
Adriano Peron and Carla Piazza (Eds.):
Proceedings of the Fifth International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 2014)
EPTCS 161, 2014, pp. 60–73, doi:10.4204/EPTCS.161.8

c© Peter Faymonville and Martin Zimmermann
This work is licensed under the
Creative Commons Attribution License.

Parametric Linear Dynamic Logic∗

Peter Faymonville Martin Zimmermann
Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany

{faymonville, zimmermann}@react.uni-saarland.de

We introduce Parametric Linear Dynamic Logic (PLDL), whichextends Linear Dynamic Logic
(LDL) by temporal operators equipped with parameters that bound their scope. LDL was proposed
as an extension of Linear Temporal Logic (LTL) that is able toexpress allω-regular specifications
while still maintaining many of LTL’s desirable propertieslike an intuitive syntax and a translation
into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express
timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to ex-
press allω-regular properties and that subsumes parameterized extensions of LTL like Parametric
LTL and PROMPT-LTL.

Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi
word automata of exponential size via alternating automata. This yields a PSPACE model checking
algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give
tight upper and lower bounds on optimal parameter values forboth problems. These results show that
PLDL model checking and realizability are not harder than LTL model checking and realizability.

1 Introduction

Linear temporal logic (LTL) is a popular specification language for the verification and synthesis of re-
active systems. It provides semantic foundations for industrial logics like PSL [5]. LTL has a number of
desirable properties contributing to its ongoing popularity: it does not rely on the use of variables, it has
an intuitive syntax and thus gives a way for practitioners towrite declarative and concise specifications.
Furthermore, it is expressively equivalent to first-order logic over the natural numbers with successor
and order [10] and enjoys an exponential compilation property: one can efficiently construct a language-
equivalent non-deterministic Büchi automaton of exponential size in the size of the specification. The
exponential compilation property yields aPSPACE model checking algorithm and a2EXPTIME algo-
rithm for realizability. Both problems are complete for therespective classes.

Model checking of properties described in LTL or its practical descendants is routinely applied in
industrial-sized applications, especially for hardware systems [2, 5]. Due to its complexity, the real-
izability problem has not reached industrial acceptance (yet). First approaches used a determinization
procedure forω-automata, which is notoriously hard to implement efficiently [16]. More recent algo-
rithms for realizability follow a safraless construction [6, 7], which avoids explicitly constructing the
deterministic automaton, and are showing promise on small examples.

Despite the desirable properties, two drawbacks of LTL remain and are tackled by different ap-
proaches in the literature: first, LTL is not able to express all ω-regular properties. For example, the
property “p holds on every even step” (but may or may not hold on odd steps)is not expressible in LTL,
but easily expressible as anω-regular expression. This drawback is a serious one, since the combination
of regular properties and linear-time operators is common in hardware verification languages. Several
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extensions of LTL [12, 20, 21] with regular expressions, finite automata, or grammar operators have been
proposed as a remedy.

A second drawback of classic temporal logics like LTL is the inability to natively express timing
constraints. The standard semantics are unable to enforce the fulfillment of eventualities within finite
time bounds, e.g., it is impossible to require that requestsare granted within a fixed, but arbitrary, amount
of time. While it is possible to unroll an a-priori fixed boundfor an eventuality into LTL, this requires
prior knowledge of the system’s granularity and incurs a blow-up when translated to automata, and is
thus considered impractical. A more practical way of fixing this drawback has been the purpose of a
long line of work in parametric temporal logics, such as parametric LTL [1], PROMPT–LTL [11] and
parametric metric interval temporal logic [9]. All of them add parameters to the temporal operators to
express time bounds, and either test the existence of a global time bound, like PROMPT–LTL, or of
individual bounds on the parameters, like parametric LTL.

Recently, the first drawback was revisited by De Giacomo and Vardi [4, 19] by introducing an
extension of LTL called linear dynamic logic (LDL), which isas expressive asω-regular languages.
The syntax of LDL is inspired by propositional dynamic logic(PDL) [8], but the semantics follow
linear-time logics. In PDL and LDL, programs are expressed by regular expressions with tests, and
temporal requirements are specified by two basic modalities: 〈r〉ϕ and[r]ϕ , stating thatϕ should hold
at some position wherer matches, or at all positions wherer matches, respectively. The operators to
specify regular expressions from propositional formulas are as follows: sequential composition (r1 ; r2),
nondeterministic choice (r1 + r2), repetition (r∗), and test(ϕ?) of a temporal formula. On the level
of the temporal operators, conjunction and disjunction areallowed. The tests allow to check temporal
properties within programs, and are needed to encode LTL into LDL.

As an example, the program “while q do a” with property p holding after the execution of the loop
is expressed in PDL/LDL as follows:[(q?;a)∗ ;¬q?]p. Intuitively, the loop conditionq is tested on every
loop entry, the loop bodya is executed/consumed until¬q holds, and then the post-conditionp has to
hold. A request-response property (i.e., every request should eventually be followed by a response) can
be formalized as follows:[tt∗](req→ 〈tt∗〉resp).

Both aforementioned drawbacks of LTL, the inability to express allω-regular properties and the
missing capability to specify timing constraints, have been tackled individually in a successful way in
previous work, but not at the same time. Here, we propose a logic called PLDL that combines the
expressivity of LDL with the parametricity of PLTL on infinite traces.

In PLDL, we are for example able to parameterize the eventuality of the request-response condition,
denoted as[tt∗](req→ 〈tt∗〉≤xresp), which states that every request has to be followed by a response
within x steps. In the PLDL model checking problem, we determine whether there exists a valuation
α(x) for x such that all paths of the system respond to requests withinα(x) steps. If we take the property
as a specification for the PLDL realizability problem, and define reqas input,respas output, we compute
whether there exists a winning strategy that adheres to a valuationα(x) and is able to ensure the delivery
of responses to requests in a timely manner.

The main result of this paper is the translation of PLDL to alternating Büchi automata. By an exten-
sion of the alternating color technique of [11], and by very similar algorithms, we obtain the following
results: PLDL model checking isPSPACE-complete and realizability is2EXPTIME -complete. Thus,
both problems are no harder than their corresponding variants for LTL. Finally, we give tight exponen-
tial and doubly-exponential bounds on satisfying valuations for model checking and realizability.

Our translation might also be of use for LDL on infinite traces, since De Giacomo and Vardi [4] only
considered LDL on finite traces. Unlike the translation fromlogic into automata presented there, which
is a top-down construction of an alternating automaton, we present a bottom-up approach.
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2 PLDL

Let V be an infinite set of variables and let us fix a finite1 setP of atomic propositions which we use to
build our formulas and to label transition systems in which we evaluate them. For a subsetA∈ 2P and a
propositional formulaφ overP, we writeA |= φ , if the variable valuation mapping elements inA to true
and elements not inA to false satisfiesφ . The formulas of PLDL are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ϕ | ϕ ∨ϕ | 〈r〉ϕ | [r]ϕ | 〈r〉≤zϕ | [r]≤zϕ
r ::=φ | ϕ? | r + r | r ; r | r∗

wherep∈ P, z∈ V , and whereφ stands for arbitrary propositional formulas overP. We use the abbre-
viationstt= p∨¬p andff= p∧¬p for some atomic propositionp. The regular expressions have two
types of atoms: propositional formulasφ over the atomic propositions and testsϕ?, whereϕ is again
a PLDL formula. Note that the semantics of the propositionalatomφ differ from the semantics of the
testφ?: the former consumes an input letter, while tests do not make progress on the word. This is why
both types of atoms are allowed.

The set of subformulas ofϕ is denoted by cl(ϕ). Note that regular expressions are not subformulas,
but the formulas appearing in the tests are, e.g., we have cl(〈p?;q〉≤xr) = {p, r,〈p?;q〉≤xr}. The size|ϕ |
of ϕ is the sum of|cl(ϕ)| and the sum of the lengths of the regular expressions appearing in ϕ (counted
with multiplicity). We define var♦(ϕ) = {z∈ V | 〈r〉≤zψ ∈ cl(ϕ)} to be the set of variables parameteriz-
ing diamond operators inϕ , var�(ϕ) = {z∈V | [r]≤zψ ∈ cl(ϕ)} to be the set of variables parameterizing
box operators inϕ , and set var(ϕ) = var♦(ϕ)∪var�(ϕ). Usually, we will denote variables in var♦(ϕ) by
x and variables in var�(ϕ) by y, if ϕ is clear from the context. A formulaϕ is variable-free, if var(ϕ)= /0.

The semantics of PLDL are defined inductively with respect toanω-word w= w0w1w2 · · · ∈ (2P)ω ,
a positionn∈N, and a variable valuationα : V → N via

• (w,n,α) |= p if p∈ wn and dually for¬p,

• (w,n,α) |= ψ0∧ψ1 if (w,n,α) |= ψ0 and(w,n,α) |= ψ1,

• (w,n,α) |= ψ0∨ψ1 if (w,n,α) |= ψ0 or (w,n,α) |= ψ1,

• (w,n,α) |= 〈r〉ψ if there existsj ∈ N s.t.(n,n+ j) ∈ R(r,w,α) and(w,n+ j,α) |= ψ ,

• (w,n,α) |= [r]ψ if for all j ∈ N with (n,n+ j) ∈ R(r,w,α) we have(w,n+ j,α) |= ψ ,

• (w,n,α) |= 〈r〉≤zψ if there exists 0≤ j ≤ α(z) s.t.(n,n+ j) ∈ R(r,w,α) and(w,n+ j,α) |= ψ ,

• (w,n,α) |= [r]≤zψ if for all 0 ≤ j ≤ α(z) with (n,n+ j) ∈ R(r,w,α) we have(w,n+ j,α) |= ψ .

Here, the relationR(r,w,α) ⊆ N×N contains all pairs(m,n) such thatwm· · ·wn−1 matchesr (α is
needed to evaluate tests inr, which might have parameterized subformulas) and is definedinductively by

• R(φ ,w,α) = {(n,n+1) | wn |= φ} for propositionalφ ,

• R(ψ?,w,α) = {(n,n) | (w,n,α) |= ψ},

• R(r0+ r1,w,α) = R(r0,w,α)∪R(r1,w,α),

• R(r0 ; r1,w,α) = {(n0,n2) | ∃n1 s.t. (n0,n1) ∈ R(r0,w,α) and(n1,n2) ∈ R(r1,w,α)}, and

• R(r∗,w,α) = {(n,n) | n∈N}∪{(n0,nk+1) | ∃n1, . . . ,nk s.t. (n j ,n j+1) ∈ R(r,w,α) for all j ≤ k}.

We write(w,α) |= ϕ for (w,0,α) |= ϕ and say thatw is a model ofϕ with respect toα .

1This greatly simplifies our notation and exposition when we translate formulas into automata, but is not essential.



Peter Faymonville and Martin Zimmermann 63

Example 1.

• The formulaθ∞p :=[tt∗]〈tt∗〉p expresses that p holds true infinitely often.

• In general, everyPLTL formula [1] (and thus everyLTL formula) can be translated intoPLDL,
e.g.,F≤x p is expressible as〈tt∗〉≤xp and pU q as〈p∗〉q or 〈p∗q〉tt.

• The formula[tt∗](q → 〈(tt ;tt)∗p〉) requires that every request (a position where q holds) is
followed by a response (a position where p holds) after an even number of steps.

As usual for parameterized temporal logics, the use of variables has to be restricted: bounding dia-
mond and box operators by the same variable leads to an undecidable satisfiability problem (cp. [1]).

Definition 1. A PLDL formulaϕ is well-formed, ifvar♦(ϕ)∩var�(ϕ) = /0.

In the following, we only consider well-formed formulas anddrop the qualifier “well-formed”. We
consider the following fragments of PLDL. Letϕ be a PLDL formula:ϕ is an LDL formula [4], if ϕ
is variable-free,ϕ is a PLDL♦ formula, if var�(ϕ) = /0, andϕ is a PLDL� formula, if var♦(ϕ) = /0.
Every LDL, PLDL♦, and every PLDL� formula is well-formed by definition. As satisfaction of LDL
formulas is independent of variable valuations, we write(w,n) |= ϕ andw |= ϕ instead of(w,n,α) |= ϕ
and(w,α) |= ϕ , respectively, ifϕ is an LDL formula.

LDL is as expressive asω-regular languages, which can be proven by a straightforward translation
of ETL f [20], which expresses exactly theω-regular languages, into LDL.

Theorem 1([19]). For everyω-regular language L⊆ (2P)ω there exists an effectively constructibleLDL
formulaϕ such that L= {w∈ (2P)ω | w |= ϕ}.

Note that we define PLDL formulas to be in negation normal form. Nevertheless, a negation can be
pushed to the atomic propositions using dualities allowingus to define the negation of a formula.

Lemma 1. For everyPLDL formulaϕ there exists an efficiently constructiblePLDL formula¬ϕ s.t.

1. (w,n,α) |= ϕ if and only if(w,n,α) 6|= ¬ϕ ,

2. |¬ϕ |= |ϕ |.

3. If ϕ is well-formed, then so is¬ϕ . and vice versa.

Proof. We construct¬ϕ by structural induction overϕ using the dualities of the operators:

• ¬(p) = ¬p

• ¬(ϕ ∧ψ) = (¬ϕ)∨ (¬ψ)

• ¬(〈r〉ϕ) = [r]¬ϕ

• ¬(〈r〉≤xϕ) = [r]≤x¬ϕ

• ¬(¬p) = p

• ¬(ϕ ∨ψ) = (¬ϕ)∧ (¬ψ)

• ¬([r]ϕ) = 〈r〉¬ϕ

• ¬([r]≤yϕ) = 〈r〉≤y¬ϕ

The latter two claims of Lemma 1 follow from the definition of¬ϕ while the first one can be shown
by a straightforward structural induction overϕ .

A simple, but very useful property of PLDL is the monotonicity of the parameterized operators: in-
creasing (decreasing) the values of parameters bounding diamond (box) operators preserves satisfaction.

Lemma 2. Let ϕ be aPLDL formula and letα andβ be variable valuations satisfyingβ (x)≥ α(x) for
every x∈ var♦(ϕ) andβ (y)≤ α(y) for every y∈ var�(ϕ). If (w,α) |= ϕ , then(w,β ) |= ϕ .

The previous lemma allows us to eliminate parameterized boxoperators when asking for the exis-
tence of a variable valuation satisfying a formula.
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Lemma 3. For everyPLDL formula ϕ there is an efficiently constructiblePLDL♦ formula ϕ ′ of the
same size asϕ such that

1. for everyα there is anα ′ such that for all w: if(w,α) |= ϕ then(w,α ′) |= ϕ ′, and

2. for everyα ′ there is anα such that for all w: if(w,α ′) |= ϕ ′ then(w,α) |= ϕ .

Proof. We construct a single test ˆr such thatR(r,w,α)∩{(n,n) | n∈ N} = R(r̂,w,α) for everyw and
everyα , which suffices to prove the equivalence of[r]≤yψ and[r̂ ]ψ provided we haveα(y) = 0, which
is sufficient due to monotonicity. We apply the following rewriting rules (in the given order) tor:

1. Replace every subexpression of the formr ′∗ by tt?, until no longer applicable.

2. Replace every subexpression of the formφ ; r ′ or r ′ ;φ by ff? and replace every subexpression of
the formφ + r ′ or r ′+φ by r ′, whereφ is a propositional formula, until no longer applicable.

3. Replace every subexpression of the formψ0?+ψ1? by(ψ0∨ψ1)? and replace every subexpression
of the formψ0?;ψ1? by(ψ0∧ψ1)?, until no longer applicable.

After step 2,r contains no iterations and no propositional atoms unless the expression itself is one. In
the former case, applying the last two rules yields a regularexpression which is a single test, which we
denote by ˆr. In the latter case, we define ˆr = ff?.

Each rewriting step preserves the intersectionR(r,w,α)∩{(n,n) | n∈N}. As r̂ is a test, we conclude
R(r,w,α)∩{(n,n) | n∈N}=R(r̂,w,α) for everywand everyα . Note that ˆr can be efficiently computed
from r and is of the same size asr. Now, replace every subformula[r]≤yψ of ϕ by [r̂ ]ψ and denote the
formula obtained byϕ ′, which is a PLDL♦ formula that is efficiently constructible and of the same size.

Given anα , we defineα0 by α0(z) = α(z), if z∈ var♦(ϕ) andα0(z) = 0 otherwise. If(w,α) |= ϕ ,
then(w,α0) |= ϕ due to monotonicity. By construction ofϕ ′, we also have(w,α0) |= ϕ ′. On the other
hand, if(w,α ′) |= ϕ ′, then(w,α ′

0) |= ϕ ′ as well, whereα ′
0 is defined as above. By construction ofϕ ′, we

conclude(w,α0) |= ϕ .

2.1 The Alternating Color Technique and LDLcp

In this subsection, we repeat the alternating color technique, which was introduced by Kupferman et
al. to solve the model checking and the realizability problem for PROMPT–LTL, amongst others. Let
p /∈ P be a fresh proposition and defineP′ = 2P∪{p}. We think of words in(2P′

)ω as colorings of words
in (2P)ω , i.e., w′ ∈ (2P′

)ω is a coloring ofw ∈ (2P)ω , if we havewn
′ ∩P = wn for every positionn.

Furthermore,n is a changepoint, ifn = 0 or if the truth value ofp differs at positionsn− 1 andn. A
block is a maximal infix that has exactly one changepoint, which is at the first position of the infix. By
maximality, this implies that the first position after a block is a changepoint. Letk≥ 1. We say thatw′ is
k-bounded, if every block has length at mostk, which implies thatw′ has infinitely many changepoints.
Dually, w′ is k-spaced, if it has infinitely many changepoints and every block has length at leastk.

The alternating color technique replaces a parameterized diamond operator〈r〉≤xψ by an unparam-
eterized one that requires the formulaψ to be satisfied within at most one color change. To this end,
we introduce a changepoint-bounded variant〈·〉cp of the diamond operator. Since we need the dual
operator[·]cp to allow for negation via dualization, we introduce it here as well. We define

• (w,n,α) |= 〈r〉cpψ ′ if there exists aj ∈N s.t.(n,n+ j) ∈R(r,w,α), wn · · ·wn+ j−1 contains at most
one changepoint, and(w,n+ j,α) |= ψ , and

• (w,n,α) |= [r]cpψ ′ if for all j ∈ N with (n,n+ j) ∈ R(r,w,α) and wherewn · · ·wn+ j−1 contains at
most one changepoint we have(w,n+ j,α) |= ψ .
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We denote the logic obtained by disallowing parameterized operators, but allowing changepoint-
bounded operators, by LDLcp. Note that the semantics of LDLcp formulas are independent of vari-
able valuations. Hence, we drop them from our notation for the satisfaction relations|= andR. Also,
Lemma 1 can be extended to LDLcp by adding the rules¬(〈r〉cpψ) = [r]cp¬ψ and¬([r]cpψ) = 〈r〉cp¬ψ
to the proof.

Now, we are ready to introduce the alternating color technique. Given a PLDL♦ formulaϕ , let rel(ϕ)
be the formula obtained by inductively replacing every subformula〈r〉≤xψ by 〈rel(r)〉cprel(ψ), i.e., we
replace the parameterized diamond operator by a changepoint-bounded one. Note that this replacement
is also performed in the regular expressions, i.e., rel(r) is the regular expression obtained by applying
the replacement to every testψ ′? in r.

Given a PLDL♦ formulaϕ let c(ϕ) = rel(ϕ)∧ θ∞p∧ θ∞¬p (cf. Example 1), which is an LDLcp for-
mula and only linearly larger thanϕ . Onk-bounded andk-spaced colorings ofw there is an equivalence
betweenϕ andc(ϕ). The proof is similar to the original one [11].

Lemma 4 (cp. Lemma 2.1 of [11]). Let ϕ be aPLDL♦ formula and let w∈ (2P)ω .

1. If (w,α) |= ϕ , then w′ |= c(ϕ) for every k-spaced coloring w′ of w, where k= maxx∈var(ϕ) α(x).

2. Let k∈ N. If w′ is a k-bounded coloring of w with w′ |= c(ϕ), then(w,α) |= ϕ , whereα(x) = 2k
for every x.

3 From LDL cp to Alternating B üchi Automata

In this section, we show how to translate LDLcp formulas into alternating Büchi word automata of
linear size using an inductive bottom-up approach. These automata allow us to use automata-based
constructions to solve the model checking and the realizability problem for PLDL via the alternating
color technique which links PLDL and LDLcp.

An alternating Büchi automatonA= (Q,Σ,q0,δ ,F) consists of a finite setQ of states, an alphabetΣ,
an initial stateq0 ∈ Q, a transition functionδ : Q×Σ → B+(Q), and a setF ⊆ Q of accepting states.
Here,B+(Q) denotes the set of positive boolean combinations overQ, which contains in particular the
formulastt (true) andff (false). A run ofA on w = w0w1w2 · · · ∈ Σω is a directed graphρ = (V,E)
with V ⊆ Q×N and((q,n),(q′,n′)) ∈ E implies n′ = n+1 such that the following two conditions are
satisfied:(q0,0) ∈V and for all(q,n) ∈V: Succρ(q,n) |= δ (q,wn). Here Succρ(q,n) denotes the set of
successors of(q,n) in ρ projected toQ. A run ρ is accepting if all infinite paths (projected toQ) through
ρ visit F infinitely often. The languageL(A) contains allw∈ Σω that have an accepting run ofA.

Theorem 2. For everyLDLcp formulaϕ , there is an alternating B̈uchi automatonAϕ with linearly many
states (in|ϕ |) such that L(Aϕ) = {w∈ (2P′

)ω | w |= ϕ}.

To prove the theorem, we inductively construct automataAψ for every subformulaψ ∈ cl(ϕ) satisfy-
ing L(Aψ) = {w∈ (2P′

)ω | w |= ψ}. The automata for atomic formulas are straightforward and depicted
in Figure 1(a) and (b). To improve readability, we allow propositional formulas overP′ as transition
labels: the formulaφ stands for all setsA∈ 2P′

with A |= φ . Furthermore, given automataAψ0 andAψ1,
using a standard construction, we can build the automatonAψ0∨ψ1 by taking the disjoint union of the two
automata, adding a new initial stateq0 with δ (q0,A) = δ 0(q0

0,A)∨δ 1(q1
0,A). Here,qi

0 is the initial state
andδ i is the transition function ofAψi . The automatonAψ0∧ψ1 is defined similarly, the only difference
beingδ (q0,A) = δ 0(q0

0,A)∧δ 1(q1
0,A).

It remains to consider temporal formulas, e.g.,〈r〉ψ . First, we turn the regular expressionr into
an automatonAr . Recall that tests do not process input letters. Hence, we disregard the tests when
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Figure 1: The automataAp (a),A¬p (b), andAcp (c), which tracks color changepoints.

defining the transition function, but we label states at which the test has to be executed by this test.
We use the Thompson construction [18] to turnr into Ar , i.e., we obtain anε-NFA. Then, we show
how to combineAr with the automatonAψ and the automataAψ1, . . . ,Aψk, whereψ1?, . . . ,ψk? are the
test occurring inr. Theε-transitions introduced by the Thompson construction are then removed, since
alternating automata do not allow them. During this process, we also ensure that the transition relation
takes tests into account by introducing universal transitions that lead from a state marked withψ j? into
the corresponding automatonAψ j .

Formally, anε-NFA with markingsA = (Q,Σ,q0,δ ,C,m) consists of a finite setQ of states, an
alphabetΣ, an initial stateq0 ∈ Q, a transition functionδ : Q×Σ∪{ε} → 2Q, a setC of final states (C,
since we use them to concatenate automata), and a partial marking functionm, which assigns to some
statesq∈ Q an LDLcp formulam(q). We writeq

a
−→ q′, if q′ ∈ δ (q,a) for a∈ Σ∪{ε}. An ε-pathπ from

q to q′ in Ar is a sequenceπ = q1 · · ·qk of k≥ 1 states withq= q1
ε
−→ ·· ·

ε
−→ qk = q′. The set of allε-paths

from q to q′ is denoted byΠ(q,q′). Let m(π) = {m(qi) | 1≤ i ≤ k} be the set of markings visited byπ.
A run ofA onw0 · · ·wn−1 ∈ Σ∗ is a sequenceq0q1 · · ·qn such that for everyi in the range 0≤ i ≤ n−1

there is a stateq′i reachable fromqi via anε-pathπi and withqi+1 ∈ δ (q′i ,wi). The run is accepting if
there is aq′n ∈C reachable via anε-pathπn from qn. This slightly unusual definition (but equivalent to
the standard one) simplifies our reasoning below. Also, the definition is oblivious to the marking.

We begin by defining the automatonAr by induction over the structure ofr as depicted in Figure 2.
Note that the automata we construct have no outgoing edges leaving the unique final state and that we
mark some states with testsψ j? (denoted by labeling states with the test).
Lemma 5. Let w= w0w1w2 · · · ∈ (2P′

)ω and let w0 · · ·wn−1 be a (possibly empty, if n= 0) prefix of w.
The following two statements are equivalent:

1. Ar has an accepting run q0q1 · · ·qn on w0 · · ·wn−1 with ε-pathsπi for i in the range0≤ i ≤ n such
that wiwi+1wi+2 · · · |=

∧

m(πi) for every i.

2. (0,n) ∈ R(r,w).

Fix ψ and r (with testsψ1?, . . . ,ψk?) and letAr = (Qr ,2P′
,qr

0,δ r ,Cr ,m), Aψ = (Q′,2P′
,q′0,δ ′,F ′),

andAψ j = (Q j ,2P′
,q j

0,δ j ,F j) for j = 1, . . . ,k be the corresponding automata, which we assume to have
pairwise disjoint sets of states. Next, we show how to constructA〈r〉ψ , A[r ]ψ , A〈r〉cpψ , andA[r ]cpψ .

We begin with〈r〉ψ : we defineA〈r〉ψ = (Qr ∪Q′∪Q1∪ ·· ·∪Qk,2P′
,qr

0,δ ,F1∪ ·· ·∪Fk) with
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δ ′(q,A) if q∈ Q′,

δ j(q,A) if q∈ Q j ,
∨

q′∈Qr\Cr
∨

π∈Π(q,q′)
∨

p∈δ r (q′,A)(p∧
∧

ψ j∈m(π) δ j(q j
0,A))

∨ if q∈ Qr .
∨

q′∈Cr
∨

π∈Π(q,q′)(δ ′(q′0,A)∧
∧

ψ j∈m(π) δ j(q j
0,A))
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Figure 2: The inductive definition ofAr via the Thompson construction.

So,A〈r〉ψ is the union of the automata for the regular expression, the tests, and forψ with a modified
transition function. The transitions of the automataAψ andAψ j are left unchanged and the transition
function for states inQr is obtained by removingε-transitions. First consider the upper disjunct: it
ranges disjunctively over all non-final statesp that are reachable via an initialε-path and anA-transition
in the end. To account for the tests visited during theε-path (but not the test atp), we add conjunctively
transitions that lead into the corresponding automata. Thelower disjunct is similar, but ranges over paths
that end in a final state. Since we concatenate the automatonAr with the automatonAψ , all edges leading
into final states ofAr are rerouted to the initial state ofAψ . The tests along theε-path are accounted for as
in the first case. Finally, note thatQr does not contain any (Büchi) accepting states, i.e., everyaccepting
run onw has to leaveQr after a finite number of transitions. Since this is only possible via transitions
that would leadAr into a final state, this ensures the existence of a positionn such that(0,n) ∈ R(r,w).

The definition ofA[r ]ψ is dual, i.e., we have to use automataA¬ψ j = (Q j ,2P′
,q j

0,δ
j ,F j) for j =

1, . . . ,k for the negated tests andε-transitions are removed in a universal manner. Formally, we define
A[r ]ψ = (Qr ∪Q′∪Q1∪ ·· ·∪Qk,2P′

,qr
0,δ ,Qr ∪F1∪ ·· ·∪Fk) where

δ (q,A) =































δ ′(q,A) if q∈ Q′,

δ j(q,A) if q∈ Q j ,
∧

q′∈Qr\Cr
∧

π∈Π(q,q′)
∧

p∈δ r (q′,A)(p∨
∨

ψ j∈m(π) δ j(q j
0,A))

∧ if q∈ Qr .
∧

q′∈Cr
∧

π∈Π(q,q′)(δ ′(q′0,A)∨
∨

ψ j∈m(π) δ j(q j
0,A))

Note that we addQr to the (Büchi) accepting states, since a run onw might stay inQr forever, as it has
to consider all positionsn with (0,n) ∈ R(r,w).

For the changepoint-bounded operators, we have to modifyAr to make it count color changes. Let
Acp = (Qcp,2P′

,qcp
0 ,δ cp,Ccp) be the DFA depicted in Figure 1(c). We define the product ofAr andAcp

asÂr = (Q̂r ,2P′
, q̂r

0, δ̂ r ,Ĉr ,m̂) whereQ̂r = Qr ×Qcp, q̂r
0 = (qr

0,q
cp
0 ),

δ ((q,q′),A) =

{

{(p,δ cp(q′,A)) | p∈ δ r(q,A)} if A 6= ε,
{(p,q′) | p∈ δ r(q,A)} if A= ε,
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Ĉr = Cr ×Ccp, andm̂(q,q′) = m(q). Using this, we defineA〈r〉cpψ as we definedA〈r〉ψ , but usingÂr

instead ofAr . Similarly,A[r ]cpψ is defined asA[r ]ψ , but usingÂr instead ofAr .

Proof of Theorem 2.First, we consider the size ofAϕ . Boolean operations add one state while a temporal
operator with regular expressionr adds a number of states that is linear in the size ofr (which is its
length), even when we take the intersection with the automaton checking for color changes. Note that
we do not need to complement the automataAψ j to obtainA¬ψ j , instead we rely on Lemma 1. Hence,

the size ofAϕ is linear in the size ofϕ . It remains to proveL(Aϕ) = {w∈ (2P′
)ω | w |= ϕ} by induction

over the structure ofϕ . The induction start for atomic formulas and the induction step for disjunction
and conjunction are trivial, hence it remains to consider the temporal operators.

Consider〈r〉ψ . If w |= 〈r〉ψ , then there exists a positionn such thatwnwn+1wn+2 · · · |= ψ and(0,n) ∈
R(r,w). Hence, there is a run ofAr on w0 · · ·wn−1 such that the tests visited during the run are satisfied
by the appropriate suffixes ofw. Thus, applying the induction hypothesis yields acceptingruns of the
test automata on these suffixes. Furthermore, there is an accepting run ofAψ on wnwn+1wn+2 · · · , again
by induction hypothesis. These runs can be “glued” togetherto build an accepting run ofA〈r〉ψ on w.

For the other direction, consider an accepting runρ of A〈r〉ψ on w. Let n ≥ 0 be the last level of
ρ that contains a state fromQr . Such a level has to exist since states inQr are not accepting and they
have no incoming edges from states of the automataAψ andAψ j , but the initial state ofA〈r〉ψ is in
Qr . Furthermore,A〈r〉ψ is non-deterministic and complete when restricted to states in Qr \Cr . Hence,
we can extract an accepting run ofAr from ρ on w0 · · ·wn−1 that satisfies additionally the requirements
formulated in Statement 1 of Lemma 5, due to the transitions into the test automata and an application
of the induction hypothesis. Hence, we have(0,n) ∈ R(r,w). Furthermore, from the remainder of
ρ (levels greater or equal ton) we can extract an accepting run ofAψ on wnwn+1wn+2 · · · . Hence,
wnwn+1wn+2 · · · |= ψ by induction hypothesis. Altogether, we concludew |= 〈r〉ψ .

The case for[r]ψ is dual, while the cases for the changepoint-bounded operators 〈r〉cpψ and[r]cpψ
are analogous, using the fact thatAcp only accepts words which have at most one changepoint.

Note that the size ofAϕ is linear in|ϕ |, but it is not clear that it can be computed in polynomial time
in |ϕ |, since the transition functions of subautomata of the formA〈r〉ψ contain disjunctions that range
over the set ofε-paths. Here, it suffices to consider paths that do not contain a state twice, but even
this restriction still allows for an exponential number of different paths. Fortunately, we do not need
to computeAϕ in polynomial time. It suffices to do it in polynomial space, which is sufficient for the
applications in the next sections, which is clearly possible.

Furthermore, using standard constructions (e.g., [13, 15]), we can turn the alternating Büchi au-
tomatonAϕ into a non-deterministic Büchi automaton of exponential size and a deterministic parity
automaton2 of doubly-exponential size with linearly many colors.

4 Model Checking

In this section, we consider the PLDL model checking problem. A (P-labeled) transition systemS =
(S,s0,E, ℓ) consists of a finite setS of states, an initial states0, a (left-)total edge relationE ⊆ S×S,
and a labelingℓ : S→ 2P. An initial path throughS is a sequenceπ = s0s1s2 · · · of states satisfying
(sn,sn+1) ∈ E for everyn. Its trace is defined as tr(π) = ℓ(s0)ℓ(s1)ℓ(s2) · · · . We say thatS satisfies a

2The states of a parity automaton are colored byΩ : Q→ N. It accepts a wordw, if it has a runq0q1q2 · · · on w such that
max{Ω(q) | qi = q for infinitely many i} is even.
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PLDL formulaϕ with respect to a variable valuationα , if we have(tr(π),α) |= ϕ for every initial pathπ
of S . The model checking problem asks, given a transition systemS and a formulaϕ , to determine
whetherS satisfiesϕ with respect to some variable valuationα .

Theorem 3. ThePLDL model checking problem isPSPACE-complete.

To solve the PLDL model checking problem, we first notice thatwe can restrict ourselves to PLDL♦

formulas. Letϕ andϕ ′ be due defined as in Lemma 3. Then,S satisfiesϕ with respect to someα if
and only ifS satisfiesϕ ′ with respect to someα ′.

Our algorithm is similar to the one presented for PROMPT–LTLin [11] and uses the alternating color
technique. Recall thatp /∈ P is the fresh atomic proposition used to specify the coloringand induces the
blocks, maximal infixes with its unique changepoint at the first position. LetG= (V,E,v0, ℓ,F) denote
a colored Büchi graph consisting of a finite directed graph(V,E), an initial vertexv0, a labeling func-
tion ℓ : V → 2{p} labeling vertices byp or not, and a setF ⊆ V of accepting states. A pathv0v1v2 · · ·
throughG is pumpable, if all its blocks have at least one state that appears twice in this block. Further-
more, the path is fair, if it visitsF infinitely often. The pumpable non-emptiness problem asks,given a
colored Büchi graphG, whether it has a pumpable fair path starting in the initial state.

Theorem 4 ([11]). The pumpable non-emptiness problem for colored Büchi graphs isNLOGSPACE-
complete and can be solved in linear time.

The following lemma reduces the PLDL♦ model checking problem to the pumpable non-emptiness
problem for colored Büchi graphs of exponential size. Given a non-deterministic Büchi automatonA=
(Q,2P∪{p},q0,∆,F) recognizing the models of¬rel(ϕ)∧ θ∞p∧ θ∞¬p (note that rel(ϕ) is negated) and a
transition systemS = (S,s0,E, ℓ), we define the productA×S to be the colored Büchi graph

A×S = (Q×S×2{p},E′,(q0,s0, /0), ℓ′,F ×S×2{p})

where((q,s,C),(q′ ,s′,C′))∈E′ if and only if (s,s′)∈E andq′ ∈ δ (q, ℓ(s)∪C), and whereℓ′(q,s,C) =C.
Each initial path(q0,s0,C0)(q1,s1,C1)(q2,s2,C2) · · · through the productA×S induces a coloring

(L(s0)∪C0)(L(s1)∪C1)(L(s2)∪C2) · · · of the trace of the paths0s1s2 · · · throughS . Furthermore,
q0q1q2 · · · is a run ofA on the coloring.

Lemma 6 (cp. Lemma 4.2 of [11]). S does not satisfyϕ with respect to anyα if and only ifA×S has
a pumpable fair path.

Proof. Let ϕ not be satisfied byS with respect to anyα , i.e., for everyα there exists an initial pathπ
throughS such that(tr(π),α) 6|= ϕ . Pick α∗ such thatα∗(x) = 2 · |Q| · |S|+ 1 and letπ∗ be the cor-
responding path. Applying Lemma 4.2 yieldsw 6|= c(ϕ) for every |Q| · |S|-bounded coloring of tr(π∗).
Now, consider the unique|Q| · |S|-bounded and|Q| · |S|-spaced coloringw of tr(π∗) that starts withp
not holding true in the first position. As argued above,w 6|= c(ϕ), and we havew |= θ∞p∧θ∞¬p, asw is
bounded. Hence,w |= ¬rel(ϕ)∧θ∞p∧θ∞¬p, i.e., there is an accepting runq0q1q2 · · · of A in w. This suf-
fices to show that(q0,π0,w0∩{p})(q1,π1,w1∩{p})(q1,π1,w2∩{p}) · · · is a pumpable fair path through
A×S , since every block has length greater than|Q| · |S|. This implies the existence of a repeated state
in every block, since there are exactly|Q| · |S| vertices of each color.

Now, letA×S contain a pumpable fair path(q0,s0,C0)(q1,s1,C1)(q2,s2,C2) · · · , fix some arbitrary
α , and definek = maxx∈var♦ϕ α(x). There is a repetition of a vertex ofA×S in every block, each of
which can be pumpedk times. This path is still fair and induces a coloringw′

k of a tracewk of an initial
path ofS . Since the run encoded in the first components is an acceptingone onw′

k, we conclude that
the coloringw′

k satisfies¬c(ϕ). Furthermore,w′
k is k-spaced, since we pumped each repetitionk times.
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Towards a contradiction assume we have(w,α) |= ϕ . Applying Lemma 4.1 yieldsw′ |= c(ϕ), which
contradicts¬c(ϕ). Hence, for everyα we have constructed a path ofS whose trace does not satisfyϕ
with respect toα , i.e.,S does not satisfyϕ with respect to anyα .

We can deduce an upper bound on valuations that satisfy a formula in a given transition system.

Corollary 1. If there is a variable valuation such thatS satisfiesϕ , then there is also one that is
bounded exponentially in|ϕ | and linearly in the number of states ofS .

Proof. Let S satisfyϕ with respect toα , but not with the valuationα∗ with α∗(x) = 2 · |Q| · |S|+ 1.
In the preceding proof, we constructed a pumpable fair path in A×S starting from this assumption.
This contradicts Lemma 6, sinceS satisfyingϕ with respect toα is equivalent toA×S not having a
pumpable fair path. Since 2· |Q| · |S|+1 is exponential in|ϕ | and linear in|S|, the result follows.

A matching lower bound of 2n can be proven by implementing a binary counter withn bits using a
formula of polynomial size inn. This holds already true for PROMPT–LTL, as noted in [11].

It remains to prove the main result of this section: PLDL model checking isPSPACE-complete.

Proof of Theorem 3.PSPACE-hardness follows directly from thePSPACE-hardness of the LTL model
checking problem [17], as LTL is a fragment of PLDL.

The following is aPSPACE algorithm: constructA×S and check whether it contains a pumpable
fair path, which is correct due to Lemma 6. Since the search for such a path can be implemented on-the-
fly without having to construct the full product [11], it can be implemented using polynomial space.

5 Realizability

In this section, we consider the realizability problem for PLDL. Throughout the section, we fix a parti-
tion (I ,O) of the set of atomic propositionsP. An instance of the PLDL realizability problem is given
by a PLDL formulaϕ (over P) and the problem is to decide whether PlayerO has a winning strategy
in the following game, played in roundsn ∈ N: in each roundn, PlayerI picks a subsetin ⊆ I and
then PlayerO picks a subseton ⊆ O. PlayerO wins the play with respect to a variable valuationα , if
((i0∪o0)(i1∪o1)(i2∪o2) · · · ,α) |= ϕ .

Formally, a strategy for PlayerO is a mappingσ : (2I )∗ → 2O and a playρ = i0o0i1o1i2o2 · · · is
consistent withσ , if we haveon = σ(i0 · · · in) for every n. We call (i0 ∪ o0)(i1 ∪ o1)(i2 ∪ o2) · · · the
outcome ofρ , denoted by outcome(ρ). We say that a strategyσ for PlayerI is winning with respect to
a variable valuationα , if we have(outcome(ρ),α) |= ϕ for every playρ that is consistent withσ . The
PLDL realizability problem asks for a given PLDL formulaϕ , whether PlayerO has a winning strategy
with respect to some variable valuation, i.e., there is a single α such that every outcome satisfiesϕ with
respect toα . If this is the case, then we say thatσ realizesϕ and thus thatϕ is realizable.

We show the PLDL realizability problem to be2EXPTIME -complete: hardness follows easily from
the 2EXPTIME -completeness of the LTL realizability problem, which is a special case of the PLDL
realizability problem. Membership in2EXPTIME on the other hand is shown by a reduction to the
realizability problem forω-regular specifications.

It is well-known thatω-regular specifications are realizable by finite-state transducers (if they are
realizable at all) [3]. A transducerT = (Q,Σ,Γ,q0,δ ,τ) consists of a finite setQ of states, an input
alphabetΣ, an output alphabetΓ, an initial stateq0, a transition functionδ : Q×Σ → Q, and a output
function τ : Q → Γ. The function fT : Σ∗ → Γ implemented byT is defined asfT (w) = τ(δ ∗(w)),
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whereδ ∗ is defined as usual:δ ∗(ε) = q0 and δ ∗(wv) = δ (δ ∗(w),v). To implement a strategy by a
transducer, we useΣ = 2I andΓ = 2O. Then, we say that the strategyσ = fT is finite-state. The size of
σ is the number of states ofT . The following proof is analogous to the one for PROMPT–LTL [11].

Theorem 5. ThePLDL realizability problem is2EXPTIME -complete.

When proving membership in2EXPTIME , we restrict ourselves without loss of generality to PLDL♦

formulas, as this special case is sufficient as shown in Lemma3. First, we use the alternating color tech-
nique to show that the PLDL♦ realizability problem is reducible to the realizability problem for speci-
fications in LDLcp. When considering the LDLcp realizability problem, we add the fresh propositionp
used to specify the coloring toO, i.e., PlayerO is in charge of determining the color of each position.

Lemma 7 (cp. Lemma 3.1 of [11]). A PLDL♦ formula ϕ over I and O is realizable if and only if the
LDLcp formula c(ϕ) over I and O∪{p} is realizable.

Proof. Let ϕ be realizable, i.e., there is a winning strategyσ : (2I )+ → 2O for PlayerO with respect to
someα . Now, consider the strategyσ ′ : (2I )+ → 2O∪{p} defined by

σ ′(i0 · · · in−1) =

{

σ(i0 · · · in−1) if n mod 2k< k,

σ(i0 · · · in−1)∪{p} otherwise,

wherek = maxx∈var♦(ϕ) α(x). We show thatσ ′ realizesc(ϕ). To this end, letρ ′ = i0o0i1o1i2o2 · · · be
a play that is consistent withσ ′. Then,ρ = i0(o0 \ {p})i1(o1 \ {p})i2(o2 \ {p}) · · · is by construction
consistent withσ , i.e.,(outcome(ρ),α) |= ϕ . As ρ ′ is ak-spacedp-coloring ofρ , we deduceρ ′ |= c(ϕ)
by applying Lemma 4.1. Hence,σ ′ realizesc(ϕ).

Now, assumec(ϕ) is realized byσ ′ : (2I )+ → 2O∪{p}, which we can assume to be finite-state, say
it is implemented byT with n states. We first show that every outcome that is consistent with σ ′ is
n+ 1-bounded. Such an outcome satisfiesc(ϕ) and has therefore infinitely many changepoints. Now,
assume it has a block of length strictly greater thann+1, say between changepoints at positionsi and j.
Let q0q1q2 · · · be the states reached during the run ofT on the projection ofρ to 2I . Then, there are two
positionsi′ and j ′ satisfyingi ≤ i′ < j ′ < j in the block such thatqi′ = q j ′ . Hence,q0 · · ·qi′−1(qi′ · · ·q j ′−1)

ω

is also a run ofT . However, the output generated by this run has only finitely many changepoints, since
the output at the statesqi′ , . . . ,q j ′−1 coincides when restricted to{p}. This contradicts the fact that
T implements a winning strategy, which implies in particularthat every output has infinitely many
changepoints, as required by the conjunctθ∞p∧θ∞¬p of c(ϕ). Hence,ρ is (n+1)-bounded.

Now, consider the strategyσ : (2I )+ → 2O defined byσ(i0 · · · in−1) = σ ′(i0 · · · in−1)∩O. By defini-
tion, for every playρ consistent withσ , there is a(n+ 1)-boundedp-coloring of ρ that is consistent
with σ ′. Hence, applying Lemma 4.2 yields(ρ ,β ) |= ρ , whereβ (x) = 2n+2. Hence,σ realizesϕ with
respect toβ . Note thatσ is also finite-state and of the same size asσ ′.

Proof of Theorem 5.As already mentioned above,2EXPTIME -hardness of the LDL realizability prob-
lem follows immediately from the2EXPTIME -hardness of the LTL realizability problem [14], as LTL is
a fragment of PLDL.

Now, consider membership and recall that we have argued thatit is sufficient to consider PLDL♦.
Thus, letϕ be a PLDL♦ formula. By Lemma 7 we know that it is sufficient to consider the realizability
of c(ϕ). Let A = (Q,2I∪O∪{p},q0,δ ,Ω) be a deterministic parity automaton recognizing the modelsof
c(ϕ). We turnA into a parity gameG such that Player 1 winsG from some dedicated initial vertex if and
only if c(ϕ) is realizable. To this end, we define the arena(V,V0,V1,E) with V = Q∪ (Q×2I ), V0 = Q,
V1 = Q×2I , andE = {(q,(q, i)) | i ⊆ I}∪{(q, i),δ (q, i ∪o) | o⊆ O∪{p}}, i.e., Player 0 picks a subset
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i ⊆ I and PlayerO picks a subseto ⊆ O, which in turn triggers the (deterministic) update of the state
stored in the vertices. Finally, we define the coloringΩA of the arena viaΩA (q) = ΩA (q, i) = Ω(q).

It is straightforward to show that PlayerO has a winning strategy fromq0 in the parity game(A ,ΩA )
if and only if c(ϕ) (and thusϕ) is realizable. Furthermore, if Player 1 has a winning strategy, thenA
can be turned into a transducer implementing a strategy thatrealizesc(ϕ) usingV as set of states. Note
that |V| is doubly-exponential in|ϕ |, if we assume thatI andO are restricted to propositions appearing
in ϕ . As the parity game is of doubly-exponential size and has linearly many colors, we can solve it in
doubly-exponential time in the size ofϕ . This concludes the proof.

Also, we obtain a doubly-exponential upper bound on a variable valuation that allows to realize a
given formula. A matching lower bound already holds for PLTL[22].

Corollary 2. If a PLDL♦ formulaϕ is realizable with respect to someα , then it is realizable with respect
to someα that is bounded doubly-exponentially in|ϕ |.

Proof. If ϕ is realizable, then so isc(ϕ). Using the construction proving the right-to-left implication of
Lemma 7, we obtain thatϕ is realizable with respect to someα that is bounded by 2n+2, wheren is the
size of a transducer implementing the strategy that realizesc(ϕ). We have seen in the proof of Theorem 5
that the size of such a transducer is at most doubly-exponential in |c(ϕ)|, which is only linearly larger
than|ϕ |. The result follows.

6 Conclusion

We introduced Parametric Linear Dynamic Logic, which extends Linear Dynamic Logic by temporal
operators equipped with parameters that bound their scope,similarly to Parametric Linear Temporal
Logic, which extends Linear Temporal Logic by parameterized temporal operators. Here, the model
checking problem asks for a valuation of the parameters suchthat the formula is satisfied with respect to
this valuation on every path of the transition system. Realizability is defined in the same spirit.

We showed PLDL model checking to be complete forPSPACE and the realizability problem to be
complete for2EXPTIME , just as for LTL. Thus, in a sense, PLDL is not harder than LTL.Finally, we
were able to give tight exponential respectively doubly-exponential bounds on the optimal valuations for
model checking and realizability.

We did not consider the assume-guarantee model checking problem here, but the algorithm solving
the problem for PROMPT–LTL presented in [11] should be adaptable to PLDL as well. Another open
problem concerns the computation of optimal valuations forPLDL♦ and PLDL� formulas. By exhaus-
tive search within the bounds mentioned above, one can determine the optima. We expect this to be
possible in polynomial space for model checking and in triply exponential space for realizability, which
is similar to the situation for PLTL [1, 22]. Note that it is anopen question whether optimal valuations
for PLTL realizability can be determined in doubly-exponential time.
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