic plugin to address the broad range of questions 

impacting rehabilitation practice. Additionally, population-based musculoskeletal 
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modeling that was determined to be feasible in this dissertation represents a shift in how 

musculoskeletal modeling can be used to impact rehabilitation. The methods used to 

establish a predictive statistical model using variables present in musculoskeletal 

simulations should be applied to include the influence of movement strategy variability in 

assessments of rehabilitation effects to provide clinicians with a complete assessment of 

treatment protocols.   
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APPENDIX – THE OPENSIM PROBABILISTIC PLUGIN: AN INTRODUCTORY GUIDE TO 

ASSESS UNCERTAINTY IN MUSCULOSKELETAL MODELING 

 

The OpenSim Probabilistic Plugin 

An introductory guide to assess uncertainty 

in musculoskeletal modeling  

 

Casey A. Myers 

Kevin B. Shelburne 

Peter J. Laz 

Bradley S. Davidson 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you perform musculoskeletal simulations using OpenSim at any level, this Probabilistic 

Plugin is for you. The purpose of the Probabilistic Plugin is to enable OpenSim users to 

quantitatively assess confidence in outputs from your musculoskeletal simulations. This 

probabilistic approach provides a systematic framework to quantify uncertainty and 

report this information. The Probabilistic Plugin is open source, and should be adapted as 

needed to your specific project.  
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Where to Start 
 

If you are new to probabilistic analyses, visit YouTube to view a 

presentation on common probabilistic methods in musculoskeletal 

simulation. 

 

https://www.youtube.com/watch?v=ERtzZ7EY3SI&feature=y

outu.be 

 

If you have already configured the Matlab Scripting Environment in 

OpenSim, you are ready to work through the tutorials in order. 

 

 

 

Contents 
 

Initialize and Test Interface between OpenSim and 

Probabilistic Plugin [page148] 

 

 

 

Tutorial 1: Inverse Dynamics and Uncertainty  

in Body Segment Parameters (Monte Carlo Simulation) 

[page150] 

 

 

 

Tutorial 2: Muscle Force Prediction and Uncertainty in 

Muscle Properties (Advanced Mean Value) [page164] 

 

 

 

References [page172] 

 

 

 

Appendix A: Resources to Quantify Uncertainty 

[page173] 
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Initialize and Test Interface between 

OpenSim and Probabilistic Plugin 

 

 

Set up the Matlab Scripting Environment in 

OpenSim  

 

To connect Matlab and OpenSim API, follow the instructions on 

Scripting with Matlab within the OpenSim Confluence documentation. 

 

Download the Probabilistic Plugin 

 

Download zipfile that contains the Plugin distribution and files from 

https://simtk.org/home/prob_tool 

 

Unzip the file and store folder on your computer. 

 

Save the folder and add this folder name to the Matlab search path.  

 

Test that the interface is correctly 

 

To test that the interface is working correctly, type the following into the 

Matlab Command Window: 
Model(‘YourFilePath/ProbModel_gait2392.osim) 

 

Note: The ProbModel_gait2392.osim is a version of the gait2392 model 

that has been appropriately scaled for this data set. 

 

Proceed to Tutorial 1 if 1) No errors occur and 2) A model object 

appears in the Matlab Workspace, proceed to Tutorial 1. 

 

  

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Scripting+with+Matlab
https://simtk.org/home/prob_tool
http://www.mathworks.com/help/matlab/ref/path.html
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Tutorial 1: Inverse Dynamics and Uncertainty  

in Body Segment Parameters 

(Monte Carlo Simulation) 

 

This self-guided tutorial will walk you through a simple analysis 

performed of the Probabilistic Plugin for OpenSim. A case study is 

presented that relies on Monte Carlo simulation as applied to lower 

extremity inverse dynamics in the presence of uncertainties in inertial 

properties. 

 

Upon completing this tutorial, you will be able to: 

 Create valid input distributions for body segment parameters 

 Create and interpret outputs of probabilistic analyses: confidence 

bounds and sensitivity factors 

 Develop intuition on convergence of Monte Carlo simulation  

 Generate a set up file for future probabilistic analyses 

 

How to consider the effects of uncertainty in inverse 

dynamics 

 

Inverse dynamics is a fundamental metric in 

biomechanics 

 

Modeling of inverse dynamics (net moment at a joint) during human 

movement is a foundational concept in biomechanics. Analyses of joint 

moments are: 

 Taught in every course that covers human movement. 

 Frequently applied to assess clinical outcomes. 

 A foundational step toward estimating muscle forces (see Tutorial 

2). 

 

Where does uncertainty arise in inverse 

dynamics? 

 

The inverse dynamics solution is mathematically straightforward and 

depends on three input variables (external reaction forces, segment 

kinematics, inertial parameters). Each of these inputs is prone to error in 

the measurement or estimation and is carried through the calculations to 

the output joint moments.  
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Effects of input uncertainty 

 

Two important effects of input uncertainty that we should consider when 

developing a musculoskeletal model: 

 The “correct output” at any given time point lies within a range of 

possible values that are linked to uncertainty in the input. 

 The contributions of uncertainty in each input to the model outputs 

are not equal. 

 

To quantify these effects, we will generate and interpret Confidence 

Bounds and Sensitivity Factors. 

 

Preparation for Probabilistic Simulation 

 

Create input distributions for body segment 

parameters 

 

A challenging part of running a probabilistic analysis is correctly 

modeling the input distribution. The OpenSim Probabilistic Plugin 

currently accepts the mean and standard deviation to create the Gaussian 

distribution needed for sampling.  

 

 
(image taken from Wikimedia commons) 

 
where μ is the mean value of the parameter and σ is the standard 

deviation of the parameter. 

 

For your input distributions, we will take each value of μ from the 

starting model parameters, and define the input σ from previously 

reported literature.  
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Coefficient of variation for quantifying the 

distribution 

 

To obtain a more generalized formulation applicable to all models, we 

can assume a constant coefficient of variation,  

 

 

 

which assumes that the standard deviation is proportional to the 

magnitude of the mean.  

 

For example, the means and standard deviations reported for the foot 

segment mass, tibia segment mass, and femur segment mass in Rao et al. 

(2006) were 0.85(0.11) kg, 2.89(0.19) kg, and 7.59(1.30) kg, 

respectively. 

 

Therefore, the corresponding coefficients of variation are: 

CVfemur= 0.171 

CVtibia= 0.066 

CVfoot = 0.129 

 

Make note of these for use when running the probabilistic simulation. 

 

Appendix A. lists papers we have found helpful to quantify distributions 

for a variety of parameters.  

 

Perform a Monte Carlo Simulation with the OpenSim 

Probabilistic Plugin 

 

A Monte Carlo simulation is the most familiar probabilistic method. 

Monte Carlo is a class of data sampling techniques in which the 

simulation is run for multiple iterations. Each time, the input values are 

randomly selected from predetermined probability density functions 

associated with each parameter. The outputs of interest are random and 

distributed along their own probability density functions.  

 

Run the baseline simulation 

 

The Baseline Simulation is the initial deterministic simulation needed 

before the probabilistic methods can be performed. In this tutorial, the 

baseline parameters will be used as the mean values when defining the 

input distributions. 
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Type ProbGUI_v8.m in the Matlab Command Window 

This launches the Probabilistic Plugin and you will see the following 

window. 

 

 

 

Select the “No” radio button, then “Continue” 

The Probabilistic Setup File is a .xml file that allows the user to bypass 

the GUI setup. A modifiable setup file will be generated at the end this 

tutorial, and can be used for future simulations using the Probabilistic 

Plugin. 

 
 

Click “1. Select a Model File” 

Select ProbModel_gait2392.osim, which was included in the folder. 
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This file is the gait2392.osim model that has been appropriately scaled 

for use with the experimental data. The Probabilistic Plugin will 

generate a copy of this file and make changes to the copied file. If you 

restart the plugin, select the original model file.  

 

Click “2. Select Simulation Setup File” and  

Select the “OpenSimInverseDynamics_setup.xml” file, which was 

included in the folder. 

 

!! Important !! 

Before proceeding to the next step, open the simulation setup file and the 

external ground reaction force setup file and ensure that the file paths in 

these setup files are completely defined. 

 

Select “Inverse Dynamics” from the OpenSim Tool dropdown 

menu. 

 

Click “Run Baseline Simulation” 

 

Check that “inverse_dynamics.sto” was written in the “Results” 

folder located in the current Matlab directory. 

 

If you do not see “inverse_dynamics.sto” with a time stamp equivalent 

to running the simulation, examine out.txt for errors that occurred 

during the baseline simulation.  

Out.txt is written at the conclusion of the baseline simulation and is 

located in the current Matlab folder. 

 

The most common errors are related to improper path to locate the files 

needed for the Inverse Dynamics simulation. To correct this, ensure that 

all paths in the .xml setup files are correctly entered. 

 

Close the Probabilistic Plugin and launch again after correcting the error. 
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Click “Select Baseline Simulation Results File”  

Select the “inverse_dyanmics.sto” file located in the Results folder. 

 

Select the “Yes” radio button located under “Would you like to store 

the output data from each Monte Carlo simulation?” 

The results from each iteration will be stored in the Results folder. The 

default is “Yes” to ensure future analysis.  

 

Enter the input distributions 

 

Define the parameters that will be perturbed and define the quantitative 

distributions. 

 

 
 

Select “Body Segment Parameters” radio button and click 

“Continue” 
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Select the “femur_r” and “tibia_r” segments in the list of bodies 

available to perform analyses. 

 note: To select multiple items in the list hold the Ctrl key. 

 

Select “Mass” as the parameter to perturb on each segment. 

note: Although Mass is already highlighted, you must click on it to 

avoid an error. 

 

Select “Yes” radio button to indicate use the baseline model values. 

 

Click “Continue” 

 

Because we chose to use the segment parameters from the baseline 

model as the mean value for each distribution, the means table will be 

populated. If you chose “No”, the means must be manually input into the 

table. 

 

Calculate the standard deviations using the coefficients of variation 

defined in the earlier section and enter standard deviations in the 

GUI. 

 

s femur =CVfemur ´ mfemur = 0.171´8.5014 =1.454 

s tibia =CVtibia ´ m femur = 0.066 ´ 3.3886 = 0.223 

 

Click “Continue”. 
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Initialize the Monte Carlo Simulation 

 

After the distributions are defined, the probabilistic simulation must be 

initialized to perform the probabilistic analysis. 

 

 
 

Select “Monte Carlo” radio button under Probabilistic Method. 

Click “Continue”. 

 

Enter 1 and 30 as the Monte Carlo iterations Start:Stop 

This will run the Monte Carlo simulation 30 times. 

 

Enter 5 and 95 as the lower and upper Probability Levels. 

This specifies the program to create lower and upper limits of a 90% 

confidence bound (between the 5
th

 and 95
th

 percentiles of the 

distribution). 

 

Select “hip_flexion_r_moment”, “knee_angle_r_moment”, and 

“ankle_angle_r_moment” as the Probabilistic Outputs. 

This list is constructed from the possible outputs located in your Results 

File.  

 

Select “Yes” under “Would you like to visualize the results?”. 

 

Click “Save Probabilistic Setup File”. 

 

Name the file “Tutorial1_MonteCarlo30_Setup” and save 
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This selection will generate an .xml file that can be loaded in place of 

the Probabilistic Plugin GUI. 

 

Click “Continue” 

The Monte Carlo Simulation will run and produce output information in 

the Matlab Command Window. 

 

On a PC with 16.0 GB of RAM and a 3.60 GHz processor, 30 iterations 

in the Monte Carlo Simulation will take approximately 60 seconds. 

 

Visualization from the Monte Carlo Simulation 

 

After the simulation has completed, several plots will be displayed that 

include interpretable results and information about the simulation. 

 

Confidence Bounds  

 

Confidence bounds represent the range in which the output of the 

simulation can lie. In this tutorial, we chose a two-sided confidence 

bound with limits at 5
th

 and 95
th

 percentile of the output distribution.  

 

“There is a 90% probability that that true result of this 

simulation lies between the lower and upper confidence 

bounds.” 

 

Currently, standards do not exist on selection of confidence bound sizes.  

 

http://reliawiki.org/index.php/Confidence_Bounds
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Confidence Bounds versus a Confidence Interval 

 

Confidence Bounds approximate the value of a model output and is 

calculated from repeated numerical simulations whereas a 

Confidence Interval approximates the mean of an entire population 

mean based on a sample data set that includes multiple participants 

(Curran-Everett, 2009). The  

 

However, when the output distribution of your probabilistic 

simulation is Gaussian, the two-sided confidence bounds can be 

interpreted in a similar manner a confidence interval. For example, 

when the output distribution is Gaussian you can test if the outputs 

from two different models, given the same input data, are different 

by stating the null hypothesis (h0) and alternative hypothesis (h1) as 

 

h0: Model A Output = Model B Output. 

h1: Model A Output ≠ Model B Output 

 

If the acceptable Type I Error is limited to 5%, then we reject h0 

when the two-sided 95% confidence bounds (2.5
th

 percentile and 

97.5
th

 percentile) from each Monte Carlo Simulation do not overlap 

 

 

Interpret sensitivity factors 

 

A Sensitivity Factor is generated for every combination of input varied 

and the output of interest. The value of the sensitivity factor is quantified 

by Pearson Product-Moment Correlation between the input parameter 

and the output.  

 

 
 

The value of Sensitivity Factor indicates the degree of sensitivity. For 

example: weakly sensitive (r=0.2-0.4), moderately sensitive (r=0.4-0.6), 

and highly sensitive (r=0.6-1.0).  
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We recommend categorizing the degree of sensitivity on Sensitivity 

Factors that are statistically different from zero (when the 95% 

confidence interval of the correlation coefficient does not contain zero).  

 

In addition, the slope of the regression provides information about how 

the average change in the input will affect the output. Note that this 

interpretation assumes a linear relationship between the input and 

output. 

 

 

Output Distribution 

 

A plot is generated that shows the histogram of each output in the 

simulation and the normal probability plot. This information can be used 

to examine the qualitative features of your distribution.  

 

If you intend to calculate a confidence interval (see panel above), the 

normal probability plot will help you decide if the data already satisfy 

the Gaussian criterion. If not, the value and histogram will assist 

deciding on an appropriate transform. 

 

 

 

 

Use the Probabilistic Setup File to generate results with 

different parameter distributions 

 

After completing the first simulation, the Plugin generated a new XML 

file that allows running the same or modified version of the probabilistic 

simulation without navigating the Plugin GUI each time. 

 

Modify the probabilistic setup file 

 

Navigate to the file named “filename.xml” which is located in the local 

directory with the Plugin files. 

 

Open the file in an XML viewer of your choice 

 

Explore the set up file created. 

You will recognize many of the decisions you made when using the 

PlugIn GUI  

 

http://en.wikipedia.org/wiki/Normal_probability_plot


160 

 
 

Change the standard deviations for the mass of the femur and tibia 

to 2x the original value. 
<femur_r_SD>2.908<femur_r_SD> 

<tibia_r_SD>0.466<tibia_r_SD> 

 

Leave the number of iterations the same 

 

 

Run the Monte Carlo Simulation with altered parameters 

 

Type ProbGUI_v8.m in the Matlab Command Window 

 

 

Select the “Yes” radio button, then “Continue”. 

 

Select the Probabilistic Setup file that you saved. The simulation will 

begin with the baseline simulation and then proceed to the Monte Carlo 

iterations.  

 

Examine New Results 
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The updated plots of the 90% confidence bounds are now larger than in 

the initial simulation for the hip and knee. 
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How many iterations are necessary in a Monte Carlo 

Simulation? 

 

Accuracy of the Monte Carlo simulation 

improves with the number of iterations  

 

It is important to perform enough iterations in the Monte Carlo 

simulation to obtain the results for interpretation. The confidence bounds 

and sensitivity will change with additional iterations. 

 

There are multiple ways to examine convergence. The most common is 

to set a convergence criterion on the change on confidence bounds 

between iterations. 

 

The plot below demonstrates how the bound size changed with each 

successive iteration of a Monte Carlo simulation that used bound size of 

the Vastus Lateralis muscle force. In the Monte Carlo simulation shown, 

the results converged around 3000 iterations. 

 
 

Without prior knowledge of how a system will behave in the Monte 

Carlos simulation, selecting the convergence criterion may be difficult. 

As a result, convergence may be assessed after the simulation. 

 

To generate your own convergence for the inverse dynamics example, 

use the data in the results files created during the Monte Carlo 

Simulation, which are located in the results folder defined earlier and 

specified in the Probabilistic Setup File. The output you choose to 

converge upon must be plotted against the iteration using a custom 

Matlab script. 
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Refer to Valente et al. (2013) for an excellent example of reporting 

convergence of a Monte Carlo simulation.  

 

 

Monte Carlo Simulation Exercises  

 

Perform the following “homework assignments” to develop better 

understanding the Monte Carlo Simulation results and the file handling 

within the Probabilistic Plugin. 

 

Exercise 1: Run full Monte Carlo Simulation 

Modify the probabilistic input file to add 500 iterations to the last 

simulation. Did the 5
th

 and 95
th

 percentiles change compared to the 

simulation with 30 iteration? 

 

Exercise 2: Create convergence plot  

Write a Matlab script to plot the value of the 95
th

 percentile for peak 

hip extension moment for iterations 1 through 500. Steps: 

1) Load the results file for an iteration from the output folder.  

2) Find value for peak hip extension moment. 

3) Using all previous iterations, calculate the 95
th

 percentile for that 

iteration 

4) Plot results versus each iteration. 
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Tutorial 2: Muscle Force Prediction and 

Uncertainty in Muscle Properties 

(Advanced Mean Value) 

 

This self-guided tutorial will walk you through using the Advanced 

Mean Value (AMV) method of the OpenSim Probabilistic Plugin.  

 

Upon completing this tutorial, you will be able to: 

 Run the AMV method within the Probabilistic Plugin GUI  

 Create and interpret outputs of probabilistic analyses: confidence 

bounds and sensitivity factors 

 Characterize the tradeoff of computational efficiency and amount of 

information available between Monte Carlo and AMV (within the 

number of most probable points selected) 

 Generate and interpret importance factors 

 

Muscle force prediction and uncertainty in muscle 

parameters 

 

Static optimization and muscle force prediction 

 

Static optimization is currently the most common tool used to resolve 

the over-determined system of muscles forces within a musculoskeletal 

model. In OpenSim, the Static Optimization Tool is standard in the GUI. 

 

Uncertainty in muscle parameters  

 

It is important to consider the effects of selecting muscle properties on 

force prediction processes. Muscles and parameters do not share equal 

importance in a given simulation. However, it is clear that muscles play 

an important role in accelerating segments they do not span (Zajac, 

1993).  

 

Large number of parameters included in the 

simulations 

 

In a Hill-Type muscle model, multiple parameters must be quantified for 

each muscle. These include physiological cross-sectional area (PCSA), 

pennation angle, maximum velocity, tendon slack length. These values 

are specific to each muscle, and are quantified for each subject.  
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Most current lower-extremity models include large numbers of muscles 

to actuate the system. For example, the gait2392 model we are using for 

these tutorials includes 92 muscles. If we are required to quantify four 

parameters per muscle, then 92x4=368 parameters, each with a level of 

uncertainty. 

Perform Most Probable Point Analysis (Advanced Mean 

Value method) on Muscle Forces 

 

When the number of input parameters gets large, the computational 

expense can drastically increase. When this occurs, we can estimate the 

reliability metrics through an optimization procedure called the Most 

Probable Point (Wu et al., 1990). Like the Monte Carlo Simulation, the 

results provide confidence bounds; however, sensitivity factors are not 

possible because the entire input probability density function is not 

considered. A metric of sensitivity called an importance factor is 

available in the MPP methods.  

 

Run the baseline simulation 

 

The Baseline Simulation is the initial deterministic simulation needed 

before the probabilistic methods can be performed. In this tutorial, the 

baseline parameters will be used as the mean values when defining the 

input distributions. 

 

Type ProbGUI_v8.m in the Matlab Command Window. 

 

 

Select the “No” radio button, then “Continue”. 
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Click “1. Select a Model File” and 

Select ProbModel_gait2392.osim. 

 

Click “2. Select Simulation Setup File” and  

Select the “ProbGait_StaticOp_Setup.xml” file. 

 

!! Important !! 

Before proceeding to the next step, open the simulation setup file and the 

external ground reaction force setup file and ensure that the file paths in 

these setup files are completely defined. 

 

Select “Static Optimization” from the OpenSim Tool dropdown 

menu. 

 

Click “Run Baseline Simulation”. 

 

Check that “_force.sto” was written in the “Results” folder located 

in the current Matlab directory. 
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Click “Select Baseline Simulation Results File”  

Select the “_force.sto” file located in the Results folder. 

 

Select the “Yes” radio button located under “Would you like to store 

output data?” 

The results from each iteration will be stored in the Results folder. The 

default is “Yes” to ensure future analysis.  

 

Click “Continue”. 

 

Select your static optimization results file for ‘_force.sto’. 

 
 

Select the Muscle Parameters radio button to analyze. 

 

Select the biceps femoris long head (bifemlh_r) and rectus femoris 

(rect_fem_r) on the right side from the list of muscles in the model. 
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Select Maximum Isometric Force from the list of parameters. 

 

Select the ‘yes’ radio button to use initial model values and continue. 

  
 

Enter values for standard deviations: 

sBF =CVBF ´ mBF = 0.0682 ´ 960 = 65.45 

sRF =CVRF ´ mRF = 0.0456 ´1169 = 76.71 

 

 
 

Select the Advanced Mean Value radio button. 

 

Enter 5 and 95 for the upper and lower probability levels. 

 

Enter 0.5 for the perturbation size. 0.5 is recommended but the user 

can use any.  
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Select the muscles that you chose in your analysis from the list of outputs to 

assess their results muscle force outputs. (bifemlh_r; rect_fem_r). 

 

Enter 1 for ‘# the time points for full motion’.  
When you continue you will be prompted to select where in the motion you 

would like the time point to be.  

 

Save the probabilistic setup file, continue. 

 

 
Use the cursor to select the point of maximum force outputs for each 

muscle, and click Continue. 
 

Evaluate Results 

Size of 5-95% bounds for the one time point are denoted by the height of the 

red line. 

Does it make sense for the rectus femoris bounds to be so small?  (Likely due 

to the peak force occuring during peak hip extension with the knee in a flexed 

position, putting the rectus femoris in a strentched position where changes in 

maximum isometric force would have a small effect).  
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Open the Probabilistic setup file and change the number of time 

points from 1 to 10. 

 
 

Re-run the simulation: evaluate results.  
In the graphs you will see the bounds for a more complete gait cycle. Ten time 

points for this simulation should take approximately 25 minutes.  

 

 
 

Try with even more points to increase the detail over the gait cycle. Next, take 

some time and run a Monte Carlo of 250 trials replicating the same same inputs 
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as the AMV (should complete in a little over 2 hours on a computer as decribed 

above). Compare the results for the size of the bounds.  How many time points 

in AMV were needed to adequately follow the Monte Carlo result? 

 

For Future analysis, results appear in three folders. First, the mean and each of 

the pertubations are run and stored in separate folders in the ‘pertubations’ 

folder. Second each muscle is run for the 5 and 95% probability level and 

results are stored for each time point.  

 
 

 

 

 

 

 

 

First Run: 

One time point (max) 

Two muscles (ham + quad) 

Max isometric force 

 

Second Time Point: 

10 time points Multiple time points  

Max isometric force 

 

Assigmnent: 

Run Monte Carlo Simualtion with Max isometric force 
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Effect of skin movement artifact on knee kinematics during gait and cutting motions 

measured in vivo. Gait Posture 24:152–64, 2006. 
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