14 research outputs found

    Analysis and design of large space structures with nonlinear joints

    Get PDF
    Issued as Final report, Project no. E-25-62

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    On the Numerical Modelling of Machining Processes via the Particle Finite Element Method (PFEM)

    Get PDF
    Metal cutting or machining is a process in which a thin layer or metal, the chip, is removed by a wedge-shaped tool from a large body. Metal cutting processes are present in big industries (automotive, aerospace, home appliance, etc.) that manufacture big products, but also high tech industries where small piece but high precision is needed. The importance of machining is such that, it is the most common manufacturing processes for producing parts and obtaining specified geometrical dimensions and surface finish, its cost represent 15% of the value of all manufactured products in all industrialized countries. Cutting is a complex physical phenomena in which friction, adiabatic shear bands, excessive heating, large strains and high rate strains are present. Tool geometry, rake angle and cutting speed play an important role in chip morphology, cutting forces, energy consumption and tool wear. The study of metal cutting is difficult from an experimental point of view, because of the high speed at which it takes place under industrial machining conditions (experiments are difficult to carry out), the small scale of the phenomena which are to be observed, the continuous development of tool and workpiece materials and the continuous development of tool geometries, among others reasons. Simulation of machining processes in which the workpiece material is highly deformed on metal cutting is a major challenge of the finite element method (FEM). The principal problem in using a conventional FE model with langrangian mesh is mesh distortion in the high deformation. Traditional Langrangian approaches such as FEM cannot resolve the large deformations very well. Element distortion has been always matter of concern which limited the analysis to incipient chip formation in some studies. Instead, FEM with an Eulerian formulation require the knowledge of the chip geometry in advance, which, undoubtedly, restricts the range of cutting conditions capable of being analyzed. Furthermore serrated and discontinuous chip formation cannot be simulated. The main objective of this work is precisely to contribute to solve some of the problems described above through the extension of the Particle Finite Element Method (PFEM) to thermo-mechanical problems in solid mechanics which involve large strains and rotations, multiple contacts and generation of new surfaces, with the main focus in the numerical simulation of metal cutting process. In this work, we exploit the particle and lagrangian nature of PFEM and the advantages of finite element discretization to simulate the different chip shapes (continuous and serrated) that appear when cutting materials like steel and titanium at different cutting speeds. The new ingredients of PFEM are focused on the insertion and remotion of particles, the use of constrained Delaunay triangulation and a novel transfer operator of the internal variables. The remotion and insertion of particles circumvents the difficulties associated to element distortion, allowing the separation of chip and workpiece without using a physical or geometrical criterion. The constrained Delaunay improves mass conservation and the chip shape through the simulation, and the transfer allows us to minimize the error due to numerical diffusion. The thermo-mechanical problem, formulated in the framework of continuum mechanics, is integrated using an isothermal split in conjunction with implicit, semi-explicit and IMPLEX schemes. The tool has been discretized using a standard three-node triangle finite element. The workpiece has been discretized using a mixed displacement-pressure finite element to deal with the incompressibility constraint imposed by plasticity. The mixed finite element has been stabilized using the Polynomial Pressure Projection (PPP), initially applied in the literature to the Stokes equation in the field of fluid mechanics. The behavior of the tool is described using a Neo-Hookean Hyperelastic constitutive model. The behavior of the workpiece is described using a rate dependent, isotropic, finite strain j2 elastoplasticity with three different yields functions used to describe the strain hardening, the strain rate hardening and the thermal softening (Simo, Johnson Cook, Baker) of different materials under a wide variety of cutting conditions. The friction at the tool chip interface is modeled using the Norton-Hoff friction law. The heat transfer at the tool chip interface includes heat transfer due to conduction and friction. To validate the proposed mixed displacement-pressure formulation, we present three benchmark problems which validate the approach, namely, plain strain Cook´s membrane, the Taylor impact test and a thermo-mechanical traction test. The isothermal-IMPLEX split presented in this work has been validated using a thermo-mechanical traction test. Besides, in order to explore the possibilities of the numerical model as a tool for assisting in the design and analysis of metal cutting processes a set of representative numerical simulations are presented in this work, among them: cutting using a rate independent yield function, cutting using different rake angles, cutting with a deformable tool and a frictionless approach, cutting with a deformable tool including friction and heat transfer, the transition from continuous to serrated chip formation increasing the cutting speed. We have assembled several numerical tec niques which enable the simulation of orthogonal cutting processes. Our simulations demonstrate the ability of the PFEM to predict chip morphologies consistent with experimental observations. Also, our results show that the suitable selection of the global time integration scheme may involve savings in computation time up to 9 times. Furthermore, this work present a sensibility analysis to cutting conditions by means of a Design of Experiments (DoE). The Design of Experiments carried out with PFEM has been compared with DoE carried out with AdvantaEdge, Deform, Abaqus and Experiments. The results obtained with PFEM and other numerical simulations are very similar, while, a comparison of numerical simulations and experiments show some differences in the output variables that depend on the friction phenomena. The results suggest that is necessary to improve the modelization of the friction at the tool-chip interface

    Numerical Simulation of Frictional Contact Problems using Nagata Patches in Surface Smoothing

    Get PDF
    Tese de doutoramento em Engenharia Mecânica, na especialidade de Tecnologias de Produção, apresentada ao Departamento de Engenharia Mecânica da Faculdade de Ciências e Tecnologia da Universidade de CoimbraAll movements in the world involve contact and friction, from walking to car driving. The contact mechanics has application in many engineering problems, including the connection of structural members by bolts or screws, design of gears and bearings, sheet metal or bulk forming, rolling contact of car tyres, crash analysis of structures, as well as prosthetics in biomedical engineering. Due to the nonlinear and non-smooth nature of contact mechanics (contact area is not known a priori), such problems are currently solved using the finite element method within the field of computational contact mechanics. However, most of the commercial finite element software packages presently available are not entirely capable to solve frictional contact problems, demanding for efficient and robust methods. Therefore, the main objective of this study is the development of algorithms and numerical methods to apply in the numerical simulation of 3D frictional contact problems between bodies undergoing large deformations. The presented original developments are implemented in the in-house finite element code DD3IMP. The formulation of quasi-static frictional contact problems between bodies undergoing large deformations is firstly presented in the framework of the continuum mechanics, following the classical scheme used in solid mechanics. The kinematic description of the deformable bodies is presented adopting an updated Lagrangian formulation. The mechanical behaviour of the bodies is described by an elastoplastic constitutive law in conjunction with an associated flow rule, allowing to model a wide variety of contact problems arising in industrial applications. The frictional contact between the bodies is established by means of two conditions: the principle of impenetrability and the Coulomb’s friction law, both imposed to the contact interface. The augmented Lagrangian method is applied for solving the constrained minimization incremental problem resulting from the frictional contact inequalities, yielding a mixed functional involving both displacements and contact forces. The spatial discretization of the bodies is performed with isoparametric solid finite elements, while the discretization of the contact interface is carried out using the classical Node-to-Segment technique, preventing the slave nodes from penetrating on the master surface. The geometrical part of the contact elements, defined by a slave node and the closest master segment, is created by the contact search algorithm based on the selection of the closest point on the master surface, defined by the normal projection of the slave node. In the particular case of contact between a deformable body and a rigid obstacle, the master rigid surface can be described by smooth parameterizations typically used in CAD models. However, in the general case of contact between deformable bodies, the spatial discretization of both bodies with low order finite elements yields a piecewise bilinear representation of the master surface. This is the central source of problems in solving contact problems involving large sliding, since it leads to the discontinuity of the surface normal vector field. Thus, a surface smoothing procedure based on the Nagata patch interpolation is proposed to describe the master contact surfaces, which led to the development of the Node-to-Nagata contact element. The accuracy of the surface smoothing method using Nagata patches is evaluated by means of simple geometries. The nodal normal vectors required for the Nagata interpolation are evaluated from the CAD geometry in case of rigid master surfaces, while in case of deformable bodies they are approximated using the weighted average of the normal vectors of the neighbouring facets. The residual vectors and tangent matrices of the contact elements are derived coherently with the surface smoothing approach, allowing to obtain quadratic convergence rate in the generalized Newton method used for solving the nonlinear system of equations. The developed surface smoothing method and corresponding contact elements are validated through standard numerical examples with known analytical or semi-analytical solutions. More advanced frictional contact problems are studied, covering the contact of a deformable body with rigid obstacles and the contact between deformable bodies, including self-contact phenomena. The smoothing of the master surface improves the robustness of the computational methods and reduces strongly the non-physical oscillations in the contact force introduced by the traditional faceted description of the contact surface. The presented results are compared with numerical solutions obtained by other authors and experimental results, demonstrating the accuracy and performance of the implemented algorithms for highly nonlinear problems.Todos os movimentos no mundo envolvem contato e atrito, desde andar até conduzir um carro. A mecânica do contacto tem aplicação em muitos problemas de engenharia, incluindo a ligação de elementos estruturais com parafusos, projeto de engrenagens e rolamentos, estampagem ou forjamento, contato entre os pneus e a estrada, colisão de estruturas, bem como o desenvolvimento de próteses em engenharia biomédica. Devido à natureza não-linear e não-suave da mecânica do contato (área de contato desconhecida a priori), tais problemas são atualmente resolvidos usando o método dos elementos finitos no domínio da mecânica do contato computacional. No entanto, a maioria dos programas comerciais de elementos finitos atualmente disponíveis não é totalmente capaz de resolver problemas de contato com atrito, exigindo métodos numéricos mais eficientes e robustos. Portanto, o principal objetivo deste estudo é o desenvolvimento de algoritmos e métodos numéricos para aplicar na simulação numérica de problemas de contato com atrito entre corpos envolvendo grandes deformações. Os desenvolvimentos apresentados são implementados no programa de elementos finitos DD3IMP. A formulação quasi-estática de problemas de contato com atrito entre corpos deformáveis envolvendo grandes deformações é primeiramente apresentada no âmbito da mecânica dos meios contínuos, seguindo o método clássico usado em mecânica dos sólidos. A descrição cinemática dos corpos deformáveis é apresentada adotando uma formulação Lagrangeana reatualizada. O comportamento mecânico dos corpos é descrito por uma lei constitutiva elastoplástica em conjunto com uma lei de plasticidade associada, permitindo modelar uma grande variedade de problemas de contacto envolvidos em aplicações industriais. O contacto com atrito entre os corpos é definido por duas condições: o princípio da impenetrabilidade e a lei de atrito de Coulomb, ambas impostas na interface de contato. O método do Lagrangeano aumentado é aplicado na resolução do problema de minimização com restrições resultantes das condições de contato e atrito, produzindo uma formulação mista envolvendo deslocamentos e forças de contato. A discretização espacial dos corpos é realizada com elementos finitos sólidos isoparamétricos, enquanto a discretização da interface de contacto é realizado utilizando a técnica Node-to-Segment, impedindo os nós slave de penetrar na superfície master. A parte geométrica do elemento de contacto, definida por um nó slave e o segmento master mais próximo, é criada pelo algoritmo de deteção de contacto com base na seleção do ponto mais próximo na superfície master, obtido pela projeção normal do nó slave. No caso particular de contato entre um corpo deformável e um obstáculo rígido, a superfície rígida master pode ser descrita por parametrizações normalmente utilizadas em modelos CAD. No entanto, no caso geral de contato entre corpos deformáveis, a discretização espacial dos corpos com elementos finitos lineares origina uma representação da superfície master por facetas. Esta é a principal fonte de problemas na resolução de problemas de contato envolvendo grandes escorregamentos, uma vez que a distribuição dos vetor normais à superfície é descontínua. Assim, é proposto um método de suavização para descrever as superfícies de contacto master baseado na interpolação Nagata, que conduziu ao desenvolvimento do elemento de contacto Node-to-Nagata. A precisão do método de suavização das superfícies é avaliada através de geometrias simples. Os vetores normais nodais necessários para a interpolação Nagata são avaliados a partir da geometria CAD no caso de superfícies rígidas, enquanto no caso de corpos deformáveis são aproximados utilizando a média ponderada dos vetores normais das facetas vizinhas. Tanto os vetores de segundo membro como as matrizes residuais tangentes dos elementos de contacto são obtidas de forma coerente com o método de suavização da superfície, permitindo obter convergência quadrática no método de Newton generalizado, o qual é utilizado para resolver o sistema de equações não lineares. O método de suavização das superfícies e os elementos de contacto desenvolvidos são validados através de exemplos com soluções analíticas ou semi-analíticas conhecidas. Também são estudados outros problemas de contato mais complexos, incluindo o contato de um corpo deformável com obstáculos rígidos e o contato entre corpos deformáveis, contemplando fenómenos de auto-contato. A suavização da superfície master melhora a robustez dos métodos computacionais e reduz fortemente as oscilações na força de contato, associadas à descrição facetada da superfície de contato. Os resultados são comparados com soluções numéricas de outros autores e com resultados experimentais, demonstrando a precisão e o desempenho dos algoritmos implementados para problemas fortemente não-lineares.Fundação para a Ciência e Tecnologia - SFRH/BD/69140/201

    Numerical modeling of metal cutting processes using the Particle Finite Element Method

    Get PDF
    Metal cutting or machining is a process in which a thin layer or metal, the chip, is removed by a wedge-shaped tool from a large body. Cutting is a complex physical phenomena in which friction, adiabatic shear bands, excessive heating, large strains and high rate strains are present. Tool geometry, rake angle and cutting speed play an important role in chip morphology, cutting forces, energy consumption and tool wear. The main objective of this work is precisely to contribute to solve some of the problems described above through the extension of the Particle Finite Element Method (PFEM) to thermo-mechanical problems in solid mechanics which involve large strains and rotations, multiple contacts and generation of new surfaces, with the main focus in the numerical simulation of metal cutting process. The new ingredients of PFEM are focused on the insertion and remotion of particles, the use of constrained Delaunay triangulation and a novel transfer operator of the internal variables. The thermo-mechanical problem, formulated in the framework of continuum mechanics, is integrated using an isothermal split in conjunction with implicit, semi-explicit and IMPLEX schemes. The tool has been discretized using a standard three-node triangle finite element. The workpiece has been discretized using a mixed displacement-pressure finite element to deal with the incompressibility constraint imposed by plasticity. The mixed finite element has been stabilized using the Polynomial Pressure Projection (PPP), initially applied in the literature to the Stokes equation in the field of fluid mechanics. The behavior of the tool is described using a Neo-Hookean Hyperelastic constitutive model. The behavior of the workpiece is described using a rate dependent, isotropic, finite strain j2 elastoplasticity with three different yields functions used to describe the strain hardening, the strain rate hardening and the thermal softening (Simo, Johnson Cook, Baker) of different materials under a wide variety of cutting conditions. The friction at the tool chip interface is modeled using the Norton-Hoff friction law. The heat transfer at the tool chip interface includes heat transfer due to conduction and friction. To validate the proposed mixed displacement-pressure formulation, we present three benchmark problems which validate the approach, namely, plain strain Cook ¿s membrane, the Taylor impact test and a thermo-mechanical traction test. The isothermal-IMPLEX split presented in this work has been validated using a thermo-mechanical traction test. Besides, in order to explore the possibilities of the numerical model as a tool for assisting in the design and analysis of metal cutting processes a set of representative numerical simulations are presented in this work, among them: cutting using a rate independent yield function, cutting using different rake angles, cutting with a deformable tool and a frictionless approach, cutting with a deformable tool including friction and heat transfer, the transition from continuous to serrated chip formation increasing the cutting speed. Our simulations demonstrate the ability of the PFEM to predict chip morphologies consistent with experimental observations. Also, our results show that the suitable selection of the global time integration scheme may involve savings in computation time up to 9 times. Furthermore, this work present a sensibility analysis to cutting conditions by means of a Design of Experiments (DoE). The Design of Experiments carried out with PFEM has been compared with DoE carried out with AdvantaEdge, Deform, Abaqus and Experiments. The results obtained with PFEM and other numerical simulations are very similar, while, a comparison of numerical simulations and experiments show some differences in the output variables that depend on the friction phenomena. The results suggest that is necessary to improve the modelization of the friction at the tool-chip interface.El mecanizado de metal es un proceso en el que una capa delgada de metal se retira por una herramienta en forma de cuña de un cuerpo grande. El corte es un complejo de fenómenos físicos en los que la fricción, bandas de cizalla adiabáticas, calentamiento excesivo, grandes deformaciones y de alta velocidad de las herramientas están presentes. La geometría de la herramienta, ángulo de ataque y la velocidad de corte juegan un papel importante en la morfología de la viruta, las fuerzas, el consumo de energía y desgaste de la herramienta de corte. El objetivo principal del trabajo es contribuir precisamente a resolver algunos de los problemas descritos anteriormente a travésde la extensión del PFEM a los problemas termo-mecánicos en mecánica de sólidos que implican grandes deformaciones y rotaciones, múltiples contactos y generación de nuevas superficies, con el foco principal en la simulación numérica de procesos de corte de metal. El problema termomecánico, formulado en el marco de la mecánica de medios continuos, se integra usando un esquema isotérmico junto con esquemas implícitos, semi-explícito y Implex. La herramienta ha sido discretizado utilizando un elemento finito triangular de tres nodos estándar. La pieza se discretizado utilizando un elemento finito desplazamiento presión mixta para hacer frente a la condición de incompresibilidad impuesto por la plasticidad. El elemento finito mixto se ha estabilizado mediantela proyección polinómica Presión, aplicado inicialmente en la literatura para la ecuación de Stokes. El comportamiento de la herramienta se describe usando un modelo constitutivo hiperelástico Neo Hookean. El comportamiento de la pieza de trabajo se describe usando un modelo isotrópico, con elastoplasticidad j2 y con tres funciones diferentes que se utilizan para describir el endurecimiento por deformación, endurecimiento de la velocidad de deformación y el ablandamiento térmico de diferentes materiales bajo una amplia variedad de condiciones de corte. La fricción en la interfaz de la herramienta-viruta se modela utilizando la fricción ley Norton-Hoff . La transferencia de calor en la interfase herramienta-viruta incluye la transferencia de calor por conducción y por fricción. Para validar la formulación desplazamiento presión mixto propuesto, se presentan tres problemas de referencia (la membrana de la tensión normal de Cook, la prueba de impacto Taylor y una prueba de tracción termomecánica ). La división isotérmica -IMPLEX presentada en este trabajo ha sido validado mediante un ensayo de tracción termomecánica. Además, con el fin de explorar las posibilidades del modelo como una herramienta para ayudar en el análisis de los procesos decorte de metal, un conjunto de simulaciones se presentan en este trabajo, entre ellas : corte de una material con tensión defluencia independiente de la tasa de deformación, cortando utilizando diferentes ángulos de ataque, corte con herramientas decorte deformables incluyendo la fricción y la transferencia de calor, la transición de la continua para la formación de virutadentada aumento de la velocidad de corte. Además, nuestros resultados muestran que la selección adecuada del esquema global de integración de tiempo puede suponer un ahorro en el tiempo de cálculo hasta 9 veces. Por otra parte, este trabajo presenta un análisis de sensibilidad a las condiciones de corte mediante un diseño de experimentos (DOE). El diseño de experimentos con el llevado a cabo PFEM ha sido comparada con la llevada a cabo con el DoEAdvantaEdge, deforme, Abaqus y experimentos. Los resultados obtenidos con PFEM y otras simulaciones numéricas son muy similares, mientras que, en comparación de las simulaciones numéricas y experimentos muestran algunas diferencias en las variables de salida que dependen de los fenómenos de fricción. Los resultados sugieren que es necesario mejorar la modelización de la fricción en la interfaz de la herramienta-viruta

    Nanomechanical coupling of mechanomutable polyelectrolytes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 255-282).Nanotechnology has advanced to the point where almost any molecular functional group can be introduced into a composite material system. However, emergent properties attained via the combination of arbitrary components - e.g., the complexation of two weak polyelectrolytes - is not yet predictive, and thus cannot be rationally engineered. Predictive and reliable quantification of material properties across scales is necessary to enable the design and development of advanced functional (and complex) materials. There is a vast amount of experimental study which characterize the strength of electrostatic interactions, topology, and viscoelastic properties of polyelectrolyte multilayers (PEMs), but very little is known about the fundamental molecular interactions that drive system behavior. Here, we focus on two specific weak polyelectrolytes - poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) - that undergo electrostatic complexation, and can be manipulated as function of pH. While the driving mechanism investigated here is ionic interactions, the findings and atomistic approaches are applicable to a variety of systems such as hydrogen bonded polypeptides (e.g., protein structures), as well as similar polyelectrolyte systems (e.g., PSS, PDMA, etc.). Specifically, in this dissertation, the coupling of electrostatic cross-links and weak interactions, polyelectrolyte persistence length and molecular rigidity of PAA and PAH is investigated with full atomistic precision. Large-scale molecular dynamics (MD) simulations indicate the stiffening of PEMs cannot be explained by increased electrostatic cross-linking alone, but rather the effect is amplified by the increase in molecular rigidity due to self-repulsion. Based on MD simulations, a general theoretical model for effective electrostatic persistence length is proposed for highly flexible polyelectrolytes and charged macromolecules through the introduction of an electrostatic contour length which can applied to other chemical species. A focus on adhesion reveals the effective cross-linking strength exceeds the strength of ionic interaction alone, due to secondary effects (e.g., H-bonding, steric effects, etc.) Moreover, a derived elastic model for complexation reveals a critical bound for cross-link density and stiffness, indicating the required conditions to induce cooperative mechanical behavior. The key insight is that these critical conditions can be further extended for the coupling of flexible molecules in general, such as proteins or flexible nanoribbons. The results demonstrate how nanoscale control can lead to uniquely tunable mechanomutable materials from designed functional building blocks. While PEM systems are currently being developed for biosensor, membrane, and tissue engineering technologies, the results presented herein provide a basis to tune the properties of such systems at the nanoscale, thereby engineering system behavior and performance across scales. Understanding the bounds of mechanical performance of two specific polyelectrolyte species, and their joint interaction through complexation, provides a basis for coupling molecules with various functionalities. Similar to complete understanding the limitations of a steel beam in construction of a bridge, the systematic delineation of polyelectrolyte complexation allows quantitative prediction of larger-scale systems.by Steven W. Cranford.Ph.D

    Computational Methods for Structural Mechanics and Dynamics, part 1

    Get PDF
    The structural analysis methods research has several goals. One goal is to develop analysis methods that are general. This goal of generality leads naturally to finite-element methods, but the research will also include other structural analysis methods. Another goal is that the methods be amenable to error analysis; that is, given a physical problem and a mathematical model of that problem, an analyst would like to know the probable error in predicting a given response quantity. The ultimate objective is to specify the error tolerances and to use automated logic to adjust the mathematical model or solution strategy to obtain that accuracy. A third goal is to develop structural analysis methods that can exploit parallel processing computers. The structural analysis methods research will focus initially on three types of problems: local/global nonlinear stress analysis, nonlinear transient dynamics, and tire modeling

    A Posteriori Error Control of Finite Element Approximations for Coulomb's Frictional Contact

    No full text

    Bibliography of Lewis Research Center technical publications announced in 1987

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1987. All the publications were announced in the 1987 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses
    corecore