98 research outputs found

    Role of Interference and Computational Complexity in Modern Wireless Networks: Analysis, Optimization, and Design

    Get PDF
    Owing to the popularity of smartphones, the recent widespread adoption of wireless broadband has resulted in a tremendous growth in the volume of mobile data traffic, and this growth is projected to continue unabated. In order to meet the needs of future systems, several novel technologies have been proposed, including cooperative communications, cloud radio access networks (RANs) and very densely deployed small-cell networks. For these novel networks, both interference and the limited availability of computational resources play a very important role. Therefore, the accurate modeling and analysis of interference and computation is essential to the understanding of these networks, and an enabler for more efficient design.;This dissertation focuses on four aspects of modern wireless networks: (1) Modeling and analysis of interference in single-hop wireless networks, (2) Characterizing the tradeoffs between the communication performance of wireless transmission and the computational load on the systems used to process such transmissions, (3) The optimization of wireless multiple-access networks when using cost functions that are based on the analytical findings in this dissertation, and (4) The analysis and optimization of multi-hop networks, which may optionally employ forms of cooperative communication.;The study of interference in single-hop wireless networks proceeds by assuming that the random locations of the interferers are drawn from a point process and possibly constrained to a finite area. Both the information-bearing and interfering signals propagate over channels that are subject to path loss, shadowing, and fading. A flexible model for fading, based on the Nakagami distribution, is used, though specific examples are provided for Rayleigh fading. The analysis is broken down into multiple steps, involving subsequent averaging of the performance metrics over the fading, the shadowing, and the location of the interferers with the aim to distinguish the effect of these mechanisms that operate over different time scales. The analysis is extended to accommodate diversity reception, which is important for the understanding of cooperative systems that combine transmissions that originate from different locations. Furthermore, the role of spatial correlation is considered, which provides insight into how the performance in one location is related to the performance in another location.;While it is now generally understood how to communicate close to the fundamental limits implied by information theory, operating close to the fundamental performance bounds is costly in terms of the computational complexity required to receive the signal. This dissertation provides a framework for understanding the tradeoffs between communication performance and the imposed complexity based on how close a system operates to the performance bounds, and it allows to accurately estimate the required data processing resources of a network under a given performance constraint. The framework is applied to Cloud-RAN, which is a new cellular architecture that moves the bulk of the signal processing away from the base stations (BSs) and towards a centralized computing cloud. The analysis developed in this part of the dissertation helps to illuminate the benefits of pooling computing assets when decoding multiple uplink signals in the cloud. Building upon these results, new approaches for wireless resource allocation are proposed, which unlike previous approaches, are aware of the computing limitations of the network.;By leveraging the accurate expressions that characterize performance in the presence of interference and fading, a methodology is described for optimizing wireless multiple-access networks. The focus is on frequency hopping (FH) systems, which are already widely used in military systems, and are becoming more common in commercial systems. The optimization determines the best combination of modulation parameters (such as the modulation index for continuous-phase frequency-shift keying), number of hopping channels, and code rate. In addition, it accounts for the adjacent-channel interference (ACI) and determines how much of the signal spectrum should lie within the operating band of each channel, and how much can be allowed to splatter into adjacent channels.;The last part of this dissertation contemplates networks that involve multi-hop communications. Building on the analytical framework developed in early parts of this dissertation, the performance of such networks is analyzed in the presence of interference and fading, and it is introduced a novel paradigm for a rapid performance assessment of routing protocols. Such networks may involve cooperative communications, and the particular cooperative protocol studied here allows the same packet to be transmitted simultaneously by multiple transmitters and diversity combined at the receiver. The dynamics of how the cooperative protocol evolves over time is described through an absorbing Markov chain, and the analysis is able to efficiently capture the interference that arises as packets are periodically injected into the network by a common source, the temporal correlation among these packets and their interdependence

    Packet Scheduling Algorithms in LTE/LTE-A cellular Networks: Multi-agent Q-learning Approach

    Get PDF
    Spectrum utilization is vital for mobile operators. It ensures an efficient use of spectrum bands, especially when obtaining their license is highly expensive. Long Term Evolution (LTE), and LTE-Advanced (LTE-A) spectrum bands license were auctioned by the Federal Communication Commission (FCC) to mobile operators with hundreds of millions of dollars. In the first part of this dissertation, we study, analyze, and compare the QoS performance of QoS-aware/Channel-aware packet scheduling algorithms while using CA over LTE, and LTE-A heterogeneous cellular networks. This included a detailed study of the LTE/LTE-A cellular network and its features, and the modification of an open source LTE simulator in order to perform these QoS performance tests. In the second part of this dissertation, we aim to solve spectrum underutilization by proposing, implementing, and testing two novel multi-agent Q-learning-based packet scheduling algorithms for LTE cellular network. The Collaborative Competitive scheduling algorithm, and the Competitive Competitive scheduling algorithm. These algorithms schedule licensed users over the available radio resources and un-licensed users over spectrum holes. In conclusion, our results show that the spectrum band could be utilized by deploying efficient packet scheduling algorithms for licensed users, and can be further utilized by allowing unlicensed users to be scheduled on spectrum holes whenever they occur

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Efficient and Reliable Task Scheduling, Network Reprogramming, and Data Storage for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) typically consist of a large number of resource-constrained nodes. The limited computational resources afforded by these nodes present unique development challenges. In this dissertation, we consider three such challenges. The first challenge focuses on minimizing energy usage in WSNs through intelligent duty cycling. Limited energy resources dictate the design of many embedded applications, causing such systems to be composed of small, modular tasks, scheduled periodically. In this model, each embedded device wakes, executes a task-set, and returns to sleep. These systems spend most of their time in a state of deep sleep to minimize power consumption. We refer to these systems as almost-always-sleeping (AAS) systems. We describe a series of task schedulers for AAS systems designed to maximize sleep time. We consider four scheduler designs, model their performance, and present detailed performance analysis results under varying load conditions. The second challenge focuses on a fast and reliable network reprogramming solution for WSNs based on incremental code updates. We first present VSPIN, a framework for developing incremental code update mechanisms to support efficient reprogramming of WSNs. VSPIN provides a modular testing platform on the host system to plug-in and evaluate various incremental code update algorithms. The framework supports Avrdude, among the most popular Linux-based programming tools for AVR microcontrollers. Using VSPIN, we next present an incremental code update strategy to efficiently reprogram wireless sensor nodes. We adapt a linear space and quadratic time algorithm (Hirschberg\u27s Algorithm) for computing maximal common subsequences to build an edit map specifying an edit sequence required to transform the code running in a sensor network to a new code image. We then present a heuristic-based optimization strategy for efficient edit script encoding to reduce the edit map size. Finally, we present experimental results exploring the reduction in data size that it enables. The approach achieves reductions of 99.987% for simple changes, and between 86.95% and 94.58% for more complex changes, compared to full image transmissions - leading to significantly lower energy costs for wireless sensor network reprogramming. The third challenge focuses on enabling fast and reliable data storage in wireless sensor systems. A file storage system that is fast, lightweight, and reliable across device failures is important to safeguard the data that these devices record. A fast and efficient file system enables sensed data to be sampled and stored quickly and batched for later transmission. A reliable file system allows seamless operation without disruptions due to hardware, software, or other unforeseen failures. While flash technology provides persistent storage by itself, it has limitations that prevent it from being used in mission-critical deployment scenarios. Hybrid memory models which utilize newer non-volatile memory technologies, such as ferroelectric RAM (FRAM), can mitigate the physical disadvantages of flash. In this vein, we present the design and implementation of LoggerFS, a fast, lightweight, and reliable file system for wireless sensor networks, which uses a hybrid memory design consisting of RAM, FRAM, and flash. LoggerFS is engineered to provide fast data storage, have a small memory footprint, and provide data reliability across system failures. LoggerFS adapts a log-structured file system approach, augmented with data persistence and reliability guarantees. A caching mechanism allows for flash wear-leveling and fast data buffering. We present a performance evaluation of LoggerFS using a prototypical in-situ sensing platform and demonstrate between 50% and 800% improvements for various workloads using the FRAM write-back cache over the implementation without the cache

    Link Scheduling in UAV-Aided Networks

    Get PDF
    Unmanned Aerial Vehicles (UAVs) or drones are a type of low altitude aerial mobile vehicles. They can be integrated into existing networks; e.g., cellular, Internet of Things (IoT) and satellite networks. Moreover, they can leverage existing cellular or Wi-Fi infrastructures to communicate with one another. A popular application of UAVs is to deploy them as mobile base stations and/or relays to assist terrestrial wireless communications. Another application is data collection, whereby they act as mobile sinks for wireless sensor networks or sensor devices operating in IoT networks. Advantageously, UAVs are cost-effective and they are able to establish line-of-sight links, which help improve data rate. A key concern, however, is that the uplink communications to a UAV may be limited, where it is only able to receive from one device at a time. Further, ground devices, such as those in IoT networks, may have limited energy, which limit their transmit power. To this end, there are three promising approaches to address these concerns, including (i) trajectory optimization, (ii) link scheduling, and (iii) equipping UAVs with a Successive Interference Cancellation (SIC) radio. Henceforth, this thesis considers data collection in UAV-aided, TDMA and SICequipped wireless networks. Its main aim is to develop novel link schedulers to schedule uplink communications to a SIC-capable UAV. In particular, it considers two types of networks: (i) one-tier UAV communications networks, where a SIC-enabled rotary-wing UAV collects data from multiple ground devices, and (ii) Space-Air-Ground Integrated Networks (SAGINs), where a SIC-enabled rotary-wing UAV offloads collected data from ground devices to a swarm of CubeSats. A CubeSat then downloads its data to a terrestrial gateway. Compared to one-tier UAV communications networks, SAGINs are able to provide wide coverage and seamless connectivity to ground devices in remote and/or sparsely populated areas

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Medium Access Control and Routing Protocols Design for 5G

    Get PDF
    In future wireless systems, such as 5G and beyond, the current dominating human-centric communication systems will be complemented by a tremendous increase in the number of smart devices, equipped with radio devices, possibly sensors, and uniquely addressable. This will result in explosion of wireless traffic volume, and consequently exponential growth in demand of radio spectrum. There are different engineering techniques for resolving the cost and scarcity of radio spectrum such as coexistence of diverse devices on the same pool of radio resources, spectrum aggregations, adoption of mmWave bands with huge spectrum, etc. The aim of this thesis is to investigate Medium Access Control (MAC) and routing protocols for 5G and beyond radio networks. Two scenarios are addressed: heterogeneous scenario where scheduled and uncoordinated users coexist, and a scenario where drones are used for monitoring a given area. In the heterogeneous scenario scheduled users are synchronised with the Base Station (BS) and rely on centralised resource scheduler for assignment of time slots, while the uncoordinated users are asynchronous with each other and the BS and rely unslotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) for channel access. First, we address a single-hop network with advanced scheduling algorithm design and packet length adaptation schemes design. Second, we address a multi-hop network with novel routing protocol for enhancing performance of the scheduled users in terms of throughput, and coexistence of all network users. In the drone-based scenario, new routing protocols are designed to address the problems of Wireless Mesh Networks with monitoring drones. In particular, a novel optimised Hybrid Wireless Mesh Protocol (O-HWMP) for a quick and efficient discovery of paths is designed, and a capacity achieving routing and scheduling algorithm, called backpressure, investigated. To improve on the long-end-to-end delays of classical backpressure, a modified backpressure algorithm is proposed and evaluated

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Modeling and Performance Analysis of Relay-based Cooperative OFDMA Networks

    Get PDF
    Next generation wireless communication networks are expected to provide ubiquitous high data rate coverage and support heterogeneous wireless services with diverse quality-of-service (QoS) requirements. This translates into a heavy demand for the spectral resources. In order to meet these requirements, Orthogonal Frequency Division Multiple Access (OFDMA) has been regarded as a promising air-interface for the emerging fourth generation (4G) networks due to its capability to combat the channel impairments and support high data rate. In addition, OFDMA offers flexibility in radio resource allocation and provides multiuser diversity by allowing subcarriers to be shared among multiple users. One of the main challenges for the 4G networks is to achieve high throughput throughout the entire cell. Cooperative relaying is a very promising solution to tackle this problem as it provides throughput gains as well as coverage extension. The combination of OFDMA and cooperative relaying assures high throughput requirements, particularly for users at the cell edge. However, to fully exploit the benefits of relaying, efficient relay selection as well as resource allocation are critical in such kind of network when multiple users and multiple relays are considered. Moreover, the consideration of heterogeneous QoS requirements further complicate the optimal allocation of resources in a relay enhanced OFDMA network. Furthermore, the computational complexity and signalling overhead are also needed to be considered in the design of practical resource allocation schemes. In this dissertation, we conduct a comprehensive research study on the topic of radio resource management for relay-based cooperative OFDMA networks supporting heterogeneous QoS requirements. Specifically, this dissertation investigates how to effectively and efficiently allocate resources to satisfy QoS requirements of 4G users, improve spectrum utilization and reduce computational complexity at the base station. The problems and our research achievements are briefly outlined as follows. Firstly, a QoS aware optimal joint relay selection, power allocation and subcarrier assignment scheme for uplink OFDMA system considering heterogeneous services under a total power constraint is proposed. The relay selection, power allocation and subcarrier assignment problem is formulated as a joint optimization problem with the objective of maximizing the system throughput, which is solved by means of a two level dual decomposition and subgradient method. The computational complexity is finally reduced via the introduction of two suboptimal schemes. The performance of the proposed schemes is demonstrated through computer simulations based on OFDMA network. Numerical results show that our schemes support heterogeneous services while guaranteeing each user's QoS requirements with slight total system throughput degradation. Secondly, we investigate the resource allocation problem subject to the satisfaction of user QoS requirements and individual total power constraints of the users and relays. The throughput of each end-to-end link is modeled considering both the direct and relay links. Due to non-convex nature of the original resource allocation problem, the optimal solution is obtained by solving a relaxed problem via two level dual decomposition. Numerical results reveal that the proposed scheme is effective in provisioning QoS of each user's over the conventional resource allocation counterpart under individual total power constraints of the users and relays . Lastly, decentralized resource allocation schemes are proposed to reduce the computational complexity and CSI feedback overhead at the BS. A user centric distributed (UCD) scheme and a relay centric distributed (RCD) scheme are proposed, where the computation of the centralized scheme is distributed among the users and relays, respectively. We also proposed suboptimal schemes based on simplified relay selection. The suboptimal schemes can be combined with the distributed schemes to further reduce of signalling overhead and computational complexity. Numerical results show that our schemes guarantee user's satisfaction with low computational complexity and signalling overhead, leading to preferred candidates for practical implementation. The research results obtained in this dissertation can improve the resource utilization and QoS assurance of the emerging OFDMA networks.4 month
    corecore