23 research outputs found

    Contribution to ground-based and UAV SAR systems for Earth observation

    Get PDF
    Mankind's way of life is the main driver of a planetary-scale change that is marked by the growing of human population's demand of energy, food, goods, services and information. As a result, it have emerged new ecological, economical, social and geopolitical concerns. In this scenario, SAR remote sensing is a potential tool that provides unique information about the Earth's properties and processes that can be used to solve societal challenges of local and global dimension. SARs, which are coherent systems that are able to provide high resolution images with weather independence, represent a suitable alternative for EO with diverse applications. Some examples of SAR application areas are topography (DEM generation with interferometry), agriculture (crop classification or soil moisture), or geology (monitoring surface deformation). In this framework, the encompassing objective of the present doctoral work has been part of the implementation and the subsequent evaluation of capabilities of two X-band SAR sensors. On the one hand, the RISKSAR-X radar designed to be operated at ground to monitor small-scale areas of observation and, on the other, the ARBRES-X sensor designed to be integrated into small UAVs. Despite its inherently dissimilar conception, the concurrence of both sensors has been evidenced along this manuscript. By taking advantage of the similarities between them, it has been possible to analogously assess both sensors to obtain conclusions. In this context, the common link has been the development of the polarimetric OtF operation mode of the RISKSAR-X, allowing this sensor to be operated equivalently to the ARBRES-X. Regarding the RISKSAR-X SAR sensor, several hardware contributions have been developed during part of this Ph.D. with the aim of improving the system performance. By endowing the system with the capability to operate in the fully polarimetric OtF acquisition mode, the relative long scanning time has been reduced. It is of great interest since the measured scatterers that present a short term variable reflectivity during the scanning time, such as moving vegetation, may degrade the extracted parameters from the retrieved data and the SAR image reconstruction. During this doctoral activity, it has been studied the image blurring, the decorrelation and the coherence degradation introduced by this effect. Furthermore, a new term in the differential interferometric coherence that takes into account the image blurring has been introduced. Concerning the ARBRES-X SAR system, one of the main objectives pursued during this Ph.D. has been the integration of the sensor into a small UAV MP overcoming restrictions of weight, size and aerodynamics of the platform. The use of this type of platforms is expected to open up new possibilities in airborne SAR remote sensing, since it offers much more versatility than the commonly used fixed wings UAVs. Different innovative flight strategies with this type of platforms have been assessed and some preliminary results have been obtained with the use of the ARBRES-X SAR system. During the course of the present doctoral work, much effort has been devoted to achieve the first experimental repeat-pass interfereometric results obtained with the UAV MP together with the ARBRES-X. Moreover, the sensor has been endowed with fully polarimetric capabilities by applying the improvements developed to the RISKSAR-X radar, which is another example of the duality between both systems. Finally, a vertical and a semicircular aperture have been successfully performed obtaining SLC images of the scenario, which envisages the capability of the UAV MP to perform tomographic images and complete circular apertures in the future. In conclusion, the UAV MP is a promising platform that opens new potentials for several applications, such as repeat-pass interferometry or differential tomography imaging with the realization of almost arbitrary trajectories.El mode de viure de la humanitat és el principal motor d'un canvi a escala planetària que està marcat per la creixent demanda d'energia, d'aliment, de béns, de serveis i d'informació de les poblacions humanes. Com a resultat, han sorgit noves inquietuds ecològiques, econòmiques, socials i geopolítiques. En aquest escenari, la detecció remota SAR és una eina potencial que proporciona informació única sobre les propietats i processos de la Terra que es pot utilitzar per resoldre reptes socials de dimensió local i global. Els SARs, que són sistemes coherents que poden proporcionar imatges d'alta resolució amb independència del temps, representen una alternativa adequada per a l'observació de la Terra. Alguns exemples d'àrees d'aplicació SAR són la topografia (generació de DEM amb interferometria), l'agricultura (classificació de cultius o humitat del sòl) o la geologia (monitoratge de deformació superficial). En aquest context, l'objectiu general del present doctorat ha estat part de la implementació i posterior avaluació de les capacitats de dos sensors SAR de banda X. D'una banda, el radar RISKSAR-X dissenyat per funcionar a terra i monitoritzar àrees d'observació a petita escala i, d'altra, el sensor ARBRES-X dissenyat per ser integrat en petits UAVs. Malgrat la seva concepció inherentment diferent, la concurrència d'ambdós sensors s'ha evidenciat al llarg d'aquest manuscrit. Aprofitant les similituds entre ells, s'han pogut avaluar de forma anàloga els dos sensors per obtenir conclusions. En aquest sentit, el vincle comú ha estat el desenvolupament del mode de funcionament polimètric OtF del RISKSAR-X, permetent que aquest sensor operi de forma equivalent a l'ARBRES-X. Pel que fa al sensor RISKSAR-X, s'han desenvolupat diverses contribucions hardware durant part d'aquest doctorat amb l'objectiu de millorar el rendiment del sistema. En dotar el sistema de la possibilitat d'operar en el mode d'adquisició totalment polarimètric OtF, s'ha reduït el relatiu llarg temps d'escaneig. Això és de gran interès ja que els blancs mesurats que presenten una reflectivitat variable a curt termini, com ara la vegetació en moviment, poden degradar els paràmetres extrets de les dades recuperades i la reconstrucció d'imatges SAR. Durant aquesta activitat doctoral s'ha estudiat el desenfocat de la imatge, la decorrelació i la degradació de la coherència introduïts per aquest efecte. A més, s'ha introduït un nou terme en la coherència interferomètrica diferencial que té en compte el desenfocat de la imatge. Pel que fa al sistema ARBRES-X, un dels principals objectius perseguits durant aquest doctorat ha estat la integració del sensor en un petit UAV MP superant les restriccions de pes, grandària i aerodinàmica de la plataforma. S'espera que l'ús d'aquest tipus de plataformes obri noves possibilitats en la detecció remota SAR aerotransportada, ja que ofereix molta més versatilitat que els UAV d'ales fixes habituals. S'han avaluat diferents estratègies de vol innovadores amb aquest tipus de plataformes i s'han obtingut resultats preliminars amb l'ús del sistema ARBRES-X. Durant el transcurs del present treball, s'ha dedicat molt esforç a assolir els primers resultats experimentals d'interferometria de múltiple passada obtinguts amb l'UAV MP conjuntament amb l'ARBRES-X. A més, el sensor ha estat dotat de capacitats totalment polarimètriques aplicant les millores desenvolupades al radar RISKSAR-X, el qual constitueix un altre exemple de la dualitat entre ambdós sistemes. Finalment, s'han realitzat amb èxit una apertura vertical i semicircular obtenint imatges SLC de l'escenari, el qual permet preveure la capacitat de l'UAV MP per a realitzar imatges tomogràfiques i apertures circulars completes en el futur. En conclusió, l'UAV MP és una plataforma prometedora que obre nous potencials per a diverses aplicacions, com ara la interferometria de múltiple passada o la tomografia diferencial amb la realització de trajectòries gairebé arbitràries.Postprint (published version

    Contribution to ground-based and UAV SAR systems for Earth observation

    Get PDF
    Mankind's way of life is the main driver of a planetary-scale change that is marked by the growing of human population's demand of energy, food, goods, services and information. As a result, it have emerged new ecological, economical, social and geopolitical concerns. In this scenario, SAR remote sensing is a potential tool that provides unique information about the Earth's properties and processes that can be used to solve societal challenges of local and global dimension. SARs, which are coherent systems that are able to provide high resolution images with weather independence, represent a suitable alternative for EO with diverse applications. Some examples of SAR application areas are topography (DEM generation with interferometry), agriculture (crop classification or soil moisture), or geology (monitoring surface deformation). In this framework, the encompassing objective of the present doctoral work has been part of the implementation and the subsequent evaluation of capabilities of two X-band SAR sensors. On the one hand, the RISKSAR-X radar designed to be operated at ground to monitor small-scale areas of observation and, on the other, the ARBRES-X sensor designed to be integrated into small UAVs. Despite its inherently dissimilar conception, the concurrence of both sensors has been evidenced along this manuscript. By taking advantage of the similarities between them, it has been possible to analogously assess both sensors to obtain conclusions. In this context, the common link has been the development of the polarimetric OtF operation mode of the RISKSAR-X, allowing this sensor to be operated equivalently to the ARBRES-X. Regarding the RISKSAR-X SAR sensor, several hardware contributions have been developed during part of this Ph.D. with the aim of improving the system performance. By endowing the system with the capability to operate in the fully polarimetric OtF acquisition mode, the relative long scanning time has been reduced. It is of great interest since the measured scatterers that present a short term variable reflectivity during the scanning time, such as moving vegetation, may degrade the extracted parameters from the retrieved data and the SAR image reconstruction. During this doctoral activity, it has been studied the image blurring, the decorrelation and the coherence degradation introduced by this effect. Furthermore, a new term in the differential interferometric coherence that takes into account the image blurring has been introduced. Concerning the ARBRES-X SAR system, one of the main objectives pursued during this Ph.D. has been the integration of the sensor into a small UAV MP overcoming restrictions of weight, size and aerodynamics of the platform. The use of this type of platforms is expected to open up new possibilities in airborne SAR remote sensing, since it offers much more versatility than the commonly used fixed wings UAVs. Different innovative flight strategies with this type of platforms have been assessed and some preliminary results have been obtained with the use of the ARBRES-X SAR system. During the course of the present doctoral work, much effort has been devoted to achieve the first experimental repeat-pass interfereometric results obtained with the UAV MP together with the ARBRES-X. Moreover, the sensor has been endowed with fully polarimetric capabilities by applying the improvements developed to the RISKSAR-X radar, which is another example of the duality between both systems. Finally, a vertical and a semicircular aperture have been successfully performed obtaining SLC images of the scenario, which envisages the capability of the UAV MP to perform tomographic images and complete circular apertures in the future. In conclusion, the UAV MP is a promising platform that opens new potentials for several applications, such as repeat-pass interferometry or differential tomography imaging with the realization of almost arbitrary trajectories.El mode de viure de la humanitat és el principal motor d'un canvi a escala planetària que està marcat per la creixent demanda d'energia, d'aliment, de béns, de serveis i d'informació de les poblacions humanes. Com a resultat, han sorgit noves inquietuds ecològiques, econòmiques, socials i geopolítiques. En aquest escenari, la detecció remota SAR és una eina potencial que proporciona informació única sobre les propietats i processos de la Terra que es pot utilitzar per resoldre reptes socials de dimensió local i global. Els SARs, que són sistemes coherents que poden proporcionar imatges d'alta resolució amb independència del temps, representen una alternativa adequada per a l'observació de la Terra. Alguns exemples d'àrees d'aplicació SAR són la topografia (generació de DEM amb interferometria), l'agricultura (classificació de cultius o humitat del sòl) o la geologia (monitoratge de deformació superficial). En aquest context, l'objectiu general del present doctorat ha estat part de la implementació i posterior avaluació de les capacitats de dos sensors SAR de banda X. D'una banda, el radar RISKSAR-X dissenyat per funcionar a terra i monitoritzar àrees d'observació a petita escala i, d'altra, el sensor ARBRES-X dissenyat per ser integrat en petits UAVs. Malgrat la seva concepció inherentment diferent, la concurrència d'ambdós sensors s'ha evidenciat al llarg d'aquest manuscrit. Aprofitant les similituds entre ells, s'han pogut avaluar de forma anàloga els dos sensors per obtenir conclusions. En aquest sentit, el vincle comú ha estat el desenvolupament del mode de funcionament polimètric OtF del RISKSAR-X, permetent que aquest sensor operi de forma equivalent a l'ARBRES-X. Pel que fa al sensor RISKSAR-X, s'han desenvolupat diverses contribucions hardware durant part d'aquest doctorat amb l'objectiu de millorar el rendiment del sistema. En dotar el sistema de la possibilitat d'operar en el mode d'adquisició totalment polarimètric OtF, s'ha reduït el relatiu llarg temps d'escaneig. Això és de gran interès ja que els blancs mesurats que presenten una reflectivitat variable a curt termini, com ara la vegetació en moviment, poden degradar els paràmetres extrets de les dades recuperades i la reconstrucció d'imatges SAR. Durant aquesta activitat doctoral s'ha estudiat el desenfocat de la imatge, la decorrelació i la degradació de la coherència introduïts per aquest efecte. A més, s'ha introduït un nou terme en la coherència interferomètrica diferencial que té en compte el desenfocat de la imatge. Pel que fa al sistema ARBRES-X, un dels principals objectius perseguits durant aquest doctorat ha estat la integració del sensor en un petit UAV MP superant les restriccions de pes, grandària i aerodinàmica de la plataforma. S'espera que l'ús d'aquest tipus de plataformes obri noves possibilitats en la detecció remota SAR aerotransportada, ja que ofereix molta més versatilitat que els UAV d'ales fixes habituals. S'han avaluat diferents estratègies de vol innovadores amb aquest tipus de plataformes i s'han obtingut resultats preliminars amb l'ús del sistema ARBRES-X. Durant el transcurs del present treball, s'ha dedicat molt esforç a assolir els primers resultats experimentals d'interferometria de múltiple passada obtinguts amb l'UAV MP conjuntament amb l'ARBRES-X. A més, el sensor ha estat dotat de capacitats totalment polarimètriques aplicant les millores desenvolupades al radar RISKSAR-X, el qual constitueix un altre exemple de la dualitat entre ambdós sistemes. Finalment, s'han realitzat amb èxit una apertura vertical i semicircular obtenint imatges SLC de l'escenari, el qual permet preveure la capacitat de l'UAV MP per a realitzar imatges tomogràfiques i apertures circulars completes en el futur. En conclusió, l'UAV MP és una plataforma prometedora que obre nous potencials per a diverses aplicacions, com ara la interferometria de múltiple passada o la tomografia diferencial amb la realització de trajectòries gairebé arbitràries

    Generation of a combined dataset of simulated radar and electro-optical imagery

    Get PDF
    In the world of remote sensing there exist radar sensors and EO/IR sensors, both of which carry with them unique information useful to the imaging community. Radar has the capability of imaging through all types of weather, day or night. EO/IR produces radiance maps and frequently images at much finer resolution than radar. While each of these systems is valuable to imaging, there exists unknown territory in the imaging community as to the value added in combining the best of both these worlds. This work will begin to explore the challenges in simulating a scene in both a radar tool called Xpatch and an EO/IR tool called DIRSIG. The capabilities and limitations inherent to both radar and EO/IR are similar in the image simulation tools, so the work done in a simulated environment will carry over to the real-world environment as well. The synthetic data generated will be compared to existing measured data to demonstrate the validity of the experiment. Future work should explore registration and various types of fusion of the resulting images to demonstrate the synergistic value of the combined images

    Coherent Change Detection Under a Forest Canopy

    Get PDF
    Coherent change detection (CCD) is an established technique for remotely monitoring landscapes with minimal vegetation or buildings. By evaluating the local complex correlation between a pair of synthetic aperture radar (SAR) images acquired on repeat passes of an airborne or spaceborne imaging radar system, a map of the scene coherence is obtained. Subtle disturbances of the ground are detected as areas of low coherence in the surface clutter. This thesis investigates extending CCD to monitor the ground in a forest. It is formulated as a multichannel dual-layer coherence estimation problem, where the coherence of scattering from the ground is estimated after suppressing interference from the canopy by vertically beamforming multiple image channels acquired at slightly different grazing angles on each pass. This 3D SAR beamforming must preserve the phase of the ground response. The choice of operating wavelength is considered in terms of the trade-off between foliage penetration and change sensitivity. A framework for comparing the performance of different radar designs and beamforming algorithms, as well as assessing the sensitivity to error, is built around the random-volume-over-ground (RVOG) model of forest scattering. If the ground and volume scattering contributions in the received echo are of similar strength, it is shown that an L-band array of just three channels can provide enough volume attenuation to permit reasonable estimation of the ground coherence. The proposed method is demonstrated using an RVOG clutter simulation and a modified version of the physics-based SAR image simulator PolSARproSim. Receiver operating characteristics show that whilst ordinary single-channel CCD is unusable when a canopy is present, 3D SAR CCD permits reasonable detection performance. A novel polarimetric filtering algorithm is also proposed to remove contributions from the ground-trunk double-bounce scattering mechanism, which may mask changes on the ground near trees. To enable this kind of polarimetric processing, fully polarimetric data must be acquired and calibrated. Motivated by an interim version of the Ingara airborne imaging radar, which used a pair of helical antennas to acquire circularly polarised data, techniques for the estimation of polarimetric distortion in the circular basis are investigated. It is shown that the standard approach to estimating cross-talk in the linear basis, whereby expressions for the distortion of reflection-symmetric clutter are linearised and solved, cannot be adapted to the circular basis, because the first-order effects of individual cross-talk parameters cannot be distinguished. An alternative approach is proposed that uses ordinary and gridded trihedral corner reflectors, and optionally dihedrals, to iteratively estimate the channel imbalance and cross-talk parameters. Monte Carlo simulations show that the method reliably converges to the true parameter values. Ingara data is calibrated using the method, with broadly consistent parameter estimates obtained across flights. Genuine scene changes may be masked by coherence loss that arises when the bands of spatial frequencies supported by the two passes do not match. Trimming the spatial-frequency bands to their common area of support would remove these uncorrelated contributions, but the bands, and therefore the required trim, depend on the effective collection geometry at each pixel position. The precise dependence on local slope and collection geometry is derived in this thesis. Standard methods of SAR image formation use a flat focal plane and allow only a single global trim, which leads to spatially varying coherence loss when the terrain is undulating. An image-formation algorithm is detailed that exploits the flexibility offered by back-projection not only to focus the image onto a surface matched to the scene topography but also to allow spatially adaptive trimming. Improved coherence is demonstrated in simulation and using data from two airborne radar systems.Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 202

    Aeronautical engineering: A continuing bibliography with indexes (supplement 203)

    Get PDF
    This bibliography lists 449 reports, articles and other documents introduced into the NASA scientific and technical information system in July 1986

    Workshop on Advanced Technologies for Planetary Instruments, part 1

    Get PDF
    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Advanced technologies for planetary instruments

    Get PDF
    The planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Then the DoD community to informed their counterparts in planetary science about their interests and capabilities, and to described the BMDO technology base, flight programs, and future directions. The working group sessions and the panel discussion synthesized technical and programmatic issues from all the presentations, with a specific goal of assessing the applicability of BMDO technologies to science instrumentation for planetary exploration.edited by J. Appleby.Clementine II: A Double Asteroid Flyby and Impactor Mission / Boain, R.J. -- The APX Spectrometer for Martian Missions / Economou, T. -- Clementine Sensor Processing System / Feldstein, A.A. -- The Ultraviolet Plume Instrument (UVPI) / Horan, D.M. -- New Technologies for UV Detectors / Joseph, C.L

    Aeronautical engineering: A continuing bibliography with indexes (supplement 295)

    Get PDF
    This bibliography lists 581 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Sep. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore