5,157 research outputs found

    Efficacy of Incident Response Certification in the Workforce

    Get PDF
    Numerous cybersecurity certifications are available both commercially and via institutes of higher learning. Hiring managers, recruiters, and personnel accountable for new hires need to make informed decisions when selecting personnel to fill positions. An incident responder or security analyst\u27s role requires near real-time decision-making, pervasive knowledge of the environments they are protecting, and functional situational awareness. This concurrent mixed methods paper studies whether current commercial certifications offered in the cybersecurity realm, particularly incident response, provide useful indicators for a viable hiring candidate. Managers and non-managers alike do prefer hiring candidates with an incident response certification. Both groups affirmatively believe commercial cybersecurity certified job candidates with that same certification can update, modify, and improve the incident response process. The reasoning for this belief is focused more on tie-breaking and common parlance within the information security analyst domain and less on the ability to perform the job. A practical component within the certification process is valuable, and networking expertise is the primary interest of those seeking qualified incident responders. The qualitative component highlighted soft-skills, such as communication, enthusiasm, critical thinking, and awareness, as sought-after abilities lacking in certification offerings covered within this study

    ECHO Information sharing models

    Get PDF
    As part of the ECHO project, the Early Warning System (EWS) is one of four technologies under development. The E-EWS will provide the capability to share information to provide up to date information to all constituents involved in the E-EWS. The development of the E-EWS will be rooted in a comprehensive review of information sharing and trust models from within the cyber domain as well as models from other domains

    The Development of Information Assurance and Cyber Security Competencies

    Get PDF
    Information assurance and cybersecurity has become a critical element in the daily lives of almost every individual and organization across the globe. To be able to protect Personal Identity Information (PII), Intellectual Property (IP) and organizational trademarks requires producing more cybersecurity practitioners. The problem being addressed by this study is the identification of comprehensive competency levels for information assurance and cybersecurity practitioners is unknown. This research created definitions for three levels of cybersecurity practitioners that can be utilized by government, industry and academia individuals and organizations. 14 core competencies for cybersecurity practitioners were identified and defined. The Qualtrics survey was distributed through email by sending a link to survey participants. To obtain the opinions of the government the survey was distributed to the United States Army Information Technology and Security community and the Department of Homeland Security (DHS) Office of Technology. To gain insight from the academia community the survey was distributed to the Purdue community and affiliates of the Center for Education and Research in Information Assurance and Security (CERIAS) and the Department of Computer and Information Technology. For input from the industry the following Information Assurance and Security departments of the following companies received the survey: Lockheed Martin Cybersecurity, Cook Medical, RSA Security, LLC., Dell, Cisco, SAP Software Solutions, and Business Applications and Technology. The data was analyzed using SPSS a statistical software package available to Purdue faculty, staff, and students. Overall there were 61 government participants, 27 industry participants, and 13 academia participants. The one-way ANOVA test for all the government, industry and academia practitioners yielded many significant findings. Some of the most important competencies that spanned across all affiliations and levels were Access Control and Incident Management and Response. This research aimed to identify a broad list of competencies that could be used to design training, curriculum, and certification courses for cybersecurity practitioners

    Study of Peer-to-Peer Network Based Cybercrime Investigation: Application on Botnet Technologies

    Full text link
    The scalable, low overhead attributes of Peer-to-Peer (P2P) Internet protocols and networks lend themselves well to being exploited by criminals to execute a large range of cybercrimes. The types of crimes aided by P2P technology include copyright infringement, sharing of illicit images of children, fraud, hacking/cracking, denial of service attacks and virus/malware propagation through the use of a variety of worms, botnets, malware, viruses and P2P file sharing. This project is focused on study of active P2P nodes along with the analysis of the undocumented communication methods employed in many of these large unstructured networks. This is achieved through the design and implementation of an efficient P2P monitoring and crawling toolset. The requirement for investigating P2P based systems is not limited to the more obvious cybercrimes listed above, as many legitimate P2P based applications may also be pertinent to a digital forensic investigation, e.g, voice over IP, instant messaging, etc. Investigating these networks has become increasingly difficult due to the broad range of network topologies and the ever increasing and evolving range of P2P based applications. In this work we introduce the Universal P2P Network Investigation Framework (UP2PNIF), a framework which enables significantly faster and less labour intensive investigation of newly discovered P2P networks through the exploitation of the commonalities in P2P network functionality. In combination with a reference database of known network characteristics, it is envisioned that any known P2P network can be instantly investigated using the framework, which can intelligently determine the best investigation methodology and greatly expedite the evidence gathering process. A proof of concept tool was developed for conducting investigations on the BitTorrent network.Comment: This is a thesis submitted in fulfilment of a PhD in Digital Forensics and Cybercrime Investigation in the School of Computer Science, University College Dublin in October 201

    Decision Support Elements and Enabling Techniques to Achieve a Cyber Defence Situational Awareness Capability

    Full text link
    [ES] La presente tesis doctoral realiza un análisis en detalle de los elementos de decisión necesarios para mejorar la comprensión de la situación en ciberdefensa con especial énfasis en la percepción y comprensión del analista de un centro de operaciones de ciberseguridad (SOC). Se proponen dos arquitecturas diferentes basadas en el análisis forense de flujos de datos (NF3). La primera arquitectura emplea técnicas de Ensemble Machine Learning mientras que la segunda es una variante de Machine Learning de mayor complejidad algorítmica (lambda-NF3) que ofrece un marco de defensa de mayor robustez frente a ataques adversarios. Ambas propuestas buscan automatizar de forma efectiva la detección de malware y su posterior gestión de incidentes mostrando unos resultados satisfactorios en aproximar lo que se ha denominado un SOC de próxima generación y de computación cognitiva (NGC2SOC). La supervisión y monitorización de eventos para la protección de las redes informáticas de una organización debe ir acompañada de técnicas de visualización. En este caso, la tesis aborda la generación de representaciones tridimensionales basadas en métricas orientadas a la misión y procedimientos que usan un sistema experto basado en lógica difusa. Precisamente, el estado del arte muestra serias deficiencias a la hora de implementar soluciones de ciberdefensa que reflejen la relevancia de la misión, los recursos y cometidos de una organización para una decisión mejor informada. El trabajo de investigación proporciona finalmente dos áreas claves para mejorar la toma de decisiones en ciberdefensa: un marco sólido y completo de verificación y validación para evaluar parámetros de soluciones y la elaboración de un conjunto de datos sintéticos que referencian unívocamente las fases de un ciberataque con los estándares Cyber Kill Chain y MITRE ATT & CK.[CA] La present tesi doctoral realitza una anàlisi detalladament dels elements de decisió necessaris per a millorar la comprensió de la situació en ciberdefensa amb especial èmfasi en la percepció i comprensió de l'analista d'un centre d'operacions de ciberseguretat (SOC). Es proposen dues arquitectures diferents basades en l'anàlisi forense de fluxos de dades (NF3). La primera arquitectura empra tècniques de Ensemble Machine Learning mentre que la segona és una variant de Machine Learning de major complexitat algorítmica (lambda-NF3) que ofereix un marc de defensa de major robustesa enfront d'atacs adversaris. Totes dues propostes busquen automatitzar de manera efectiva la detecció de malware i la seua posterior gestió d'incidents mostrant uns resultats satisfactoris a aproximar el que s'ha denominat un SOC de pròxima generació i de computació cognitiva (NGC2SOC). La supervisió i monitoratge d'esdeveniments per a la protecció de les xarxes informàtiques d'una organització ha d'anar acompanyada de tècniques de visualització. En aquest cas, la tesi aborda la generació de representacions tridimensionals basades en mètriques orientades a la missió i procediments que usen un sistema expert basat en lògica difusa. Precisament, l'estat de l'art mostra serioses deficiències a l'hora d'implementar solucions de ciberdefensa que reflectisquen la rellevància de la missió, els recursos i comeses d'una organització per a una decisió més ben informada. El treball de recerca proporciona finalment dues àrees claus per a millorar la presa de decisions en ciberdefensa: un marc sòlid i complet de verificació i validació per a avaluar paràmetres de solucions i l'elaboració d'un conjunt de dades sintètiques que referencien unívocament les fases d'un ciberatac amb els estàndards Cyber Kill Chain i MITRE ATT & CK.[EN] This doctoral thesis performs a detailed analysis of the decision elements necessary to improve the cyber defence situation awareness with a special emphasis on the perception and understanding of the analyst of a cybersecurity operations center (SOC). Two different architectures based on the network flow forensics of data streams (NF3) are proposed. The first architecture uses Ensemble Machine Learning techniques while the second is a variant of Machine Learning with greater algorithmic complexity (lambda-NF3) that offers a more robust defense framework against adversarial attacks. Both proposals seek to effectively automate the detection of malware and its subsequent incident management, showing satisfactory results in approximating what has been called a next generation cognitive computing SOC (NGC2SOC). The supervision and monitoring of events for the protection of an organisation's computer networks must be accompanied by visualisation techniques. In this case, the thesis addresses the representation of three-dimensional pictures based on mission oriented metrics and procedures that use an expert system based on fuzzy logic. Precisely, the state-of-the-art evidences serious deficiencies when it comes to implementing cyber defence solutions that consider the relevance of the mission, resources and tasks of an organisation for a better-informed decision. The research work finally provides two key areas to improve decision-making in cyber defence: a solid and complete verification and validation framework to evaluate solution parameters and the development of a synthetic dataset that univocally references the phases of a cyber-attack with the Cyber Kill Chain and MITRE ATT & CK standards.Llopis Sánchez, S. (2023). Decision Support Elements and Enabling Techniques to Achieve a Cyber Defence Situational Awareness Capability [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19424

    Improving intrusion detection systems using data mining techniques

    Get PDF
    Recent surveys and studies have shown that cyber-attacks have caused a lot of damage to organisations, governments, and individuals around the world. Although developments are constantly occurring in the computer security field, cyber-attacks still cause damage as they are developed and evolved by hackers. This research looked at some industrial challenges in the intrusion detection area. The research identified two main challenges; the first one is that signature-based intrusion detection systems such as SNORT lack the capability of detecting attacks with new signatures without human intervention. The other challenge is related to multi-stage attack detection, it has been found that signature-based is not efficient in this area. The novelty in this research is presented through developing methodologies tackling the mentioned challenges. The first challenge was handled by developing a multi-layer classification methodology. The first layer is based on decision tree, while the second layer is a hybrid module that uses two data mining techniques; neural network, and fuzzy logic. The second layer will try to detect new attacks in case the first one fails to detect. This system detects attacks with new signatures, and then updates the SNORT signature holder automatically, without any human intervention. The obtained results have shown that a high detection rate has been obtained with attacks having new signatures. However, it has been found that the false positive rate needs to be lowered. The second challenge was approached by evaluating IP information using fuzzy logic. This approach looks at the identity of participants in the traffic, rather than the sequence and contents of the traffic. The results have shown that this approach can help in predicting attacks at very early stages in some scenarios. However, it has been found that combining this approach with a different approach that looks at the sequence and contents of the traffic, such as event- correlation, will achieve a better performance than each approach individually

    Human Error and Accident Causation Theories, Frameworks and Analytical Techniques: An Annotated Bibliography

    Get PDF
    Over the last several decades, humans have played a progressively more important causal role in aviation accidents as aircraft have become more [complex]. Consequently, a growing number of aviation organizations are tasking their safety personnel with developing safety programs to address the highly complex and often nebulous issue of human error. However, there is generally no “off-the-shelf” or standard approach for addressing human error in aviation. Indeed, recent years have seen a proliferation of human error frameworks and accident investigation schemes to the point where there now appears to be as many human error models as there are people interested in the topic. The purpose of the present document is to summarize research and technical articles that either directly present a specific human error or accident analysis system, or use error frameworks in analyzing human performance data within a specific context or task. The hope is that this review of the literature will provide practitioners with a starting point for identifying error analysis and accident investigation schemes that will best suit their individual or organizational needs

    Analysis of digital evidence in identity theft investigations

    Get PDF
    Identity Theft could be currently considered as a significant problem in the modern internet driven era. This type of computer crime can be achieved in a number of different ways; various statistical figures suggest it is on the increase. It intimidates individual privacy and self assurance, while efforts for increased security and protection measures appear inadequate to prevent it. A forensic analysis of the digital evidence should be able to provide precise findings after the investigation of Identity Theft incidents. At present, the investigation of Internet based Identity Theft is performed on an ad hoc and unstructured basis, in relation to the digital evidence. This research work aims to construct a formalised and structured approach to digital Identity Theft investigations that would improve the current computer forensic investigative practice. The research hypothesis is to create an analytical framework to facilitate the investigation of Internet Identity Theft cases and the processing of the related digital evidence. This research work makes two key contributions to the subject: a) proposing the approach of examining different computer crimes using a process specifically based on their nature and b) to differentiate the examination procedure between the victim’s and the fraudster’s side, depending on the ownership of the digital media. The background research on the existing investigation methods supports the need of moving towards an individual framework that supports Identity Theft investigations. The presented investigation framework is designed based on the structure of the existing computer forensic frameworks. It is a flexible, conceptual tool that will assist the investigator’s work and analyse incidents related to this type of crime. The research outcome has been presented in detail, with supporting relevant material for the investigator. The intention is to offer a coherent tool that could be used by computer forensics investigators. Therefore, the research outcome will not only be evaluated from a laboratory experiment, but also strengthened and improved based on an evaluation feedback by experts from law enforcement. While personal identities are increasingly being stored and shared on digital media, the threat of personal and private information that is used fraudulently cannot be eliminated. However, when such incidents are precisely examined, then the nature of the problem can be more clearly understood

    A structured approach to malware detection and analysis in digital forensics investigation

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of PhDWithin the World Wide Web (WWW), malware is considered one of the most serious threats to system security with complex system issues caused by malware and spam. Networks and systems can be accessed and compromised by various types of malware, such as viruses, worms, Trojans, botnet and rootkits, which compromise systems through coordinated attacks. Malware often uses anti-forensic techniques to avoid detection and investigation. Moreover, the results of investigating such attacks are often ineffective and can create barriers for obtaining clear evidence due to the lack of sufficient tools and the immaturity of forensics methodology. This research addressed various complexities faced by investigators in the detection and analysis of malware. In this thesis, the author identified the need for a new approach towards malware detection that focuses on a robust framework, and proposed a solution based on an extensive literature review and market research analysis. The literature review focussed on the different trials and techniques in malware detection to identify the parameters for developing a solution design, while market research was carried out to understand the precise nature of the current problem. The author termed the new approaches and development of the new framework the triple-tier centralised online real-time environment (tri-CORE) malware analysis (TCMA). The tiers come from three distinctive phases of detection and analysis where the entire research pattern is divided into three different domains. The tiers are the malware acquisition function, detection and analysis, and the database operational function. This framework design will contribute to the field of computer forensics by making the investigative process more effective and efficient. By integrating a hybrid method for malware detection, associated limitations with both static and dynamic methods are eliminated. This aids forensics experts with carrying out quick, investigatory processes to detect the behaviour of the malware and its related elements. The proposed framework will help to ensure system confidentiality, integrity, availability and accountability. The current research also focussed on a prototype (artefact) that was developed in favour of a different approach in digital forensics and malware detection methods. As such, a new Toolkit was designed and implemented, which is based on a simple architectural structure and built from open source software that can help investigators develop the skills to critically respond to current cyber incidents and analyses

    Evaluation of the Wadden Sea Particularly sensitive Sea Area. On behalf of the Common Wadden Sea Secretariat.

    Get PDF
    The purpose of this document is to present the high level outcomes for the evaluation of the effectiveness of the Wadden Sea PSSA, seven years after its designation by the IMO. Key changes with regard to IMO and EU shipping policy are identified and described, followed by a review of ‘expert’ opinion focused on the issues relating to PSSAs. The development of an evaluative framework and the resulting findings are introduced and discussed in context. Using existing data against this evaluative framework we conclude that six key elements require action in order to fully describe the efficacy of the designation, and our recommendations to address these concerns are presented.<br/
    corecore