66 research outputs found

    Improving MCS Enumeration via Caching

    Get PDF
    Enumeration of minimal correction sets (MCSes) of conjunctive normal form formulas is a central and highly intractable problem in infeasibility analysis of constraint systems. Often complete enumeration of MCSes is impossible due to both high computational cost and worst-case exponential number of MCSes. In such cases partial enumeration is sought for, finding applications in various domains, including axiom pinpointing in description logics among others. In this work we propose caching as a means of further improving the practical efficiency of current MCS enumeration approaches, and show the potential of caching via an empirical evaluation.Peer reviewe

    The Seesaw Algorithm: Function Optimization Using Implicit Hitting Sets

    Get PDF
    The paper introduces the Seesaw algorithm, which explores the Pareto frontier of two given functions. The algorithm is complete and generalizes the well-known implicit hitting set paradigm. The first given function determines a cost of a hitting set and is optimized by an exact solver. The second, called the oracle function, is treated as a black-box. This approach is particularly useful in the optimization of functions that are impossible to encode into an exact solver. We show the effectiveness of the algorithm in the context of static solver portfolio selection. The existing implicit hitting set paradigm is applied to cost function and an oracle predicate. Hence, the Seesaw algorithm generalizes this by enabling the oracle to be a function. The paper identifies two independent preconditions that guarantee the correctness of the algorithm. This opens a number of avenues for future research into the possible instantiations of the algorithm, depending on the cost and oracle functions used

    Solving Set Optimization Problems by Cardinality Optimization with an Application to Argumentation

    Get PDF
    Optimization—minimization or maximization—in the lattice of subsets is a frequent operation in Artificial Intelligence tasks. Examples are subset-minimal model-based diagnosis, nonmonotonic reasoning by means of circumscription, or preferred extensions in abstract argumentation. Finding the optimum among many admissible solutions is often harder than finding admissible solutions with respect to both computational complexity and methodology. This paper addresses the former issue by means of an effective method for finding subset-optimal solutions. It is based on the relationship between cardinality-optimal and subset-optimal solutions, and the fact that many logic-based declarative programming systems provide constructs for finding cardinality-optimal solutions, for example maximum satisfiability (MaxSAT) or weak constraints in Answer Set Programming (ASP). Clearly each cardinality-optimal solution is also a subset-optimal one, and if the language also allows for the addition of particular restricting constructs (both MaxSAT and ASP do) then all subset-optimal solutions can be found by an iterative computation of cardinality-optimal solutions. As a showcase, the computation of preferred extensions of abstract argumentation frameworks using the proposed method is studied

    ASlib: A Benchmark Library for Algorithm Selection

    Full text link
    The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. Demonstrating the breadth and power of our platform, we describe a set of example experiments that build and evaluate algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.Comment: Accepted to be published in Artificial Intelligence Journa

    SAT-based Analysis, (Re-)Configuration & Optimization in the Context of Automotive Product documentation

    Get PDF
    Es gibt einen steigenden Trend hin zu kundenindividueller Massenproduktion (mass customization), insbesondere im Bereich der Automobilkonfiguration. Kundenindividuelle Massenproduktion führt zu einem enormen Anstieg der Komplexität. Es gibt Hunderte von Ausstattungsoptionen aus denen ein Kunde wählen kann um sich sein persönliches Auto zusammenzustellen. Die Anzahl der unterschiedlichen konfigurierbaren Autos eines deutschen Premium-Herstellers liegt für ein Fahrzeugmodell bei bis zu 10^80. SAT-basierte Methoden haben sich zur Verifikation der Stückliste (bill of materials) von Automobilkonfigurationen etabliert. Carsten Sinz hat Mitte der 90er im Bereich der SAT-basierten Verifikationsmethoden für die Daimler AG Pionierarbeit geleistet. Darauf aufbauend wurde nach 2005 ein produktives Software System bei der Daimler AG installiert. Später folgten weitere deutsche Automobilhersteller und installierten ebenfalls SAT-basierte Systeme zur Verifikation ihrer Stücklisten. Die vorliegende Arbeit besteht aus zwei Hauptteilen. Der erste Teil beschäftigt sich mit der Entwicklung weiterer SAT-basierter Methoden für Automobilkonfigurationen. Wir zeigen, dass sich SAT-basierte Methoden für interaktive Automobilkonfiguration eignen. Wir behandeln unterschiedliche Aspekte der interaktiven Konfiguration. Darunter Konsistenzprüfung, Generierung von Beispielen, Erklärungen und die Vermeidung von Fehlkonfigurationen. Außerdem entwickeln wir SAT-basierte Methoden zur Verifikation von dynamischen Zusammenbauten. Ein dynamischer Zusammenbau repräsentiert die chronologische Zusammenbau-Reihenfolge komplexer Teile. Der zweite Teil beschäftigt sich mit der Optimierung von Automobilkonfigurationen. Wir erläutern und vergleichen unterschiedliche Optimierungsprobleme der Aussagenlogik sowie deren algorithmische Lösungsansätze. Wir beschreiben Anwendungsfälle aus der Automobilkonfiguration und zeigen wie diese als aussagenlogisches Optimierungsproblem formalisiert werden können. Beispielsweise möchte man zu einer Menge an Ausstattungswünschen ein Test-Fahrzeug mit minimaler Ergänzung weiterer Ausstattungen berechnen um Kosten zu sparen. DesWeiteren beschäftigen wir uns mit der Problemstellung eine kleinste Menge an Fahrzeugen zu berechnen um eine Testmenge abzudecken. Im Rahmen dieser Arbeit haben wir einen Prototypen eines (Re-)Konfigurators, genannt AutoConfig, entwickelt. Unser (Re-)Konfigurator verwendet im Kern SAT-basierte Methoden und besitzt eine grafische Benutzeroberfläche, welche interaktive Konfiguration erlaubt. AutoConfig kann mit Instanzen von drei großen deutschen Automobilherstellern umgehen, aber ist nicht alleine darauf beschränkt. Mit Hilfe dieses Prototyps wollen wir die Anwendbarkeit unserer Methoden demonstrieren

    Solving set optimization problems by cardinality optimization with an application to argumentation

    Get PDF
    Optimization—minimization or maximization—in the lattice of subsets is a frequent operation in Artificial Intelligence tasks. Examples are subset-minimal model-based diagnosis, nonmonotonic reasoning by means of circumscription, or preferred extensions in abstract argumentation. Finding the optimum among many admissible solutions is often harder than finding admissible solutions with respect to both computational complexity and methodology. This paper addresses the former issue by means of an effective method for finding subset-optimal solutions. It is based on the relationship between cardinality-optimal and subset-optimal solutions, and the fact that many logic-based declarative programming systems provide constructs for finding cardinality-optimal solutions, for example maximum satisfiability (MaxSAT) or weak constraints in Answer Set Programming (ASP). Clearly each cardinality-optimal solution is also a subset-optimal one, and if the language also allows for the addition of particular restricting constructs (both MaxSAT and ASP do) then all subset-optimal solutions can be found by an iterative computation of cardinality-optimal solutions. As a showcase, the computation of preferred extensions of abstract argumentation frameworks using the proposed method is studied
    • …
    corecore