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Abstract—Model checking has been successfully used for de-
tailed formal verification of instrumentation and control (I&C)
systems, as long as the focus has been on the application logic,
alone. In safety-critical applications, fault tolerance is also an
important aspect, but introducing I&C hardware failure modes to
the formal models comes at a significant computational cost. Pre-
vious attempts have led to state space explosion, and prohibitively
long processing times. In this paper, we present a method for
adding hardware component failures and communication delays
into I&C application logic models for the NuSMV symbolic
model checker. Based on a case study built around a semi-
fictitious, four-redundant nuclear power plant protection system,
we demonstrate how even detailed system designs can be verified,
if the focus is kept on single failure tolerance.

Index Terms—formal verification, model checking, fault toler-
ance

I. INTRODUCTION

Model checking [1] is a proven method for exhaustive
verification of instrumentation and control (I&C) system’s
application logic—be it the software in a programmable logic
controller (PLC) or the configuration of a field-programmable
gate array (FPGA) circuit [2]. Yet, the focus is often on
the logic specification, e.g., a function block diagram, alone.
However, in reality, the application logic operates on hardware
components, which are also subject to failure.

Single failure tolerance is often a requirement for safety-
critical I&C systems—the failure of any individual component
shall not prevent the system from performing its function.
Tolerance to single failure can be achieved with redundancy.
Redundant subsystems, together capable of performing the
desired tasks even if one of them fails, are used in application
domains such as nuclear energy [3], aviation [4], [5], aerospace
[6], [7], railway [8], and automotive [9] industries.

Verifying that the failure tolerance mechanisms actually
work calls for the modeling of both the application logic and
the different failure modes of the underlying hardware. Fur-
thermore, distributing the logic between redundant, separated
systems introduces communication delays and asynchrony,
which should also be addressed in the analyses. Previous
attempts at using model checking to evaluate these aspects
in one model have run into scalability issues. It has not been
possible to analyze I&C system design of nearly the kind of
complexity that is otherwise (with a logic-only model) not an
issue for model checkers.

In this paper, we present a method for verifying the fault
tolerance of I&C systems based on model checking. In addi-
tion to modeling the application logic, we also account for
the failure modes of the underlying I&C system hardware
components, and the communication delay between distributed
computers. As the case example, we use the reactor protection
system of the proposed U.S. EPR nuclear power plant. We
are able to simplify the failure model by focusing strictly on
the verification of single failure tolerance, as required by the
Finnish regulatory guides on nuclear safety. We demonstrate
our approach using the symbolic model checker NuSMV.

II. FAILURE TOLERANT I&C SYSTEMS

A. Terminology

Below, we define some concepts related to failure tolerance,
using the Finnish regulatory guides on nuclear safety and
security (YVL) as a guideline.

Single failure criterion means that the system shall be
able to perform its function even if any single component
designed for the function fails. Protection against single failure
is commonly achieved using several (potentially identical),
redundant subsystems placed in physically separated divisions.

Consequential failure refers to “a failure caused by a
failure of another system, component or structure or by an
internal or external event at the facility” [10]. For example, a
failure of a power supply system or a ventilation system can
result in the subsequent total failure of several I&C system
devices, and still be considered a single failure that shall be
tolerated.

Common cause failure (CCF) refers to a “failure of
two or more structures, systems and components due to the
same single event or cause” [10]. Protection against CCF can
be achieved using diverse backup systems (e.g., a different
supplier, technology, or operating principle).

Passive failure means that the system fails to produce
the required response. Active failure (or “spurious actuation”
[11]) refers to inadvertent actuation without a real demand.

B. Example system: U.S. EPR Protection System

Our case example of a fault-tolerant I&C system is the
reactor protection system of the proposed U.S. version of
the European Pressurized Water Reactor (EPR) nuclear plant



[3]1. Based on Areva NP’s TELEPERM XS technology, the
Protection System (PS) is organized into four redundant,
independent divisions, located in separate buildings [12] (see
Fig. 1).

The PS utilizes functional units called Acquisition and Pro-
cessing Units (APUs) and Actuation Logic Units (ALUs) [12].
The APUs (1) acquire signals from the process sensors and
monitoring systems via the Signal Conditioning and Distribu-
tion System (SCDS) using a hardwired connection, (2) perform
calculations and setpoint comparisons, and (3) distribute the
results to the ALUs for voting. The ALUs perform voting
over processing results and issue actuating results, taking into
account operator control actions from the Safety Information
and Control System (SICS) user interface. The actuation orders
are sent to the Priority and Actuator Control System (PACS)
via a hardwired connection. The communication between the
redundant divisions is relayed via a Profibus network, using
fiber-optic cabling to achieve electric separation. [3]

Tolerance against a single failure (of an input sensor, a unit
of the PS, or an actuator device) is based on the four-division
structure, and selection and voting functions in the APUs and
ALUs. Each signal in the PS logic, in addition to its value, has
a status, which can be set to “fault” by failures detected by
input modules or function processors. The status is then used
to exclude invalid signals in selection (e.g., second-maximum2,
second-minimum) and voting (n-out-of-m) blocks. Even if a
single failure disables an ALU logic performing the vote, the
redundant ALUs can still actuate the reactor trip function. [3]

Fig. 1. Simplified architecture of the U.S. EPR Protection System

III. I&C LOGIC MODEL CHECKING

Model checking [1] is a formal, computer-assisted method
that can be used to verify that a model of a (hardware or
software) system fulfills given properties. The system model is

1No project is underway to construct an EPR in the U.S., but the U.S.
Nuclear Regulator NRC has published parts of the plant supplier Areva NP’s
2013 Final Safety Analysis Report (FSAR) for a suggested U.S. variant.

2a block selecting the remaining maximum number in a set, after excluding
the maximum number

typically expressed as a finite state machine. Formal properties
describing wanted or unwanted behavior are specified using
temporal logic languages like LTL, CTL [1] or PSL [13]. A
model execution path violating a property is returned to the
analyst as a counterexample trace, possibly revealing a design
issue.

A key challenge is to avoid state space explosion, where
the number of states to enumerate through becomes enormous
[1]. Symbolic model checkers such as NuSMV [14] mitigate
the problem using binary decision diagrams (BDD) [15] rather
than explicit representation. By executing Boolean satisfia-
bility (SAT) solvers, NuSMV is also capable of performing
bounded model checking (BMC), where a limit is placed on
the length of checked state transition sequences.

Model checking I&C application logics based on function
block diagrams has been an active research topic for several
years, with different areas of application [16]. It has been
proven applicable for ensuring the correctness of industry-
sized PLC programs [2], [17], but, nevertheless, is not yet
a wide-spread industry practice in any application area.

I&C logics can be verified using either open-loop or closed-
loop modeling. Open-loop model checking only considers the
model of the “controller” logic, while in the close-loop model,
feedback from the controlled plant is taken into account [18].
Closing the loop can help limit the state space of the model
[18], but generating a realistic plant model can be a challenge.
At the same time, limiting the controller model behavior might
accidentally filter out scenarios relevant to safety, and analysis
times can actually increase [19].

Since 2008, VTT has successfully used model checking to
verify both early (functional) and detailed design of safety I&C
systems for Finnish nuclear power plants [2]. A graphical tool
called MODCHK [11], [20] is used to (1) manually define a
collection of vendor-specific elementary function blocks, (2)
model the function block diagrams with a graphical editor,
(3) specify the properties with a text editor, (4) generate the
necessary input files for NuSMV, and (5) visualize counterex-
amples produced by NuSMV with an animated view of the
function block diagram.

In MODCHK, each signal has both a value (Boolean or
integer) and a fault/validity status (a Boolean variable). The
status processing is explicitly defined for each elementary
function block, and the counterexample animation feature
uses a dashed line to show a faulty/invalid signal [20]. In
nuclear applications, the status processing feature has been
very relevant, as it is not just used in TELEPERM XS (see
Section II-B), but also in a similar way in Rolls-Royce’s
Spinline platform [21]. Status processing logic has also played
a role in about 12% of the design issues VTT has identified
[11].

Although successful, VTT’s work has focused on the open-
loop verification of the application logic (PLC software, or
FPGA configuration), alone. The models do not account for
(1) feedback from the controlled process, (2) failure modes of
the underlying I&C system hardware, nor (3) communication
delay and asynchrony in distributed applications. Omitting the



hardware failure modes, in particular, makes verifying the
systems’ failure tolerance impossible.

Previously explored methods to include hardware faults [22]
and asynchrony [23] in the models have resulted in scalability
issues that prevent their use in the verification of detailed I&C
logic designs of realistic complexity.

IV. RELATED RESEARCH

Several studies address failure tolerance in model checking.
In [5], faults are added to a model of an aircraft wheel brake
system with two redundant pistons, which is then verified with
SCADE design verifier. In [6], fault variables are introduced
in a state model of a 2-redundant spacecraft controller system,
which is then verified with Spin [24]. In [4], NuSMV is used to
verify whether an avionic altitude switch with three altimeters
can tolerate measurement errors. In [7], the real-time model
checker UPPAAL [25] is used to verify the fault tolerance of
a 3-redundant aerospace system. In [8], the application is a
2-redundant railway interlocking system, and in [26], it is an
FPGA logic. Finally, in [9] failure mechanisms are added to a
NuSMV model of an automotive brake-by-wire system based
on failure modes and effects analysis (FMEA) [27].

Other ways of combining FMEA and model checking have
also been proposed. In [28] and [29], FMEA is supported
by using model checking to identify the system-level conse-
quences of component failures. In [30], probabilistic model
checking is used to identify which components contribute most
to system-level failures.

A common problem with many of the proposed methods
is that the system model has to be kept very abstract, or
the state space becomes too large [22], and/or the analysis
cannot be performed in a reasonable time [26]. Instead of
detailed system design, the models are based on “specified
behavior” [6], “functional model” [9], or other abstraction or
simplification.

When revealed, a typical model scale is 106 states [6], [8],
[30]. In [28], the authors use a model with 109 states (but due
to the necessary iterations, entire verification effort still takes
days). Meanwhile, the complexity of the detailed design (no-
fault) models VTT is verifying is on a wholly different level,
often with 1020, sometimes even 1030 reachable states.

V. FAILURE MODELING APPROACH

Instead of specifying a full failure model allowing all the
processors and communication links fail (as in [22]), we
can simplify the model (see Fig. 2) by keeping our focus
on verifying single fault tolerance in open-loop models. To
illustrate the idea, we use the U.S. EPR PS (see Section II-B)
as an example:

1) First of all, it suffices to fully model only one division
(APU+ALU). If the divisions are identical, any verifi-
cation result for the included (non-failing, see below)
ALU should hold for the redundant (non-failing) ALUs,
as well.

2) There is no need to assume failures for the included
ALU. The objective is to verify that each non-failing

Fig. 2. By focusing on single failure scenarios in open-loop, the failure model
can be made fairly simple.

division will operate according to specification. In open-
loop analysis, we are not interested in the outputs of
the one ALU that can fail, and for the same reason the
number of ALUs whose outputs are correct at each time
instant is also not important.

3) It is sufficient, overall, to model the failures for one
division, only. If the divisions are identical, we can
assign the failures to any single division (other than the
one that is fully modeled).

Furthermore, instead of having a complex failure model for
each component, it suffices to assume that:

1) Either a sensor device or the sensor—APU communica-
tion can fail on one division, in which case we replace
the correct, measured value with a non-deterministic,
arbitrary value at the sensors output.

2) Either the APU hardware or the APU—ALU communi-
cation link can fail on one division, in which case we
replace the correct signal values with non-deterministic,
arbitrary values at the APU outputs.

The failure model is implemented in NuSMV by inserting
modules on one division to all signals (1) from the SCDS to the
APUs and (2) from the APUs to the included ALU (see Fig. 2).
Module FAULT_BIN is used for Boolean and FAULT_ANA
for integer signals. At any time instant, the module can
nondeterministically enter a fault mode, and replace the actual
signal value with a nondeterministic variable. The status of the
signal is also nondeterministic, meaning that the failure can be
either self announcing (status = fault) or non-self announcing,
i.e., not detectable by APU/ALU logic model. The actual fault
status is separately output by both blocks, making it possible
for the analyst to observe the failures even if they are non-self
announcing.

Rather than analyzing in detail what the possible hardware
failure modes are, we allow for all possible combinations
of failures, including consequential failures. It might then be
up to the analyst to determine if the failure combinations in
a counterexample are actually possible. As we allow each
signal in the failing division to fail independently and non-
deterministically, some of the permitted scenarios can seem



unrealistically chaotic. E.g., the different outputs of a failing
APU can permanently freeze in a state where some signals
fail actively and others passively. Still, such a scenario is also
feasible due to single failure, if, e.g., the CPU cooling fails.

VI. DELAY MODELING APPROACH

We extend the approach described in Section V to account
for delays and asynchrony. Since each APU and ALU operates
on its own CPU, modeling delays within APU and ALU
logic is unnecessary. A natural approach to asynchrony would
involve modeling the ALU and APUs as different processes
with interleaving executions, involving nondeterministic de-
lays between the APUs and the ALU. Such an approach
would be easy to implement in model checker Spin but not
in a symbolic model checker such as NuSMV due to the
synchronized execution of all modules of the formal model.
Specifically for symbolic model checking, we instead assume
that the executions of all APUs and the ALU are synchronous,
but the signals entering and exiting APUs may experience
nondeterministic delays which are bounded by the number of
cycles dmax.

The delays are implemented in the following way. Assume
that s1, ..., sk are signals whose delays must be synchronized,
including fault/validity statuses of these signals. Since APU
input signals are passed over different physical connections,
they need not be synchronized, leading to k = 2 (a signal
and its fault/validity status). In contrast, output signals of
each particular APU are passed together. To account for both
cases, an instance of a module NONDET_DELAY is added for
each input signals of each APU and for outputs signals of
APUs once per each APU. This module nondeterministically
delays the signals passing through it with bound dmax = 1
(i.e., by at most one cycle). This possible delay is applied
synchronously to all k signals. The presence of the delay is
controlled by a Boolean variable delaying, whose value is
nondeterministic on each step. If delaying has been true
on the previous cycle, the previous values of s1, ..., sk are
returned. Otherwise, their most recent values are returned.
However, such an implementation may lead to changes in
signal value (e.g., rising and falling edges of Boolean signals)
being lost. Hence, the following additional condition restricts
the nondeterminism of the module: if delaying is true and
the value of either of the signals changes between the current
and the next cycles, then the next value of delaying must
be kept true.

To implement a multiple-cycle delay, several delay modules
are connected in a chain of length dmax. In MODCHK, for
visual simplicity, such a chain can be hidden inside a single
block. We found that delaying input signals of APUs with
dmax = 3 and their output signals with dmax = 6 leads to
considering all possible execution orders of APUs and the
ALU in response to changed measurements inputs.

Note that asynchronous behavior can in principle be mod-
eled in NuSMV. However, the solution with the process
keyword is not compatible with MODCHK, and explicit
modeling of asynchrony would involve modification of the

code of each module, which is technically difficult to achieve
in MODCHK. This is the reason why the approach described
above is used.

VII. CASE STUDY

Our case study is based on the U.S. EPR Protection System
(see Section II-B). The model consist of APU and ALU
modules distributed between four redundant divisions. For the
application logic, we constructed a fictitious safety function,
inspired by the PS function diagrams in [12]. To approach the
complexity of detailed design, signal status processing was
also added (partly based on publicly available information,
partly on invention) within elementary blocks, and also in the
shape of special blocks for fault status filtering.

The safety function processing logic for the APUs is shown
in Fig. 3 and for the ALU in Fig. 4. For the ALU logic, we
added a block type of our own invention (SFV) to substitute
the value of faulty control signals from the operator’s interface
with a default “false”.

Fig. 3. The processing logic for each of the four redundant APUs.

The function block diagrams were modeled with
MODCHK, and functional requirements were translated
into LTL, CTL and PSL properties. The number of reachable
states in the generated software-only NuSMV model (no
failures, communication delay nor asynchrony) is 7.3 · 1031.

A. Experimental design

We evaluated our modeling approach in four cases, which
are distinguished by the absence (F−) or presence (F+) of
the failure in the model (as described in Section V), and by
the absence (D−) or presence (D+) of delays (as described
in Section VI), i.e., asynchrony modeling. These cases are
indicated as F−D−, F+D−, F−D+, and F+D+, respectively.



Fig. 4. The processing logic for the ALU.

Technically, we prepared two MODCHK models—with and
without failure modeling, both containing placeholders of
delay blocks. These models were exported as NuSMV code,
wherein the placeholders were replaced with either identity
blocks (i.e., the ones which output their inputs), modeling the
situation of zero delays, and chains of basic delay blocks to
reach dmax = 3 and dmax = 6 (as described in the end of
Section VI).

A list of 13 functional requirements was prepared, including
one invariant, 6 request-response properties, 2 absence of
spurious actuation properties, and 4 absence of deadlocks3

properties. The requirements from this list were implemented
specifically for each of the four cases. Absence of deadlock
requirements were possible to be formulated only in CTL.
All other requirements were formulated in both LTL/PSL and
CTL, with the exception of the cases with delays, in which
the requirements were only formulated in LTL/PSL. Below,
as examples, invariant and absence of deadlocks requirements
(which are identical regardless of failures and delays) are given
in CTL:

1) AG¬(START ∧ STOP);
2) AGEF START;
3) AGEF STOP;
4) AGEF¬START;
5) AGEF¬STOP.
To check these temporal requirements, three different model

checking algorithms were executed: BMC, BDD-based LTL
model checking, and BDD-based CTL model checking. BMC

3Technically, these are not deadlocks in the sense of model checking, but
situations wherein certain outputs of the ALU become unchangeable.

was performed with bound k = 20. All the experiments were
done in Linux Subsystem of Windows 10, on a PC with 2 GHz
quad-core CPU (only one core was used to execute NuSMV).
NuSMV was run with command line options “-dynamic
-coi -df”.

B. Experimental results

Table I shows the results of model checking runs. The sit-
uation without delays was best handled by BDD-based model
checking algorithms. Among them, CTL model checking was
capable of proving absence of deadlock requirements. As
for the case with delays, only BMC was able to check the
requirements. Consequently, checking absence of deadlock
requirements was impossible in the case with delays.

TABLE I
EXPERIMENTAL RESULTS

Case
Model checking time (s)
BMC LTL CTL

F−D− 98 3 3
F−D+ 117 —∗ —∗

F+D− 25125 38 7
F+D+ 138 —∗ —∗

∗ Neither of the properties were checked within the time limit of 8 hours

VIII. CONCLUSION AND FUTURE WORK

Previous attempts at introducing hardware failure modes
to I&C application logic model checking have resulted in
prohibitively complex models and excessive analysis times.

Our experiments with a failure model show that as long
as we focus on single failure tolerance, both LTL/PSL and
CTL properties can be easily verified with BDD-based model
checking. In case of LTL properties, there was a significant,
but still practically tolerable increase in the processing times.
The failure modeling approach is also easily applied in the
graphical tools we use.

However, introducing communication delay and asynchrony
to the model meant that BDD-based verification was no longer
a viable option. Analysis with BMC took less than 5 minutes,
which is still tolerable, but at the expense of coverage of
possible scenarios.

Here, we evaluated our modeling approach using a model
of a semi-fictitious nuclear reactor protection system, although
aiming at the complexity of real-world detailed designs. In
the future, the failure modeling approach should be further
experimented with on an industrial scale. VTT’s customer
projects could provide the opportunity. In addition, the tools
we use should also be further developed—MODCHK needs
to allow the analyst to specify the I&C hardware architecture,
and the allocation of the application logic to physical devices.
Fault tolerance analysis could then be an automated feature.

For further research, closed-loop modeling is still relevant
from the point of view of overall safety. If we shift the
focus to plant level interaction of several different systems,



analysis cannot longer be limited to single failures within
one isolated system. As issues such as common cause failure
become relevant, other abstractions and simplifications are
needed. One topic VTT is also working on is using the results
from probabilistic safety assessment (PSA) to specify the most
critical failure points in the system architecture, and then
injecting the failures at those points for application logic model
checking.
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