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We introduce Parametric Linear Dynamic Logic (PLDL), whiektends Linear Dynamic Logic
(LDL) by temporal operators equipped with parameters tloatiol their scope. LDL was proposed
as an extension of Linear Temporal Logic (LTL) that is ablexpress alko-regular specifications
while still maintaining many of LTL's desirable propertilise an intuitive syntax and a translation
into non-deterministic Biichi automata of exponentiaésiBut LDL lacks capabilities to express
timing constraints. By adding parameterized operatordlb,lwe obtain a logic that is able to ex-
press allew-regular properties and that subsumes parameterizedsssnof LTL like Parametric
LTL and PROMPT-LTL.

Our main technical contribution is a translation of PLDLfarlas into non-deterministic Blichi
word automata of exponential size via alternating automBités yields a PSPACE model checking
algorithm and a realizability algorithm with doubly-expeortial running time. Furthermore, we give
tight upper and lower bounds on optimal parameter valudsdtr problems. These results show that
PLDL model checking and realizability are not harder thah ifodel checking and realizability.

1 Introduction

Linear temporal logic (LTL) is a popular specification laage for the verification and synthesis of re-
active systems. It provides semantic foundations for itréhldogics like PSL[5]. LTL has a number of
desirable properties contributing to its ongoing poptjaiit does not rely on the use of variables, it has
an intuitive syntax and thus gives a way for practitioners/tibe declarative and concise specifications.
Furthermore, it is expressively equivalent to first-ordegi¢ over the natural numbers with successor
and order[[10] and enjoys an exponential compilation priypene can efficiently construct a language-
equivalent non-deterministic Biichi automaton of expadia¢size in the size of the specification. The
exponential compilation property yieldsRsPACE model checking algorithm and 2EXPTIME algo-
rithm for realizability. Both problems are complete for lespective classes.

Model checking of properties described in LTL or its pragtidescendants is routinely applied in
industrial-sized applications, especially for hardwaystems [[2] 5]. Due to its complexity, the real-
izability problem has not reached industrial acceptanes).(yFirst approaches used a determinization
procedure forw-automata, which is notoriously hard to implement effidiefii6]. More recent algo-
rithms for realizability follow a safraless constructid®, [4], which avoids explicitly constructing the
deterministic automaton, and are showing promise on smaihples.

Despite the desirable properties, two drawbacks of LTL ienaad are tackled by different ap-
proaches in the literature: first, LTL is not able to expreésuaregular properties. For example, the
property “p holds on every even step” (but may or may not hold on odd stepgjt expressible in LTL,
but easily expressible as anregular expression. This drawback is a serious one, sirecedmbination
of regular properties and linear-time operators is comnmonardware verification languages. Several
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extensions of LTL[[12, 20, 21] with regular expressions téimiutomata, or grammar operators have been
proposed as a remedy.

A second drawback of classic temporal logics like LTL is thakility to natively express timing
constraints. The standard semantics are unable to enfoectilifilment of eventualities within finite
time bounds, e.g., itis impossible to require that requarggranted within a fixed, but arbitrary, amount
of time. While it is possible to unroll an a-priori fixed boufat an eventuality into LTL, this requires
prior knowledge of the system’s granularity and incurs avblp when translated to automata, and is
thus considered impractical. A more practical way of fixihgstdrawback has been the purpose of a
long line of work in parametric temporal logics, such as patic LTL [1], PROMPT-LTL [11] and
parametric metric interval temporal logic [9]. All of thendé parameters to the temporal operators to
express time bounds, and either test the existence of aldiaimbound, like PROMPT-LTL, or of
individual bounds on the parameters, like parametric LTL.

Recently, the first drawback was revisited by De Giacomo aadliV [4,[19] by introducing an
extension of LTL called linear dynamic logic (LDL), which & expressive ag-regular languages.
The syntax of LDL is inspired by propositional dynamic logRDL) [8], but the semantics follow
linear-time logics. In PDL and LDL, programs are expressgddgular expressions with tests, and
temporal requirements are specified by two basic modalitieg and|r]¢, stating thatp should hold
at some position where matches, or at all positions wherematches, respectively. The operators to
specify regular expressions from propositional formulasas follows: sequential composition (r2),
nondeterministic choicer{ -+ ry), repetition (*), and test(¢?) of a temporal formula. On the level
of the temporal operators, conjunction and disjunctionadl@ved. The tests allow to check temporal
properties within programs, and are needed to encode LDLLDL.

As an example, the programwvhile q do a” with property p holding after the execution of the loop
is expressed in PDL/LDL as follows{g?;a)* ; —q?|p. Intuitively, the loop conditior is tested on every
loop entry, the loop body is executed/consumed untilg holds, and then the post-conditignhas to
hold. A request-response property (i.e., every requestldleventually be followed by a response) can
be formalized as followsjtt*|(req— (tt*)resp).

Both aforementioned drawbacks of LTL, the inability to eegs allcw-regular properties and the
missing capability to specify timing constraints, haverbégckled individually in a successful way in
previous work, but not at the same time. Here, we propose ia kajled PLDL that combines the
expressivity of LDL with the parametricity of PLTL on infigtiraces.

In PLDL, we are for example able to parameterize the eveibjuzfithe request-response condition,
denoted astt*](req— (tt*)<xresp), which states that every request has to be followed by a nsgpo
within x steps. In the PLDL model checking problem, we determine hdrethere exists a valuation
a(x) for x such that all paths of the system respond to requests wathipsteps. If we take the property
as a specification for the PLDL realizability problem, anfirereq as input respas output, we compute
whether there exists a winning strategy that adheres tauati@h o (x) and is able to ensure the delivery
of responses to requests in a timely manner.

The main result of this paper is the translation of PLDL temating Buchi automata. By an exten-
sion of the alternating color technique 0f [11], and by vargikar algorithms, we obtain the following
results: PLDL model checking iBspACE-complete and realizability iEXPTIME -complete. Thus,
both problems are no harder than their corresponding \arfanLTL. Finally, we give tight exponen-
tial and doubly-exponential bounds on satisfying valugitor model checking and realizability.

Our translation might also be of use for LDL on infinite tracgace De Giacomo and Vardil[4] only
considered LDL on finite traces. Unlike the translation frlmmic into automata presented there, which
is a top-down construction of an alternating automaton, resgnt a bottom-up approach.
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2 PLDL

Let # be an infinite set of variables and let us fix a fiBisetP of atomic propositions which we use to
build our formulas and to label transition systems in whighavaluate them. For a subget 2P and a
propositional formulap overP, we write A |= ¢, if the variable valuation mapping elementsAto true
and elements not iA to false satisfieg. The formulas of PLDL are given by the grammar

¢u=p[=PlOAG[OVP| ()¢ |[r]¢|(r)<zf |[r]<zf
re=@o?(r+r|rr|rr

wherep e P, ze ¥, and wherap stands for arbitrary propositional formulas overWe use the abbre-
viationstt = pVv —pandff = pA —pfor some atomic propositiop. The regular expressions have two
types of atoms: propositional formulgsover the atomic propositions and tegt8, where¢ is again
a PLDL formula. Note that the semantics of the propositiatam ¢ differ from the semantics of the
test@?: the former consumes an input letter, while tests do noerpasigress on the word. This is why
both types of atoms are allowed.
The set of subformulas df is denoted by ¢kp). Note that regular expressions are not subformulas,
but the formulas appearing in the tests are, e.g., we h&exh)<xr) = {p,r, (p?;0) <xr }. The sizel¢|
of ¢ is the sum ofcl(¢)| and the sum of the lengths of the regular expressions apgearp (counted
with multiplicity). We define vag(¢) = {z€ 7| (r)<. € cl(¢)} to be the set of variables parameteriz-
ing diamond operators iy, vars(¢) = {zc ¥ | [r]<. € cl(¢)} to be the set of variables parameterizing
box operators i, and set vewp) = var, (¢ ) Uvar(¢). Usually, we will denote variables in vgfg) by
xand variables in vaf(¢) byy, if ¢ is clear from the context. A formulé is variable-free, if vafg) = 0.
The semantics of PLDL are defined inductively with respe@ra-word w = wowiw, - - - € (ZP)‘*’,
a positionn € N, and a variable valuatioa: ¥ — N via

e (w,n,a) = pif p € w,and dually for-p,

= Yoy if (wn,a) = Yo and(win,a) = g,

= YoV if (Wna) = goor (wn,a) = g,

= (r)y if there existsj € Ns.t.(n,n+j) € Z(r,w,a) and(W,n+ j,a) = ¢,

= [r]y if for all j € Nwith (n,n+ j) € Z(r,w,a) we have(w,n+ j,a) = ,

= (r) <z if there exists X j < a(2) s.t.(n,n+ j) € Z(r,w,a) and(w,n+ j,a) = ¢,
o (Wn,a) = [rl<zyifforall 0 < j<a(z) with (n,n+ j) € Z(r,w,a) we have(w,n+ j,a) = .

Here, the relationZ(r,w,a) C N x N contains all pairdm,n) such thatwp,---w,_1 matchesr (a is
needed to evaluate testsrinwvhich might have parameterized subformulas) and is defimhdttively by

o (Wn,a

o (Wn,a

w,n, o

~— — ~— ~— ~—

o (Wn,a

(
(
e (Wna
(
(
(

o Z(p,w,a)={(n,n+1) | wy |= ¢} for propositionalep,
o Z(Y?w.a)={(nn)|(wna) =y},

o Z(ro+r1,w,a)=2Z(ro,w,a)JZ(r,w,a),

o Z(ro;r1,w,a) = {(no,n) | 3ny s.t. (ng,ny) € Z(ro,w,a) and(ny,ny) € Z(r1,w,a)}, and

o Z(r*,w,a)={(n,n) |neN}U{(no,Nks1) | 3Nng,...,nkS.t. (nj,nj;1) € Z(r,w,a) for all j <k}.
We write (w,a) = ¢ for (w,0,a) = ¢ and say thatv is a model of¢ with respect tax.

1This greatly simplifies our notation and exposition when raaslate formulas into automata, but is not essential.
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Example 1.
e The formulaB.,:=[tt*](tt*)p expresses that p holds true infinitely often.
e In general, evenPLTL formula [1] (and thus every TL formula) can be translated intBLDL,
e.g.,F<x p is expressible aétt*)xp and pJ q as(p*)q or (p“q) tt.

e The formula[tt*](q — ((tt; tt)*p)) requires that every request (a position where g holds) is
followed by a response (a position where p holds) after an exenber of steps.

As usual for parameterized temporal logics, the use of bba$ahas to be restricted: bounding dia-
mond and box operators by the same variable leads to an alatieisatisfiability problem (cp.[1]).

Definition 1. APLDL formula¢ is well-formed, ifvary (¢) Nvaro(¢) = 0.

In the following, we only consider well-formed formulas adip the qualifier “well-formed”. We
consider the following fragments of PLDL. Le¢tbe a PLDL formula:¢ is an LDL formula [4], if ¢
is variable-free,¢ is a PLDL, formula, if vary(¢) = 0, and¢ is a PLDL; formula, if var,(¢) = 0.
Every LDL, PLDL, and every PLDE formula is well-formed by definition. As satisfaction of LDL
formulas is independent of variable valuations, we witen) = ¢ andw = ¢ instead of(w,n,a) = ¢
and(w,a) = ¢, respectively, ifp is an LDL formula.

LDL is as expressive aw-regular languages, which can be proven by a straightfahiranslation
of ETL¢ [20], which expresses exactly theregular languages, into LDL.

Theorem 1([19]). For everyw-regular language LC (27)® there exists an effectively constructit/BL
formula¢ such that L= {w e (2°)? |w}= ¢}.

Note that we define PLDL formulas to be in negation normal foNavertheless, a negation can be
pushed to the atomic propositions using dualities allowisago define the negation of a formula.

Lemma 1. For everyPLDL formula ¢ there exists an efficiently constructiti.DL formula—¢ s.t.
1. (wn,a) = ¢ if and only if (w,n,a) £~ —¢,
2. -] =8|

3. If ¢ is well-formed, then so is¢. and vice versa.

Proof. We construct=¢ by structural induction ovep using the dualities of the operators:

e ~(p)=-p e ~(-p)=p

e (dAY)=(=9)V(~¥) e ~(¢VUY)=(-9)A ()

o ~((nN¢)=1[r]-¢ o ([rj¢) =)o

o <((N<x¢) = [rl<x¢ o ~([rl<y®) =)<y

The latter two claims of Lemnid 1 follow from the definition-6$ while the first one can be shown
by a straightforward structural induction owgr O

A simple, but very useful property of PLDL is the monotoryoif the parameterized operators: in-
creasing (decreasing) the values of parameters boundingodid (box) operators preserves satisfaction.
Lemma 2. Let$ be aPLDL formula and leto and 3 be variable valuations satisfying(x) > a(x) for
every xe var,(¢) andB(y) < a(y) for every ye varg(¢). If (w,a) = ¢, then(w,3) = ¢.

The previous lemma allows us to eliminate parameterizeddp@xators when asking for the exis-
tence of a variable valuation satisfying a formula.
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Lemma 3. For everyPLDL formula ¢ there is an efficiently constructibleLDL; formula ¢’ of the
same size a¢ such that

1. for everya there is ana’ such that for all w: if(w,a) = ¢ then(w,a’) = ¢’, and
2. for everya’ there is ana such that for all w: if(w,a’) = ¢’ then(w,a) = ¢.

Proof. We construct a single teststich thatZ(r,w,a) N {(n,n) | n € N} = Z(f,w,a) for everyw and
everya, which suffices to prove the equivalence[dty s and[f]y provided we haver (y) = 0, which
is sufficient due to monotonicity. We apply the following miing rules (in the given order) to

1. Replace every subexpression of the foffrby tt?, until no longer applicable.

2. Replace every subexpression of the fapm’ or r’; @ by ££? and replace every subexpression of
the forme-+r' orr’ + @ by r’, whereg is a propositional formula, until no longer applicable.

3. Replace every subexpression of the fabg?+ Y1 ? by (o V ¢1)? and replace every subexpression
of the formyi?;yn? by (Yo A 1)?, until no longer applicable.

After step 2,r contains no iterations and no propositional atoms unles&xipression itself is one. In
the former case, applying the last two rules yields a regetaression which is a single test, which we
denote by In the latter case, we defime="f£?.

Each rewriting step preserves the intersectiém w,a) N {(n,n) | n€ N}. Asris a test, we conclude
Z(r,w,a)Nn{(n,n) |Ine N} =Z(f,w, a) for everywand everya. Note that tan be efficiently computed
fromr and is of the same size asNow, replace every subformulel<yy of ¢ by [f]y and denote the
formula obtained by’, which is a PLDL, formula that is efficiently constructible and of the samesiz

Given ana, we defineag by ao(z) = a(2), if z€ vary(¢) andag(z) = 0 otherwise. If(w,a) = ¢,
then(w,ap) = ¢ due to monotonicity. By construction @f, we also havéw, ap) = ¢’. On the other
hand, if(w, a’) = ¢', then(w, af) = ¢’ as well, wheren() is defined as above. By constructionddf we
conclude(w, ap) = ¢. O

2.1 The Alternating Color Technique and LDLp

In this subsection, we repeat the alternating color tealmigvhich was introduced by Kupferman et
al. to solve the model checking and the realizability probfer PROMPT-LTL, amongst others. Let
p ¢ P be a fresh proposition and defidé= 2P{P}, We think of words in(2”)® as colorings of words
in (2°), i.e.,,w € (27) is a coloring ofw € (2°)®, if we havew, NP = w, for every positionn.
Furthermoren is a changepoint, ih = 0 or if the truth value ofp differs at positionsn— 1 andn. A
block is a maximal infix that has exactly one changepoint,cilig at the first position of the infix. By
maximality, this implies that the first position after a bitds a changepoint. Lé¢> 1. We say that' is
k-bounded, if every block has length at m&stvhich implies thaw has infinitely many changepoints.
Dually, W is k-spaced, if it has infinitely many changepoints and everglbhms length at leagt

The alternating color technique replaces a parameterisedahd operatotr) -« by an unparam-
eterized one that requires the formujato be satisfied within at most one color change. To this end,
we introduce a changepoint-bounded variahg, of the diamond operator. Since we need the dual
operator(-|cp to allow for negation via dualization, we introduce it heseveell. We define

e (wn,a) = (r)cpy if there exists § € Ns.t.(n,n+ j) € Z(r,w,a), Wy - - Wp4 j_1 CONtains at most
one changepoint, anav,n+ j,a) = , and

e (wn,a) = [rlepy if forall j € Nwith (n,n+ j) € Z(r,w,a) and whereny, - - - Wy j—1 contains at
most one changepoint we hag@n+ j,a) = .
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We denote the logic obtained by disallowing parameterizgerators, but allowing changepoint-
bounded operators, by LRk Note that the semantics of LRk formulas are independent of vari-
able valuations. Hence, we drop them from our notation ferdghtisfaction relations- and%. Also,
Lemma[l can be extended to LB} by adding the rules:((r)cp) = [f]cp—~ and—([r|cpl) = (F)cp— @
to the proof.

Now, we are ready to introduce the alternating color teamidsiven a PLDL, formulag, let rel(¢)
be the formula obtained by inductively replacing every sutviula (r) <y by (rel(r))cprel(g), i.e., we
replace the parameterized diamond operator by a chanddpminded one. Note that this replacement
is also performed in the regular expressions, i.e(yye$ the regular expression obtained by applying
the replacement to every tagt? inr.

Given a PLDL, formula ¢ letc(¢) = rel(¢) A B.p A B-p (cf. Examplel), which is an LD{;, for-
mula and only linearly larger thagn. Onk-bounded and-spaced colorings off there is an equivalence
betweenp andc(¢). The proof is similar to the original ong [11].

Lemma 4 (cp. Lemma 2.1 of [11]) Let ¢ be aPLDL,, formula and let we (27)®.
1. If (w,a) = ¢, then w = c(¢) for every k-spaced coloring"vef w, where k= maX.cyar(¢) a (X).

2. Let ke N. If W' is a k-bounded coloring of w with'= c(¢), then(w,a) = ¢, wherea (x) = 2k
for every x.

3 From LDL ¢p to Alternating B Gichi Automata

In this section, we show how to translate LELformulas into alternating Biichi word automata of
linear size using an inductive bottom-up approach. Thes$enzata allow us to use automata-based
constructions to solve the model checking and the realigalpiroblem for PLDL via the alternating
color technigue which links PLDL and LQk.

An alternating Buchi automatcht = (Q, %, qo, 0, F ) consists of a finite s& of states, an alphab2t
an initial stategp € Q, a transition function: Q x £ — £ (Q), and a sef C Q of accepting states.
Here, %" (Q) denotes the set of positive boolean combinations Qarhich contains in particular the
formulastt (true) andff (false). A run of2l onw = wowiw;,--- € 2 is a directed graplp = (V,E)
withV € Q x N and((q,n),(d,n’)) € E impliesn’ = n+ 1 such that the following two conditions are
satisfied:(qo,0) € V and for all(g,n) € V: Sucg(q,n) = 8(q,wn). Here Sucg(g,n) denotes the set of
successors dfg,n) in p projected tdQ. A run p is accepting if all infinite paths (projected @) through
p visit F infinitely often. The languagk(2() contains alw € =% that have an accepting run 2f

Theorem 2. For everyLDL ¢, formula¢, there is an alternating Bchi automator?ly with linearly many
states (in¢|) such that (RAy) = {w € (27)° |w|= ¢ }.

To prove the theorem, we inductively construct autor@ajeor every subformulap € cl(¢) satisfy-
ing L(2Ay) = {we (27)? | w = @}. The automata for atomic formulas are straightforward aeplaed
in Figure[1(a) and (b). To improve readability, we allow posjional formulas oveP’ as transition
labels: the formulap stands for all seté € 27 with A = ¢@. Furthermore, given automa®gy,, andy,
using a standard construction, we can build the autontagny, by taking the disjoint union of the two
automata, adding a new initial stajgwith 5(do,A) = 8°(3,A) v 81(g3,A). Here,qj, is the initial state
andd' is the transition function ofly,. The automatomly,,y, is defined similarly, the only difference
being 5(do, A) = 5%(0§, A) A (. A).

It remains to consider temporal formulas, e@,)y. First, we turn the regular expressiorinto
an automator®;. Recall that tests do not process input letters. Hence, sreghrd the tests when
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® tt - tt

% Q:%t ¢ tt

Figure 1: The automatd,, (a),-, (b), and2¢p (c), which tracks color changepoints.

defining the transition function, but we label states at White test has to be executed by this test.
We use the Thompson construction [[18] to turinto 2, i.e., we obtain are-NFA. Then, we show
how to combine(, with the automator®(y, and the automat@y,,..., 2y, whereg?,..., x? are the
test occurring irr. Theeg-transitions introduced by the Thompson construction laga temoved, since
alternating automata do not allow them. During this proceg&salso ensure that the transition relation
takes tests into account by introducing universal tramsstithat lead from a state marked with? into
the corresponding automataty, .

Formally, ane-NFA with markings2l = (Q,Z,qp,d,C,m) consists of a finite se@ of states, an
alphabetz, an initial statego € Q, a transition functiord: Q x ZU {e} — 2%, a sefC of final statesC,
since we use them to concatenate automata), and a partikingndnctionm, which assigns to some
states] € Q an LDLc, formulam(q). We writeq 2. o, if d € 5(q,a) forae ZU{e}. An e-pathmfrom
qtoq in 2 is a sequence=q; - - o of k > 1 states withg = g1 = - - - = o = . The set of alk-paths
from qto d is denoted by1(qg,q). Letm(m) = {m(q;) | 1 < i < k} be the set of markings visited by

Arunoflonwg---Wy_1 € 2* is a sequencgud: - - - gn Such that for everyintherange 6<i <n—1
there is a state/ reachable frony; via ane-path 7t and withgi1 € d(qf,w;). The run is accepting if
there is aj, € C reachable via ag-pathm, from q,. This slightly unusual definition (but equivalent to
the standard one) simplifies our reasoning below. Also, #imition is oblivious to the marking.

We begin by defining the automat@f by induction over the structure ofas depicted in Figurlg 2.
Note that the automata we construct have no outgoing edgesmdgthe unique final state and that we
mark some states with tegjg? (denoted by labeling states with the test).

Lemma 5. Let w= wowyw,--- € (27 )® and let w---w,,_1 be a (possibly empty, if & 0) prefix of w.
The following two statements are equivalent:
1. 2. has an accepting rungqj; - - - g, 0N Wy - - - W1 With £-pathsrg for i in the range0 <i < n such
that wwi 1w 2--- = Am(7E) for every i.
2. (0,n) € Z(r,w).

Fix @ andr (with testsyx?,...,¢x?) and le®, = (Q',27,qf,8",C",m), Ay = (Q,27,q, 8, F),
and2ly, = (Q/,27,q},8),Fl) for j = 1,... ,k be the corresponding automata, which we assume to have
pairwise disjoint sets of states. Next, we show how to caes® )y, Ajrjy, Ar)ow, ANAAf y-

We begin with(r)y: we definey, = (QUQUQLU---UQ, 27 ,d),8,FLU- - UR) with

'(a,A) ifgeq,
3!(q,A) if qe Q'
5(QaA) = \/q’eQ’\Cr Vrrel'l(q.q’) \/peé’(q’,A)(p/\ /\L,Ujem(n) 5! (Q(j)aA))
V if ge Q.
\ Vq’eC' Vneﬂ(q.q’)(al(Q6’A) A /\l,ujem(r() 5! (qé7A))



Peter Faymonville and Martin Zimmermann 67

00 .. 0.0

er0+rl- _ J

—>

£

| O

Qlfo.l’l'

")
OO,
O

™

O
O

A,

Figure 2: The inductive definition &1, via the Thompson construction.

S0, 2y is the union of the automata for the regular expression, éktstand fory with a modified
transition function. The transitions of the automatg and®ly, are left unchanged and the transition
function for states iMQ" is obtained by removing-transitions. First consider the upper disjunct: it
ranges disjunctively over all non-final stagethat are reachable via an initigdpath and am-transition
in the end. To account for the tests visited duringdkgath (but not the test ad), we add conjunctively
transitions that lead into the corresponding automata.l@er disjunct is similar, but ranges over paths
that end in a final state. Since we concatenate the autord@aterth the automatoRly, all edges leading
into final states of!; are rerouted to the initial state 2f,. The tests along the-path are accounted for as
in the first case. Finally, note th@ does not contain any (Biichi) accepting states, i.e., esergpting
run onw has to leave)' after a finite number of transitions. Since this is only polssiia transitions
that would lead; into a final state, this ensures the existence of a positisurch that0,n) € Z(r,w).
The definition of2), is dual, i.e., we have to use automatay, = (Q,2”,qy,6!,Fl) for j =
.,k for the negated tests amdtransitions are removed in a universal manner. Formaleydefine
Ay = (QUQUQU---UQ,2”,05,6,Q" UF U+ UR) where

3'(q,A) if qe Q,
&'(a.A) if qeQl,
5(QaA) = /\q [cQ\C /\rrel‘l (9,9) /\peé’ q,A) (p\/\/w em( 5 (qu ))
A if ge Q.
/\q/eC' /\nel'l(q,q/)(él(Qé)vA) v \/wjem(rr) 5j (Qé>A))

Note that we add)" to the (Blichi) accepting states, since a runnomight stay inQ" forever, as it has
to consider all positiona with (0,n) € Z(r,w).

For the changepoint-bounded operators, we have to magitp make it count color changes. Let
Acp = (Q°P, 27 q5P, 5°P,C°P) be the DFA depicted in Figufg 1(c). We define the producti,oénd e,

asfl; = (§r,27,65,6",C", ) whereQ' = Q' x Q°P, g = (db, o),

{(p,0°P(d,A)) | pe &' (q,A)} if AFE,

Slad).m = {{<, ) I pe & (gA) fA—e,
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C' =C' x C°P, and m(q,q’) = m(q). Using this, we definel ), as we defined,,, but using2A;
instead of;. Similarly, 2 is defined ag(;;,, but usingﬁlr instead of;.

Proof of Theorerhl2First, we consider the size 8fy. Boolean operations add one state while a temporal
operator with regular expressionadds a number of states that is linear in the size @fhich is its
length), even when we take the intersection with the automahecking for color changes. Note that
we do not need to complement the autontéja to obtain?l,, instead we rely on Lemnid 1. Hence,
the size oRl is linear in the size op. It remains to prove (2Ay) = {w € (27)® | w= ¢} by induction
over the structure op. The induction start for atomic formulas and the inductitepgor disjunction
and conjunction are trivial, hence it remains to considertédmporal operators.

Consider(r)y. If w= (r)y, then there exists a positiorsuch thaw,Wn1Wn:2--- = ¢ and(0,n) €
Z(r,w). Hence, there is a run @, onwg---W,_1 such that the tests visited during the run are satisfied
by the appropriate suffixes @f. Thus, applying the induction hypothesis yields acceptings of the
test automata on these suffixes. Furthermore, there is aptang run of2y, on WaWp 1Wni2-- -, again
by induction hypothesis. These runs can be “glued” togetthbuild an accepting run &, onw.

For the other direction, consider an accepting puaf 4, onw. Letn > 0 be the last level of
p that contains a state fro®'. Such a level has to exist since state€)nhare not accepting and they
have no incoming edges from states of the autorRagaand2ly,, but the initial state ofl is in
Q". Furthermore®, is non-deterministic and complete when restricted to stat€" \ C". Hence,
we can extract an accepting run2f from p onwp- - -wy_1 that satisfies additionally the requirements
formulated in Statement 1 of Lemrha 5, due to the transitiofs the test automata and an application
of the induction hypothesis. Hence, we ha@n) € Z(r,w). Furthermore, from the remainder of
p (levels greater or equal tn) we can extract an accepting run 2f, on waWn, 1Wn,2---. Hence,
WnWh+1Wni2- - = @ by induction hypothesis. Altogether, we concludeé= (r)y.

The case fofr]y is dual, while the cases for the changepoint-bounded apsrat oy and|r]cpy
are analogous, using the fact tR&f, only accepts words which have at most one changepoint. [

Note that the size dlly is linear in|¢|, but it is not clear that it can be computed in polynomial time
in [¢|, since the transition functions of subautomata of the f8rm,, contain disjunctions that range
over the set ofk-paths. Here, it suffices to consider paths that do not aorstastate twice, but even
this restriction still allows for an exponential number dffetent paths. Fortunately, we do not need
to compute(, in polynomial time. It suffices to do it in polynomial spacehieh is sufficient for the
applications in the next sections, which is clearly possibl

Furthermore, using standard constructions (e.g., [[1B), 1% can turn the alternating Bichi au-
tomaton®l into a non-deterministic Bichi automaton of exponentiaé sand a deterministic parity
automatoﬁ of doubly-exponential size with linearly many colors.

4 Model Checking

In this section, we consider the PLDL model checking problén{P-labeled) transition systen¥’ =
(S %0,E,?) consists of a finite seb of states, an initial stats), a (left-)total edge relatiokE C Sx S
and a labeling’: S— 2°. An initial path through is a sequencer = 51, - -- of states satisfying
(Sn,Snr1) € E for everyn. Its trace is defined as(tr) = ¢(sp)¢(s1)4(s2) ---. We say that? satisfies a

2The states of a parity automaton are coloredhyQ — N. It accepts a wordy, if it has a rundgg 0 - -- onw such that
max{Q(q) | gi = g for infinitely many i} is even.
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PLDL formula¢ with respect to a variable valuatian if we have(tr(m), a) = ¢ for every initial pathrr
of .. The model checking problem asks, given a transition syst#érand a formulap, to determine
whether.s satisfiesp with respect to some variable valuatian

Theorem 3. ThePLDL model checking problem BspPACE-complete.

To solve the PLDL model checking problem, we first notice thatcan restrict ourselves to PLRL
formulas. Let¢ and¢’ be due defined as in Lemrha 3. The#, satisfiesp with respect to some if
and only if.7 satisfiesp’ with respect to some’.

Our algorithm is similar to the one presented for PROMPT—IT]11] and uses the alternating color
technique. Recall that ¢ P is the fresh atomic proposition used to specify the coloand induces the
blocks, maximal infixes with its unique changepoint at thet foosition. LetG = (V,E, vy, ¢, F) denote
a colored Buchi graph consisting of a finite directed gr@glE), an initial vertexvp, a labeling func-
tion £: V — 2{P} labeling vertices byp or not, and a sef C V of accepting states. A pathyvivo:--
throughG is pumpable, if all its blocks have at least one state tha¢aygptwice in this block. Further-
more, the path is fair, if it visit§ infinitely often. The pumpable non-emptiness problem agik&n a
colored Bichi grapl@, whether it has a pumpable fair path starting in the initiates

Theorem 4 ([11]). The pumpable non-emptiness problem for colorédH graphs iSNLOGSPACE
complete and can be solved in linear time.

The following lemma reduces the PLRlmodel checking problem to the pumpable non-emptiness
problem for colored Biichi graphs of exponential size. Gigenon-deterministic Blichi automat8h=
(Q,2PU{P} go, A, F) recognizing the models ofrel(¢) A Owp A Bu-p (NOte that rel¢) is negated) and a
transition systeny” = (S s, E, ¢), we define the produé x .# to be the colored Buchi graph

Ax.7 = (Qx Sx 2P E/ (qo,5,0),¢,F x Sx 2{Ph)

where((q,s,C), (d,s,C')) e E'ifand only if (s,s') € E andq’ € d(q,¢(s) UC), and where’'(q,s,C) =C.

Each initial path(qo, S,Co)(01,51,C1) (0, S2,Cy) - - - through the producll x . induces a coloring
(L(s0) UCp)(L(s1) UCq)(L(s2) UCy)--- of the trace of the patys;S;--- through.”. Furthermore,
Jog1Gz - - - is a run of2 on the coloring.

Lemma 6 (cp. Lemma 4.2 of [11]) . does not satisfp with respect to anyr if and only if2( x .% has
a pumpable fair path.

Proof. Let ¢ not be satisfied by” with respect to anyr, i.e., for everya there exists an initial patir
through. such that(tr(m),a) £ ¢. Pick a* such thata*(x) = 2-|Q|-|S + 1 and letr* be the cor-
responding path. Applying Lemnid 4.2 yields~ c(¢) for every|Q| - |S-bounded coloring of {rt*).
Now, consider the uniqui)| - |S-bounded andQ)| - |S-spaced coloringv of tr(7t*) that starts withp
not holding true in the first position. As argued abowe# c(¢ ), and we havev = Bwp A B.-p, aSWis
bounded. Hencay = —rel(@) A Bup A B, i.€., there is an accepting ropo.0z - - - of 2 in w. This suf-
fices to show thatqo, o, wo N {p})(as, 78, w1 {p})(qs, 78, W2N{p})--- is a pumpable fair path through
2A x .7, since every block has length greater th@h- |S. This implies the existence of a repeated state
in every block, since there are exacfy| - |§ vertices of each color.

Now, let2( x . contain a pumpable fair paflop, S0,Co) (91, 51,C1) (02, %2,C2) - - -, fix some arbitrary
a, and definek = maxcvar,¢ 0 (X). There is a repetition of a vertex 8f x .7 in every block, each of
which can be pumpekitimes. This path is still fair and induces a colorinfj of a tracew of an initial
path of . Since the run encoded in the first components is an acceptia@nw,, we conclude that
the coloringw, satisfies-c(¢). Furthermorew, is k-spaced, since we pumped each repetikidimes.
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Towards a contradiction assume we héwea) = ¢. Applying Lemmd .11 yieldsV = c(¢), which
contradicts—c(¢). Hence, for everyr we have constructed a path.6f whose trace does not satisfy
with respect tax, i.e.,. does not satisfy with respect to anyr. O

We can deduce an upper bound on valuations that satisfy aifarma given transition system.

Corollary 1. If there is a variable valuation such tha¥ satisfies¢, then there is also one that is
bounded exponentially | and linearly in the number of states 6f.

Proof. Let .7 satisfy ¢ with respect toa, but not with the valuatiorr* with a*(x) = 2-|Q| - |5 + 1.
In the preceding proof, we constructed a pumpable fair path k .& starting from this assumption.
This contradicts Lemmid 6, sinc# satisfying¢ with respect tax is equivalent ta®( x . not having a
pumpable fair path. Since-®| - |[S + 1 is exponential ing | and linear in|S|, the result follows. O

A matching lower bound of"2can be proven by implementing a binary counter withits using a
formula of polynomial size im. This holds already true for PROMPT-LTL, as noted.in/[11].
It remains to prove the main result of this section: PLDL madieecking isPSPACE-complete.

Proof of Theoreri]3PsPACE-hardness follows directly from thBspPAcE-hardness of the LTL model
checking problem [17], as LTL is a fragment of PLDL.

The following is aPsSPACE algorithm: construc®l x . and check whether it contains a pumpable
fair path, which is correct due to Lemrh 6. Since the seanchiufch a path can be implemented on-the-
fly without having to construct the full produc¢t [11], it cae bnplemented using polynomial space.]

5 Realizability

In this section, we consider the realizability problem f&CR. Throughout the section, we fix a parti-
tion (1,0) of the set of atomic propositior. An instance of the PLDL realizability problem is given
by a PLDL formula¢ (overP) and the problem is to decide whether Plagehas a winning strategy
in the following game, played in roundse N: in each roundh, Playerl picks a subset, C | and
then PlayeiO picks a subseb, C O. PlayerO wins the play with respect to a variable valuationif
((lpUop)(i1U0o)(iU0p) -, a) = @.

Formally, a strategy for Played is a mappingo: (2')* — 2° and a playp = ip0gi101i20;- - is
consistent witho, if we haveo, = o(ip---in) for everyn. We call (i U0p)(i1U01)(iU0p)--- the
outcome ofp, denoted by outconie). We say that a strategy for Playerl is winning with respect to
a variable valuatior, if we have(outcomép),a) = ¢ for every playp that is consistent witlw. The
PLDL realizability problem asks for a given PLDL formug whether PlayeO has a winning strategy
with respect to some variable valuation, i.e., there is glgia such that every outcome satisfigavith
respect tax. If this is the case, then we say tlmatealizes¢ and thus thap is realizable.

We show the PLDL realizability problem to I#EXPTIME -complete: hardness follows easily from
the 2ExXPTIME -completeness of the LTL realizability problem, which ispesial case of the PLDL
realizability problem. Membership IBEXPTIME on the other hand is shown by a reduction to the
realizability problem forw-regular specifications.

It is well-known thatw-regular specifications are realizable by finite-stateswaners (if they are
realizable at all)[[3]. A transduce? = (Q,Z,I",qo,d,T) consists of a finite se of states, an input
alphabetz, an output alphabdt, an initial stateqy, a transition functiond: Q x ~ — Q, and a output
function7: Q — I'. The functionfs: X* — I' implemented by.7 is defined asfs(w) = 1(6*(w)),
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where é* is defined as usuald*(g) = gp and 8*(wv) = 8(5*(w),v). To implement a strategy by a
transducer, we use= 2' andl" = 2°. Then, we say that the strategy= f » is finite-state. The size of
o is the number of states of . The following proof is analogous to the one for PROMPT—LTH].

Theorem 5. ThePLDL realizability problem i2EXPTIME -complete.

When proving membership BEXPTIME , we restrict ourselves without loss of generality to PL,DL
formulas, as this special case is sufficient as shown in LeBirfrarst, we use the alternating color tech-
nique to show that the PLDJ realizability problem is reducible to the realizabilityatem for speci-
fications in LDL;p. When considering the LDJ; realizability problem, we add the fresh propositipn
used to specify the coloring 10, i.e., PlayetO is in charge of determining the color of each position.

Lemma 7 (cp. Lemma 3.1 of [11]) A PLDL,, formula ¢ over | and O is realizable if and only if the
LDL¢p formula g ¢) over | and QU {p} is realizable.

Proof. Let ¢ be realizable, i.e., there is a winning strategy (2')* — 2° for PlayerO with respect to
somea. Now, consider the strategy : (2')* — 2°V{P} defined by
o {a(io---inl) if nmod X <K,
o'(ip:--in-1) =19 .~ . .
o(ip---in-1)U{p} otherwise,
wherek = maXcyar, (9) a(x). We show thato’ realizesc(¢). To this end, lefp’ = ig0pi101i20;--- be
a play that is consistent witt’. Then,p =ig(0p\ {p})iz(01\ {p})i2(02\ {p})--- is by construction
consistent witho, i.e., (outcomép),a) = ¢. As p’ is ak-spacedp-coloring of p, we deducep’ = c(¢)
by applying Lemmalffl1. Hence; realizesc(¢).

Now, assume(¢) is realized byo’: (2')+ — 2°9{P}, which we can assume to be finite-state, say
it is implemented byZ with n states. We first show that every outcome that is consistetht aviis
n+ 1-bounded. Such an outcome satisfiég) and has therefore infinitely many changepoints. Now,
assume it has a block of length strictly greater thanl, say between changepoints at positioasd j.
Let goou0z - - - be the states reached during the rurZobn the projection op to 2. Then, there are two
positionsi’ andj’ satisfyingi <i’ < j’ < j in the block such that; = qj. Hencego--- gy_1(0 --- 0jr—1)%
is also a run of7. However, the output generated by this run has only finitedyiyrchangepoints, since
the output at the stateg,...,q;—1 coincides when restricted tpp}. This contradicts the fact that
7 implements a winning strategy, which implies in particulbat every output has infinitely many
changepoints, as required by the conjuigi A G- Of c(¢). Hencep is (n+ 1)-bounded.

Now, consider the strategy: (2')* — 2° defined byo(ip---in_1) = 0’(io---in_1) N O. By defini-
tion, for every playp consistent witho, there is aln+ 1)-boundedp-coloring of p that is consistent
with ¢’. Hence, applying Lemnid[4.2 yieldp, B) = p, whereB(x) = 2n+ 2. Hence g realizes$ with
respect tQ3. Note thato is also finite-state and of the same sizegas O

Proof of Theoreri]5As already mentioned abovB2EXPTIME -hardness of the LDL realizability prob-
lem follows immediately from th@ EXPTIME -hardness of the LTL realizability problein [14], as LTL is
a fragment of PLDL.

Now, consider membership and recall that we have arguedttisasufficient to consider PLD{
Thus, let¢ be a PLDL, formula. By Lemmal7 we know that it is sufficient to consides tikalizability
of c(¢). LetA = (Q,2'VOUP} qo,5,Q) be a deterministic parity automaton recognizing the models
c(¢). We turn2l into a parity game/ such that Player 1 wirng from some dedicated initial vertex if and
only if ¢(¢) is realizable. To this end, we define the arévia/y,Vi,E) withV = QU (Q x 2'), Vo = Q,

Vi =Qx 2, andE = {(q,(q,i)) | i € 1}U{(q,i),d(q,iuo) | o C OU{p}}, i.e., Player O picks a subset
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i C 1 and PlayerO picks a subseb C O, which in turn triggers the (deterministic) update of thatest
stored in the vertices. Finally, we define the coloridg of the arena vi® ., (q) = Q.,(q,i) = Q(Q).

It is straightforward to show that Play@rhas a winning strategy fromp in the parity gamé.«/, Q)
if and only if c(¢) (and thusp) is realizable. Furthermore, if Player 1 has a winning sggt thens”
can be turned into a transducer implementing a strategyehéresc(¢) usingV as set of states. Note
that |V | is doubly-exponential ing |, if we assume that andO are restricted to propositions appearing
in ¢. As the parity game is of doubly-exponential size and hasalily many colors, we can solve it in
doubly-exponential time in the size ¢f This concludes the proof. O

Also, we obtain a doubly-exponential upper bound on a véiahluation that allows to realize a
given formula. A matching lower bound already holds for PLZP].

Corollary 2. Ifa PLDL formula¢ is realizable with respect to sonoe then it is realizable with respect
to somea that is bounded doubly-exponentially |ip|.

Proof. If ¢ is realizable, then so i§¢). Using the construction proving the right-to-left impliica of
LemmdY, we obtain thaf is realizable with respect to sonoethat is bounded byr2+ 2, whereniis the
size of a transducer implementing the strategy that resdizie). We have seen in the proof of Theorem 5
that the size of such a transducer is at most doubly-exp@hént/c(¢ )|, which is only linearly larger
than|¢|. The result follows. O

6 Conclusion

We introduced Parametric Linear Dynamic Logic, which egtehinear Dynamic Logic by temporal
operators equipped with parameters that bound their scpdélarly to Parametric Linear Temporal
Logic, which extends Linear Temporal Logic by parametetigemporal operators. Here, the model
checking problem asks for a valuation of the parameters thattihe formula is satisfied with respect to
this valuation on every path of the transition system. Radhliity is defined in the same spirit.

We showed PLDL model checking to be complete RsPACE and the realizability problem to be
complete for2ZEXPTIME , just as for LTL. Thus, in a sense, PLDL is not harder than LFinally, we
were able to give tight exponential respectively doublpanential bounds on the optimal valuations for
model checking and realizability.

We did not consider the assume-guarantee model checkifdepndhere, but the algorithm solving
the problem for PROMPT-LTL presented in [11] should be aalaiptto PLDL as well. Another open
problem concerns the computation of optimal valuationsPflobL, and PLDLg formulas. By exhaus-
tive search within the bounds mentioned above, one canndieterthe optima. We expect this to be
possible in polynomial space for model checking and inyrgtponential space for realizability, which
is similar to the situation for PLTL_]1, 22]. Note that it is @pen question whether optimal valuations
for PLTL realizability can be determined in doubly-expotigintime.
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