
Clemson University
TigerPrints

All Dissertations Dissertations

5-2016

Efficient and Reliable Task Scheduling, Network
Reprogramming, and Data Storage for Wireless
Sensor Networks
Biswajit Mazumder
Clemson University, bmazumd@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Mazumder, Biswajit, "Efficient and Reliable Task Scheduling, Network Reprogramming, and Data Storage for Wireless Sensor
Networks" (2016). All Dissertations. 1633.
https://tigerprints.clemson.edu/all_dissertations/1633

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1633?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Efficient and Reliable Task Scheduling, Network
Reprogramming, and Data Storage for Wireless Sensor

Networks

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Biswajit Mazumder

May 2016

Accepted by:

Dr. Brian Malloy, Committee Chair

Dr. Jason O. Hallstrom, Committee Co-Chair

Dr. Robert Geist

Dr. Jacob Sorber

Abstract

Wireless sensor networks (WSNs) typically consist of a large number of resource-constrained

nodes. The limited computational resources afforded by these nodes present unique development

challenges. In this dissertation, we consider three such challenges.

The first challenge focuses on minimizing energy usage in WSNs through intelligent duty

cycling. Limited energy resources dictate the design of many embedded applications, causing such

systems to be composed of small, modular tasks, scheduled periodically. In this model, each em-

bedded device wakes, executes a task-set, and returns to sleep. These systems spend most of their

time in a state of deep sleep to minimize power consumption. We refer to these systems as almost-

always-sleeping (AAS) systems. We describe a series of task schedulers for AAS systems designed

to maximize sleep time. We consider four scheduler designs, model their performance, and present

detailed performance analysis results under varying load conditions.

The second challenge focuses on a fast and reliable network reprogramming solution for

WSNs based on incremental code updates. We first present VSPIN, a framework for developing

incremental code update mechanisms to support efficient reprogramming of WSNs. VSPIN pro-

vides a modular testing platform on the host system to “plug-in” and evaluate various incremental

code update algorithms. The framework supports Avrdude, among the most popular Linux-based

programming tools for AVR microcontrollers. Using VSPIN, we next present an incremental code

update strategy to efficiently reprogram wireless sensor nodes. We adapt a linear space and quadratic

time algorithm (Hirschberg’s Algorithm) for computing maximal common subsequences to build an

edit map specifying an edit sequence required to transform the code running in a sensor network to

a new code image. We then present a heuristic-based optimization strategy for efficient edit script

encoding to reduce the edit map size. Finally, we present experimental results exploring the reduc-

tion in data size that it enables. The approach achieves reductions of 99.987% for simple changes,

ii

and between 86.95% and 94.58% for more complex changes, compared to full image transmissions

— leading to significantly lower energy costs for wireless sensor network reprogramming.

The third challenge focuses on enabling fast and reliable data storage in wireless sensor

systems. A file storage system that is fast, lightweight, and reliable across device failures is important

to safeguard the data that these devices record. A fast and efficient file system enables sensed data

to be sampled and stored quickly and batched for later transmission. A reliable file system allows

seamless operation without disruptions due to hardware, software, or other unforeseen failures. While

flash technology provides persistent storage by itself, it has limitations that prevent it from being used

in mission-critical deployment scenarios. Hybrid memory models which utilize newer non-volatile

memory technologies, such as ferroelectric RAM (FRAM), can mitigate the physical disadvantages

of flash. In this vein, we present the design and implementation of LoggerFS, a fast, lightweight, and

reliable file system for wireless sensor networks, which uses a hybrid memory design consisting of

RAM, FRAM, and flash. LoggerFS is engineered to provide fast data storage, have a small memory

footprint, and provide data reliability across system failures. LoggerFS adapts a log-structured file

system approach, augmented with data persistence and reliability guarantees. A caching mechanism

allows for flash wear-leveling and fast data buffering. We present a performance evaluation of

LoggerFS using a prototypical in-situ sensing platform and demonstrate between 50% and 800%

improvements for various workloads using the FRAM write-back cache over the implementation

without the cache.

iii

Dedication

I would like to dedicate this work to my wife, Dr. Sritama Nath, and my parents,

Dr. Gayatri Mazumder and Mr. Bijan Mazumder.

iv

Acknowledgments

There are many people who I would like to thank during my years at Clemson University.

First and foremost, I would like to thank my advisor, Dr. Jason O. Hallstrom, for being a friend,

philosopher, and guide, and for his continued support, patience, and understanding during the past

six years. Second, I would like to thank my committee members, Dr. Brian A. Malloy, Dr. Robert

M. Geist, and Dr. Jacob M. Sorber, for the help and suggestions they provided on my research that

led to this dissertation. Third, I would like to thank my extended DSRG lab family — Hao, Jiannan,

Sally, Yvon, and Yang for their friendship, help, and moral support over the years. Fourth, I would

like to thank all my friends at Clemson, who have been a constant source of joy and inspiration.

Last but not the least, I wish to thank my family. I would like to thank my wife, Dr. Sritama Nath,

and my parents, Dr. Gayatri Mazumder and Mr. Bijan Mazumder, for always believing in me and

being the source of my strength and happiness. This would not have been possible without your

support! Thank you all!

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . ix

List of Listings . x

1 Introduction . 1
1.1 Problem Statement . 2
1.2 Research Approach and Contributions . 5
1.3 Dissertation Organization . 9

2 Background . 10
2.1 Task Scheduling . 10
2.2 Network Reprogramming . 11
2.3 Data Storage . 14

3 Task Scheduling . 17
3.1 Basic Scheduler . 18
3.2 O(1) Scheduler . 20
3.3 O(n) Scheduler . 21
3.4 Intelligent Sleep Scheduler . 22
3.5 Algebraic Models . 25
3.6 Evaluation . 28
3.7 Summary . 32

4 Network Reprogramming . 34
4.1 VSPIN Framework . 34
4.2 Incremental Code Update Mechanism . 41
4.3 Evaluation . 50
4.4 Summary . 55

5 Data Storage . 59
5.1 LoggerFS Design . 59
5.2 File System Implementation . 66

vi

5.3 Evaluation . 70
5.4 Summary . 76

6 Related Work . 77
6.1 Task Scheduling . 77
6.2 Network Reprogramming . 78
6.3 Data Storage . 81

7 Conclusion . 84
7.1 Contribution Summary . 84
7.2 Expected Impact . 86

Bibliography . 86

vii

List of Tables

1.1 Memory Technology Comparison . 7

4.1 Energy Consumption Characteristics . 52
4.2 Edit Map Sizes for C-based OS and TinyOS Update Scenarios 53
4.3 Edit Map Sizes for Different Merge Windows in Cases 1-5 54
4.4 Comparison of Simple and Incremental Reprogramming Costs 55

5.1 Measured Read and Write Speeds . 72

viii

List of Figures

2.1 A1, A2, ATASK , ωi, and N . 11

3.1 ISR Execution Profile (tISR) (Intelligent Sleep Scheduler) 27
3.2 X = n2

n1+n2
, Y = ntask executed

nin queue
, Z = n1A1 + n2A2 . 29

3.3 Null Activation Period Contributions (X = n2
n1+n2

, Y = n1A1 µs) 30
3.4 Scheduler Power Consumption Profiles . 31
3.5 Battery Life Expectancy . 32

4.1 VSPIN Architecture . 35
4.2 VSPIN Kernel Module . 36
4.3 Linux tty Modules and VSPIN Kernel Module Interaction 37
4.4 VSPIN User Process . 38
4.5 Incremental Code Update Process . 40
4.6 Incremental Network Reprogramming Workflow . 41
4.7 Logical View of the LCS Between Two Images . 43
4.8 Edit Map Generation Flowchart . 44
4.9 Update and Data Node Structures . 45
4.10 Update Ordering Problem . 46
4.11 Edit Map Encoding Scheme . 47
4.12 Application of Edit Operations . 48
4.13 Effects of Map Optimization on Cupdate . 57
4.14 Reprogramming Costs for Different Code Update Scenarios 58

5.1 LoggerFS Hardware Architecture . 60
5.2 Hybrid Storage Approach . 60
5.3 Logical View of File and Record Layout . 61
5.4 File Metadata in RAM and FRAM . 62
5.5 Consistent Data Structure Update . 63
5.6 Read Path with Cache . 65
5.7 Write Path with Cache . 66
5.8 Consistent File Metadata . 69
5.9 Write Throughput with Cache . 73
5.10 Read Throughput with Cache . 74
5.11 50%/50% Read-Write Throughput . 75

ix

List of Listings

2.1 Avrdude usage example . 12
3.1 scheduler run() (Basic Scheduler) . 18
3.2 scheduler run() and run task() (O(1) Scheduler) 19
3.3 scheduler run() (O(n) Scheduler) . 21
3.4 scheduler run() and intelligent sleep() (Intelligent Sleep Scheduler) 23
3.5 Overflow ISR (Intelligent Sleep Scheduler) . 24
5.1 File, Record, and Cache Metadata . 67
5.2 LoggerFS API . 68

x

Chapter 1

Introduction

Wireless sensor networks (WSNs) usually consist of a large number of nodes [2] and are used

in a wide variety of applications, such as disaster response, volcanic activity monitoring, structural

health monitoring, environmental monitoring, medical monitoring, and traffic monitoring [15, 34,

41, 42, 46, 63, 64, 67, 68, 70]. Due to the nature of these applications, the WSN nodes are often

required to operate for extended periods of time without any human intervention. To enable longer

operation times (and lower costs), the nodes are typically resource-constrained, thus consuming less

power. The scarcity of computational resources presents WSN developers with unique challenges.

The wide range of associated applications, along with the desired scale of the associated deployments

further exacerbates the design challenges. In this dissertation, we focus on three key system design

challenges for WSNs – task scheduling, network reprogramming, and persistent data storage.

Task Scheduling: A significant class of embedded applications are characterized by low

duty-cycle operation and time-triggered, periodic execution. Task scheduling and duty-cycling in

such applications presents a fundamentally different scheduling paradigm than witnessed in resource-

abundant systems; traditional task scheduling strategies are not optimal.

Network Reprogramming: The ability to remotely reprogram nodes is essential in in-

stalling and maintaining large WSN deployments. Adding new functionality or addressing defects in

existing applications after a deployment is complete is often not feasible due to time and personnel

constraints. Many state-of-the-art solutions do not support fast and efficient network reprogram-

ming.

1

Data Storage: Sensor applications that support high data rate sampling require WSN

nodes to store this data in a fast and efficient manner. Mission critical applications also require

fault-tolerant data storage. Current storage technologies for embedded sensor devices do not provide

a sufficiently robust solution; they either lack the ability to support fast sampling rates, or are unable

to provide persistence guarantees in the presence of faults.

1.1 Problem Statement

In this section, we describe the challenges to be addressed in this dissertation in the contexts

of task scheduling, network reprogramming, and data storage in sensor networks.

1.1.1 Task Scheduling

A significant class of embedded applications are characterized by low duty-cycle operation

and time-triggered, periodic execution. These systems sleep for relatively long periods, wake in re-

sponse to an interrupt, perform a short computation, and return to sleep. We refer to these systems

as almost-always-sleeping (AAS) systems. The wireless sensor network domain is rife with represen-

tative examples. Environmental monitoring networks [63, 64, 42], for instance, comprise distributed

sensors that periodically wake to collect and transmit environmental stimuli before returning to

sleep. Indeed, most sensing systems – environmental or otherwise – adopt a variant of this strategy,

as do numerous other embedded applications.

The broad adoption of AAS designs is due to the energy efficiency they afford. Modern

microcontrollers support sleep states in which internal circuitry may be powered-down, reducing

energy consumption by several orders of magnitude. As an example, common wireless sensor net-

working platforms consume 10s of milliwatts in the active state, and only 10s of microwatts when

idle [50]. For devices that exhibit this two-phase consumption profile, the best conservation strategy

is to sleep as often and as long as possible.

The active period of an embedded device is partitioned into two components: the time spent

executing application code (tasks), and the time spent executing scheduling code. Reducing the

runtime of individual tasks can only be achieved on an application-by-application basis. Reducing

the scheduling overhead, however, can be achieved through careful analysis and design

of the underlying scheduling system — our focus.

2

1.1.2 Network Reprogramming

WSNs typically consist of resource-constrained sensor nodes to enable low power consump-

tion and longer operation times. The applications are developed and compiled on typical desktop sys-

tems, and then written to the flash program memory of target nodes using an in-system-programmer

(ISP), or other serial reprogramming approach [44, 35]. These approaches handle only one sensor

node at a time, causing network programming time to increase linearly with network size. Many

WSNs, e.g. for disaster management, structural health monitoring, and volcanic activity monitor-

ing [15, 34, 67], may require a large number of nodes to be deployed, rendering these programming

approaches unusable.

The ability to reprogram nodes is also essential in maintaining large WSN deployments.

If new functionality must be added, or changes must be made to correct defects after a large net-

work has been deployed, the in-system-programming and serial reprogramming approaches can be

prohibitively time-consuming and costly. Network reprogramming using wireless communication to

transfer program images to sensor nodes mitigates the problems posed by these approaches. While

wireless methods of data dissemination enable sensor devices freedom from direct connections to

the host system, wireless data transmission is energy-intensive. Previous studies have reported that

transmission of a single bit of data requires 1,000 times the energy required for the execution of a

single instruction on typical devices [51, 56, 71]. Brute force update mechanisms which use wireless

communication to reprogram nodes are not energy efficient, as they require the entire code image to

be transmitted throughout the network. Incremental code update strategies significantly reduce the

amount of data that must be transferred to the reprogramming system, thus improving the energy

footprint of the network. Integrating incremental update strategies can result in faster

and more efficient network reprogramming — our primary focus.

Many incremental code update strategies have been proposed [31, 32, 51, 45] to reduce the

amount of time required for reprogramming. However, very little information has been reported in

the literature regarding the supporting software engineering tools and frameworks used to develop

these reprogramming strategies. As a result, the design of every new incremental update mecha-

nism requires the designer to develop an ad hoc reprogramming framework. A well-documented

software development framework that can be integrated with commonly used repro-

gramming tools can facilitate the implementation, evaluation, and use of incremental

3

code update algorithms — our secondary focus in this area of this dissertation.

1.1.3 Data Storage

Typical WSN deployments consist of a large number of resource-constrained sensor nodes

tasked with monitoring local conditions. Applications such as disaster management, structural

health monitoring, and volcanic activity monitoring [15, 34, 67] require constant recording, trans-

mission, and processing of sensed data. Some applications require immediate transmission [15],

while others require periodic transmission. The ability to store data in-situ is essential in both

scenarios [16]. Applications with immediate transmission requirements may have periods of radio

connectivity loss, during which they may need to buffer sensed data. Other applications may employ

buffering with periodic transmissions to extend battery life.

Storing buffered data in RAM is not always feasible, as the size of primary memory in typical

sensor nodes is often small [20]. For example, the Atmel ATMega644P microcontroller (MCU), used

in the MoteStack [22], has only 4KB of RAM [8]. The maximum supported RAM size in a Texas

Instruments MSP430 MCU, used in the Telos platform [50], is 64KB [28]. While flash memory is

slower than RAM, it offers a viable alternative due to its larger memory size. However, some sen-

sor applications have the capability to acquire data at continuously high rates, overwhelming flash

memory, which offers comparatively slow write-erase speeds. Flash memory is also characterized by

a limited number of write-erase cycles, potentially “wearing out” due to frequent writes. These lim-

itations have prompted efforts to develop improved storage technologies. Non-Volatile Static RAM

(NVSRAM), Ferroelectric RAM (FeRAM/FRAM), Ovonic Unified Memory (OUM), and Magne-

toresistive RAM (MRAM) are potential successors of flash technology – all boasting performance

advantages, including low power consumption, a large number of write-erase cycles, and fast read

and write performance. Exploiting the performance and feature advantages of these newer

technologies is the key to designing fast, lightweight, and reliable file systems — our

final focus area.

4

1.2 Research Approach and Contributions

In this section, we outline our approaches to addressing the challenges and our contributions.

1.2.1 Task Scheduling

We present the design and implementation of four scheduling systems which support task

scheduling in AAS embedded applications. The first is a basic scheduler that parallels the design of

existing embedded task schedulers. The second is an O(1) scheduler, loosely based on the similarly

titled Linux 2.6.8.1 task scheduler. The third is an O(n) scheduler, which improves on the O(1)

scheduler by introducing constant time task identification and linear-time rescheduling. Finally, the

intelligent sleep scheduler uses variable length sleep periods between tasks to achieve an even lower

power consumption profile.

We emphasize that these designs are practically motivated. They evolved over the course

of 18 months while developing a large-scale environmental monitoring network deployed in the City

of Aiken, South Carolina [22]. In 2011, the city’s stormwater treatment system was redesigned to

reduce the environmental impacts associated with stormwater runoff. The monitoring network was

installed in targeted areas throughout the city to monitor the modified treatment system. Our

sub-team was responsible for the design of the wireless sensor platforms and the associated firmware

used to construct the network. The design process was guided by the need to support continuous,

uninterrupted data collection in the face of unattended operation (since Aiken is relatively remote).

Maximizing the lifetime of our almost-always-sleeping system was a principal goal. In addition to

yielding a successful network deployment, the experience resulted in the first systematic analysis of

AAS schedulers, which we present here.

1.2.2 Network Reprogramming

We first present VSPIN, a Linux-based framework for developing and testing incremental

code update mechanisms to support efficient reprogramming of wireless sensor networks. We devel-

oped VSPIN to facilitate the implementation and evaluation of incremental code update algorithms

by providing a unified development framework for WSN designers. The current implementation is

tailored for reprogramming Atmel AVR MCUs, which have on-chip, in-system reprogrammable flash

program memory, using Avrdude [17]. However, the solution design can be easily adapted for use with

5

any MCU which supports in-system programming and uses a set of standardized reprogramming

tools.

VSPIN is implemented in Linux, but can be extended to other operating systems. The

VSPIN framework consists of a virtual serial port kernel device driver, a user space program, and a

boot loader executing on the AVR MCU core. VSPIN connects to the MCU through any commu-

nication device which terminates with a serial interface (SPI or UART) on the sensor node. On the

host side, it is able to use wireless communication devices (Wi-Fi and ZigBee), or wired communi-

cation devices — anything capable of exporting a serial device on the Linux platform (RS-232 or

USB).

Next, we present an incremental code update mechanism which transmits an edit map en-

coding the differences between old and new program images. We are able to generate the differences

between the two files using a divide-and-conquer dynamic programming approach. Our incremental

code update solution does not use block level code comparison. As a result, it is able to locate and

send differences at byte-level granularity. Our approach is also independent of any program code

structure knowledge, and thus provides a platform and programming language-independent solution.

We adapt Hirschberg’s Algorithm [26] (used for computing maximal common subsequences)

to compute the differences between two program image files. The adapted code differencing algorithm

is capable of generating the diffs between the two files in O(n2) time and O(n) space, where n is the

length of the new program image. The first step of the incremental code update strategy, i.e. the

code differencing algorithm, is run on a standard desktop system to avoid computationally-expensive

operations from executing on the sensor nodes.

In the second step, the differences are encoded in an edit map using heuristic-based opti-

mization. The optimization strategy efficiently encodes the edit map using a minimal number of

bytes. The edit map is then propagated to the resource-constrained sensor nodes using a standard

data dissemination algorithm. The nodes are responsible for decoding the edit map and performing

the required data write, and/or move operations to update the program image. Since edit map

creation, propagation, and decoding are decoupled, our strategy can be adapted for use with any

data dissemination protocol.

6

1.2.3 Data Storage

Memory technologies that combine the read and write speeds of RAM with the non-volatility

of flash can be used to design fast and reliable file systems. In the past, traditional EEPROM

technologies have been used to achieve file system reliability in embedded systems [16]. EEPROM

differs from flash in that it can be reprogrammed one byte at a time. However, EEPROM is slower

than flash, which supports page-based writes and block-based erases; EEPROM is not suitable for

use in applications where fast data update rates are required.

Table 1.1: Memory Technology Comparison
DRAM SRAM FLASH NVSRAM OUM1 MRAM FRAM

(MD51V65165E) (71V016SA10) (SST39LF010) (CY14B104NA) (MR2A16A) (FM22L16)

Non Volatile No No Yes Yes Yes Yes Yes
Non Destructive Read No Partial Yes Yes Yes Yes No

Direct Overwrite Yes Yes No Yes Yes Yes Yes

Write Cycles ∞ ∞ 106 2 ∗ 106 1012 ∞ >1014

Read Cycles ∞ ∞ ∞ ∞ ∞ ∞ >1014

Write Speed 84ns 10ns 200µs 20ns 10ns 35ns 110ns
Read Speed 84ns 10ns 45ns 20ns 20ns 35ns 110ns
Erase Speed 84ns 10ns 18ms/sector 20ns 50ns 35ns 110ns

Active Current 120mA 65mA 5mA 65mA n/a 105mA (AC) 8mA
Stand-by Current 2mA 10mA 1µA 5mA n/a 18mA (AC) 5µA

Table 1.1 presents a comparison of the memory technologies currently available or under

development. For a memory technology to be used in a resource-constrained environment, the

memory device should have low active and stand-by current consumption. To support a fast file

system, the device should provide fast read and write access times. Finally, the memory technology

should support a large number of read/write-erase cycles to avoid wearing out. While SRAM and

DRAM allow fast read and write access (84ns and 10ns, respectively), they are volatile in nature,

i.e. they lose their data when power is removed. Some older NVSRAM devices achieve non-volatility

using battery backed SRAM [19], while newer devices use non-volatile elements (EEPROM cells) [53].

NVSRAM devices typically have data access speeds comparable to SRAM devices (20ns). However,

NVSRAM allows limited write cycles (like flash) and exhibits high active and stand-by current draw,

which makes the technology unsuitable for many sensing applications. In comparison, FRAM [54]

offers a high number of read and write cycles (1014), along with fast data access (110ns for reads,

writes, and erases). FRAM is characterized by low active and stand-by current consumption (8mA

and 5µA, respectively). Unlike flash, FRAM also allows direct byte overwrites.

We present the design of LoggerFS – a fast, lightweight, and reliable file system for embedded

network systems. The implementation uses a hybrid memory design consisting of RAM, FRAM, and

1Under development

7

flash. LoggerFS provides fast sensor data access, while imposing only a small main memory footprint.

LoggerFS adapts a log-structured file system design, supplemented with a lightweight consistent data

structure update mechanism to provide file system reliability in the presence of faults. The design

includes a novel FRAM-based caching mechanism which supports flash wear-leveling and fast data

buffering during periods of high-rate sensing. Finally, we present a performance evaluation of the

LoggerFS implementation on a prototypical in-situ sensing platform.

1.2.4 Contributions

We present the following contributions.

1.2.4.1 Contribution 1 — Task Scheduling

We detail the design and implementation of four progressively more efficient scheduling

systems designed to support AAS embedded applications; the designs are applicable to virtually any

modern MCU. (For the sake of presentation, we focus on the popular ATmega family of devices,

used in a number of sensor networking platforms [59, 61, 60].) For each scheduler implementation,

we present a closed-form algebraic model that captures the scheduling overhead as a function of task

load and other parameters. We then use these models to characterize the comparative performance

among the designs. To supplement this analysis, we also conduct physical power profiling studies

using an ATmega644-based sensor networking platform. The results provide a clear picture of the

power consumption profile associated with each design, as well as the comparative lifetime benefits

they provide.

1.2.4.2 Contribution 2 — Network Reprogramming

We first present the design and implementation of the VSPIN framework. Next, we present

the design and implementation of the incremental code update mechanism. We conduct experiments

for various representative code update scenarios and present corresponding results to demonstrate the

reduction in required reprogramming data and associated energy compared to simple reprogramming

strategies involving transmission of full program images. We also compare the results with reductions

achieved by other incremental code update strategies described in prior work. We demonstrate

significant data and power savings over the state-of-the-art incremental update strategies across a

range of code update scenarios.

8

1.2.4.3 Contribution 3 — Data Storage

We present the design and implementation of LoggerFS and its associated APIs. We describe

the consistent data structure update mechanism used to achieve data persistence and file system

reliability. Next, we present the design of an FRAM-based, write-back cache which allows LoggerFS

to efficiently handle bursts of writes. We demonstrate the fault tolerance features of LoggerFS for

various representative system and sub-system failure scenarios. We also evaluate the read and write

performance of a LoggerFS prototype on an in-situ sensing platform. We demonstrate significant

improvements in read and write performance with the FRAM-based, write-back cache, over the

LoggerFS implementation without cache.

1.3 Dissertation Organization

The remainder of the dissertation is organized as follows. Chapter 2 presents background

material related to task scheduling, network reprogramming, and data storage challenges. Chapter

3 describes the task scheduling contributions. Chapter 4 describes the network reprogramming

contributions. Chapter 5 describes the data storage contributions. Chapter 6 discusses elements of

related work in the relevant areas. Finally, Chapter 7 concludes with a summary of the contributions

and expected impact.

9

Chapter 2

Background

In this chapter, we present background material on task scheduling, network reprogramming,

and reliable data storage in WSNs.

2.1 Task Scheduling

The smallest unit of work that may be scheduled in an AAS system is a task, an action

taken in response to a timer event. Two specific cases must be considered when characterizing the

overhead of any AAS scheduler design. When a scheduler wakes and has no tasks to execute, a small

amount of time is expended, referred to as the null activation period, denoted by A1. The amount

of time expended when the scheduler wakes and there are tasks to execute, including task execution

time, is referred to as the task activation period, denoted by ATASK .

In a given time period N , a scheduler experiences A1 and ATASK multiple times and sleeps

the rest of the time. The number of times the scheduler experiences A1 and ATASK in a time period

N is given by n1 and n2, respectively. Each instance, i, of ATASK within N consists of time spent

executing the task functions, given by ωi, and the rest of the time expended prior to, in between,

and after task execution, denoted by A2. The relationship between A1, A2, ATASK , ωi, and N is

illustrated in Figure 2.1. The total time spent executing task functions in time period N is given

by W , calculated as the sum of all ωi, where i = {1, 2, ..., n2}. In the ith occurrence of ATASK , ωi

is calculated as the sum of all ωi,j , where j = {1, 2, ..., nexecuted}; nexecuted denotes the number of

task functions executed in the ith task activation period. The total time taken to execute all task

10

functions, W , in time period N is calculated as:

W =

n2∑
i=1

nexecuted∑
j=1

ωi,j (2.1)

(a) Components of N (b) ATASK Expanded

Figure 2.1: A1, A2, ATASK , ωi, and N

The scheduler load α is the fraction of time the system is either busy scheduling tasks or

executing them within time period N . The task load β is the fraction of time the system is busy

executing just the task functions, given by W , within time period N . α can then be expressed as1:

α =
(n1A1 + n2ATASK)

N

=
(n1A1 + n2A2 + W)

N

=
n1A1 + n2A2

N
+ β (2.2)

Objective. In an ideal scheduler, with no scheduling overhead, α = β. To minimize the value of α,

both A1 and A2 need to be minimized. Our objective is to design a scheduler with the least possible

A1 value; since n1 � n2 in AAS systems, a lower A1 value, even at the expense of a higher A2 value,

will help in maximizing the efficiency and battery life expectancy of a scheduler.

2.2 Network Reprogramming

Avrdude [17] is a popular Linux-based command-line tool capable of programming flash and

EEPROM memory, as well as the fuse and lock bits of an AVR MCU. Avrdude supports specialized

hardware programmers which comply with programming protocols specified in AVR068, AVR069,

1Assuming n1, n2, W , and N are fixed, n2ATASK = n2A2 +W .

11

and AVR910 [6, 4, 5], by Atmel, including the popular AVRISP and AVRISPmkII devices. Avrdude

also works with a variety of other hardware programmers which connect to the host system using a

parallel (i.e., ppi, parport) or serial port.

Listing 2.1 presents three different usage scenarios where Avrdude is used for programming

a sensor node. The first example presents a typical scenario using an AVRISP mkII programmer;

the subsequent examples show its usage when using VSPIN. Avrdude takes as input the type of

MCU being programmed (-p), the communication port (-P), the programmer type (-c), and the

input file containing the binary application data (-U) to be written to flash memory (flash:w). The

application data (app.hex) sent to the boot loader is typically in the 16-bit Intel HEX format [29].

First, Avrdude performs checks to confirm the presence and status of the communication port and

the programmer. Next, it queries and checks the values set on the various fuse bits in the MCU.

(Fuse bits are stored in specialized, non-volatile registers and control the basic behavior of the MCU.)

Finally, Avrdude parses the HEX file and transfers the data.

1 // Usage with AVRISPMKII programmer

2 avrdude -p m644 -P usb -c avrispmkII -U flash:w:app.hex

3

4 // Usage with VSPIN boot loader, no kernel module, and no user process

5 avrdude -p m644 -P /dev/ttyUSB0 -c stk500v2 -U flash:w:app.hex

6

7 // Usage with VSPIN boot loader, kernel module, and user process

8 avrdude -p m644 -P /dev/vspins -c stk500v2 -U flash:w:app.hex

Listing 2.1: Avrdude usage example

Depending on the type of programming mechanism in use, application data can either be

transferred to an intermediate device programmer, or sent directly to the MCU to be programmed.

If an intermediate programmer is used, the programmer is responsible for transferring the data to the

MCU. In the absence of a programmer, the sensor node requires a specialized boot loader capable of

communicating with Avrdude and emulating the behavior of a programmer. After the application

data has been written to the sensor node, Avrdude compares the MCU fuse values from before and

after programming to check for consistency. Finally, it reads the data back from program flash

memory, conducts a byte-by-byte comparison with the original binary file, and reports the result of

the comparison.

Commercially available hardware programmers require system designers to use a brute force

reprogramming approach, i.e., the entire program image must be sent to the target hardware. As a

12

result, incremental code update mechanisms designed to achieve more efficient network reprogram-

ming rely on ad hoc methods of binary image differencing and data transmission. Specialized boot

loaders are used to support the transfer and decoding of the resulting code increments, as well as

subsequent reconstruction and programming of the application data image. The boot loader is ini-

tially installed on the MCU using a standard programmer. After the boot loader has been installed,

it interacts with the host system using a wired/wireless, serial/parallel communication device, using

strategy-specific data transmission protocols.

In contrast, VSPIN provides a transparent solution to enable incremental sensor network

reprogramming by allowing the use of Avrdude without requiring any changes to its code base or

usage (Listing 2.1). VSPIN uses the STK500 Communication Protocol [4], supported by Avrdude,

to communicate between the host system and the boot loader. As a result, VSPIN is capable of

allowing the use of Avrdude in incremental, as well as non-incremental programming modes.

Network reprogramming consists of transferring a program image developed and compiled on

a desktop system to networked sensor nodes. ISP-free reprogramming strategies — wired or wireless

— usually require installing a boot loader on the target device, which receives the application

program image. The transferred data is then stored in application flash or external memory [44].

The host development system is responsible for reading the binary image file and extracting

the machine code to be injected into the network. The machine code is encoded in the message

format specified by the data dissemination protocol used to transfer the data to sensor nodes. The

data dissemination protocol is required to be resistant to packet loss and other network issues [51].

Finally, the boot loader executing on each sensor node decodes the messages received and

stores the machine code to on-chip flash program memory. Since flash writes occur one page at a

time (256 bytes in most embedded devices), the boot loader typically uses a flow control mechanism

to control the inflow of data.

While wireless methods of data dissemination eliminate the need for direct connections to

the host system, wireless data transmission is energy-intensive. Previous studies have reported that

transmission of a single bit of data requires 1,000 times the energy required for the execution of a

single instruction[51, 71, 56]. Incremental code update strategies significantly reduce the amount

of data that must be transferred to the boot loader, thus improving the energy footprint of the

network.

13

2.3 Data Storage

Designing a file system for sensor systems poses unique challenges due to the scarcity of

computational resources afforded by most hardware platforms. The small size of primary memory

(RAM) and limited battery power require a reevaluation of common file system design choices, which

tend to be resource-intensive.

2.3.1 Batch Data Transmissions

WSNs typically consist of resource-constrained sensor devices that sense and transmit data

to one or more base stations, where resource-intensive computations are performed. Since data

transmission is energy-intensive, a common strategy is to store data locally (in RAM), and to later

send batched data. With the advent of inexpensive flash memory technology, sensor nodes equipped

with flash devices are able to store large amounts of sensed data. There are, however, challenges

associated with flash storage. The write granularity of flash memory is one page, ranging from 512B

to 8KB, while the erase granularity is a block, ranging from 64 to 128 pages. The amount of data

(in pages) that can be written to flash is limited by the size of RAM (either in the system or on the

flash chip), since the data must first be buffered.

2.3.2 Data Sampling Rates

Mission-critical sensor applications can produce continuous data at high rates. This can

overwhelm flash memory devices, which write at slower speeds than the incoming data rate due

to slow write-erase cycles. The devices also support writes and erases at larger page and block

granularities, respectively, compared to the data sample sizes. Flash memory, which is characterized

by limited write-erase cycles, can also “wear out” due to frequent data updates during high-rate

sensing. Batching data writes in RAM can help with wear-leveling to a limited extent and can

sustain short bursts of high-rate sampling. However, for systems with continuously high sampling

rates, this is not a feasible solution. Instead, some form of non-volatile memory which is larger in

size than the available RAM may be used as cache.

14

2.3.3 Data Persistence

It is important for sensor devices deployed as part of mission-critical applications to include

a robust file system so that data can be accessed reliably, even across device failures (e.g., power

disruptions, operating system crashes, etc.) Designing such a file system usually requires check-

pointing/snapshotting [57]. However, even the simplest check-pointing/snapshotting solutions are

resource-intensive, not suited for implementation on sensor nodes.

2.3.4 Data Considerations

To design a fast file system for sensor nodes, it is important to understand the types of data

stored on these nodes, as well as the associated access patterns. WSNs primarily deal with three

types of data:

• Sensor Data: Data generated by the sensors attached to a node represents the majority of

recorded data. In many applications, this data must be batched in RAM or a persistent storage

device before it is transmitted to a base station. Some sensors have the ability to generate

data very quickly. The sampled data is typically recorded in a sequential manner. During

the transmission phase, data is usually read back in a FIFO manner, transmitted, and finally

deleted from the storage device.

• Binary Program Image Data: The ability to reprogram wireless sensor nodes in large

installations is important. Some network reprogramming strategies involve transferring an

entire binary program image to the sensor nodes [33, 62, 27]. Some of the more sophisticated,

incremental approaches transfer only a diff between the new and old images, which is then used

to reconstruct the new binary image on each node [45, 31, 32]. Regardless of the reprogramming

strategy, the transferred data must be stored in a reliable manner. Errors in binary program

image data can cause sensor nodes to stop functioning.

• Configuration Data: Configuration data contains the parameter values necessary to config-

ure the operation of sensor nodes (e.g., sampling frequency, file size, transmission rate, etc.)

Integrity of this data is important since faulty values can cause sensor nodes to malfunction or

stop working altogether. However, configuration data is not updated as often as sensor data.

Configuration data is usually stored in EEPROM, in the absence of other persistent storage

15

devices; reads and writes to EEPROM are usually energy-intensive and slow.

The number of files that must be supported by a file system for sensor nodes is limited,

as a substantial percentage of the associated operations are typically for storage and retrieval of

sensed data. The number of files required in such a system is on the order of the number of available

sensors. Configuration data requires limited additional memory, while the space required to store a

copy of a binary program image cannot be greater than the size of the device’s programmable flash

memory.

16

Chapter 3

Task Scheduling

In this chapter, we present the design and implementation details, performance models, and

evaluation results for four progressively efficient task schedulers designed to support AAS embedded

applications.

We focus on a canonical implementation of an AAS scheduler, where a task is composed

of a function pointer, a task type, a period, and a due date. The function pointer points to the

executable task body. The task type is either one shot or periodic, corresponding to a task that

expires after it has been executed, and a task that is continually rescheduled, respectively. The

period specifies how often the task should be activated. The due date records the time at which

the task should next occur.

The basic scheduling functions in our implementation are scheduler init(), schedule task(),

and scheduler run(). scheduler init() handles scheduler initialization during system start-up,

and schedule task() is used to schedule new tasks. The system spends much of its lifetime in

scheduler run(); it contains the core of the scheduling logic and is invoked to start the scheduler.

Our scheduler designs depend on the target hardware system, particularly the timer mech-

anism. The target microcontroller implements the system clock using an 8-bit counter register,

driven by an external 32.768KHz oscillator. A prescaler of 128 results in an overflow interrupt being

triggered once per second; this suspends the executing instruction and begins the interrupt service

routine (ISR), where system time is updated. If the processor is in a sleep state, it wakes and enters

the ISR. Upon completion, the processor resumes execution following the call to sleep().

17

1 void scheduler_run() {

2 while(true) {

3 bool task_executed;

4 do {

5 task_executed = false;

6 uint32_t current_time = current_system_time();

7 uint8_t task_index;

8 for(task_index = 0; task_index < TASK_QUEUE_CAPACITY; task_index++) {

9 // if the current (non-empty) task is due

10 if((system_task_buffer[task_index].task != NULL) &&

11 (current_time >= system_task_buffer[task_index].due_date)) {

12 // execute the task function

13 (*system_task_buffer[task_index].task)();

14 // handle rescheduling / removal

15 if(system_task_buffer[task_index].type == ONE_SHOT) {

16 system_task_buffer[task_index].task = NULL;

17 } else {

18 system_task_buffer[task_index].due_date +=

19 system_task_buffer[task_index].period;

20 }

21 task_executed = true;

22 }

23 }

24 } while(task_executed);

25 set_sleep_mode(SLEEP_MODE_PWR_SAVE);

26 sleep_mode();

27 }

28 }

Listing 3.1: scheduler run() (Basic Scheduler)

3.1 Basic Scheduler

We present a basic AAS scheduler implementation that parallels the design of existing

embedded task schedulers [39, 38, 25]. system task buffer, an N-element array, is initialized with

NULL entries within scheduler init(). schedule task() finds the first empty slot and stores the

task passed as argument.

scheduler run(), shown in Listing 3.1, iterates indefinitely in the outer while loop. In each

iteration, referred to as an execution cycle, the scheduler steps through system task buffer and

executes each task with an expired due date. When a one shot task completes, the task is removed

from system task buffer. When a periodic task completes, its due date is updated based on its

period. When there are no tasks to execute, the scheduler enters its sleep cycle.

This simple scheduler has a significant power consumption footprint due to the time required

to determine whether there are tasks to execute. Even when there are no tasks to execute, the

18

scheduler wakes and cycles through the entire task buffer. Since the time expended is bounded by

N, an increase in task capacity degrades system performance. A scheduler that could perform a

constant time lookup into the task array for available tasks would be more desirable.

1 void scheduler_run() {

2 while(true) {

3 bool task_executed;

4 do {

5 task_executed = false;

6 uint32_t current_time = current_system_time();

7 uint8_t task_index = 0;

8 while((task_index = 16 - ffs(task_bitmap_active)) < 16) {

9 if (current_time >= system_task_buffer[task_index].due_date) {

10 task_executed = run_task(task_index,current_time);

11 } else {

12 task_bitmap_active &= ~(1 << (15 ^ task_index));

13 task_bitmap_inactive |= (1 << (15 ^ task_index));

14 }

15 }

16 } while(task_executed);

17 task_bitmap_active = task_bitmap_inactive;

18 task_bitmap_inactive = 0;

19 set_sleep_mode(SLEEP_MODE_PWR_SAVE);

20 sleep_mode();

21 }

22 }

23

24 static inline bool run_task(uint8_t task_index,uint32_t current_time) {

25 // execute the task

26 (*system_task_buffer[task_index].task)();

27 // handle rescheduling / removal

28 if(system_task_buffer[task_index].type == ONE_SHOT) {

29 task_bitmap_active &= ~(1 << (15 ^ task_index));

30 } else {

31 system_task_buffer[task_index].due_date +=

32 system_task_buffer[task_index].period;

33 if(system_task_buffer[task_index].due_date > current_time) {

34 task_bitmap_active &= ~(1 << (15 ^ task_index));

35 task_bitmap_inactive |= (1 << (15 ^ task_index));

36 }

37 }

38 return (true);

39 }

Listing 3.2: scheduler run() and run task() (O(1) Scheduler)

19

3.2 O(1) Scheduler

The O(1) scheduler is based loosely on the Linux 2.6.8.1 scheduler[1]. Adapted to our

system, when there are no tasks in the queue, the scheduler performs a constant-time lookup and

returns to sleep. This scheduler also uses system task buffer to store scheduled tasks. Two

supporting queues are also introduced; the active task queue stores tasks which must be executed

in the current execution cycle, and the idle task queue stores tasks that have been executed, but

which must be re-evaluated the next time the system wakes. To achieve constant-time task lookup,

the queues are implemented using bitmaps; a 1 at bit position n indicates a task in the nth element

of system task buffer. At system boot time, schedule task() locates the first free index in the

task buffer, and the corresponding locations in the active and idle bitmaps are set and cleared,

respectively.

In the execution phase, a call to ffs() is performed on the active task bitmap, as shown

in Listing 3.2 (line 8). The ffs() function, provided by the Atmel AVR C library[7], returns the

position of the least significant bit set in a 16-bit word; or 0, if none are set. If a task is identified

in the active task queue with a due date greater than the current system time, its index position

is cleared in the active task bitmap and set in the idle task bitmap. If the identified task has an

expired due date, it is executed by run task(), followed by its removal or rescheduling. Task removal

entails removal of the corresponding task bit from the active task bitmap. Task rescheduling involves

updating the two bitmaps, as well as the due date of the task in system task buffer. If the new

due date is still expired, the task queues are untouched, ensuring that the task is retriggered during

the next call to ffs(). If the new due date is later than the current system time, its index position

is cleared in the active task bitmap and set in the idle task bitmap. At the end of the execution

cycle, when the active task queue is empty, the contents of the idle queue are moved into the active

queue to prepare for the next execution cycle.

During the execution cycle, if there are no tasks to execute, the scheduler performs an

O(1) lookup into the active task queue and returns to sleep. While O(1) run-time is desirable, a

large constant results in increased power consumption. We next consider a design that introduces

increased overhead when there are tasks to execute, but very little overhead when there are no tasks

to execute — our common case.

20

3.3 O(n) Scheduler

The O(n) scheduler removes the call to the expensive ffs() function; it requires constant

time to identify a task to execute, and linear time to reschedule the task post-execution.

Tasks are stored as nodes in a linked list instead of the statically allocated task array.

Slab allocation is implemented using a static block of memory capable of holding N task nodes;

task free list, a pointer to the list of free memory within the static memory block; and task queue,

a pointer to the linked list of tasks. Task scheduling involves allocating a node from task free list,

populating the node, and inserting the node in task queue based on due date.

1 void scheduler_run() {

2 uint32_t system_sleep_cycle_counter = 0;

3 while(true) {

4 bool task_executed;

5 do {

6 task_executed = false;

7 uint32_t current_time = current_system_time();

8 while((task_queue != NULL) &&

9 (task_queue->due_date <= current_time)) {

10 // execute the task

11 task_node_ptr_t task_ptr = task_queue;

12 (task_ptr->task)();

13 task_executed = true;

14 task_queue = task_queue->next;

15 // handle rescheduling / removal

16 if(task_ptr->type == ONE_SHOT) {

17 free_list_free(&task_free_list, (node_ptr_t) task_ptr);

18 } else {

19 task_ptr->due_date += task_ptr->period;

20 insert_task_in_scheduling_queue(&task_queue, task_ptr);

21 }

22 }

23 system_sleep_cycle_counter = task_queue->due_date - current_time;

24 } while(task_executed);

25 set_sleep_mode(SLEEP_MODE_PWR_SAVE);

26 while(system_sleep_cycle_counter--) {

27 sleep_mode();

28 }

29 }

30 }

Listing 3.3: scheduler run() (O(n) Scheduler)

scheduler run(), shown in Listing 3.3, traverses the list of scheduled tasks and executes those

that are due. The removal of one shot tasks is handled by freeing the corresponding task node

and returning it to task free list. Rescheduling of periodic tasks is handled by updating the

21

corresponding task’s due date and re-inserting the task at the correct position in the priority queue.

Since tasks are ordered by due date, it is straightforward to determine when the next task

needs to be executed, just prior to sleeping. When the system is done executing tasks, the difference

between the earliest task due date and the current system time is recorded. When the system

wakes, this value is used to control the remaining sleep time; a simple check on this value allows the

scheduler to decide if there are any tasks to execute and saves it from having to access the node list.

The scheduler therefore experiences shorter wake cycles when there are no tasks to execute.

Since an AAS system typically wakes to find nothing to execute, even a small amount of time

expended during a wake cycle can add a measurable performance penalty. With the given hardware

and interrupt design, where the processor must wake every second, this is the best performance that

could be achieved. However, a scheduler capable of altering the interrupt behavior could yield even

better performance.

3.4 Intelligent Sleep Scheduler

The basis of the Intelligent Sleep Scheduler (ISS) is the O(n) scheduler, with updates to

the wake, sleep, and clock logic. The central idea is that the rate at which the overflow interrupt is

generated can be changed by choosing a different clock prescaler, thus making the duration of the

processor sleep period tunable. The clock prescaler can be set to 128, 256, or 1024, so that overflow

interrupts are triggered at 1, 2, and 8 second intervals, respectively.

Listing 3.4 presents the scheduler run() implementation. The difference between the ear-

liest task due date and the current system time is recorded at the end of each execution cycle. The

system then invokes intelligent sleep(), which partitions this value into multiple divisors, so as

to calculate the least number of sleep cycles that can be created from 1, 2, and 8-second intervals.

However, changing the rate at which the interrupt is fired is non-trivial.

The current rate at which the interrupt is triggered is called an epoch. Changing the clock

prescaler (and the epoch) at an arbitrary time causes the 8-bit counter register to contain a value

greater than 0, accounting for the partial second of elapsed time since the last overflow interrupt.

Since epoch values vary over time in this design, the semantics of this partial time also vary. Let the

epoch be e1 at time t1, when the overflow interrupt is triggered. Let the epoch assume the value e2

at t2. Partial time is defined as (t2 − t1), calculated as a function of e1 and the value in the 8-bit

22

counter register when the epoch was changed to e2. Partial times for each epoch (i.e. 1, 2, 8) are

stored in an array.

1 void scheduler_run() {

2 uint32_t system_sleep_cycle_counter = 0;

3 while(true) {

4 bool task_executed;

5 do {

6 task_executed = false;

7 uint32_t current_time = current_system_time();

8 while((task_queue != NULL) &&

9 (task_queue->due_date <= current_time)) {

10 //... same as O(n) scheduler ...

11 }

12 system_sleep_cycle_counter = task_queue->due_date - current_time;

13 } while(task_executed);

14 intelligent_sleep(system_sleep_cycle_counter);

15 }

16 }

17

18 inline void intelligent_sleep(uint32_t int_system_sleep_counter) {

19 int_system_sleep_counter = int_system_sleep_counter - 1;

20 // determine the number of 1, 2, and 8 second sleep cycles

21 // 1 second sleep required?

22 sleep_cycle[0] = (int_system_sleep_counter & 0x1);

23 // 2 second sleep required?

24 int_system_sleep_counter >>= 1;

25 sleep_cycle[1] = (int_system_sleep_counter & 0x1);

26 int_system_sleep_counter >>= 1;

27 sleep_cycle[1] += ((int_system_sleep_counter & 0x1) << 1));

28 // 8 second sleep required?

29 int_system_sleep_counter >>= 1;

30 sleep_cycle[2] = int_system_sleep_counter;

31

32 // compute total number of sleep cycles and begin sleeping

33 int_system_sleep_counter = sleep_cycle[0]

34 + sleep_cycle[1] + sleep_cycle[2];

35 set_sleep_mode(SLEEP_MODE_PWR_SAVE);

36 do {

37 sleep_mode();

38 } while(int_system_sleep_counter--);

39 }

Listing 3.4: scheduler run() and intelligent sleep() (Intelligent Sleep Scheduler)

To obtain the least accumulated partial epoch (required for accurate timer operation), the

overflow ISR is identified as the optimal place to change the prescaler. Thus, after an execution

cycle, the processor enters a 1-second sleep period, waits for the ISR to be triggered, and then

changes the prescaler. Listing 3.5 contains the code for the updated overflow ISR. The overflow ISR

ensures that the prescaler is set to the 1-second interval for the mandatory sleep cycle after the 2

23

and 8-second sleep cycles have been executed.

1 #define PARTIAL_TIME_UPDATE() \

2 // update system time based on partial time accumulation \

3 system_clock_cycles += system_time_fraction*temp_system_time_epoch; \

4 if(system_clock_cycles & ~(0xFF)) { \

5 system_time += system_clock_cycles>>8; \

6 system_clock_cycles &= 0xFF; \

7 }

8

9 // timer2 overflow handler

10 ISR(SIG_OVERFLOW2, ISR_BLOCK) {

11 // increment system time by current epoch

12 system_time += system_time_epoch;

13 if (sleep_cycle[0]) {

14 // 1-second sleep required; current epoch 1-second

15 sleep_cycle[0] = 0;

16 } else if (sleep_cycle[1]) {

17 // 2-second sleep required; decrement counter, change prescaler if required

18 sleep_cycle[1]--;

19 if (system_time_epoch != 2) {

20 temp_system_time_epoch = system_time_epoch;

21 system_time_epoch = 2;

22 TCCR2B = (1 << CS22) | (1 << CS21);

23 while(ASSR & 0x1F);

24 system_time_fraction = TCNT2;

25 TCNT2 = 0x0;

26 while(ASSR & 0x1F);

27 PARTIAL_TIME_UPDATE();

28 }

29 } else if (sleep_cycle[2]) {

30 // 8-second sleep required; decrement counter, change prescaler if required

31 sleep_cycle[2]--;

32 if (system_time_epoch != 8) {

33 //... analogous to above case ...

34 }

35 } else if (system_time_epoch != 1) {

36 // all counters are 0; prescaler reset for mandatory 1-second sleep

37 //... analogous to above case ...

38 }

39 }

Listing 3.5: Overflow ISR (Intelligent Sleep Scheduler)

At the start of the ISR, the system time is updated using the value of the current epoch.

Next, the change of prescaler (and epoch) is performed, if needed. If the clock prescaler is updated,

partial time is recorded, and accumulated partial time is calculated as the sum of its previous value

and the product of the current partial time and the last epoch value. Since every 256 fractions

represents 1 second of time, if accumulated partial time is greater than or equal to 255, the system

time is incremented and the accumulated partial time is appropriately updated.

24

3.5 Algebraic Models

The schedulers were implemented for the MoteStack, a state-of-the-art in-situ sensing plat-

form that uses an ATMega644, 8-bit microcontroller (MCU) operating at 10 MHz. A line-by-line

code analysis was performed with the assistance of AVR Studio, a cycle accurate device emulator,

to derive the closed-form algebraic models.

3.5.1 Basic Scheduler

In the basic scheduler, the null activation period (A1) is given in µs as:

A1 = 8.9 + 1.5 ∗ nqueue capacity + 1.3 ∗ nin queue (3.1)

where nqueue capacity denotes the capacity of the task queue, and nin queue denotes the number of

tasks in the queue.

A2 (in µs) is given by the following formula:

A2 = 8.9 + 3.1 ∗ nexecuted + 2.6 ∗ niter

+(1.5 ∗ nqueue capacity + 1.3 ∗ nin queue) ∗ niter (3.2)

Recall that nexecuted denotes the number of task functions executed in the current task activation

period; niter denotes the number of times the main scheduler loop executes (Listing 3.1, lines 4-24).

Assuming that ∀i, (ωi +A2) ≤ 1 second, the value of niter is calculated as follows:

niter = 1 + d 1

task periodmin
e (3.3)

where task periodmin is the smallest period value present in the task queue associated with a task

that has a due date earlier than the current system time.

3.5.2 The O(1) Scheduler

In the O(1) scheduler, A1 is given by:

25

A1 = 14.5 + 24 ∗ nin queue

+(2.8 ∗ (d
nqueue capacity

16
e − 1)) ∗ nin queue (3.4)

A2 is given as follows:

A2 = 19.9 + 6.5 ∗ nexecuted + 24 ∗ nin queue ∗ (niter − 1)

+ 2.8 ∗ (d
nqueue capacity

16
e − 1) ∗ nin queue) ∗ (niter − 1) (3.5)

3.5.3 The O(n) Scheduler

The O(n) scheduler has a constant null activation period of 7 µs (A1). A2 is given by the

following formula:

A2 = 14.4 + (13.7 + tins) ∗ nexecuted

+ 5.6 ∗ (niter − 1) (3.6)

where tins denotes the time spent within the insertion sort during rescheduling, post task execution.

The value of tins is given by the following formula:

tins =


0.2, if nin queue = 0;

3.7 ∗ [1, nin queue) if nin queue > 0;

(3.7)

where [1, nin queue) denotes any value between 1 and (nin queue - 1).

3.5.4 The Intelligent Sleep Scheduler

The null activation period (A1) for the ISS is the hardest to analyze due to its complex ISR

control flow paths. A flow chart indicating the different paths is shown in Figure 3.1. The value A1

assumes in a given null activation period depends on the values of the various system variables in

that specific period and is given by:

A1 = 0.6 + tISR (3.8)

26

where tISR denotes the amount of time elapsed between the start of the overflow ISR (line 10, Listing

3.5) and the start of the scheduling loop in scheduler run() (line 6, Listing 3.4).

Figure 3.1: ISR Execution Profile (tISR) (Intelligent Sleep Scheduler)

The accumulation of partial time fractions in the clock update logic requires 51.4 µs. How-

ever, this value is ignored for modeling purposes. The latest possible invocation of the partial update

logic (Listing 3.5, lines 35-38) is approximately 31.5 µs after the start of the ISR. Thus, the maxi-

mum partial time accumulated is approximately 31.5 µs, close to a single oscillation of the external

oscillator. Even in the 1-second interval case, the prescaler is set to 128, and the probability of

partial time accumulation is small. Even if it does accumulate, for these 31.5 µs intervals to total 1

second, approximately 31,746 occurences of A1 or A2 are required. Hence, the time is assumed to

be negligible.

A2 for the ISS is given by:

A2 = tISR + 13.4 + 5.6 ∗ (niter − 1)

+ (13.7 + tins) ∗ nexecuted (3.9)

where niter, nexecuted, tins, and tISR are defined as before.

27

3.6 Evaluation

We first consider the performance of the schedulers based on the algebraic models of their

behavior. We then measure the scheduler power consumption for a given set of tasks on physical

hardware.

3.6.1 Comparative Analysis

We compare the scheduling overhead of each scheduler under varying load conditions; results

are shown in Figures 3.2 and 3.3. Due to the number of variables in the equations for A1 and A2, we

make some assumptions to limit the evaluation space. We fix both nqueue capacity and nin queue to 128,

and niter to 2 (limiting task periodmin to greater than or equal to 1 second – Eq. (5)). We generate

the values of tins using a pseudo-random number generator and fix the values for all subsequent

calculations across the schedulers. For each scheduler, we measure the scheduling overhead , given by

n1A1 + n2A2, in seconds, on the Z-axis, when N is set to 500 seconds. N is composed of (n1 + n2)

1-second counts. We plot the fraction of tasks executed on the X-axis, given by ntask executed over

nin queue, and the load factor (given by n2 over (n1 + n2)) on the Y-axis. The system load factor is

helpful in understanding the interplay between A1 and A2.

Figures 3.2(a) and 3.2(b) show the results for the basic and O(1) schedulers, respectively.

The planar slopes for both graphs are similar, owing to the fact that both schedulers yield A2 values

that depend primarily on similar nqueue capacity and nin queue coefficients. At higher load factors, where

n2 >> n1, the O(1) scheduler performs worse than the basic scheduler, but at lower load factors, the

differences are negligible. Figures 3.2(c) and 3.2(d) show the results for the O(n) scheduler and ISS,

respectively; again the curves are similar. The O(n) scheduler and ISS incur less overhead than the

basic and O(1) schedulers at load factors below 0.8, as they are not dependent on nqueue capacity. We

also observe that at higher load factors, the value of ntask executed affects all schedulers significantly.

At lower load factors, both the O(n) and intelligent schedulers exhibit very low overhead (<2% for

load factors of 0.3). To further differentiate the two schedulers, we consider their performance at

very low load factors, on the order of 0.001, typical in AAS systems.

Since the overhead contribution of A1 is significantly larger than A2 at very low load factors,

we focus on the impact of A1 in isolation. In Figures 3.3(a) and 3.3(b), we measure, for each

scheduler, the contribution of A1, given by n1A1, on the Y-axis, against the load factor, given by

28

(a) Basic Scheduler (b) O(1) Scheduler

(c) O(n) Scheduler (d) Intelligent Sleep Scheduler

Figure 3.2: X = n2
n1+n2

, Y = ntask executed

nin queue
, Z = n1A1 + n2A2

n2 over n1 + n2, on the X-axis. With a side-by-side comparison, we see that the basic and O(1)

schedulers have a much higher null activation period contribution than the other two schedulers —

approximately three orders of magnitude larger. These schedulers are relatively inefficient at lower

load factors. We also observe that the ISS performs the best among all the schedulers presented.

The explanation is simple: Its ability to sleep for longer periods of time gives the ISS a comparative

advantage over schedulers which need to wake every second.

3.6.2 Power Consumption Profile

We now characterize the power consumption profiles of the four schedulers. For this purpose,

we installed a test application on the MoteStack device, using each scheduler. The application

29

(a) Basic and O(1) Scheduler

(b) O(n) and Intelligent Sleep Scheduler

Figure 3.3: Null Activation Period Contributions (X = n2
n1+n2

, Y = n1A1 µs)

schedules a periodic null task with a duration of 750ms, executed every 10s. We connected a 10Ω

sense resistor in series with the power supply of the MoteStack and measured the voltage difference

across the resistor using an oscilloscope. The voltage change is directly proportional to the current

draw (and power consumption, when voltage is constant) by Ohm’s Law. Figures 3.4(a) – 3.4(d)

summarize the consumption profiles for the four schedulers. In each graph, the horizontal axis

represents time, and the vertical axis represents current draw. The bottom halves of the figures

show the complete consumption profile; the task activation periods are visible. The top halves show

a magnified view of the profile, such that the null activation periods can be seen.

We sample data over a 10-second window, which captures current draw values for a single

task activation period, multiple null activation periods, and the associated sleep periods. We calcu-

late the average overall and ATASK current draw – the ATASK values vary by scheduler design. The

average current draw for the basic scheduler (Figure 3.4(a)) over the window is 0.613 mA (average

ATASK current draw is 5.52 mA), while the average current draw for the O(1) scheduler (Figure

3.4(b)) is 0.605 mA (average ATASK current draw is 5.28 mA). The average current consumption

30

-1
 0
 1
 2
 3
 4
 5
 6
 7

 0 5 10 15 20 25 30 35 40

C
u
rr

e
n
t
D

ra
w

 (
m

A
)

Time (seconds)

mA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

C
u
rr

e
n
t
D

ra
w

 (
m

A
)

mA

(a) Basic Scheduler

-1
 0
 1
 2
 3
 4
 5
 6
 7

 0 5 10 15 20 25 30 35 40

C
u
rr

e
n
t
D

ra
w

 (
m

A
)

Time (seconds)

mA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

C
u
rr

e
n
t
D

ra
w

 (
m

A
)

mA

(b) O(1) Scheduler

-1
 0
 1
 2
 3
 4
 5
 6
 7

 0 5 10 15 20 25 30 35 40

C
u
rr

e
n
t
D

ra
w

 (
m

A
)

Time (seconds)

mA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

C
u
rr

e
n
t
D

ra
w

 (
m

A
)

mA

(c) O(n) Scheduler

-1
 0
 1
 2
 3
 4
 5
 6
 7

 0 5 10 15 20 25 30 35 40

C
u
rr

e
n
t
D

ra
w

 (
m

A
)

Time (seconds)

mA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

C
u
rr

e
n
t
D

ra
w

 (
m

A
)

mA

(d) Intelligent Sleep Scheduler

Figure 3.4: Scheduler Power Consumption Profiles

for the O(n) (Figure 3.4(c)) and the Intelligent Sleep (Figure 3.4(d)) schedulers is 0.616 mA (av-

erage ATASK current draw is 5.56 mA) and 0.603 mA (average ATASK contribution is 5.49 mA),

respectively.

Figure 3.5 presents the life expectancy of a 1000mAh battery when used to supply power to

a MoteStack running the four schedulers under different almost-always-sleeping scenarios. Data for

Figure 3.5 was obtained by extrapolating the average current draw and average ATASK current draw

from Figures 3.4(a) – 3.4(d) and applying them to applications which sleep for 5, 10, 15, 30 45, and

60 minutes between task executions. We observe that the Intelligent Sleep Scheduler consistently

yields higher battery longevity for all applications.

Consider the application which sleeps for 15 minutes between tasks. A MoteStack running

this application and drawing its power from a 1000mAh battery would last approximately 5,375

hours using the basic scheduler. The same MoteStack would last for 5,380 hours using the O(1)

31

 4800

 5000

 5200

 5400

 5600

 5800

 6000

 6200

 6400

5 10 15 30 45 60

B
at

te
ry

 L
on

ge
vi

ty
 (

ho
ur

s)

Sampling Rate (minutes)

Basic Scheduler
O(1) Scheduler
O(n) Scheduler

Intelligent Sleep Scheduler

Figure 3.5: Battery Life Expectancy

scheduler. A MoteStack using the O(n) scheduler would last for 5,374 hours, while the ISS offers

the longest runtime, of approximately 5,980 hours – 10% longer than any of the other schedulers.

Though all the scheduler designs dictate a linear decrease in power consumption with an increase

in the time period between task activation periods, not surprisingly, the rate of the decrease for the

ISS is higher compared to the others, due to its ability to sleep for longer periods, thus enabling a

longer battery life.

3.7 Summary

In this chapter, we presented the design, implementation, and analysis of four progressively

efficient schedulers designed to support almost-always-sleeping embedded applications. We presented

a basic scheduler, which uses a rudimentary array to store tasks. We next presented the O(1)

scheduler based on the Linux 2.6.8.1 scheduler. This design incurs performance penalties due to

32

an expensive call to ffs(). Next, we presented the O(n) scheduler, which uses a priority queue to

store tasks and improve its tracking of sleep cycles, performing significantly better than the previous

schedulers. Finally, we presented the Intelligent Sleep Scheduler, which makes use of hardware

features to extend physical sleep cycles, further reducing scheduling overhead. We analyzed the

runtime of each scheduler and presented detailed performance results under varying load conditions.

We found that below a certain load factor, the O(n) and Intelligent Sleep Schedulers work well.

However, under lower load factors, the Intelligent Sleep Scheduler performs markedly better than

all other designs. This is the first systematic consideration of this increasingly relevant class of

schedulers.

33

Chapter 4

Network Reprogramming

In this chapter, we first present the design and implementation of VSPIN, the Linux-based

framework for developing and testing incremental code update mechanisms. We then detail the

design and implementation of the incremental code update mechanism developed using VSPIN and

present experimental results for various code update scenarios to demonstrate the achieved reduction

in reprogramming time and energy consumption. Finally, we compare the performance results with

other incremental code update strategies described in prior work.

4.1 VSPIN Framework

VSPIN is a Linux-based framework consisting of a kernel module and a user process. The

kernel module and user process execute between Avrdude and the physical serial device, while

the boot loader is installed on the sensor node. Figure 4.1 presents an overview of the VSPIN

architecture. Using the kernel module and user process, VSPIN has the ability to intercept messages

sent by and sent to Avrdude. This is achieved by providing a virtual serial communication port,

used as the communication port input parameter to Avrdude. The port is emulated by the VSPIN

kernel module.

The messages intercepted by the kernel module are transferred to the VSPIN user process,

which recognizes the syntax and semantics of the messages specified in the STK500 communication

protocol. Depending on the type of message, the user process either forwards the message to the

boot loader via the physical communication layer (represented by the /dev/ttyUSB0 and ftdi sio

34

AVRDUDE

VSPIN KERNEL MODULE

VSPIN USER PROCESS

SERIAL DEVICE MODULE
(/dev/ttyUSB0)

VSPIN BOOT LOADER
(MICROCONTROLLER)

COMM. DEVICE MODULE
(FTDI_SIO)

U
se

r
Sp

ac
e

K
e

rn
e

l S
p

ac
e

Serial Connection

Figure 4.1: VSPIN Architecture

modules in Figure 4.1), or responds to the message itself. If the message is forwarded, the boot loader

processes the message and sends the corresponding response back over the serial connection, as per

the STK500 protocol. The user process reads the responses sent by the boot loader and relays them

back to Avrdude via the kernel module. In addition to its ability to parse and forward messages

to the MCU, and to respond to selected messages on its own, the VSPIN user process contains

the incremental code update logic under test/development. The update logic resides in a separate

module in the user process; it accepts pointers to the old and new program image versions as input,

and outputs an edit script. The user process also transmits the information in this edit script to the

MCU, where it is used to reconstruct the new program image from the old version. As a result, we

are able to “plug-in” any algorithm in VSPIN for incremental sensor network reprogramming.

4.1.1 Kernel Module

The VSPIN kernel module creates two devices on initialization, a virtual serial device,

/dev/vspins, and a character device, /dev/vspinc; each has its own set of file operations. Figure 4.2

provides a detailed overview of the VSPIN kernel module. The virtual serial port (/dev/vspins) is

used to communicate with Avrdude, and the character device (/dev/vspinc) is used to communicate

with the VSPIN user process. The devices act as two end points of a communication channel and are

used to efficiently channelize the transfer of data from Avrdude to the user process and vice-versa.

VSPIN makes use of two separate devices to solve simultaneous read and write synchro-

35

.write

/dev/vspins
Serial Device File Operations:
.open = vspin_serial_open,
.close = vspin_serial_close,
.write = vspin_serial_write,
.write_room = vspin_serial_write_room,
.set_termios = vspin_serial_set_termios,
.chars_in_buffer = vspin_serial_chars_in_buffer,
.read_proc = vspin_serial_read_proc;
.tiocmget = vspin_serial_tiocmget;
.tiocmset = vspin_serial_tiocmset;
.ioctl = vspin_serial_ioctl;

/dev/vspinc
Character Device File Operations:
.open = vspin_char_open,
.close = vspin_char_close,
.write = vspin_char_write,
.read = vspin_char_write_room,
.mmap = vspin_char_mmap;

.read .writeSchedule a read task

Shared internal data buffer
Shared internal semaphores

AVRDUDE VSPIN USER PROCESS

U
se

r
Sp

ac
e

K
e

rn
e

l S
p

ac
e

Figure 4.2: VSPIN Kernel Module

nization issues arising from the use of a single device. The /dev/vspins device is required because

Avrdude expects to communicate with a serial device and issues Linux termios library calls to the

communication port it connects to. The virtual serial driver implements all of the file operations

required to emulate a serial device, as shown in Figure 4.2. It supports all the termios library

calls (cfsetispeed(), cfsetospeed(), tcgetattr(), tcsetattr(), etc.), as well as fcntl() and

select() calls made from Avrdude. It also provides support for a subset of the options within the

ioctl() system call.

While the serial device driver is dedicated for use with Avrdude, the character device driver

provides a set of file operation callbacks for handling data exchange with the VSPIN user process

using read(), write(), and mmap() calls. If VSPIN had been designed with a single virtual device,

with simultaneous opens from Avrdude and the user process, channelization of data between Avrdude

and the user process would have been substantially more complex. Further, serial device drivers do

not provide a read() callback [14]; the read mechanism in serial tty drivers operates by forwarding

data received from the communication channel to the flip buffer in the Linux tty core module. Figure

4.3 illustrates the interaction between the Linux tty modules and the VSPIN kernel modules. The

tty core module handles data forwarding to the process which has an open on the serial device; the

36

 tty core

tty line discipline

Virtual Serial Device Driver
(part of VSPIN)

Li
n

u
x

K
e

rn
e

l

Character Device Driver
(part of VSPIN)

VSPIN USER PROCESS

.read .write

AVRDUDE

flip buffer

Schedule
read

.write

Figure 4.3: Linux tty Modules and VSPIN Kernel Module Interaction1

behavior is undefined in the event of multiple opens on a single device.

On module initialization, the kernel module handles the registration of the serial device

driver with the tty core module and creates all the necessary sysfs entries and devices. The serial

device driver also interacts with the Linux tty line discipline module (Figure 4.3), required for

supporting the select() call. The kernel module provides a single fixed size buffer which is shared

by the two devices and used to transfer data from Avrdude to the user process and vice-versa. The

module also provides a semaphore to protect the buffer.

Avrdude communicates with the boot loader by issuing an open on its communication port,

/dev/vspins, and issuing read and write calls to it. When Avrdude intends to send messages to

the boot loader, it writes the message to /dev/vspins, the emulated serial port. Immediately after

the write, Avrdude issues a timed read on /dev/vspins to collect the response to the message sent.

When the virtual serial device receives data from Avrdude via the write callback, it stores the data

in the shared buffer and hands the buffer over to the read callback of the character device. Similarly,

when the character device receives data from the user process via the write callback, it stores the

1Reproduced and adapted from [14].

37

U
se

r
Sp

ac
e

K
e

rn
e

l S
p

ac
e

VSPIN KERNEL MODULE /dev/ttyUSB0

DATA TRANSMISSION MODULE

DATA PROCESSING MODULE

INCREMENTAL CODE UPDATE MODULE

open(“/dev/vspinc”,...) open(“/dev/ttyUSB0”,…)

poll for read()
write()

(character device)
block on timed read()

write()
(serial device)

1. Parse data to
decipher command

1. Parse response
2. Assign original sequence

number
3. Compose reply

Need to
forward?

1. Fill required data
2. Compose reply

1. Assign forwarding
sequence number

2. Recompute checksum

Yes

No

Figure 4.4: VSPIN User Process

data in the shared buffer and hands the buffer over to the virtual serial device. The virtual serial

device treats the character device as the communication channel. On receiving data, the serial device

schedules a read task, which forwards the received data to the flip buffer of the tty core module. The

data from the flip buffer is then forwarded to Avrdude, which has been blocking on the timed read

call.

4.1.2 User Process

The VSPIN user process consists of three parts: the transmission module, the processing

module, and the incremental code update module. Figure 4.4 provides an overview of the user

process. The transmission module is responsible for all transmissions to and from the user process.

The module issues two opens, one on the /dev/vspinc character device to interact with Avrdude

via the kernel module, and the other on the /dev/ttyUSB0 serial communication device to interact

with the boot loader.

The transmission module continuously issues polling reads on /dev/vspinc for new data.

When a message is received, the transmission module transfers the message to the processing module,

which deciphers the message sent by Avrdude. Some messages sent by Avrdude inquire about values

38

which are hard-coded in the boot loader software. In such scenarios, the processing module itself

composes a response and sends it to the kernel module using a write call in the transmission module,

instead of forwarding the message to the boot loader, thus enabling high speed responses. Messages

sent by Avrdude which require a response from the boot loader are forwarded by the processing

module to the transmission module, which sends the data through the serial communication channel.

Next, the transmission module issues a timed read call on the serial communication channel to read

back the response sent by the boot loader. On receiving the response, the transmission module

forwards the data back to the processing module, where the response is parsed and any necessary

changes are made (as explained below). Finally, the processing module forwards the data to the

kernel module through the transmission module.

The STK500 communication protocol uses sequence numbers and checksums for data trans-

mission. Since the user process forwards some messages to the boot loader and responds to other

messages directly, it maintains two sets of sequence numbers. One set of sequence numbers is used

with Avrdude, while the other is used for communicating with the boot loader. The processing

module is responsible for translating the sequence numbers and also adjusting the checksum values

caused by sequence number changes.

4.1.3 Incremental Code Update

VSPIN assumes that incremental code update strategies require comparison of the new

version of the program image with the old version already installed on the sensor node, and that the

old image version is not available on the host system. Figure 4.5 summarizes the incremental code

update process used by VSPIN. The process begins when Avrdude starts sending the new program

image to the boot loader via the virtual serial device of the kernel module. The data for the new

program image is intercepted by the user process and stored in a data buffer d1. The user process

emulates the boot loader behavior and sends a response back to Avrdude confirming receipt of the

data. On receiving the confirmation, Avrdude attempts to read the programmed data back from

the boot loader. The user process receives the read request and forwards the request to the boot

loader. The boot loader reads data from flash memory and sends it back to the user process. The

user process receives the old program image data from the boot loader and stores it in another data

buffer d2.

Next, the user process sends data from buffer d1 to Avrdude instead of from buffer d2.

39

New program image data

Confirmation of receipt

Request to read programmed data
Request to read programmed data

Old program image data

Buffered new program image data

Incremental code update segments

Confirmation of receipt

Request to read programmed data

Read new programmed image data

AVRDUDE

K
ER

N
EL

 M
O

D
U

LE

USER PROCESS BOOT LOADER

1. Buffer new program image
data

2. Compose response
message and reply back

3. Forward read request to
boot loader

4. Receive and buffer old
program image data from

boot loader
5. Send buffered new

program image to Avrdude.

6. Use differencing
techniques to compute

differences between the two
buffered program images
7. Send incremental code

updates to boot loader

8. Receive confirmation

9. Send read request to boot
loader

10. Receive programmed
image data from boot loader.
11. Verify programmed data

1. Read data from
flash memory

2. Send data to user
process

3. Receive
incremental code

updates

4. Send confirmation
5. Reconstruct new

program image

6. Read data from
flash memory

7. Send data to user
process

1. Send new
program image

2. Receive
confirmation

3. Send read request
to boot loader

4. Receive
programmed image

from boot loader
5. Verify

programmed data

Figure 4.5: Incremental Code Update Process

Avrdude receives the program image, verifies that the program image received is identical to the

program image it sent, and exits. At this point, the user process has access to both the old and new

versions of the program image in data buffers d1 and d2. The two program images are now sent to

the incremental code update module inside the user process, where differencing techniques are used

to compute the differences between the two binary images. The incremental code update module

creates an edit script which encodes the differences and can be used by the boot loader to translate

the old program image into the new image. The edit script is sent by the user process to the boot

loader. On receipt of the edit script, the boot loader sends a confirmation back to the user process.

Next, the boot loader reconstructs the new program image from the old image in flash

memory using the edit script it received. In the final step, the user process attempts to read the

(now) programmed data from the boot loader. The boot loader reads the newly reconstructed

program image data from flash and sends it back to the user process. The user process uses this

data to verify successful reprogramming of the sensor node, failing which it restarts from step 7 in

Figure 4.5.

40

Difference Generation

Longest Common Subsequence (LCS) Computation

Edit Map Creation Data Dissemination

Node Reprogramming

Edit Map Decoding

Generation OptimizationEncoding Validation

Image Reconstruction

On-chip Flash Updates

Figure 4.6: Incremental Network Reprogramming Workflow

4.1.4 Boot Loader

The boot loader provided by VSPIN has a simplistic design, closely resembling the boot

loader design described in [44]. The boot loader receives messages via a serial interface, interprets

the message, reacts based on the command contained in the message, and finally sends a response

back via the serial interface. The boot loader supports the set of commands listed in the STK500

communication protocol. In addition to these commands, it supports user-defined commands for in-

cremental code updates, which typically involve receiving the edit script, reconstructing the program

image, and finally programming flash.

4.2 Incremental Code Update Mechanism

The incremental code update strategy presented here begins with the idea that an applica-

tion program image can be thought of as a byte string of length n. When the program image for

a sensor node needs to be updated, the maximal common subsequence, also known as the longest

common subsequence (LCS), between the two strings is computed. The substrings of the new pro-

gram image which are not part of the LCS constitute the image data that must be transmitted to

the sensor node.

Figure 4.6 illustrates the workflow for the reprogramming strategy. The difference generation

phase, which involves computation of the LCS and the associated edit map, is computed at the host

system, as it is the most resource-intensive phase of the process. The data dissemination phase is

initiated by the host system using a standard data dissemination protocol, such as XNP or Deluge,

over a wireless radio link. We do not explore the data dissemination algorithms as part of our

41

approach; these are beyond the scope of our work. The final node reprogramming phase is the

responsibility of the sensor network.

4.2.1 Difference Generation

The difference generation phase consists of two sub-phases. The first involves computing

the LCS between the two program image versions. The second sub-phase uses the LCS to prepare

and encode the edit map containing the edit script to be transmitted to the sensor network.

4.2.1.1 LCS Computation

The LCS computation is the first sub-phase of difference generation. Consider an arbitrary

node in a sensor network. Let the version of the program image currently installed on the sensor

node be defined as X = x1x2x3...xm, where |X| is m, and xi is a byte at offset i in the image. Let the

new program version be n bytes long and be defined as Y = y1y2y3...yn. Hirschberg’s algorithm [26]

finds the string L = l1l2l3...lr, such that L is a common subsequence of X and Y , and its length

r (|L|) is maximized. Let the set of prefixes of the strings X and Y be {X1, X2, X3, ..., Xm} and

{Y1, Y2, Y3, ..., Yn}, respectively, where Xi and Yi are the prefixes of size i bytes.

Let LCS(Xi, Yj) denote the LCS for the prefixes Xi and Yj . If we denote |LCS(Xi, Yj)| as

C(i, j), the dynamic programming formulation for C(i, j) is as follows:

C(i, j) =


0 if i = 0 or j = 0

C(i− 1, j − 1) + 1 if xi = yi

max(C(i− 1, j), C(i, j − 1)) if xi 6= yj

Figure 4.7 presents a logical view of the LCS L; the program image strings X and Y are represented

as m and n byte memory blocks, respectively. L is represented by the sequence of shaded boxes

labeled l1, l2, l3, ..., lr. The arrows illustrate the mapping from the old to the new program image

segments in the LCS.

Hirschberg initially presents an algorithm to calculate the length of the LCS of any two

strings (C(i, j)) using dynamic programming, along with a memoization-based, bottom-up, table-

building scheme, requiring O(mn) time and O(mn) space [26]. Next, a modified version of this

algorithm, capable of computing the LCS length in O(min(m,n)) space is presented. Using the

42

Figure 4.7: Logical View of the LCS Between Two Images

modified algorithm, Hirschberg finally presents a divide-and-conquer algorithm to compute L. We

implemented Hirschberg’s algorithm and adapted it so that it accepts program images as input while

preserving the O(mn) time and O(min(m,n)) space complexities.

When the host system does not have access to the previous version of the program image

or is not aware of the size of the previous image version, some subtle changes are made to the

reprogramming strategy. When the host system receives a new program image of size n bytes to

be programmed, it issues a read command to the boot loader executing on a sensor node in the

network. The boot loader reads n bytes from application flash memory and returns the data back

to the host. The host system treats these n bytes of data as the previous version of the program

image. Thus, adapted to this scenario, the modified algorithm executes in O(n2) time and O(n)

space.

4.2.1.2 Edit Map Creation

Edit map creation is the second sub-phase of difference generation. The edit map is com-

posed of two types of data. The first consists of the LCS segments. From a network reprogramming

perspective, transferring the LCS segments from the host system to the sensor nodes would be re-

dundant since that data already exists as part of the old program image. However, to reprogram

a sensor node, the boot loader needs information about the starting addresses and extents of the

LCS segments, along with the destination addresses where the segments need to be relocated. The

second type of data consists of the new program image data segments that do not belong to the LCS

and must be transferred to the sensor node.

The LCS segments are further classified into two sub-groups. The first sub-group consists of

43

data segments that reside in the same address locations in the old and the new program images; l1,

l4, l7, and l9 in Figure 4.7 are examples. Since these data segments are already where they need to

be, they are not included as part of the edit map. The second sub-group consists of data segments

that need to be moved from one address location to another; l2, l3, and l5 are examples.

Figure 4.8: Edit Map Generation Flowchart

Map Generation: The output of the adapted algorithm is L, the string containing the

longest common subsequence of X and Y . Figure 4.8 illustrates the steps involved in generating

the edit map from the LCS. The first step involves calculating the locations of the LCS segments

l1, l2, l3, ..., lr in X and Y in O(n) time and storing them as an array of 3-tuples, (i, j, lk), where lk

44

struct list_head q;

unsigned short address;

unsigned short length;

unsigned char type;

union {
 struct data_node *data_ptr;
 unsigned short r_address;
};

struct update_node *prev, *next;

struct data_node *prev, *next;

unsigned char data;

Update Node Data Node

Figure 4.9: Update and Data Node Structures

is the kth element of L, and i and j are its corresponding locations in X and Y , respectively. A

3-tuple entry is not created for cases where i = j, e.g. in the case of l9 in Figure 4.8. Non-LCS data

in Y (the new program image) is stored in an array of 2-tuples, (j, yj), where j is the location of

the data element and yj is the jth element. Both arrays are sorted by j.

The second step involves building an LCS map and a data map; the update node and data

node structures used for creating these maps are shown in Figure 4.9. Both data structures consist

of a doubly-linked list of update nodes. Each update node contains address, length, and type fields,

as well as a union over a pointer to a data node and a remote address. Each data node contains one

byte of data. The fields are considered in more detail in the remainder of the section.

The LCS map is built by scanning the 3-tuple array and combining LCS segments with

contiguous X and Y address locations. Consider LCS segments l4, l5, l6, and l7 in Figure 4.8. The

starting address locations (i4, i5, i6, and i7), as well as the destination address locations (j10, j11,

j12, and j13) of these four LCS segments are contiguous. Thus, a single update node entry is created

for the entire range in the LCS map. The update node contains the starting address of the LCS

segment in Y (j10), the starting address of the LCS segment in X (i4), the length of the segment

(4), and a type indicating that the node is being used for the LCS map. Note that the starting

address of the LCS segment in X is stored in the r address field within the union (The data ptr

field is used in update nodes within the data map). Each LCS map entry corresponds to data that

needs to be read from one location and written to a corresponding location.

The data map is similarly created by scanning the 2-tuple array from the previous step. The

non-LCS data segments which have contiguous destination address locations (in Y) are identified

and merged into individual update nodes, e.g., d1, d2, d3, and d4, with address locations j1, j2, j3,

45

and j4 are merged into a single update node. The update node representing such a data segment

in the data map contains the starting address of the segment in Y (j1), the length of the segment

(4), and a pointer to a doubly-linked list of data nodes. The data nodes store the individual bytes

at each address location (d1, d2, d3, and d4). Each data map entry corresponds to contiguous data

blocks that need to be written in the new program image.

Figure 4.10: Update Ordering Problem

The final step involves merging the data map and the LCS map. The merge process is non-

trivial, as it entails a priority ordered merge of the data and the LCS map elements. Incremental

reprogramming requires data in flash to be moved in-place using limited RAM. Consider Figure 4.10,

where the top and bottom images depict the state of flash memory before and after reprogramming,

i.e., X and Y , respectively. The data segments in X at locations a1, a2, and a3 are d1, d2, and d3,

respectively. Data segments d1 and d2 are part of the LCS, and hence need to be moved in memory,

whereas d4 and d5 are new data segments which will be transmitted from the host system.

Assume that data segment d1 is updated by incoming data segments d4 and d5 before it

could be moved to location a2, or that d1 (in X) is moved to location a2 (in Y) before d2 is moved

to location a3. This would result in incorrect reprogramming. To avoid such scenarios, the order in

which the data and LCS map elements need to be encoded in the edit map (and then transferred

to the sensor nodes) is determined at the host system. The correct priority-based ordering in the

scenario shown in Figure 4.10 is to move d2, then move d1, and then finally write d4 and d5. The

ordering used while merging the data and LCS maps into the edit map prioritizes read operations

at address locations in X over write operations at address locations in Y .

Map Encoding: The edit map resulting from the combination of the data and LCS maps

is encoded for efficient transmission. The host system uses three instructions to encode the edit

46

Figure 4.11: Edit Map Encoding Scheme

map: CMD WRITE, CMD MOVE 8, and CMD MOVE 16, the formats for which are shown in Figure 4.11.

Each of the operations require 1 byte to represent the op-code.

The write operation, CMD WRITE, is used to represent each of the data map elements in the

edit map, identified by the type variable in the update node structure in Figure 4.8. The write

operation uses 2 bytes to specify the address location where the write should occur, 1 byte for the

length of the data that must be written, and x bytes for the data itself, where x is the value of the

length variable. The maximum amount of data that is transferred in a single message is set to 256

bytes; this allows the use of 1 byte for the length variable (by using the value 0 to represent 256).

The move operations, CMD MOVE 8 and CMD MOVE 16, are used to represent each of the LCS

map elements in the edit map. They both use 2 bytes each to specify the destination and source

address for the LCS segments to be moved. CMD MOVE 8 is used to specify move operations for

segments with length less than or equal to 256, and hence uses 1 byte for the length variable, while

CMD MOVE 16 uses 2 bytes for longer segments.

Figure 4.12 illustrates a representative edit scenario. For the LCS segment l1, a CMD MOVE 8

operation is used. A CMD MOVE 16 operation is used for the segment l3, as the length of l3 is greater

than 256. Since LCS segment l2 is already in its final position, it does not need an update. The

remainder of the data segments in the image are populated using CMD WRITE operations. Based on

the priority ordering described previously, CMD MOVE 8 will be the first operation to be sent, followed

by the remaining operations, from left to right, as in the figure.

Map Optimization: Optimization begins from the encoding phase and affects the map

generation phase in an iterative fashion, as shown in Figure 4.6. Encoding a single CMD MOVE 8

operation requires 6 bytes, regardless of the length of the LCS segment being moved, as shown in

Figure 4.11. Encoding a complete CMD WRITE operation requires 4 + x bytes, where x is the length

47

Figure 4.12: Application of Edit Operations

of the data segment being transmitted. A CMD MOVE 8 operation with a length value of 2 can be

converted into a CMD WRITE with no change in communication cost, while a move operation with a

length value of 1 can be converted into a write operation requiring 1 byte less. Converting CMD MOVE 8

operations to CMD WRITE operations also allows for multiple write operations to be consolidated into

one when the segments are contiguous. The optimization step builds on this idea and uses it as a

heuristic to reduce the encoded edit map size.

The first step in the optimization phase consists of calculating the cost of the incremental

update, i.e., the number of bytes required to encode the edit map, denoted by Cupdate. The update

cost is calculated as follows:

Cupdate = 6 ∗ Nlcs map 8 + 7 ∗ Nlcs map 16 + 4 ∗ Ndata map +

Ndata map∑
i=1

Li

where Nlcs map 8 and Nlcs map 16 are the number of LCS map elements in the edit map which use

CMD MOVE 8 and CMD MOVE 16 operations, respectively; Ndata map is the number of data map elements

in the edit map; and Li is the length of the data segment contained within the ith data map element.

In the next step, a copy of the edit map is saved, and the edit map is subjected to a merge.

Merging involves converting all LCS map entries of size less than or equal to a specified merge

window to data map entries, and then running a linear scan to consolidate newly formed contiguous

data map entries. The value for Cupdate is recalculated post-merge and compared with its last known

value. The merge window value is initially set to 2 for the first merge operation. In subsequent

iterations, the edit map is merged, while the window value is incremented by powers of 2, and

48

Cupdate is recalculated. A binary search is employed to determine the merge window value for which

Cupdate attains a minimum. Once this window has been determined, the saved edit map is subjected

to a final merge operation and then encoded for transmission.

Map Validation: The encoded edit map that has been created in the previous phase

is checked for errors before it is transmitted to the sensor nodes. Map validation is achieved by

decoding the encoded edit map and applying the resulting operations to a copy of the older image

version, X. After application of the edit map to X, the resulting image is compared to the desired

new image version Y , using a linear scan in O(n) time. A successful match validates the encoded

edit map and initiates the data dissemination phase.

4.2.1.3 Data Dissemination

The data dissemination phase involves the generation of fixed-size data packets from the

edit map and their subsequent transmission to sensor nodes using an XNP-like data dissemination

protocol implemented in C. The boot loader provides the reprogramming logic and is also responsible

for the reception of these packets. After the packets are received, the edit map is temporarily stored

in external memory and node reprogramming is initiated.

4.2.1.4 Node Reprogramming

The node reprogramming phase consists of decoding the individual edit map operations

and using these operations to reconstruct the new program image. The CMD WRITE and CMD MOVE 8

operations are trivial to perform; typically data for a CMD WRITE operation is already available, while

the contents of a CMD MOVE 8 (up to 256 bytes) can be copied to RAM, and then moved to the new

memory location. CMD MOVE 16 operations are slightly more complex to perform when the data to

move is larger than the RAM capacity, and the starting and ending ranges overlap. Under such

circumstances, our approach ensures that updates always occur without destruction of necessary

data. An alternate approach is to use an external memory module as a buffer. In this scenario, data

manipulation is performed in external memory, and then moved back to its new location in on-chip

flash.

For our implementation of this approach, we use Ferroelectric RAM (FRAM) as the external

memory module1. FRAMs are characterized by non-volatility, low power consumption (significantly

1Using an external FRAM memory module saves energy expended on flash reads, since flash writes occur at page

49

lower than flash memory), faster read and write performance (comparable to SRAM), and a higher

number of write-erase cycles [54]. Additionally, FRAMs provide byte addressable memory, like NOR

flash devices.

The first time a sensor node is programmed using an ISP, the program image is also written

to the FRAM device. When the edit map is received by the sensor node, the initial data manipulation

is done using the FRAM. At the end of the image reconstruction phase, the FRAM contains the

updated version of the image, which is then written to on-chip flash memory. This process ensures

that when the sensor node is not being reprogrammed, the image in flash is mirrored in FRAM.

4.3 Evaluation

4.3.1 Experimental Setup

We implemented the incremental code update reprogramming strategy for the MoteS-

tack [22], a state-of-the-art in-situ sensing platform, which uses an AVR Atmel (ATMega 644P)

microcontroller (MCU) operating at 10 MHz and powered at 3.3V. The MCU consists of 64KB of

in-system-programmable flash memory, 2KB of EEPROM, and 4KB of SRAM. The boot loader

is installed in on-chip flash, which offers read-while-write capabilities. We added a 64KB FRAM

memory device [54] to use for the image reconstruction phase.

We consider five software change scenarios involving the latest stable version of our custom

C-based sensor operating system (with standard OS services) as test cases for our evaluation.

1. Changing a constant (minor change). We use a standard blink application as our base

case and change a constant to make the LED blink every two seconds (instead of one).

2. Modification of implementation file (moderate change). We add 91 lines of (non-

whitespace) code to convert the base application into a LED test suite, where various patterns

are displayed on five LEDs.

3. Changing an installed application (major change). We next write an application to

manipulate external flash memory. The new application writes a data buffer filled with random

data to external flash memory, and then reads the page back.

granularity.

50

4. Modification of core OS (moderate change). We next comment out a few lines of code

so the new application version does not contain the ZigBee driver module.

5. Modification of core OS (moderate change). We next comment out a few lines of code

so the new application version does not contain the Wi-Fi driver module.

We also consider five scenarios to evaluate how the approach performs when applied to

typical code changes in TinyOS, using standard applications from the apps directory of the TinyOS

2.1.0 code distribution1. Comparisons are made between our code update strategy and two other

state-of-the-art reprogramming strategies, Zephyr [48] and Rsync [65]:

6. Changing a constant (minor change). We change a constant in the Blink application to

alter the LED blink rate and reprogram a basic Blink application install.

7. Changing an installed application (major change). We next replace the installed Blink

application with the RadioCountToLeds application.

8. Modification of implementation file (moderate change). We next comment out a few

lines of code from RadioCountToLeds to emulate a moderate code change.

9. Modification of core OS (moderate change). We next comment out a few lines of code

from RadioCountToLeds to remove the AMControl module responsible for radio communica-

tion.

10. Modification of core OS (moderate change). Finally, we comment out a few lines from

RadioCountToLeds to remove the Leds module.

4.3.1.1 Data Transmission Savings

We first evaluate the performance of the incremental code update approach. The percentage

compression in data size to be transmitted when reprogramming a node (Ptx) is calculated as the

ratio of the length of the generated edit script (Cupdate) to the length of the new program image version

(Lnew), given as Cupdate ∗ 100/Lnew. It is expressed as a percentage, reflecting the percentage of data

that is transmitted using the incremental update approach compared to transmitting the full image.

The packet overhead during data dissemination is dependent on packet length and protocol; it is

not considered as part of the evaluation of the edit script generation strategy.

1Code change scenarios 6-10 are replicated from [48].

51

Device Type Read Write Erase

NAND Flash 2.29 nJ/B 14.55 nJ/B 4.03 nJ/B

NOR Flash 2.09 nJ/B 793.75 nJ/B 881.25 nJ/B

FRAM [54] 0.33 nJ/B 0.33 nJ/B -NA-

Table 4.1: Energy Consumption Characteristics

4.3.1.2 Merge Window Optimization

We next evaluate the effect of varying the merge window size on the size of the generated

edit map while using the custom C-based sensor OS. We record the Cupdate values for fixed merge

window sizes of 0 (indicating that a merge will not be conducted), 1, 2, 4, 8, 12, and 16, for cases

1-5. A merge window of w bytes converts LCS map entries of length less than or equal to w into

data map segments, so as to consolidate the newly formed contiguous data map entries into a single

entry.

4.3.1.3 Image Reconstruction Cost

Finally, we evaluate the cost of image reconstruction on the sensor node and consider the

potential energy savings. Let h be the length of the program image, m be the amount of data that

needs to be moved in FRAM (due to CMD MOVE 8 and CMD MOVE 16 operations), and w be the amount

of new data that needs to be written in FRAM (due to CMD WRITE operations). Let RFRAM and WFRAM

be the cost of reading and writing a byte of data in FRAM, respectively. Finally, let WFLASH be the

cost of writing a byte in flash, and Ct be the cost of transmitting a byte wirelessly. The cost of

simple reprogramming, Cr, is given by1:

Cr = h ∗ (Ct + WFLASH)

whereas the cost of incremental reprogramming with image reconstruction, Ci, is given by2:

Ci = Cupdate ∗ Ct + m ∗ (RFRAM + WFRAM) + w ∗ WFRAM + h ∗ WFLASH

Table 4.1, adapted from [49, 36, 54], presents the energy consumption characteristics of

NAND flash, NOR flash, and FRAM devices for read, write, and erase operations. For wireless

1The cost of protocol and control flow data is not considered.
2The cost of executing instructions on the MCU is not considered.

52

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

Lold (B) 37594 37594 38068 38294 37674 2650 2650 11526 11512 11378

Lnew (B) 37594 38068 38294 37674 35276 2650 11526 11512 11378 11220

Cupdate (B) 5 4966 9748 2042 2815 6 10241 1121 1194 1173

Ptx 0.013% 13.05% 25.45% 5.42% 7.98% 0.22% 88.5% 9.74% 10.49% 10.46%

Table 4.2: Edit Map Sizes for C-based OS and TinyOS Update Scenarios

data transmission, we consider the XBee low power RF module [30]. Assuming that the XBee

module performs at the maximum advertised rate of 250,000 bps, the transmit and receive energy

requirements are 4.75 mJ/B and 5.8 mJ/B, respectively. We use the average of the transmit and

receive costs, and set Ct to 5.28 mJ/B.

4.3.2 Results

We analyze the results of the experiments in detail in the context of data transmission

savings, merge window optimizations, and the cost of image reconstruction.

4.3.2.1 Data Transmission Savings

Table 4.2 presents the edit map sizes (Cupdate) and Ptx values achieved for both the C-based

OS and TinyOS code update scenarios, along with the corresponding old and new image sizes (Lold

and Lnew, respectively). In case 1, the difference between the two program images is small, and this

is reflected in the small Cupdate size (5 bytes) and the correspondingly small Ptx (0.013%). In case

2, which is a typical change in the software development life cycle of an embedded device, the edit

map size is 4966 bytes, resulting in a Ptx of 13.05%.

In case 3, which involves the most significant code change, the edit map size is 9748 bytes,

resulting in a Ptx of 25.45%. This can be explained by the fact that even though the Blink and

Flash applications are very different, they share approximately 88% of the base OS code (100 −

w ∗ 100/Lnew). In cases 4 and 5, the Ptx values achieved are 5.42% and 7.98%, respectively. The

smaller edit map sizes, 2042 bytes and 2815 bytes, respectively, for cases 4 and 5, can be attributed

to the fact that even though entire functions are removed in both changes, the LCS-based approach

correctly accounts for the shifts in the other functions within the code image.

In scenarios involving minor to medium code changes in TinyOS, cases 6 and 8, the approach

achieves relatively small edit map sizes of 6 and 1121 bytes, respectively, and correspondingly small

Ptx values of 0.22% and 9.74%, respectively. Case 7 involves a major change, where the Blink

53

Merge Window Case 1 Case 2 Case 3 Case 4 Case 5

0 5 5033 12436 2097 3173

1 5 5013 12080 2056 3039

2 5 4979 10810 2056 2829

4 5 4966 10036 2042 2825

8 5 5051 9750 2044 2815

12 5 5190 9986 2046 2832

16 5 5424 10471 2052 2888

Table 4.3: Edit Map Sizes for Different Merge Windows in Cases 1-5

application is updated to RadioCountToLeds. The large edit map size (10241 bytes) and Ptx value

achieved (88.5%) is due to the difference in size between Lold and Lnew. Specifically, 8876 bytes of

new data must be transferred; only 1365 bytes (10241 − 8876) are transferred to rebuild the new

image. The Ptx values in cases 9 and 10 (10.49% and 10.46%, respectively) can again be attributed

to the ability of the LCS-based approach to account for function shifts.

4.3.2.2 Merge Window Optimization

Table 4.3 summarizes the impact of varying the merge window size on the size of the resulting

edit map; the results are plotted in Figure 4.13. In each graph, the horizontal axis represents

the merge window size, and the vertical axis represents the cost of update (Cupdate). Case 1 is

unaffected by window size; this is due to the fact that it consists of a single CMD WRITE operation

of length one, and there is nothing to merge. In the remaining cases, the minimum Cupdate value is

achieved at or beyond a merge window value of 2. (Encoding a 2-byte CMD MOVE 8 costs the same

as a 2-byte CMD WRITE.) We observe that case 3 has the highest rate of change as a function of

window size, followed by cases 2, 5, 4, and 1, corresponding to their overall Cupdate costs. A larger

Cupdate cost indicates a higher degree of dissimilarity between two program images, as well as higher

fragmentation in the LCS segments. The more fragmented the LCS segments, the higher the chances

of merging multiple data segments. This often makes the map optimization strategy more effective

for cases with higher Cupdate values (major code updates).

4.3.2.3 Image Reconstruction Cost

Table 4.4 compares the cost of simple reprogramming (Cr) with the cost of incremental

reprogramming (Ci), the results of which are illustrated in the bar plot in Figure 4.14. We observe

that the ratio of the cost of simple reprogramming to the cost of incremental reprogramming strongly

54

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

m (Bytes) 0 24766 27873 1996 3492 0 1344 7279 7178 7292

w (Bytes) 1 1772 4572 830 1389 2 9875 437 530 503

Cr (Joules) 198.497 201 202.193 198.919 186.258 13.992 60.857 60.783 60.076 59.242

Ci (Joules) 0.0269 26.221 51.47 10.782 14.864 0.0317 54.073 5.919 6.304 6.194

Table 4.4: Comparison of Simple and Incremental Reprogramming Costs

correlates to the Ptx values achieved in Table 4.2, in spite of the wide variation in the number of

bytes of data moved (m) and written (w) in FRAM. This can be attributed to the fact that the

amount of energy expended in transmitting a byte of data is about 16,000,000 times more than the

amount of energy expended to write a byte of data in FRAM, and about 350,000 times more than

writing a byte of data to flash. Thus, a higher degree of data transmission savings, even at the

expense of flash and other external memory manipulation, results in a lower energy footprint.

Panta et al. report detailed comparisons of delta script sizes for various incremental repro-

gramming approaches in [48]. Zephyr, when using application-level modifications, reduces the data

size to be transmitted to 0.07% for minor changes, and between 1.18% and 23.31% for moderate code

changes. Without the application-level modifications, Zephyr reduces the data size to 0.096% for

minor code changes, and between 9.17% and 36.63% for moderate code changes. Rsync reduces the

size of data to be transmitted to 2.56% for minor code changes, and between 24.47% and 45.65% for

moderate changes. In comparison, our approach achieves comparable (and often better) reductions

in transmitted data size and resulting energy savings for similar code update scenarios. Unlike these

approaches, however, our approach does not assume any knowledge of program code structure. It is

platform and language independent.

4.4 Summary

We first presented the design and implementation of VSPIN, a Linux-based framework for

developing and testing incremental code update mechanisms. Next, we described an incremental

code update mechanism for efficient wireless sensor network reprogramming. Our approach uses an

adaptation of Hirschberg’s Algorithm to generate an edit script based on the differences between two

program images. We use a heuristic-based optimization strategy to reduce the edit script size, which

is then transmitted to sensor nodes using a standard data dissemination protocol. Finally, the sensor

nodes decode the edit script and use it to construct the new program image. The approach reduces

55

the required transmission data size to 0.013% for minor changes, and between 5.42% and 13.05%

for moderate code changes when using a custom C-based sensor OS. When applied to TinyOS, the

approach reduces the data size for transmission to 0.22% for minor changes, and between 9.74%

and 10.49% for moderate code changes. Our approach compares favorably to (and often better

than) prior work in the area. The reduction in the amount of data needed to be transmitted

leads to significant energy savings for wireless sensor network reprogramming. At the same time,

our approach is platform and programming language independent and assumes no knowledge of

program code structure.

56

 4.95

 4.96

 4.97

 4.98

 4.99

 5

 5.01

 5.02

 5.03

 5.04

 5.05

 0 4 8 12 16

C
os

t o
f u

pd
at

e
(B

yt
es

)

Merge window size

(a) Case 1

 4950

 5000

 5050

 5100

 5150

 5200

 5250

 5300

 5350

 5400

 5450

 0 4 8 12 16

C
os

t o
f u

pd
at

e
(B

yt
es

)

Merge window size

(b) Case 2

 9500

 10000

 10500

 11000

 11500

 12000

 12500

 0 4 8 12 16

C
os

t o
f u

pd
at

e
(B

yt
es

)

Merge window size

(c) Case 3

 2040

 2050

 2060

 2070

 2080

 2090

 2100

 0 4 8 12 16

C
os

t o
f u

pd
at

e
(B

yt
es

)

Merge window size

(d) Case 4

 2800

 2850

 2900

 2950

 3000

 3050

 3100

 3150

 3200

 0 4 8 12 16

C
os

t o
f u

pd
at

e
(B

yt
es

)

Merge window size

(e) Case 5

Figure 4.13: Effects of Map Optimization on Cupdate

57

 0

 50

 100

 150

 200

C
ase 1

C
ase 2

C
ase 3

C
ase 4

C
ase 5

C
ase 6

C
ase 7

C
ase 8

C
ase 9

C
ase 10

C
os

t i
n

Jo
ul

es

Code update scenarios

Cost of simple reprogramming (J)
Cost of incremental reprogramming (J)

Figure 4.14: Reprogramming Costs for Different Code Update Scenarios

58

Chapter 5

Data Storage

In this chapter, we present the design and implementation of LoggerFS, a fast and reliable

data storage solution for WSNs. We present a consistent data structure update mechanism used to

achieve data consistency and file system reliability. We also present the design of a FRAM-based,

write-back cache which allows for efficient write-batching and flash wear-leveling. We demonstrate

the fault tolerance capabilities of LoggerFS and evaluate the read and write performance of a pro-

totypical LoggerFS implementation.

5.1 LoggerFS Design

LoggerFS is optimized to address the design considerations discussed in Section 2.3, includ-

ing the identified data and file access patterns. Figure 5.1 illustrates the hardware architecture of

a sensor node running LoggerFS. The sensor node’s MCU includes integrated RAM and EEPROM,

both limited in size. We extend these facilities with an external FRAM module and an external

flash module.

Data generated by attached sensors {S1,...,Sn} is processed by the MCU and ultimately

written to flash. The data is later read from flash and transmitted to a base station using a wireless

module. Alternatively, binary program image data (or the image diff) is received by the wireless

module from the base station and stored in flash memory. The data is later read from flash, and

the program image is reconstructed and written to the programmable flash memory of the sensor

node [45, 31, 32]. Configuration data is stored as a special file in external flash.

59

8-bit
MCU

4-KB
RAM

2-KB
EEPROM

64 KB Programmable
Flash Memory

WiFi
or

ZigBee

S1 S2 S3 Sn
. . .

64KB FRAM

Base Station

4GB Flash
Memory

Figure 5.1: LoggerFS Hardware Architecture

Figure 5.2 summarizes the content structure across the three memory modules in the hybrid

storage design. Files are stored in flash memory. LoggerFS uses a flat structure since the total

number of files in an embedded system is expected to be low. The structure supports fast lookup

and update mechanisms.

During execution, each file is represented in primary memory (RAM) by a metadata record.

Updates to a file require updates to the metadata, both in volatile and non-volatile memory. As

discussed in Sections 2.3.1 and 2.3.2, there are challenges associated with writing data to flash

memory. Smaller updates, such as file metadata, tend to be more problematic than large block

updates, due to the page-sized write granularity of flash memory. Consequently, LoggerFS stores

file metadata in FRAM. Since FRAM allows for fast, byte-sized write operations, frequent updates

to the metadata do not pose a challenge.

Runtime variables

Runtime file metadata

Runtime cache metadata

File metadata

Cache data structures

Write-back cache
File storage

RAM
FRAM

FLASH

Figure 5.2: Hybrid Storage Approach

60

Files Records

Figure 5.3: Logical View of File and Record Layout

FRAM storage is partitioned into two parts, a metadata store and a write-back cache. In

addition to storing the file metadata, the metadata store maintains the data structures required to

support the buffer cache, which are loaded in primary memory during execution. The write-back

cache is used to facilitate fast write caching in FRAM during periods of high-rate sensing. The size

of the write-back cache is significantly larger than the free space available in RAM, thus allowing

for efficient write-batching and flash wear-leveling.

The runtime file metadata (associated with files being accessed), the variables required to

maintain the file metadata (e.g. stack variables and pointers), and cache data structures are stored

in RAM. To prevent the loss of file system state due to the loss of runtime variables stored in RAM

(e.g., as a result of unexpected power loss), LoggerFS uses a lightweight consistent data structure to

achieve data persistence. We discuss the data structure in Section 5.1.3.

5.1.1 Files in Flash

Figure 5.3 illustrates the logical view of file and record layouts in flash. Sensor nodes are

primarily used to log sensed data, and to transmit this data to a base station. New files are usually

not created once a system has been deployed. For these reasons, LoggerFS supports a fixed number

of files, configured during system installation. Each attached sensor is paired with a file using a

unique identifier; the maximum number of files supported depends on the size of external flash

61

memory and the configuration of file sizes. File sizes are configured at installation time based on

the sensing rate and maximum required critical data period. Data logged by a sensor device during

a single sampling period is called a record.

Each file in LoggerFS is a circular buffer capable of containing variable-sized records. The

update granularity is one record. New records are always appended to the end of a file, while old

records are always read and/or deleted from the beginning of a file. If a file is full, and the node is

unable to communicate with the base station, new records overwrite old records.

Files in flash memory are block-aligned to account for flash write and erase constraints.

Updates to a file always occur through the write-back cache resident in FRAM. This ensures efficient

batching of writes and reduces flash wear, discussed in Section 5.1.4.

5.1.2 File Metadata

Files are represented in primary memory (and in FRAM) as file metadata. LoggerFS uses

constant-sized metadata to represent each file; the size does not increase with file size. Since the

number of files is preconfigured, the amount of space required to store the file metadata in FRAM

is known during installation. This allows LoggerFS to assign space for the write-back cache after

accounting for the space required for the associated data structures.

File

LAG Pointer

LEAD Pointer

File ID

File Size

�

�

�

Records

Figure 5.4: File Metadata in RAM and FRAM

Figure 5.4 illustrates the metadata associated with each file. A pair of pointers, LAG and

LEAD, are used to maintain the circular files. The LAG pointer points to the oldest record, while the

LEAD pointer points to the newest record. The size of the record is contained within the record itself,

62

allowing minimal information to be stored in metadata, in addition to supporting variable-sized

records. Additional information, such as the file identifier and file size, are stored as part of the file

metadata to support fast file access and update.

5.1.3 File System Consistency

A lightweight, consistent data structure is used by LoggerFS to guarantee file system con-

sistency. Every variable-sized record is first converted to a sequence of writes, the last of which is

an atomic write operation. Consider Figure 5.5, which illustrates the idea behind the consistent

data structure. All updates to a file in LoggerFS occur through FRAM via the write-back cache.

Each variable-sized block of data (record) written in FRAM is converted to a pointer update. The

pointer contains the starting address of the record and is only updated after the block of data has

been successfully written to FRAM. A one-bit flip pointer index is finally updated after the pointer

address has been successfully recorded in FRAM.

Figure 5.5: Consistent Data Structure Update

Consider an example. Let the state of the data structure be such that the lightly shaded

block in Figure 5.5 is the last known correctly saved record in FRAM. The lightly shaded last

63

update pointer contains the starting address of this block of data, and the pointer index records a 0,

indicating that the last update pointer is the last known valid value of the pointer. Assume that a

new block of data must be written, indicated by the darkly shaded block of data in the figure. After

the darkly shaded block of data is written to FRAM, the new update pointer is updated. Following

the update, the pointer index is flipped to a 1. Since the update of a single bit is an atomic operation

in any architecture, the entire block update is thus logically converted to an atomic update. A write

operation failure at any point before the pointer index bit update does not corrupt the previous

valid record entry.

Reading a record from this structure involves reading the pointer index bit, looking up the

corresponding pointer value, and then reading the corresponding block of data using the address

stored in the pointer.

Since all data structures used in LoggerFS are consistent, and every write is atomic, we are

able to achieve file system consistency without needing any additional software mechanisms, e.g.,

checkpointing/consistency points.

5.1.4 FRAM-based Write-back Cache

The FRAM-based write-back cache allows LoggerFS to handle bursts of high-rate sensor

data and alleviates wear on the flash module. The cache is again structured as a circular buffer

capable of holding variable-sized files. Caching a file involves moving the file from flash memory to

the cache; space for the entire file is allocated in the cache. A pair of LAG and LEAD file pointers are

used to point to the least recent and the most recent files which were paged in from flash memory,

respectively. The files in turn contain data records maintained by the LAG and LEAD pointers

explained in Section 5.1.2.

Figure 5.6 presents the read workflow for LoggerFS. File read operations can be served from

either cache or flash, depending on where a file is located. If a read operation arrives after a file has

been cached for writes or deletes, the read can be served from cache. Read operations for an already

evicted file are served from flash, but the read data (or file) is not cached. This simplifies cache

manipulation because all cached files are always dirty and can be flushed to flash when evicted; no

additional dirty bits need to be maintained.

Figure 5.7 presents the write workflow. All updates to a file occur through the write-back

cache. When a record needs to be updated, the existence of the file is first verified in cache. If the

64

Read file
metadata from

FRAM

Is the file
cached in

FRAM?

Read record
from FRAM

Read record
from flash

YES NO

Figure 5.6: Read Path with Cache

file is already cached, the data record is updated in cache. If the file is not cached, the contents of

the entire file are first paged into FRAM from flash before the record is updated.

5.1.4.1 Cache Eviction

Cache memory tends to get fragmented over time and usually needs sophisticated data

structures to be managed. Since our target devices are resource-constrained, we use a FIFO file

eviction policy, which eliminates in-memory cache fragmentation. Since the cache itself is a circular

buffer, newly cached files are always written to the end of the buffer. Memory for the new file is

allocated immediately after the most recent file entry in FRAM. If this new allocation causes the

file to extend beyond the least recent file entry, the least recent file(s) is/are evicted until there is

enough space to store the new file. File sizes are therefore limited by the size of FRAM.

5.1.4.2 Cache Data Persistence

Write operations to FRAM are faster than writes to flash (Table 1.1), making FRAM a

strong choice for a write cache. Additionally, the size of FRAM is typically much larger than the

size of RAM, at a fraction of the cost. Using FRAM for caching enables LoggerFS to buffer large

amounts of data during high rate data bursts. To ensure reliability, records written to cache use

the consistent data structure approach described in Section 5.1.3. As non-volatile memory, FRAM

65

Read file
metadata from

FRAM

Is the file
cached in

FRAM?

Update record
in FRAM

YES

Is there space
to write the file

in FRAM?

Evict the oldest
file in the FRAM

cache

NO

NO

Read entire file
from flash and
write to FRAM

YES

Figure 5.7: Write Path with Cache

allows all data stored in the cache to be available across device failures without the need for cache

rewarming.

5.2 File System Implementation

We implemented LoggerFS in C for the MoteStack sensing platform [22]. The MCU, an

ATMega644 [8], includes 64KB of in-system-programmable flash memory, 2KB of EEPROM, and

4KB of SRAM. Two external memory modules, a 64KB FRAM [55] and a 512KB flash [3], were

added to support the file system. The following sections detail the file system implementation.

66

1 typedef struct record_header {

2 uint16_t record_size;

3 uint16_t event_id;

4 uint8_t record_crc;

5 } record_header_t;

6

7 typedef struct fs_header {

8 uint16_t file_id;

9 uint16_t file_size;

10 uint16_t fs_event_id;

11 uint16_t lag_record_ptr;

12 uint16_t lead_record_ptr;

13 uint16_t cache_start_address_ptr;

14 uint16_t flash_start_address_ptr;

15 bool in_fram;

16 } fs_header_t;

17

18 typedef struct cache_header {

19 uint16_t lag_file_ptr;

20 uint16_t lead_file_ptr;

21 } cache_header_t;

Listing 5.1: File, Record, and Cache Metadata

5.2.1 File, Record, and Cache Implementation

Files in LoggerFS comprise multiple records. Listing 5.1 shows the representation structure

of a record header (record header), a file header (fs header), and a cache header (cache header).

Record headers are included at the start of every record within a file and contain the size of the

corresponding record. They also store a monotonically increasing event identifier (event id) used

to support file system consistency checks, and a checksum (record crc). The event id is used to

verify continuity of update operations after a system is restarted following a crash and prevents

further data corruption in the event of an unrecoverable hardware error.

File headers contain a file identifier (file id), the size of the file (file size), and a

monotonically increasing file system event identifier (fs event id) used to support file system con-

sistency checks. File headers store the LAG pointer (lag record ptr) and the LEAD pointer

(lead record ptr), which contain logical offset locations. The physical record locations are calcu-

lated by adding the logical offsets (lag record ptr or lead record ptr) to the starting address of

the file in cache (cache start address ptr), or the starting location of the file in flash memory

(flash start address ptr). The starting address in flash memory is stored as a block address

since files are stored block-aligned to accommodate flash erase granularity. The in fram variable

67

1 bool lfs_create(uint16_t config_record_size, uint8_t files, ...);

2 bool lfs_reinit();

3 bool lfs_write(uint8_t file_id, uint8_t *buf, uint16_t size);

4 uint16_t lfs_read(uint8_t file_id, uint8_t *buf, uint16_t size);

5 uint16_t lfs_read_verify(uint8_t file_id, uint8_t *buf, uint16_t size);

6 bool lfs_delete(uint8_t file_id);

7 void lfs_read_fs_hdr(fs_header_t *fs_hdr);

8 void lfs_write_fs_hdr(fs_header_t *fs_hdr);

9 uint8_t read_from_config(uint8_t index, uint8_t *value, uint8_t size);

10 bool write_to_config(uint8_t index, uint8_t *value, uint8_t size);

Listing 5.2: LoggerFS API

indicates whether a file is present in FRAM cache or in flash memory. Since files can exist in both

FRAM and flash at the same time, both cache start address ptr and flash start address ptr

contain values.

The cache header also contains a LAG file pointer (lag file ptr) and a LEAD file pointer

(lead file ptr) to keep track of contiguous space being used in the circular cache. The pointers

point to the oldest and newest cached files, respectively.

5.2.2 File System API

Listing 5.2 presents the API exposed by LoggerFS. A new file system is created by calling

lfs create(). LoggerFS currently supports a single configuration file which may contain multiple

configuration elements. The arguments to lfs create() consist of the size of the configuration data

file (config record size), the maximum number of supported files (files), and the size of each

file (...), in bytes. A call to lfs create() initializes FRAM and FLASH. Next, the configuration file

size, number of data files, and corresponding file sizes are stored at the start of FRAM. Finally, the

file metadata sections for all files are instantiated in FRAM.

The consistent data structure described in Section 5.1.3 is used to store the file metadata

section in FRAM. Two copies of each file metadata entry are maintained; one copy contains the state

of the file after the most recent update, while the other copy contains the state of the file before

the update. Figure 5.8 illustrates the use of the consistent data structure to maintain consistent

copies of the file metadata. The new update pointer and last update pointer point to the

starting addresses of the new and old metadata entries, respectively. Consistency of record updates

is safeguarded by using two copies of LEAD and LAG pointers, respectively stored in two copies of

68

File in

FRAM / flash

LAG Pointer

LEAD Pointer

File ID

File Size

…

…

…

Records
LAG Pointer

LEAD Pointer

File ID

File Size

…

…

…

0/1

File metadata in FRAM

Last update pointer New update pointer

Pointer Index

Figure 5.8: Consistent File Metadata

the file metadata.

A magic number is also stored at a fixed location in FRAM. During system initialization

or restart, lfs reinit() checks for the existence of a previously installed LoggerFS instance by

checking for the presence of this magic number in FRAM. If a file system exists, the file sizes are

read from FRAM, and the necessary run-time variables are loaded in to memory. The file and record

metadata, which is also stored in FRAM, can then be accessed by the file system.

lfs write() takes a file identifier (file id) as argument, the data buffer (buf), and the

size of the data buffer (size). A write entails reading the file metadata in fs hdr via a call to

lfs read fs hdr() to identify the LAG and LEAD pointers. Using these pointers, the LAG and LEAD

records are identified, and the correct write location in FRAM is calculated. Once the record is

written, the LAG and LEAD pointers are recalculated and written back as part of the fs hdr in

FRAM via a call to lfs write fs hdr(). The LAG pointer and corresponding record may need to be

manipulated since write operations may trigger record deletions, if the file is full. The LAG pointer

update is performed via lfs increment lag pointer(), whereas the LEAD pointer is updated via

the lfs write() function itself, as part of the data write.

The lfs read() and lfs read verify() functions are used to read the oldest record in a

file. lfs read verify() additionally computes a checksum over the read data and compares it to

the checksum stored in the record. The checksum verification step makes lfs read verify() slower

69

than lfs read(), but useful in applications where data correctness is critical. Sensor applications

can choose to save or discard corrupt data. The arguments to the functions include the file identifier

(file id), the read buffer (buf), and the size of the buffer (size). The return value indicates the

size of the record read. The lfs delete() function takes the file identifier (file id) as input and

deletes the oldest record in the file to create space for new records.

read from config() and write to config() are used to handle configuration data. Config-

uration entries are identified using indices into the configuration file. The configuration data file is

not a circular buffer, but is stored using the consistent data structure approach for robustness.

5.3 Evaluation

The LoggerFS implementation was evaluated for both reliability and performance. Relia-

bility is measured in terms of the file system’s ability to recover from failures while read and write

workloads are executing. Performance is characterized in terms of the maximum rate of read and

write operations that the file system is able to sustain.

5.3.1 Reliability

The LoggerFS implementation was first validated to ensure its ability to recover from fail-

ures. During normal operation, a file system can encounter system failures, such as, power loss due

to battery failure, or sub-system failures caused by faulty hardware components. System failures are

caused by hardware faults which cause the entire system to go down. Sub-system failures are usually

limited to specific hardware components and can be isolated at the software level. We characterize

four failure scenarios representative of both types of failures. The four experimental scenarios are

enumerated below. To simulate system failures, we introduce power loss during operation (case 1,

below). Sub-system failures are simulated by injecting software faults during write operations to

flash, FRAM, or both flash and FRAM simultaneously (cases 2 to 4, respectively).

1. System failure: During active read and write operations, power was removed from the

system, and the system was later checked for consistency after restart.

2. Flash sub-system failure: Writes to flash were made to fail at random intervals (by returning

failure codes) during write operations, and the system was later checked for consistency.

70

3. FRAM sub-system failure: Writes to FRAM were made to fail at random intervals during

write operations to FRAM, and the system was later checked for consistency.

4. Flash and FRAM sub-system failures: Writes to either flash or FRAM were made to fail

at random intervals during write operations, and the system was later checked for consistency.

Four files, of sizes 1 KB, 2 KB, 4 KB, and 8 KB were created, and a total of 10 trials were run

for each of the cases. A 50%-50% mixed read/write workload was issued for case 1, while a 100%

write workload was issued for cases 2, 3, and 4.

5.3.1.1 Results

For case 1, we non-deterministically remove power to the MoteStack during 1 minute long

mixed read and write workloads. For each test, LoggerFS was able to handle system failures grace-

fully and re-initialize after power loss. The lfs reinit() function was able to verify a consistent

version of the file system installed in both FRAM and flash, and then continue normal operation.

For cases 2, 3, and 4, we ran individual trials for a duration of 1 minute. All the tests involved

sending write operations to the four files. For case 2, faults were injected at random intervals during

write operations to flash. For case 3, faults were injected randomly during writes to FRAM. For

case 4, faults were injected at random intervals during writes to both flash and FRAM. After 1

minute, all data was read back and verified. All read and verify operations completed successfully.

Further, on the next system reboot, lfs reinit() was able to verify a consistent file system installed

on FRAM and flash.

5.3.2 Performance

An embedded sensor can experience brief periods of time when it issues 100% writes due to

sensing operations. Similarly, there are periods of time when the device issues 100% reads associated

with transmission of data to a base station. There are also brief periods of time when mixed

workloads might be observed, where a sensing operation is initiated while data transmission is

in progress. To evaluate system performance, we first characterized typical I/O workloads and

measured system performance at 100% write, 100% read, and mixed read and write workloads. For

simplicity of measurement and analysis of mixed workloads, we assumed a 50-50% mix of read and

write operations. All read and write operations are 256 bytes.

71

5.3.2.1 Hardware Benchmarking

We first benchmarked the read and write speeds for the FRAM and flash devices used in the

LoggerFS implementation. The results allowed us to better characterize expected read and write

performance.

Device Reads Writes Erase and Write

FRAM 0.8 ms 0.6 ms -NA-

Flash 1.2 ms 1.1 ms 4.3 ms

Table 5.1: Measured Read and Write Speeds

Table 5.1 presents the measured read and write speeds for the FRAM and flash memory

devices. We measured the time required to transfer 1 million buffers with 256 bytes of data each,

and then computed the average time required to transfer a 256-byte buffer, for both read and write

operations. Read operations from flash are 50% slower than reads from FRAM; reading 256 bytes

from flash takes 1.2 ms, while it requires 0.8 ms to read from FRAM. Writing 256 bytes of data

from flash takes 1.1 ms, which is 83.34% slower than FRAM, which requires 0.6 ms. However, when

the time required to erase a block is amortized across write times, flash is about 600% slower, at

4.3 ms. This write speed advantage allows FRAM to handle bursts of high-rate data up to 426.67

KBps, and to sustain write throughputs up to 7 times faster than flash memory, at 59.53 KBps.

5.3.2.2 Write I/O Performance

We measured the write performance of LoggerFS assuming variable degrees of cache avail-

ability, including no cache. We considered a 100% write workload and simulated conditions where

a percentage of writes cause a cache miss. A 0% cache hit rate represents the case where every new

record update causes file eviction(s) from FRAM and a read from flash; whereas a 100% cache hit

rate does not cause a file eviction. We create a total of 1,000 files of size 256 bytes each, containing

one record each. This allows us to model the amount of data evicted from FRAM and subsequently

read in from flash. We know that the size of the evicted file is the same as the size of the file which

is being paged in.

Figure 5.9 summarizes the write throughput observed at variable cache hit rates. The x-axis

represents the write cache hit rate, and the y-axis represents the throughput achieved. In the absence

of the write cache, LoggerFS is able to achieve write throughput of approximately 59.53 KBps. In

72

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 20 40 60 80 100

B
y
te

s
 P

e
r

S
e
c
o
n
d

Cache Hit Percentage (%)

Figure 5.9: Write Throughput with Cache

the presence of a write cache and a 0% hit rate, LoggerFS is only able to achieve write throughput

of approximately 46.55 KBps. This can be attributed to the additional overhead associated with file

evictions.

With the write cache implementation and a 25% hit rate, LoggerFS achieves write through-

put parity with the cache-free implementation. At a cache hit rate of approximately 80%, we observe

throughout of 162.02 KBps. Beyond 80%, we observe almost exponential growth in throughput. At

100%, when LoggerFS is able to utilize pure FRAM update speeds, a maximum throughout of 426.67

KBps is observed, which is about 8 times faster than the LoggerFS implementation without cache.

5.3.2.3 Read I/O Performance

We next measured the read performance of LoggerFS with varying cache availability. It

is easier to simulate read cache hit rates (rather than writes), as we do not need to account for

evictions. A 0% read cache hit rate is created by reading a file which is entirely stored in flash, while

a 100% hit rate results in reading all data from FRAM.

73

Figure 5.10 summarizes the throughput achieved at varying cache hit rates. The x-axis

represents the read cache hit rate, and the y-axis represents the throughput achieved. In the absence

of a cache, LoggerFS is able to achieve read throughput of about 213.34 KBps. At a 100% cache hit

rate, LoggerFS is able to achieve a read throughput of approximately 320 KBps, which is about 50%

faster than the throughput achieved without cache. The difference in throughput between 0% and

100% cache hit rates is not large, since flash and FRAM read speeds are similar orders of magnitude.

 200000

 220000

 240000

 260000

 280000

 300000

 320000

 0 20 40 60 80 100

B
y
te

s
 P

e
r

S
e
c
o
n
d

Cache Hit Percentage (%)

Figure 5.10: Read Throughput with Cache

5.3.2.4 Mixed I/O Performance

Figure 5.11 summarizes the performance for a mixed, 50%/50% read/write workload. The

read and write operations in the workload were interleaved. We ran experiments by varying the write

cache hit rate from 0% to 100%, in increments of 20%. For each write cache hit rate increment, the

read cache hit rates were simultaneously varied from 0% to 100%, in increments of 20%. The x-axis

represents the read cache hit rate, and the y-axis represents the throughput achieved. The series

represent the various write cache hit rates considered. For example, the solid line charts throughput

74

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 20 40 60 80 100

B
y
te

s
 P

e
r

S
e
c
o
n
d

Read Cache Hit Percentage (%)

0% Write Cache Hit
20% Write Cache Hit
40% Write Cache Hit
60% Write Cache Hit
80% Write Cache Hit

100% Write Cache Hit

Figure 5.11: 50%/50% Read-Write Throughput

when the write cache hit rate was set at 0%, and the read cache hit rates were changed. The total

throughput includes both reads and writes.

Due to the single-threaded nature of LoggerFS, read and write operations are serviced

sequentially, and throughput is latency sensitive. We observed that the throughput (at any cache hit

rate) can be calculated from the throughput of individual read and write operations from Figures 5.9

and 5.10. The observed throughput at 0% is approximately 76 KBps, while the observed throughput

at 100% is approximately 5 times faster, at 365 KBps. The observed data transfer rates track the

lower of the read and write throughputs. At lower cache hit percentages, throughput is dominated

by write speeds, while at over 80%, the read speeds dominate.

Overall, these results demonstrate that the LoggerFS implementation with the FRAM write-

back cache performs about 8 times faster than without the cache for write workloads. For read

workloads, the FRAM cache helps boost throughput by 50%. For 50%-50% mixed read and write

workloads, LoggerFS with the FRAM write-back cache is able to achieve speeds 5 times faster than

the implementation without the cache.

75

5.4 Summary

In this chapter, we presented the design and implementation of LoggerFS, which provides a

fast and reliable data storage solution for WSNs. LoggerFS uses a hybrid memory model comprising

RAM, FRAM, and flash memory. The file system is designed to use fixed-size metadata, resulting

in a small main memory footprint. Metadata is stored in FRAM for fast reads and writes. Data

persistence and reliability are achieved using a consistent data structure update mechanism, ensuring

that all updates in the file system are atomic. We presented the design of a FRAM-based, write-back

cache, which allows LoggerFS to efficiently handle bursts of high-rate writes, and to support flash

wear-leveling. Finally, we demonstrated the fault tolerance capabilities of LoggerFS during various

failure scenarios and evaluated the read and write performance of a LoggerFS prototype on an in-situ

sensing platform. We demonstrated significant improvements in read and write performance with

the FRAM-based write-back cache, over the implementation without cache.

76

Chapter 6

Related Work

In this chapter, we summarize the most relevant related work. Section 6.1 summarizes

work related to our task scheduling approach. Section 6.2 summarizes work related to our network

reprogramming approach. Section 6.3 summarizes work related to our fast and reliable data storage

solution.

6.1 Task Scheduling

Levis et al. present TinyOS[39], one of the most widely-used sensor network operating

systems. TinyOS includes a task scheduler that executes non-preemptive tasks posted for later exe-

cution. TinyOS uses a fixed-length, FIFO scheduler by default. To reduce energy consumption, the

scheduler puts the processor to sleep whenever the task queue is empty. Its successor, TinyOS2[38],

uses a similar FIFO scheduler; an earliest-deadline-first implementation is also available. Compared

to TinyOS, TinyOS2 introduces more overhead when posting and executing a task, but less overhead

when the task queue is empty.

Han et al. present SOS[25], another event-driven operating system. Software modules

communicate using direct calls and message passing via a FIFO scheduler with two levels of priority.

High priority messages are reserved for time critical events, such as hardware interrupts.

Dunkels et al. present Contiki[21], another event-based operating system with support for

event prioritization. A non-preemptive event scheduler schedules asynchronous and synchronous

events. Asynchronous events are deferred procedure calls enqueued in a FIFO handling queue.

77

Synchronous events are immediately scheduled at the front of the queue.

Bhatti et al. present MANTIS[9], a multi-threaded sensor network operating system. In

MANTIS, a fixed thread table maintains all threads, which are executed using round-robin scheduling

within priority levels. The scheduler is driven by a timer interrupt, which triggers context switching

among threads. MANTIS also allows users to specify the sleep period of threads. The scheduler

calculates the earliest wake-up time and uses an idle background thread to put the CPU to sleep

when all other threads are blocked.

Chen et al. present Enix[12], a cooperative threading solution for sensor networks, which

uses setjump and longjump to implement low overhead context switching. It supports priority-based

and round-robin scheduling policies using linear search and bitmap-based thread lookups. Other

multi-threaded sensor network operating systems, including LiteOS[10] and RETOS[11], use similar

schedulers. In particular, LiteOS supports priority-based and round-robin scheduling policies, and

RETOS supports POSIX scheduling, which boosts the priority of a thread when events need to be

handled quickly.

While each has its advantages, none of these systems are well matched for AAS scheduling.

Event-based schedulers using FIFO mechanisms or priorities are not designed to account for the

sleep requirements of AAS systems. Thread-based schedulers are also inefficient in this context.

POSIX-like soutions introduce significant overhead, while the use of small epochs in other multi-

threaded solutions is energy-inefficient. By contrast, our work focuses on the systematic design and

analysis of scheduling solutions suited specifically to AAS systems.

6.2 Network Reprogramming

Levis et al. present TinyOS [39], which provides Crossbow Network Programming (XNP) [33,

62] as its network reprogramming implementation. XNP achieves network reprogramming by broad-

casting the entire program image to nodes in a single-hop network. Culler et al. present Deluge [27],

a reliable data dissemination protocol which also propagates complete binary images. However, both

protocols are inefficient; there are often common code segments between versioned images.

Stathopoulos et al. present Multihop Over-the-Air Programming (MOAP) [58], which uses

a data dissemination protocol called Ripple to distribute code to sensor devices. Unlike network

flooding, Ripple selectively forwards packets to nodes while utilizing a sliding window protocol for

78

controlling retransmissions. Nodes have the ability to transmit parts of the program code they have

already received to new nodes while waiting for retransmission of lost packets.

Levis et al. present Maté [37], which deals with network reprogramming by transmitting

application-specific code for execution on a virtual machine. While this allows Maté to be signif-

icantly faster during reprogramming, the approach is not useful when the virtual machine itself

needs to be reprogrammed. Levis et al. also present Trickle [40], which uses an epidemic-based data

dissemination protocol to avoid flooding the network as in Maté. However, none of these approaches

consider incremental code updates for efficient reprogramming.

Jeong describes Fixed Block Comparison (FCB) [31], which divides program images into

fixed size blocks and compares the blocks in the corresponding locations in both the old and new

program images. FCB then propagates only the blocks of code from the new program image which

are different from the previous version. FCB performs only marginally better than XNP when the

two program image versions are not aligned with each other.

Jeong et al. also present an incremental code update strategy in [32], where they adapt

the Rsync algorithm [65] to compute differences between program image versions. The approach

again partitions the program image into fixed-size blocks (B bytes), and then uses a checksum pair

(checksum, hash value) to represent each block, and stores the pair in a hash table. Next, a sliding

window of size B bytes is run on the new program image, and the checksum and hash value for

each window are calculated; lookups are performed in the hash table for potential matches. While

Rsync is also platform and language independent, there are problems with this approach. The

total number of hash computations used in Rsync is proportional to the size of the code image,

O(n). Considering that each hash computation requires at least linear time, the time required for

all the hash computations and lookups is O(n2). Second, on a hash match, the approach requires

a byte-by-byte scan through the code to avoid false match positives. Finally, the size of the sliding

window defines the match granularity in the two image versions. If there are multiple matching

image segments of size (B − b) bytes, where 0 < b < B, this approach would fail to identify the

matches.

Panta et al. present Zephyr [48], an incremental reprogramming strategy based on an

optimized version of the Rsync algorithm [65], in conjunction with function call indirection. This

approach requires application-level code modifications to reduce function shifts caused when function

bodies are shifted from their original locations between image versions. Next, the optimized Rsync

79

algorithm is used to compute the differences between the two code images, creating a delta. While

the traditional Rsync algorithm is able to identify matching blocks, the optimized version computes

the maximal super-block between the two images in O(n2) time, where n is the length of the code

images. A super-block comprises contiguous matching blocks, and a maximal super-block is the

largest super-block. While Zephyr is an improvement over the strategy presented in [32], it shares all

the problems of the Rsync-based approach. Further, this solution is not platform and programming

language independent; it requires knowledge of program structure.

Munawar et al. present Dynamic TinyOS [47], which uses high-level knowledge of application

structure to make application updates. This is achieved using extensions to the nesC compiler

which convert TinyOS applications and system components into separate binary objects during

compilation. Standard data dissemination protocols are then used to update individual objects.

This approach also requires knowledge of program code structure, which reduces its applicability to

systems developed using other compilers and languages.

Reijers et al. describe an efficient code distribution strategy that uses a diff-like approach

to computing the edit script for encoding the differences between two program images [51]. Their

approach makes use of a suffix tree, which requires O(n) time and space to build, where n is the

length of the original version of the program image. However, their approach needs n traversals of

the suffix tree for each position of the image vector, thus requiring O(n3) time. Additionally, the

edit script encoding scheme is complex, requiring a large number of commands and opcodes, and is

architecture specific.

In contrast to all the prior approaches, our incremental update strategy uses an adapted

version of Hirschberg’s Algorithm to compute the differences between program images. Hirschberg’s

Algorithm has quadratic time and linear space complexity and employs a divide-and-conquer dy-

namic programming approach to compute a globally optimal subsequence between two strings. We

adapt Hirschberg’s Algorithm to build the edit map containing the edit script required to transform

the code running in the network to a new code image. Since we do not use a block-based approach,

our solution is able to identify even small code segments which match between the program images.

Further, we present an optimization strategy for encoding the edit map, which significantly reduces

the amount of data that needs to be transmitted (and the energy expended) for successful sensor

node reprogramming.

80

6.3 Data Storage

In this section, we survey some of the most well-known file systems for embedded systems,

many of which use log-structured design principles [52]. The design of LoggerFS is influenced in part

by JFFS [69], designed by Woodhouse et al. Prior to JFFS, the traditional design approach was to

use a block device interface to interact with flash memory. JFFS was among the first to introduce a

log-structured design specifically for flash devices. Versions have been implemented for the 2.x Linux

kernels; those support garbage collection and checksum-based fault detection. However, JFFS lacks

a fault-tolerance mechanism, including the ability to recover from system crashes. Additionally,

although JFFS was designed for use in embedded devices, its implementation does not consider

resource-constrained systems.

Mathur et al. present Capsule [43], an energy-optimized, NAND flash-based, object storage

system for memory-constrained sensor devices. Capsule implements a flash abstraction layer (FAL),

which provides a log-structured file system abstracting raw flash access. Capsule supports efficient

storage of commonly used objects, such as streams, files, arrays, queues, and lists. Data writes are

appended to a fixed-sized write buffer in primary memory, and flushed to flash when full. Reads

are always served from flash, not cache. The file system implements a cleaner as part of the FAL,

responsible for garbage collection of fragmented data in flash. Fault tolerance is provided by check-

pointing and rollback of object states. Checkpointing involves taking a snapshot of in-memory state

and committing that state to flash. In the event of a node restart, rollback is achieved by restoring

the system to the most recent checkpoint. Capsule is implemented using TinyOS [39] and focuses

primarily on energy efficiency.

Dai et al. present ELF [16], which also implements a log-structured file system for embedded

devices. ELF uses a group of pages in a linked-list to represent files in memory. It offers a rich set

of features which provide support for random file overwrites and hierarchical directory structures.

ELF also allows files to grow in memory after they have been created, handling flash fragmentation

via a garbage collector. Interestingly, ELF stores files in NAND flash, and file-system metadata,

such as directory structures, in EEPROM to limit the wear on flash. It also supports limited crash

recovery for certain special files. Crash recovery metadata is also stored in EEPROM.

Our design differs from ELF and Capsule in that we do not allow files to grow once they have

been created. LoggerFS also does not support directory structures and random file overwrites since

81

embedded sensor file systems are mostly used for logging sensed data. Additionally, the amnesiac

nature of LoggerFS (old records are discarded when new data arrives to a full file) allows it to

operate without a garbage collector. This makes LoggerFS much faster and lighter-weight, while

providing complete file system crash recovery capabilities. Data persistence and crash recovery in

LoggerFS is achieved by the use of a consistent data structure update mechanism and a FRAM

metadata store. This allows for crash recovery in LoggerFS to be fine-grained, without the need for

explicit checkpointing and rollback operations. Finally, the FRAM-based, write-back cache allows

LoggerFS to support fast writes, and also serves as an opportunistic read cache.

Doh et al. present a file system which uses NVRAM to store file metadata and flash to store

file content [18]. They present a model to analyze and predict the amount of NVRAM required

for a specific flash size to achieve the optimal usable flash-to-NVRAM ratio for peak performance.

For realistic file access workloads, they achieve maximum performance improvements of 600%, and

an average improvements of 437% over YAFFS [13], another flash-based file system, successfully

demonstrating that flash-based file systems can use NVRAM to accelerate performance. LoggerFS

is similar to this file system in that it also employs non-volatile memory (FRAM) to accelerate data

access. However, unlike this file system, LoggerFS provides complete crash recovery capabilities.

Tsiftes et al. present the Coffee file system [66] for flash-based devices, implemented for

the Contiki operating system [21]. Coffee uses a linked-list of page structures to represent files in

memory and flash, and uses micro-logs to handle file modifications. This allows Coffee to use fixed-

size file metadata in RAM. Coffee uses a first-fit algorithm for page allocation in flash, and files are

stored as a contiguous list of pages. If files grow larger than their current allocated size, they are

moved to a different location in flash. Coffee implements a garbage collector that provides some

wear-leveling guarantees. Because of the complex, process-centric implementation of the Coffee file

system (requiring significant processing power), LoggerFS outperforms Coffee in terms of read and

write performance. Coffee also provides limited crash recovery, making it possible to lose entire file

contents during a system failure e.g., due to a loss of power. This lack of data persistence makes

Coffee unsuitable for many critical applications.

Gay et al. present the Matchbox file system [24] as part of the TinyOS operating system [39],

with design goals similar to LoggerFS. Matchbox provides support for data reliability – specifically,

the ability to detect corruptions and limit data loss to files being edited during system failure without

corrupting file metadata. Matchbox also implements atomic metadata updates, which allows it to

82

support atomic read and write operations. Memory allocation in flash is done using a free page

bitmap. The Matchbox design aligns with many of our design choices: wireless sensor file systems

typically do not need support for security, hierarchical file system structures, random file access,

or multiple file opens. LoggerFS supports atomic read and write operations via a novel consistent

data structure approach, in addition to providing full crash recovery capabilities. Unlike LoggerFS,

Matchbox lacks a complete crash recovery solution such that it is able to reinitialize itself after

a system failure. Matchbox also requires certain NOR flash capabilities which limit its usability.

Additionally, the RAM and ROM footprints for Matchbox are high, increasing linearly with the

number and size of files in the system [66]. In comparison, the RAM footprint of LoggerFS is

constant for files of any size.

Gal et al. present TFFS [23], a transactional file system for resource-constrained embedded

devices. TFFS implements an efficient, pruned, versioned search tree for file representation in

memory; fast search and file access; and atomic operations. Transactions and atomic file operations

are stored as part of a log before being committed to memory. For small flash devices, TFFS uses a

small amount of primary memory to provide a mapping from real to logical sector numbers. However,

for larger flash devices, this memory requirement is much larger, which makes TFFS unsuitable for

embedded devices with limited RAM.

Cao et al. present a hierarchical file system and an associated shell interface as part of the

LiteOS operating system [10]. LiteOS provides a Unix-like file system and operating abstraction for

wireless sensor networks, with complete directory structures and user-shell interaction. The unit of

storage in the file system is the block. LiteOS stores file metadata (control blocks) in EEPROM, and

data (storage blocks) in flash. An in-memory bit vector provides information about the used blocks in

EEPROM and flash. Interestingly, LiteOS also implements a search-by-name feature, which is able

to handle string queries. While the LiteOS file system is feature-rich and can be manipulated using

shell commands and application development libraries, it is memory-intensive. Further, LiteOS does

not guarantee data reliability. The file system may not remain consistent across system failures.

There has been significant work on storage systems for flash-based embedded devices [16,

69, 24, 39, 10, 66, 18, 23]. However, none of these systems are designed to sustain bursty, high data

rates, while allowing complete crash recovery and data persistence in the presence of device failures.

Moreover, LoggerFS is unique in its lightweight design and its use of FRAM as a metadata store

and write-back cache to support fast reads and writes.

83

Chapter 7

Conclusion

Embedded devices and wireless sensor networks are increasingly pervasive. The design and

implementation of the associated applications presents unique challenges to embedded system de-

velopers due to the scarcity of computational resources the target hardware devices afford: (1) Most

embedded devices operate with finite battery stores. Efficient task scheduling in embedded devices

can help extend battery life. (2a) Once these devices have been deployed, it is prohibitively time-

consuming and costly to add new functionality or correct even minor defects in installed applications.

The ability to efficiently reprogram a wireless sensor network is crucial to propagating code updates

without requiring a redeployment. (2b) The absence of associated development, debugging, and

reprogramming tools which can be easily modified to suit the developers’ needs further complicates

the development process. (3) Sensor nodes need persistent data storage. Mission-critical sensor

applications need this data to be recoverable after system failures. A file system with integrated

reliability mechanisms designed specifically for embedded devices can provide such fault-tolerance,

in addition to fast data storage.

7.1 Contribution Summary

In this dissertation, we presented the following contributions.

84

7.1.1 Contribution 1 — Task Scheduling

We presented the design and implementation of four progressively efficient schedulers de-

signed to support almost-always-sleeping embedded applications. The scheduler designs are appli-

cable to any modern MCU. We analyzed the scheduler designs and presented closed-form algebraic

models for each scheduler implementation, capturing the scheduling overhead of each design as a

function of task load and other parameters. Next, these models were used to characterize the com-

parative performance among the designs. Further, we conducted physical power profiling studies

on an in-situ sensing platform and illustrated the power consumption profile associated with each

design. The results also provided comparative lifetime benefits. The systematic consideration of

this class of schedulers enables embedded system developers to choose the most energy efficient

scheduling solution for their application designs, and to extend the battery life of their devices.

7.1.2 Contribution 2 — Network Reprogramming

We first presented the design and implementation of a framework for developing and testing

incremental code update mechanisms. This unified development framework operates on a set of

standardized reprogramming tools and facilitates the implementation and evaluation of incremen-

tal code update algorithms for WSN developers. Next, we presented an incremental code update

mechanism for efficient wireless sensor network reprogramming, designed using the framework. Our

network reprogramming approach adapts Hirschberg’s Algorithm to compute the differences between

two program images. The differences are stored as an edit script, and a heuristic-based optimization

strategy is applied to reduce its size. This optimized edit script is then transmitted to sensor nodes

using a standard data dissemination protocol. The sensor nodes construct the new program image

after decoding the edit script. Our approach significantly reduces the data size of image transmis-

sions over full image transmissions, and also improves on prior work in incremental reprogramming.

Our approach is platform, programming language, and program code structure agnostic. The ability

to efficiently reprogram any wireless sensor network will reduce the time required to deploy these

networks and modify installed applications, and lead to significant energy savings.

85

7.1.3 Contribution 3 — Data Storage

We presented the design and implementation of LoggerFS, a fast and lightweight file system

for wireless sensor systems, which is reliable across device failures, safeguarding the data recorded

by these devices. With the use of a hybrid memory model comprising RAM, FRAM, and flash

devices, LoggerFS allows sensed data to be sampled and stored quickly and batched for later trans-

mission. The file system has a small main memory footprint, due to its use of fixed-sized metadata.

File metadata is stored in FRAM for fast retrieval during read and write operations. A FRAM-

based, write-back cache allows bursts of high-rate writes to be buffered, with support for flash

wear-leveling. The write-back cache also helps some read workloads by opportunistically serving

data from the cache. Data persistence and reliability are achieved using a consistent data structure

update mechanism which ensures that all updates in the file system are atomic. LoggerFS is able to

provide reliable data storage, while also demonstrating significant improvements in read and write

speeds (between 50% and 800%) when using the FRAM write-back cache over an implementation

without the cache. This allows LoggerFS to be used in mission-critical applications, where fast and

persistent data storage is important.

7.2 Expected Impact

We believe that these contributions can have a significant impact on the design, develop-

ment, and deployment of applications for wireless sensor networks. First, the design and analysis of

the almost-always-sleeping schedulers enables system developers to choose the most power-efficient

scheduling solution for their applications, thus extending battery life. Second, the network repro-

gramming solution shortens deployment life cycles by providing the ability to efficiently reprogram

a wireless sensor network and modify installed applications with relative ease, while also extending

battery life. Further, the framework for developing and testing incremental code update mecha-

nisms allows for rapid prototyping and development of new and improved network reprogramming

solutions. Finally, the data storage solution allows for fast, persistent, and reliable storage of data,

while using a small memory footprint, and supporting bursts of high data-rate writes. This enables

system developers to use these embedded devices for mission-critical applications.

86

Bibliography

[1] J. Aas. Understanding the linux 2.6.8.1 cpu scheduler. Silicon Graphics International, 2005.
http://josh.trancesoftware.com/linux/linux cpu scheduler.pdf.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a
survey. Computer Networks, 38:393–422, 2002.

[3] Atmel. 4-megabit spi serial flash memory. http://media.digikey.com/pdf/Data Sheets/Atmel
PDFs/AT25DF041A.pdf.

[4] Atmel. Avr068: Stk500 communication protocol. www.atmel.com/images/doc2591.pdf.

[5] Atmel. Avr069: Avrisp mkii communication protocol. www.atmel.com/images/doc8015.pdf.

[6] Atmel. Avr910: In-system programming. www.atmel.com/images/doc0943.pdf.

[7] AVR. Libc. http://www.nongnu.org/avr-libc/.

[8] AVR. Atmega datasheet. www.atmel.com/dyn/resources/prod documents/doc2593.pdf, 2010.

[9] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth, Brian Shucker,
Charles Gruenwald, Adam Torgerson, and Richard Han. Mantis os: an embedded multithreaded
operating system for wireless micro sensor platforms. Mob. Netw. Appl., 10(4):563–579, August
2005.

[10] Qing Cao, Tarek Abdelzaher, John Stankovic, and Tian He. The liteos operating system: To-
wards unix-like abstractions for wireless sensor networks. In Proceedings of the 7th international
conference on Information processing in sensor networks, IPSN ’08, pages 233–244, Washington,
DC, USA, 2008. IEEE Computer Society.

[11] Hojung Cha, Sukwon Choi, Inuk Jung, Hyoseung Kim, Hyojeong Shin, Jaehyun Yoo, and
Chanmin Yoon. Retos: resilient, expandable, and threaded operating system for wireless sensor
networks. In Proceedings of the 6th international conference on Information processing in sensor
networks, IPSN ’07, pages 148–157, New York, NY, USA, 2007. ACM.

[12] Yu-Ting Chen, Ting-Chou Chien, and Pai H. Chou. Enix: a lightweight dynamic operating
system for tightly constrained wireless sensor platforms. In Proceedings of the 8th ACM Con-
ference on Embedded Networked Sensor Systems, SenSys ’10, pages 183–196, New York, NY,
USA, 2010. ACM.

[13] Aleph One Company. Yaffs (yet another flash file system). http://www.aleph1.co.uk/yaffs/yaf
fs.html.

[14] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers. O’Reily,
2005.

87

[15] Rone Iĺıdio da Silva, Virgil Del Duca Almeida, André Marques Poersch, and José Marcos Silva
Nogueira. Spatial query processing in wireless sensor network for disaster management. In
Proceedings of the 2nd IFIP conference on Wireless days, WD’09, pages 194–198, Piscataway,
NJ, USA, 2009. IEEE Press.

[16] Hui Dai, Michael Neufeld, and Richard Han. Elf: an efficient log-structured flash file system for
micro sensor nodes. In Proceedings of the 2nd international conference on Embedded networked
sensor systems, SenSys ’04, pages 176–187, New York, NY, USA, 2004. ACM.

[17] Brian S. Dean. Avrdude - avr downloader/uploader. www.nongnu.org/avrdude/.

[18] In Hwan Doh, Jongmoo Choi, Donghee Lee, and Sam H. Noh. Exploiting non-volatile ram to
enhance flash file system performance. In Proceedings of the 7th ACM &Amp; IEEE Interna-
tional Conference on Embedded Software, EMSOFT ’07, pages 164–173, New York, NY, USA,
2007. ACM.

[19] Cypress Semiconductor Doug Mitchell. nvsrams eclipse battery-backed memory.
http://www.cypress.com/?docID=9279.

[20] Adam Dunkels. Programming Memory-Constrained Networked Embedded Systems. PhD thesis,
SICS, 2007.

[21] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a lightweight and flexible operating
system for tiny networked sensors. In Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, LCN ’04, pages 455–462, Washington, DC, USA,
2004. IEEE Computer Society.

[22] G. W. Eidson, S. T. Esswein, J. B. Gemmill, Jason O. Hallstrom, T. R. Howard, J. K. Lawrence,
Christopher J. Post, C. B. Sawyer, Kuang-C. Wang, and D. L. White. The south carolina
digital watershed: End-to-end support for real-time management of water resources. IJDSN,
2010, 2010.

[23] Eran Gal and Sivan Toledo. A transactional flash file system for microcontrollers, 2005.

[24] David Gay. Matchbox: A simple filing system for motes. http://www.docs.tinyos.net/tinyos-
1.x/doc/matchbox.pdf.

[25] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava. A dynamic
operating system for sensor nodes. In Proceedings of the 3rd international conference on Mobile
systems, applications, and services, MobiSys ’05, pages 163–176, New York, NY, USA, 2005.
ACM.

[26] D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Commun. ACM, 18(6):341–343, June 1975.

[27] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemination protocol for
network programming at scale. In In Proceedings of the 2nd international, pages 81–94. ACM
Press, 2004.

[28] Texas Instruments. Msp430 ultra-low-power microcontrollers. http://www.ti.com/lit/sg/slab
34w/slab034w.pdf.

[29] Intel. Intel hexadecimal object file format specification. www.microsym.com/editor/assets/intel
hex.pdf, 1988.

[30] Digi International. Xbee/xbee-pro oem rf modules - 802.15.4 protocol. ftp://ftp1.digi.com/sup
port/documentation/90000982 A.pdf, 2008.

88

[31] Jaein Jeong. Node-level representation and system support for network programming, 2003.

[32] Jaein Jeong and David Culler. Incremental network programming for wireless sensors. In IEEE
Sensor and Ad Hoc Communications and Networks (SECON, pages 25–33, 2004.

[33] Jaein Jeong, Sukun Kim, and Alan Broad. Network reprogramming. TinyOS document,
http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/NetworkReprogramming.pdf.

[34] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steve Glaser,
and Martin Turon. Wireless sensor networks for structural health monitoring. In Proceedings
of the 4th international conference on Embedded networked sensor systems, SenSys ’06, pages
427–428, New York, NY, USA, 2006. ACM.

[35] Claudio Lanconelli. Ponyprog serial device programmer. http://www.lancos.com/prog.html.

[36] Hyung Gyu Lee and Naehyuck Chang. Low-energy heterogeneous non-volatile memory systems
for mobile systems. Journal of Low Power Electronics, 1:52–62, 2005.

[37] Philip Levis and David Culler. Maté: a tiny virtual machine for sensor networks. SIGOPS
Oper. Syst. Rev., 36(5):85–95, October 2002.

[38] Philip Levis, David Gay, Vlado H, Jan hinrich Hauer, Ben Greenstein, Martin Turon, Jonathan
Hui, Kevin Klues, Cory Sharp, Robert Szewczyk, Joe Polastre, Philip Buonadonna, Lama
Nachman, Gilman Tolle, David Culler, Adam Wolisz, Technische Universitt Berlin, Crossbow
Inc, and Arched Rock Corpration. T2: A second generation os for embedded sensor networks.
Technical report, 2005.

[39] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Alec Woo, David Gay, Jason
Hill, Matt Welsh, Eric Brewer, and David Culler. Tinyos: An operating system for sensor
networks. In in Ambient Intelligence. Springer Verlag, 2004.

[40] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: A self-regulating algorithm
for code propagation and maintenance in wireless sensor networks. In In Proceedings of the
First USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI,
pages 15–28, 2004.

[41] Konrad Lorincz, Bor-rong Chen, Geoffrey Werner Challen, Atanu Roy Chowdhury, Shyamal
Patel, Paolo Bonato, and Matt Welsh. Mercury: a wearable sensor network platform for high-
fidelity motion analysis. In Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’09, pages 183–196, New York, NY, USA, 2009. ACM.

[42] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John Anderson. Wire-
less sensor networks for habitat monitoring. In Proceedings of the 1st ACM international work-
shop on Wireless sensor networks and applications, WSNA ’02, pages 88–97, New York, NY,
USA, 2002. ACM.

[43] Gaurav Mathur, Peter Desnoyers, Deepak Ganesan, and Prashant Shenoy. Capsule: An energy-
optimized object storage system for memory-constrained sensor devices. In Proceedings of the
4th International Conference on Embedded Networked Sensor Systems, SenSys ’06, pages 195–
208, New York, NY, USA, 2006. ACM.

[44] Biswajit Mazumder and Jason O. Hallstrom. Sfc: a simple flow control protocol for enabling
reliable embedded network systems reprogramming. In Proceedings of the 50th Annual Southeast
Regional Conference, ACM-SE ’12, pages 321–326, New York, NY, USA, 2012. ACM.

89

[45] Biswajit Mazumder and Jason O. Hallstrom. An efficient code update solution for wireless
sensor network reprogramming. In Proceedings of the eleventh ACM international conference
on Embedded software, EMSOFT ’13, New York, NY, USA, 2013. ACM.

[46] Prashanth Mohan, Venkata N. Padmanabhan, and Ramachandran Ramjee. Nericell: rich mon-
itoring of road and traffic conditions using mobile smartphones. In Proceedings of the 6th ACM
conference on Embedded network sensor systems, SenSys ’08, pages 323–336, New York, NY,
USA, 2008. ACM.

[47] Waqaas Munawar, Muhammad Hamad Alizai, Olaf Landsiedel, and Klaus Wehrle. Dynamic
tinyos: Modular and transparent incremental code-updates for sensor networks. In ICC’10,
pages 1–6, 2010.

[48] Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff. Zephyr: efficient incremental
reprogramming of sensor nodes using function call indirections and difference computation. In
Proceedings of the 2009 conference on USENIX Annual technical conference, USENIX’09, pages
32–32, Berkeley, CA, USA, 2009. USENIX Association.

[49] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joonwon Lee. Cflru: a
replacement algorithm for flash memory. In Proceedings of the 2006 international conference on
Compilers, architecture and synthesis for embedded systems, CASES ’06, pages 234–241, New
York, NY, USA, 2006. ACM.

[50] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: enabling ultra-low power wireless
research. In Proceedings of the 4th international symposium on Information processing in sensor
networks, IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press.

[51] Niels Reijers and Koen Langendoen. Efficient code distribution in wireless sensor networks. In
Proceedings of the 2nd ACM international conference on Wireless sensor networks and appli-
cations, WSNA ’03, pages 60–67, New York, NY, USA, 2003. ACM.

[52] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured
file system. ACM Transactions on Computer Systems, 10:1–15, 1992.

[53] Cypress Semiconductor. Cy14b104n datasheet. http://www.cypress.com/?rID=39015.

[54] Cypress Semiconductor. Fm22l16 4mbit asynchronous f-ram memory. http://www.cypress.com
/?docID=42532.

[55] Cypress Semiconductor. Fm25v05 512-kbit serial f-ram. http://www.cypress.com/?docID=47930.

[56] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen, and Matt Welsh.
Simulating the power consumption of large-scale sensor network applications. In Proceedings
of the 2nd international conference on Embedded networked sensor systems, SenSys ’04, pages
188–200, New York, NY, USA, 2004. ACM.

[57] Livio B Soares, Orran Y Krieger, and Dilma Da Silva. Meta-data snapshotting: A simple
mechanism for file system consistency, 2003.

[58] Thanos Stathopoulos, John Heidemann, and Deborah Estrin. A remote code update mechanism
for wireless sensor networks. Technical report, 2003.

[59] Crossbow Technologies. Iris datasheet. http://bullseye.xbow.com:81/Products/Product pdf files
/Wireless pdf/IRIS Datasheet.pdf.

[60] Crossbow Technologies. Mica2 datasheet. http://bullseye.xbow.com:81/Products/Product pdf
files/Wireless pdf/MICA2 Datasheet.pdf.

90

[61] Crossbow Technologies. Micaz datasheet. http://bullseye.xbow.com:81/Products/Product pdf
files/Wireless pdf/MICAz Datasheet.pdf.

[62] Crossbow Technology. Mote in network programming user reference. TinyOS document,
http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/Xnp.pdf.

[63] Andreas Terzis, Razvan Musaloiu-E., Joshua Cogan, Katalin Szlavecz, Alexander Szalay, Jim
Gray, Stuart Ozer, Chieh-Jan Mike Liang, Jayant Gupchup, and Randal Burns. Wireless sensor
networks for soil science. Int. J. Sen. Netw., 7(1/2):53–70, February 2010.

[64] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner, Kevin Tu, Stephen
Burgess, Todd Dawson, Phil Buonadonna, David Gay, and Wei Hong. A macroscope in the
redwoods. In Proceedings of the 3rd international conference on Embedded networked sensor
systems, SenSys ’05, pages 51–63, New York, NY, USA, 2005. ACM.

[65] Andrew Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis, Australian
National University, 1999.

[66] Nicolas Tsiftes, Adam Dunkels, Zhitao He, and Thiemo Voigt. Enabling large-scale storage in
sensor networks with the coffee file system. In Proceedings of the 2009 International Conference
on Information Processing in Sensor Networks, IPSN ’09, pages 349–360, Washington, DC,
USA, 2009. IEEE Computer Society.

[67] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt Welsh. Fidelity
and yield in a volcano monitoring sensor network. In Proceedings of the 7th symposium on
Operating systems design and implementation, OSDI ’06, pages 381–396, Berkeley, CA, USA,
2006. USENIX Association.

[68] Geoffrey Werner-Allen, Stephen Dawson-Haggerty, and Matt Welsh. Lance: optimizing high-
resolution signal collection in wireless sensor networks. In Proceedings of the 6th ACM conference
on Embedded network sensor systems, SenSys ’08, pages 169–182, New York, NY, USA, 2008.
ACM.

[69] David Woodhouse. JFFS : The Journalling Flash File System, 2001.

[70] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan Broad, Ramesh
Govindan, and Deborah Estrin. A wireless sensor network for structural monitoring. In Pro-
ceedings of the 2nd international conference on Embedded networked sensor systems, SenSys
’04, pages 13–24, New York, NY, USA, 2004. ACM.

[71] Tom Yeh, Haru Yamamoto, and Thanos Stathopolous. Over-the-air reprogramming of wireless
sensor nodes. In UCLA EE202A Project Report, 2003.

91

	Clemson University
	TigerPrints
	5-2016

	Efficient and Reliable Task Scheduling, Network Reprogramming, and Data Storage for Wireless Sensor Networks
	Biswajit Mazumder
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Listings
	Introduction
	Problem Statement
	Research Approach and Contributions
	Dissertation Organization

	Background
	Task Scheduling
	Network Reprogramming
	Data Storage

	Task Scheduling
	Basic Scheduler
	O(1) Scheduler
	O(n) Scheduler
	Intelligent Sleep Scheduler
	Algebraic Models
	Evaluation
	Summary

	Network Reprogramming
	VSPIN Framework
	Incremental Code Update Mechanism
	Evaluation
	Summary

	Data Storage
	LoggerFS Design
	File System Implementation
	Evaluation
	Summary

	Related Work
	Task Scheduling
	Network Reprogramming
	Data Storage

	Conclusion
	Contribution Summary
	Expected Impact

	Bibliography

