11 research outputs found

    First order convergence of matroids

    Get PDF
    The model theory based notion of the first order convergence unifies the notions of the left-convergence for dense structures and the Benjamini-Schramm convergence for sparse structures. It is known that every first order convergent sequence of graphs with bounded tree-depth can be represented by an analytic limit object called a limit modeling. We establish the matroid counterpart of this result: every first order convergent sequence of matroids with bounded branch-depth representable over a fixed finite field has a limit modeling, i.e., there exists an infinite matroid with the elements forming a probability space that has asymptotically the same first order properties. We show that neither of the bounded branch-depth assumption nor the representability assumption can be removed.Comment: Accepted to the European Journal of Combinatoric

    Finding Branch-Decompositions of Matroids, Hypergraphs, and More

    Get PDF

    On Minimal Tree Realizations of Linear Codes

    Full text link
    A tree decomposition of the coordinates of a code is a mapping from the coordinate set to the set of vertices of a tree. A tree decomposition can be extended to a tree realization, i.e., a cycle-free realization of the code on the underlying tree, by specifying a state space at each edge of the tree, and a local constraint code at each vertex of the tree. The constraint complexity of a tree realization is the maximum dimension of any of its local constraint codes. A measure of the complexity of maximum-likelihood decoding for a code is its treewidth, which is the least constraint complexity of any of its tree realizations. It is known that among all tree realizations of a code that extends a given tree decomposition, there exists a unique minimal realization that minimizes the state space dimension at each vertex of the underlying tree. In this paper, we give two new constructions of these minimal realizations. As a by-product of the first construction, a generalization of the state-merging procedure for trellis realizations, we obtain the fact that the minimal tree realization also minimizes the local constraint code dimension at each vertex of the underlying tree. The second construction relies on certain code decomposition techniques that we develop. We further observe that the treewidth of a code is related to a measure of graph complexity, also called treewidth. We exploit this connection to resolve a conjecture of Forney's regarding the gap between the minimum trellis constraint complexity and the treewidth of a code. We present a family of codes for which this gap can be arbitrarily large.Comment: Submitted to IEEE Transactions on Information Theory; 29 pages, 11 figure

    Approximating branchwidth on parametric extensions of planarity

    Full text link
    The \textsl{branchwidth} of a graph has been introduced by Roberson and Seymour as a measure of the tree-decomposability of a graph, alternative to treewidth. Branchwidth is polynomially computable on planar graphs by the celebrated ``Ratcatcher''-algorithm of Seymour and Thomas. We investigate an extension of this algorithm to minor-closed graph classes, further than planar graphs as follows: Let H0H_{0} be a graph embeddedable in the projective plane and H1H_{1} be a graph embeddedable in the torus. We prove that every {H0,H1}\{H_{0},H_{1}\}-minor free graph GG contains a subgraph GG' where the difference between the branchwidth of GG and the branchwidth of GG' is bounded by some constant, depending only on H0H_{0} and H1H_{1}. Moreover, the graph GG' admits a tree decomposition where all torsos are planar. This decomposition can be used for deriving an EPTAS for branchwidth: For {H0,H1}\{H_{0},H_{1}\}-minor free graphs, there is a function f ⁣:NNf\colon\mathbb{N}\to\mathbb{N} and a (1+ϵ)(1+\epsilon)-approximation algorithm for branchwidth, running in time O(n3+f(1ϵ)n),\mathcal{O}(n^3+f(\frac{1}{\epsilon})\cdot n), for every ϵ>0\epsilon>0

    Finding branch-decompositions of matroids, hypergraphs, and more

    Full text link
    Given nn subspaces of a finite-dimensional vector space over a fixed finite field F\mathcal F, we wish to find a "branch-decomposition" of these subspaces of width at most kk, that is a subcubic tree TT with nn leaves mapped bijectively to the subspaces such that for every edge ee of TT, the sum of subspaces associated with leaves in one component of TeT-e and the sum of subspaces associated with leaves in the other component have the intersection of dimension at most kk. This problem includes the problems of computing branch-width of F\mathcal F-represented matroids, rank-width of graphs, branch-width of hypergraphs, and carving-width of graphs. We present a fixed-parameter algorithm to construct such a branch-decomposition of width at most kk, if it exists, for input subspaces of a finite-dimensional vector space over F\mathcal F. Our algorithm is analogous to the algorithm of Bodlaender and Kloks (1996) on tree-width of graphs. To extend their framework to branch-decompositions of vector spaces, we developed highly generic tools for branch-decompositions on vector spaces. The only known previous fixed-parameter algorithm for branch-width of F\mathcal F-represented matroids was due to Hlin\v{e}n\'y and Oum (2008) that runs in time O(n3)O(n^3) where nn is the number of elements of the input F\mathcal F-represented matroid. But their method is highly indirect. Their algorithm uses the non-trivial fact by Geelen et al. (2003) that the number of forbidden minors is finite and uses the algorithm of Hlin\v{e}n\'y (2005) on checking monadic second-order formulas on F\mathcal F-represented matroids of small branch-width. Our result does not depend on such a fact and is completely self-contained, and yet matches their asymptotic running time for each fixed kk.Comment: 73 pages, 10 figure
    corecore