1,450 research outputs found

    Deterministic Automata for Unordered Trees

    Get PDF
    Automata for unordered unranked trees are relevant for defining schemas and queries for data trees in Json or Xml format. While the existing notions are well-investigated concerning expressiveness, they all lack a proper notion of determinism, which makes it difficult to distinguish subclasses of automata for which problems such as inclusion, equivalence, and minimization can be solved efficiently. In this paper, we propose and investigate different notions of "horizontal determinism", starting from automata for unranked trees in which the horizontal evaluation is performed by finite state automata. We show that a restriction to confluent horizontal evaluation leads to polynomial-time emptiness and universality, but still suffers from coNP-completeness of the emptiness of binary intersections. Finally, efficient algorithms can be obtained by imposing an order of horizontal evaluation globally for all automata in the class. Depending on the choice of the order, we obtain different classes of automata, each of which has the same expressiveness as CMso.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Beyond Language Equivalence on Visibly Pushdown Automata

    Full text link
    We study (bi)simulation-like preorder/equivalence checking on the class of visibly pushdown automata and its natural subclasses visibly BPA (Basic Process Algebra) and visibly one-counter automata. We describe generic methods for proving complexity upper and lower bounds for a number of studied preorders and equivalences like simulation, completed simulation, ready simulation, 2-nested simulation preorders/equivalences and bisimulation equivalence. Our main results are that all the mentioned equivalences and preorders are EXPTIME-complete on visibly pushdown automata, PSPACE-complete on visibly one-counter automata and P-complete on visibly BPA. Our PSPACE lower bound for visibly one-counter automata improves also the previously known DP-hardness results for ordinary one-counter automata and one-counter nets. Finally, we study regularity checking problems for visibly pushdown automata and show that they can be decided in polynomial time.Comment: Final version of paper, accepted by LMC

    History-Register Automata

    Get PDF
    Programs with dynamic allocation are able to create and use an unbounded number of fresh resources, such as references, objects, files, etc. We propose History-Register Automata (HRA), a new automata-theoretic formalism for modelling such programs. HRAs extend the expressiveness of previous approaches and bring us to the limits of decidability for reachability checks. The distinctive feature of our machines is their use of unbounded memory sets (histories) where input symbols can be selectively stored and compared with symbols to follow. In addition, stored symbols can be consumed or deleted by reset. We show that the combination of consumption and reset capabilities renders the automata powerful enough to imitate counter machines, and yields closure under all regular operations apart from complementation. We moreover examine weaker notions of HRAs which strike different balances between expressiveness and effectiveness.Comment: LMCS (improved version of FoSSaCS

    In the Maze of Data Languages

    Full text link
    In data languages the positions of strings and trees carry a label from a finite alphabet and a data value from an infinite alphabet. Extensions of automata and logics over finite alphabets have been defined to recognize data languages, both in the string and tree cases. In this paper we describe and compare the complexity and expressiveness of such models to understand which ones are better candidates as regular models

    Equivalence of Deterministic One-Counter Automata is NL-complete

    Full text link
    We prove that language equivalence of deterministic one-counter automata is NL-complete. This improves the superpolynomial time complexity upper bound shown by Valiant and Paterson in 1975. Our main contribution is to prove that two deterministic one-counter automata are inequivalent if and only if they can be distinguished by a word of length polynomial in the size of the two input automata

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    Bisimulation equivalence and regularity for real-time one-counter automata

    Get PDF
    A one-counter automaton is a pushdown automaton with a singleton stack alphabet, where stack emptiness can be tested; it is a real-time automaton if it contains no ε -transitions. We study the computational complexity of the problems of equivalence and regularity (i.e. semantic finiteness) on real-time one-counter automata. The first main result shows PSPACEPSPACE-completeness of bisimulation equivalence; this closes the complexity gap between decidability [23] and PSPACEPSPACE-hardness [25]. The second main result shows NLNL-completeness of language equivalence of deterministic real-time one-counter automata; this improves the known PSPACEPSPACE upper bound (indirectly shown by Valiant and Paterson [27]). Finally we prove PP-completeness of the problem if a given one-counter automaton is bisimulation equivalent to a finite system, and NLNL-completeness of the problem if the language accepted by a given deterministic real-time one-counter automaton is regular.Web of Science80474372

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision
    corecore