55 research outputs found

    Formalization and Validation of Safety-Critical Requirements

    Full text link
    The validation of requirements is a fundamental step in the development process of safety-critical systems. In safety critical applications such as aerospace, avionics and railways, the use of formal methods is of paramount importance both for requirements and for design validation. Nevertheless, while for the verification of the design, many formal techniques have been conceived and applied, the research on formal methods for requirements validation is not yet mature. The main obstacles are that, on the one hand, the correctness of requirements is not formally defined; on the other hand that the formalization and the validation of the requirements usually demands a strong involvement of domain experts. We report on a methodology and a series of techniques that we developed for the formalization and validation of high-level requirements for safety-critical applications. The main ingredients are a very expressive formal language and automatic satisfiability procedures. The language combines first-order, temporal, and hybrid logic. The satisfiability procedures are based on model checking and satisfiability modulo theory. We applied this technology within an industrial project to the validation of railways requirements

    Parametric Linear Dynamic Logic

    Get PDF
    We introduce Parametric Linear Dynamic Logic (PLDL), which extends Linear Dynamic Logic (LDL) by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL) that is able to express all ω\omega-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic B\"uchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω\omega-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic B\"uchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Clock specifications for temporal tasks in planning and learning

    Get PDF
    Recently, Linear Temporal Logics on finite traces, such as LTL (or LDL ), have been advocated as high-level formalisms to express dynamic properties, such as goals in planning domains or rewards in Reinforcement Learning (RL). This paper addresses the challenge of separating high-level temporal specifications from the low-level details of the underlying environment (domain or MDP), by allowing for expressing the specifications at a different time granularity than the environment. We study the notion of a clock which progresses the high-level LTL specification, whose ticks are triggered by dynamic (low-level) properties defined on the underlying environment. The obtained separation enables terse high-level specifications while allowing for very expressive forms of clock expressed as general LTL properties over low-level features, such as counting or occurrence/alternation of special events. We devise an automata-based construction to compile away the clock into a deterministic automaton that is polynomial in the size of the automata characterizing the high-level and clock specifications. We show the correctness of the approach and discuss its application in several contexts, including FOND planning, RL with LTL Restraining Bolts, and Reward Machines

    Model-checking I&C logics — insights from over a decade of projects in Finland

    Get PDF

    Verification of fault tolerant safety I&C systems using model checking

    Get PDF

    Model-checking infinite-state nuclear safety I&C systems with nuXmv

    Get PDF
    • …
    corecore