184 research outputs found

    Robust Low-Cost Multiple Antenna Processing for V2V Communication

    Get PDF
    Cooperative V2V communication with frequent, periodic broadcast of messages between vehicles is a key enabler of applications that increase traffic safety and traffic efficiency on roads. Such broadcast V2V communication requires an antenna system with omnidirectional coverage, which is difficult to achieve using a single antenna element. For a mounted, omnidirectional antenna on a vehicle is distorted by the vehicle body, and exhibits a nonuniform directional pattern with low gain in certain directions. The thesis addresses this problem by developing schemes that employ multiple antennas (MAs) to achieve an effective radiation pattern with omnidirectional characteristics at both the transmit- and the receive-side. To ensure robust communication, the MA schemes are designed to minimize the burst error probability of several consecutive status messages in a scarce multipath environment with a dominant path between vehicles.First, at the receive-side, we develop a hybrid analog-digital antenna combiner. The analog part of the combiner is composed of low-cost analog combining networks (ACNs) of phase shifters that do not depend on channel stateinformation (CSI), while the digital part uses maximal ratio combining. We show that the optimal phase slopes of the analog part of the combiner (i.e., the phase slopes that minimize the burst error probability) are the same found under the optimization of a single ACN, which was done in earlier work. We then show how directional antennas can be employed in this context to achieve an effective omnidirectional radiation pattern of the antenna system that is robust in all directions of arrival of received signals.Secondly, at the transmit-side, we develop two low-cost analog MA schemes, an analog beamforming network (ABN) of phase shifters, and an antenna switching network (ASN), for the case when receivers employ the ACN or the hybrid combiner. Both schemes are shown to achieve an effective radiation pattern with improved omnidirectional characteristics at the transmit-side without relying on CSI.Thirdly, the schemes above were developed assuming that all vehicles broadcast their messages with the same fixed period. Therefore, we tackle the practical scenario when different vehicles use different and potentially varying broadcast periods. We show that the phase slopes of the MA schemes at the receiver and/or transmitter can be designed to support multiple broadcast periods.\ua0Lastly, the optimal phase slopes of the MA schemes were analytically derived under a worst-case propagation corresponding to a dominant path with an angle of departure, and an angle of arrival that are approximately non-varying over the time it takes to transmit and receive several packets. We relax this assumption and study the system performance under a time-varying dominant component instead. We derive a design rule that yields robust phase slopes that effectively mitigate the losses due to the time-variation of the dominant path

    NASA Tech Briefs, July 2005

    Get PDF
    Thin-Film Resistance Heat-Flux Sensors Circuit Indicates that Voice-Recording Disks are Nearly Full Optical Sensing of Combustion Instabilities in Gas Turbines Topics include: Crane-Load Contact Sensor; Hexagonal and Pentagonal Fractal Multiband Antennas; Multifunctional Logic Gate Controlled by Temperature; Multifunctional Logic Gate Controlled by Supply Voltage; Power Divider for Waveforms Rich in Harmonics; SCB Quantum Computers Using iSWAP and 1-Qubit Rotations; CSAM Metrology Software Tool; Update on Rover Sequencing and Visualization Program; Selecting Data from a Star Catalog; Rotating Desk for Collaboration by Two Computer Programmers; Variable-Pressure Washer; Magnetically Attached Multifunction Maintenance Rover; Improvements in Fabrication of Sand/Binder Cores for Casting; Solid Freeform Fabrication of Composite-Material Objects; Efficient Computational Model of Hysteresis; Gauges for Highly Precise Metrology of a Compound Mirror; Improved Electrolytic Hydrogen Peroxide Generator; High-Power Fiber Lasers Using Photonic Band Gap Materials; Ontology-Driven Information Integration; Quantifying Traversability of Terrain for a Mobile Robot; More About Arc-Welding Process for Making Carbon Nanotubes; Controlling Laser Spot Size in Outer Space; or Software-Reconfigurable Processors for Spacecraft

    The capture and integration of construction site data

    Get PDF
    The use of mobile computing on the construction site has been a well-researched area since the early 1990’s, however, there still remains a lack of computing on the construction site. Where computers are utilised on the site this tends to be by knowledge workers utilising a laptop or PC in the site office with electronic data collection being the exception rather than the norm. The problems associated with paper-based documentation on the construction site have long been recognised (Baldwin, et al, 1994; McCullough, 1993) yet there still seems to be reluctance to replace this with electronic alternatives. Many reasons exist for this such as; low profit margins, perceived high cost; perceived lack of available hardware and perceived inability of the workforce. However, the benefits that can be gained from the successful implementation of IT on the construction site and the ability to re-use construction site data to improve company performance, whilst difficult to cost, are clearly visible. This thesis represents the development and implementation of a data capture system for the management of the construction of rotary bored piles (SHERPA). Operated by the site workforce, SHERPA comprises a wireless network, site-based server and webbased data capture using tablet computers. This research intends to show that mobile computing technologies can be implemented on the construction site and substantial benefits can be gained for the company from the re-use and integration of the captured site data

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    FY10 Engineering Innovations, Research and Technology Report

    Full text link

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Novel Passive RFID Temperature Sensors Using Liquid Crystal Elastomers

    Get PDF
    When transporting perishable foods in the Cold Supply Chain (CSC), it is essential that they are maintained in a controlled temperature environment (typically from -1° to 10°C) to minimize spoilage. Fresh-food products, such as, meats, fruits, and vegetables, experience discoloration and loss of nutrients when exposed to high-temperatures. Also, medicines, such as, insulin and vaccines, can lose potency if they are not maintained at the appropriate temperatures. Consequently, the CSC is critical to the growth of global trade and to the worldwide availability of food and health supplies; especially, when considering that the retail food market consists mostly (approximately 65%) of fresh-food products. The current method of temperature monitoring in the CSC is limited to discrete location-based measurements. Subsequently, this data is used to assess the overall quality of transported goods. As a result, this method cannot capture all the common irregularities that can occur during the delivery cycle. Therefore, an effective sensor solution to monitor such items is necessary. Radio Frequency Identification (RFID) is a pragmatic wireless technology with a standardized communication protocol. Thus far, passive RFID temperature sensors have been investigated. However, each design has a limitation from which a set of design guidelines for an improved sensor solution is developed. That is, the new sensor should: (a) be compact to be applicable on individual products, (b) utilize purely passive technology to ensure longevity and cost-effectiveness, (c) monitor goods in a continuous fashion (e.g., operate through multiple room-to-cold and cold-to-room temperature cycles), and (d) operate in an independent mode, so that no resetting is required. In this research, antenna systems and RF circuit design techniques are combined with Liquid Crystal Elastomers (LCEs) to develop three novel temperature sensors. LCEs are temperature responsive polymers that are programmable and reversible. Notably, LCEs return to their original state when the stimulus is removed. Also, for the first time, cold-responsive LCEs are incorporated into the designs presented in this research. Two of the developed sensors convey temperature changes through the controlled shift in the operating frequency. The third design conveys temperature threshold crossings by reversibly switching operation between two RFID ICs (or two Electronic Product Codes). Finally, all designs have been fabricated and tested with favorable results in accordance to the above mentioned guidelines

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    NASA Tech Briefs, November 2002

    Get PDF
    Topics include: a technology focus on engineering materials, electronic components and systems, software, mechanics, machinery/automation, manufacturing, bio-medical, physical sciences, information sciences book and reports, and a special section of Photonics Tech Briefs

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research
    • …
    corecore