3,386 research outputs found

    Review of Non-Technical Losses Identification Techniques

    Get PDF
    Illegally consumption of electric power, termed as non-technical losses for the distribution companies is one of the dominant factors all over the world for many years. Although there are some conventional methods to identify these irregularities, such as physical inspection of meters at the consumer premises etc, but it requires large number of manpower and time; then also it does not seem to be adequate. Now a days there are various methods and algorithms have been developed that are proposed in different research papers, to detect non-technical losses. In this paper these methods are reviewed, their important features are highlighted and also the limitations are identified. Finally, the qualitative comparison of various non-technical losses identification algorithms is presented based on their performance, costs, data handling, quality control and execution times. It can be concluded that the graph-based classifier, Optimum-Path Forest algorithm that have both supervised and unsupervised variants, yields the most accurate result to detect non-technical losses

    Smart Metering Technology and Services

    Get PDF
    Global energy context has become more and more complex in the last decades; the raising prices of fuels together with economic crisis, new international environmental and energy policies that are forcing companies. Nowadays, as we approach the problem of global warming and climate changes, smart metering technology has an effective use and is crucial for reaching the 2020 energy efficiency and renewable energy targets as a future for smart grids. The environmental targets are modifying the shape of the electricity sectors in the next century. The smart technologies and demand side management are the key features of the future of the electricity sectors. The target challenges are coupling the innovative smart metering services with the smart meters technologies, and the consumers' behaviour should interact with new technologies and polices. The book looks for the future of the electricity demand and the challenges posed by climate changes by using the smart meters technologies and smart meters services. The book is written by leaders from academia and industry experts who are handling the smart meters technologies, infrastructure, protocols, economics, policies and regulations. It provides a promising aspect of the future of the electricity demand. This book is intended for academics and engineers who are working in universities, research institutes, utilities and industry sectors wishing to enhance their idea and get new information about the smart meters

    Big Data Analytics in Smart Grids for Renewable Energy Networks: Systematic Review of Information and Communication Technology Tools

    Get PDF
    El desarrollo industrial y económico de los países industrializados, a partir del siglo XIX, ha ido de la mano del desarrollo de la electricidad, del motor de combustión interna, de los ordenadores, de Internet, de la utilización de datos y del uso intensivo del conocimiento centrado en la ciencia y la tecnología. La mayoría de las fuentes de energía convencionales han demostrado ser finitas y agotables. A su vez, las diferentes actividades de producción de bienes y servicios que utilizan combustibles fósiles y energía convencional, han aumentado significativamente la contaminación del medio ambiente, y con ello, han contribuido al calentamiento global. El objetivo de este trabajo fue realizar una aproximación teórica a las tecnologías de análisis de datos e inteligencia de negocio aplicadas a las redes de sistemas eléctricos inteligentes con energías renovables. Para este trabajo se realizó una revisión bibliométrica y bibliográfica sobre Big Data Analytics, herramientas TIC de la industria 4.0 y Business intelligence en diferentes bases de datos disponibles en el dominio público. Los resultados del análisis indican la importancia del uso de la analítica de datos y la inteligencia de negocio en la gestión de las empresas energéticas. El trabajo concluye señalando cómo se está aplicando la inteligencia de negocio y la analítica de datos en ejemplos concretos de empresas energéticas y su creciente importancia en la toma de decisiones estratégicas y operativasThe industrial and economic development of the industrialized countries, from the nineteenth century, has gone hand in hand with the development of electricity, the internal combustion engine, computers, the Internet, data use and the intensive use of knowledge focused on science and the technology. Most conventional energy sources have proven to be finite and exhaustible. In turn, the different production activities of goods and services using fossil fuels and conventional energy, have significantly increased the pollution of the environment, and with it, contributed to global warming. The objective of this work was to carry out a theoretical approach to data analytics and business intelligence technologies applied to smart electrical-system networks with renewable energies. For this paper, a bibliometric and bibliographic review about Big Data Analytics, ICT tools of industry 4.0 and Business intelligence was carried out in different databases available in the public domain. The results of the analysis indicate the importance of the use of data analytics and business intelligence in the management of energy companies. The paper concludes by pointing out how business intelligence and data analytics are being applied in specific examples of energy companies and their growing importance in strategic and operational decision makinghttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=eshttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961https://orcid.org/0000-0003-1166-198

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks

    Get PDF
    This paper presents a structural health monitoring (SHM) method for in situ damage detection and localization in carbon fiber reinforced plates (CFRPs). The detection is achieved using the electromechanical impedance (EMI) technique employing piezoelectric transducers as high-frequency modal sensors. Numerical simulations based on the finite element method are carried out so as to simulate more than a hundred damage scenarios. Damage metrics are then used to quantify and detect changes between the electromechanical impedance spectrum of a pristine and damaged structure. The localization process relies on artificial neural networks (ANNs) whose inputs are derived from a principal component analysis of the damage metrics. It is shown that the resulting ANN can be used as a tool to predict the in-plane position of a single damage in a laminated composite plate

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users
    corecore