309 research outputs found

    The DPG-star method

    Get PDF
    This article introduces the DPG-star (from now on, denoted DPG^*) finite element method. It is a method that is in some sense dual to the discontinuous Petrov-Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an overdetermined discretization of a boundary value problem. In the same vein, the DPG^* methodology is a means to solve an underdetermined discretization. These two viewpoints are developed by embedding the same operator equation into two different saddle-point problems. The analyses of the two problems have many common elements. Comparison to other methods in the literature round out the newly garnered perspective. Notably, DPG^* and DPG methods can be seen as generalizations of LL\mathcal{L}\mathcal{L}^\ast and least-squares methods, respectively. A priori error analysis and a posteriori error control for the DPG^* method are considered in detail. Reports of several numerical experiments are provided which demonstrate the essential features of the new method. A notable difference between the results from the DPG^* and DPG analyses is that the convergence rates of the former are limited by the regularity of an extraneous Lagrange multiplier variable

    Breaking spaces and forms for the DPG method and applications including Maxwell equations

    Get PDF
    Discontinuous Petrov Galerkin (DPG) methods are made easily implementable using `broken' test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of first order (unbroken) Sobolev spaces are of particular interest. A characterization of interface spaces that connect the broken spaces to their unbroken counterparts is provided. Stability of certain formulations using the broken spaces can be derived from the stability of analogues that use unbroken spaces. This technique is used to provide a complete error analysis of DPG methods for Maxwell equations with perfect electric boundary conditions. The technique also permits considerable simplifications of previous analyses of DPG methods for other equations. Reliability and efficiency estimates for an error indicator also follow. Finally, the equivalence of stability for various formulations of the same Maxwell problem is proved, including the strong form, the ultraweak form, and a spectrum of forms in between

    Discretization of Linear Problems in Banach Spaces: Residual Minimization, Nonlinear Petrov-Galerkin, and Monotone Mixed Methods

    Full text link
    This work presents a comprehensive discretization theory for abstract linear operator equations in Banach spaces. The fundamental starting point of the theory is the idea of residual minimization in dual norms, and its inexact version using discrete dual norms. It is shown that this development, in the case of strictly-convex reflexive Banach spaces with strictly-convex dual, gives rise to a class of nonlinear Petrov-Galerkin methods and, equivalently, abstract mixed methods with monotone nonlinearity. Crucial in the formulation of these methods is the (nonlinear) bijective duality map. Under the Fortin condition, we prove discrete stability of the abstract inexact method, and subsequently carry out a complete error analysis. As part of our analysis, we prove new bounds for best-approximation projectors, which involve constants depending on the geometry of the underlying Banach space. The theory generalizes and extends the classical Petrov-Galerkin method as well as existing residual-minimization approaches, such as the discontinuous Petrov-Galerkin method.Comment: 43 pages, 2 figure

    Convergence rates of the DPG method with reduced test space degree

    Get PDF
    This paper presents a duality theorem of the Aubin-Nitsche type for discontinuous Petrov Galerkin (DPG) methods. This explains the numerically observed higher convergence rates in weaker norms. Considering the specific example of the mild-weak (or primal) DPG method for the Laplace equation, two further results are obtained. First, the DPG method continues to be solvable even when the test space degree is reduced, provided it is odd. Second, a non-conforming method of analysis is developed to explain the numerically observed convergence rates for a test space of reduced degree
    corecore