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Abstract
Given n subspaces of a finite-dimensional vector space over a fixed finite field F, we wish to
find a “branch-decomposition” of these subspaces of width at most k, that is a subcubic tree
T with n leaves mapped bijectively to the subspaces such that for every edge e of T , the sum
of subspaces associated to the leaves in one component of T − e and the sum of subspaces
associated to the leaves in the other component have the intersection of dimension at most k.
This problem includes the problems of computing branch-width of F-represented matroids, rank-
width of graphs, branch-width of hypergraphs, and carving-width of graphs.

We present a fixed-parameter algorithm to construct such a branch-decomposition of width at
most k, if it exists, for input subspaces of a finite-dimensional vector space over F. Our algorithm
is analogous to the algorithm of Bodlaender and Kloks (1996) on tree-width of graphs. To extend
their framework to branch-decompositions of vector spaces, we developed highly generic tools for
branch-decompositions on vector spaces. For this problem, a fixed-parameter algorithm was
known due to Hliněný and Oum (2008). But their method is highly indirect. Their algorithm
uses the non-trivial fact by Geelen et al. (2003) that the number of forbidden minors is finite and
uses the algorithm of Hliněný (2006) on checking monadic second-order formulas on F-represented
matroids of small branch-width. Our result does not depend on such a fact and is completely
self-contained, and yet matches their asymptotic running time for each fixed k.
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1 Introduction

Let F be a finite field and r be a positive integer. A subspace arrangement V is a (multi)set of
subspaces of Fr, which can be represented by an r ×m matrix M with an ordered partition
I = {I1, I2, . . . , In} of {1, 2, . . . ,m} such that for every 1 ≤ i ≤ n, the i-th element of V is
the column space of the submatrix of M induced by the columns in Ii.4 Here, an ordered
partition I = {I1, I2, . . . , In} of {1, 2, . . . ,m} is a partition of {1, 2, . . . ,m} such that x < y

for all x ∈ Ii, y ∈ Ij with i < j.
Robertson and Seymour [12] introduced the notion of branch-width for graphs, hy-

pergraphs, and more generally, for connectivity functions. We are going to define the
branch-width of a subspace arrangement as follows. First, a tree is subcubic if every node
has degree at most 3. We define a leaf of a tree as a node of degree at most 1. A branch-
decomposition of V is a pair (T,L) of a subcubic tree T with no degree-2 nodes and a bijective
function L from the set of all leaves of T to V. For a node v of T and an edge e incident
with v, let us write Av(T − e) to denote the set of all leaves of T in the component of T − e
containing v. For a branch-decomposition (T,L) of V and each edge e = uv of T , we define
the width of e to be dim

(∑
x∈Au(T−e) L(x)

)
∩
(∑

y∈Av(T−e) L(y)
)
. The width of (T,L) is

the maximum width of all edges of T . (If T has no edges, then the width of (T,L) is 0.)
The branch-width of V is the minimum k such that there exists a branch-decomposition of V
having width at most k.

We aim to solve the following problem, and Theorem 1.1 is our main theorem.

Branch-Width
Parameters: A finite field F and an integer k.
Input: An r ×m matrix M over F with an ordered partition I = {I1, I2, . . . , In} of
{1, 2, . . . ,m} and an integer k.

Output: A branch-decomposition (T,L) of width at most k of a subspace arrangement
V consisting of the column space of the submatrix of M induced by the columns in
Ii for each i or a confirmation that the branch-width of V is larger than k.

I Theorem 1.1. Let F be a finite field, let r be a positive integer, and let k be a nonnegative
integer. Let V = {V1, V2, . . . , Vn} be a subspace arrangement of subspaces of Fr where each Vi

is given by its spanning set of di vectors and m =
∑n

i=1 di. In time O(rm2 + (k + 1)rmn+
k3n3 + f(|F|, k)n2) for some function f , one can either find a branch-decomposition of V
having width at most k or confirm that no such branch-decomposition exists.

Various width parameters of discrete structures have been introduced and used for
algorithmic and structural applications. One popular way of creating a width parameter of a
discrete structure is to define it as the branch-width of some connectivity function defined
on that discrete structure. Theorem 1.1 immediately gives rise to analogous algorithms for
many of them, such as carving-width of graphs, rank-width of graphs, and branch-width of
graphs, hypergraphs, and matroids. We will give a brief overview of each application.

Branch-width of matroids represented over a finite field F. Let V = {V1, V2, . . . , Vn} be
a subspace arrangement of subspaces of Fr. If each Vi is the span of a vector vi in Fr for
each i = 1, 2, . . . , n, then V can be identified with the matroid M represented by the vectors
v1, v2, . . ., vn. Furthermore, branch-width and branch-decompositions of M are precisely
branch-width and branch-decompositions of V, respectively.

4 Subspace arrangements can be regarded as representable partitioned matroids used in [6]. A partitioned
matroid is a matroid equipped with a partition of its ground set.



J. Jeong, E. J. Kim, and S. Oum 80:3

Rank-width of graphs. Rank-width, introduced by Oum and Seymour [10], is a width
parameter of graphs expressing how easy it is to decompose a graph into a tree-like structure,
called a rank-decomposition, while keeping every edge cut to have a small ‘complexity’, called
the width of a rank-decomposition, where the complexity is measured by the matrix rank
function. Each vertex of a graph G can be associated with a subspace of dimension at most 2
so that the subspace arrangement V consisting of all subspaces associated with the vertices
of G has branch-width 2k if and only if G has rank-width k (See appendix). Furthermore, a
branch-decomposition of V of width 2k corresponds to a rank-decomposition of G of width k.

Branch-width of hypergraphs. Robertson and Seymour defined the notion of a branch-
width [12] not only for graphs but also for hypergraphs. Let F = GF (2) be the binary field
and let {v1, v2, . . . , vn} be the standard basis of Fn. For a hypergraph G with n vertices
v1, v2, . . . , vn, we associate each edge e with the span of the vertices incident with e. Let V be
the subspace arrangement consisting of all subspaces associated with the edges of G. Then
it is not difficult to show that branch-width and branch-decomposition of G are precisely
branch-width and branch-decomposition of V, respectively.

Carving-width of graphs. Seymour and Thomas [13] introduced carving-width of graphs.
Let F = GF (2) be the binary field and let {e1, e2, . . . , em} be the standard basis of Fm. For
a graph G with edges e1, e2, . . . , em, we associate each vertex v with the span of the edges
incident with v. If V is the subspace arrangement consisting of all subspaces associated
with the vertices of G, then carving-width and carving of G are precisely branch-width and
branch-decomposition of V, respectively.

For the first two applications, the analogous theorems were proved earlier by Hliněný
and Oum [6]. However, their approach was completely indirect; they use a non-trivial fact
shown by Geelen et al. [3] that the class of matroids of branch-width at most k has finitely
many forbidden minors, each having at most O(6k) elements. Then they use a monadic
second-order formula to describe whether a matroid contains a fixed minor and use the
dynamic programming algorithm to decide a monadic second-order formula aided by a given
branch-decomposition of bounded width. So far this describes the decision algorithm of
Hliněný [5] that decides whether branch-width is at most k. On top of this algorithm, Hliněný
and Oum use a sophisticated reduction to modify the input and use the decision algorithm
repeatedly to recover a branch-decomposition. Roughly speaking, this reduction attaches
a gadget to the input matroid and this step requires extending the underlying finite field
to an extension field, because this gadget is not representable if the underlying field is too
small. As the list of forbidden minors is unknown, their algorithm should generate the list of
minor-minimal matroids having branch-width larger than k. Thus, even for small values of k,
it would be practically impossible to implement their algorithm. Contrary to the previous
algorithm, our algorithm does not depend on the finiteness of obstructions and yet matches
their asymptotic running time for each fixed k.

We do not know any previous analogous theorems for branch-width of hypergraphs. For
branch-width of graphs, Thilikos and Bodlaender [14] posted a 50-page long technical report
in 2000 proving that for every fixed k, one can check in linear time whether a graph has
branch-width at most k and if so, output a branch-decomposition of minimum width. This
work was presented at a conference in 1997 [2]. For carving-width of graphs, the conference
paper of Thilikos, Serna, and Bodlaender [15] presented a linear-time algorithm for each
fixed k that determines whether the carving-width of an input graph G is at most k, and if
so, constructs a carving of G with minimum carving-width.

ICALP 2018
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Our approach and technical ingredients. We develop a framework inspired by the approach
of Bodlaender and Kloks [1] on their work on tree-width of graphs. (A similar framework was
also given independently by Lagergren and Arnborg [9].) They created a linear-time algorithm
that can find a tree-decomposition of width at most k or confirm that the tree-width of an
input graph is larger than k for each fixed k. They used dynamic programming based on a
given tree-decomposition of bounded width. For the dynamic programming, they designed a
special encoding of all possible tree-decompositions of width at most k that can arise from
certain parts of a graph.

We also use dynamic programming approach, taking advantage of having a tree-like
structure from the given branch-decomposition. Then, how do we generate a branch-
decomposition of small width in the first place? For this purpose, we use the technique called
the iterative compression, which is initiated by Reed, Smith, and Vetta [11] and used by [4]
for computing the branch-width of linear matroid. In Branch-Width Compression, we are
given a branch-decomposition of width at most 2k of a subset of V and solve Branch-width.
The obtained branch-decomposition of width at most k at each step is incremented by a new
element of V , which serves as a given branch-decomposition of width at most 2k for the next
step.

To use a branch-decomposition for dynamic programming, we need a concept of a
‘boundary’, that plays the role of a bag in a tree-decomposition. For a branch-decomposition
(T,L) of a subspace arrangement V and an edge e of T , we consider the boundary B as
the intersection of the sum of subspaces associated to the leaves in one component of T − e
and the sum of subspaces associated to the leaves of the other component of T − e. As
the branch-width is at most k, the boundary B has dimension at most k. Furthermore, we
restrict our attention to the finite field F and so the number of subspaces of B is finite. For
the convenience of dynamic programming on branch-decompositions, we define transcripts of
a branch-decomposition in Section 2, which is essentially a precomputed list of bases and
linear transformations useful for computations with boundaries.

As usual, we need a compact encoding scheme to store partial solutions that may be
extended to a branch-decomposition of width at most k, if it exists. We have two important
aspects here.

First of all, we will restrict our search to a smaller set of branch-decompositions. Namely,
if (T ′,L′) is a given branch-decomposition of width at most 2k in Branch-Width Com-
pression, then the algorithm will find a branch-decomposition of width at most k that is
totally pure with respect to (T ′,L′). In order to efficiently compress the partial solutions
at each step of dynamic programming, it is crucial to ensure that some part of a partial
solution can be forgotten (and can be retrieved from the unforgotten part later). A part
of a partial solution can be ignored only when there is a guarantee that the said part does
not need to be ‘mixed’ with another partial solution in the future. In other words, if there
is a branch-decomposition of width at most k which is obtained via mixing, then there
also exists as good a decomposition which can be obtained while mixing is avoided. This
general idea lies at the core of every dynamic programming based on decomposition of small
width. The first technical barrier to implement this principle for our problem is how to
formalize what constitute those forgettable parts and what it means to avoid mixing. The
‘forgettable part’ is formalized as the notion of ‘blocked’ (plus some more) nodes introduced
in Section 5. Intuitively, a totally pure branch-decomposition with respect to (T ′,L′) is a
decomposition which has successfully avoided the ‘mixing’ at every descendant so far. The
two operations introduced in Section 3, fork and split, are technical tools developed in order
to prove that it is possible to avoid mixing. Using these operations, we show that if there is a
branch-decomposition of width at most k, then there is a branch-decomposition of width at
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most k that is totally pure with respect to (T ′,L′) in Section 3. The procedure of obtaining
a compact encoding of a partial solution, introduced as trimming in Section 4, is essentially
discarding the forgettable parts.

The second technical barrier is to devise an encoding of a (partial) branch-decomposition
and all computational operations, necessary for dynamic programming, compatible with
this encoding scheme. For this purpose, we will define a B-namu5 in Section 4. Here, B
is going to be the boundary for some edge in (T ′,L′). A B-namu is, roughly speaking, a
subcubic tree whose incidences are decorated by subspaces of B and whose edges are labeled
by a nonnegative integer so that it represents the ‘shadow’ of a branch-decomposition of
width at most k on B. We define an operation τ on B-namus that compresses a B-namu
into a ‘compact’ B-namu and prove that there are only finitely many compact B-namus of
width at most k, when B has bounded dimension and F is a finite field. This operation τ on
B-namus consists of two steps: one is the aforementioned trimming, another is compressing
to compress an integer sequence introduced by Bodlaender and Kloks [1] for their work on
tree-decompositions. A part of B-namu processed by compressing step can be potentially
mixed with another partial solution in the future, but a desired decomposition can be always
retrieved if one exists. In contrast, a trimmed part is forgotten and never gets mixed in the
future. Our computational operations on B-namus are designed so that the trimmed parts
can be efficiently retrieved. Computational operations on B-namus for dynamic programming
are defined including comparison.

Difference with our previous work. In the previous work [8], the authors found a similar
algorithm for path-decompositions of a subspace arrangement. A path-decomposition of a
subspace arrangement is a linearized variant of a branch-decomposition that restricts the
subcubic trees to caterpillar trees. Here are the key technical differences.

First, the concept of totally pure branch-decompositions was not needed in [8]. In the
previous work, two linear orderings are merged into another linear ordering and there is
no need to consider the possibility of ‘avoiding mixing’. In the end, compressing an integer
sequence was sufficient to obtain a short encoding. For branch-decompositions, we sometimes
insert a whole subtree into a branch-decomposition and this requests a new concept such as
totally pure branch-decompositions. Also, ‘summing’ two partial solution encodings for join
operation in dynamic programming is much more delicate in this work.

Second, we needed the concept of k-safeness in order to extend our algorithm for path-
decompositions to the algorithm for branch-decompositions. When we sum two B-namus,
some edges of trees in the B-namus are in common but some edges are not shared and will
be forgotten. Although an edge in one B-namu is not in another B-namu, the width assigned
to the edge can potentially increase. We hope the width of an edge not to exceed k even
when this edge is ‘forgotten’, and thus we need to handle this carefully.

Lastly, we improve the running time of an algorithm computing transcripts. In [8], the
idea of transcripts was used as well although the notion was not formally introduced. If
we adapt our new method to the result of [8], we also get an O(n3)-time algorithm for
path-decompositions of subspace arrangements based on iterative compressions, saving a
factor of O(n).

Section 2, Section 3, and Section 4 give both definitions and some properties of transcripts,
totally pure branch-decompositions, and B-namus, respectively. Section 5 presents the
algorithm to solve the Branch-Width problem. We remark that many proofs are omitted
because of the page limit. However, the detailed proofs are contained in the full version.

5 ‘Namu’ is a tree in Korean.

ICALP 2018
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2 Transcripts

Dynamic programming algorithms on tree-decomposition benefit from the small width by
encoding solutions with respect to the bags. While the bags are explicit in a given tree-
decomposition, a branch-decomposition of a subspace arrangement does not provide an
easy-to-handle metric for encoding solutions to our problem. In order to make it more useful,
we need some extra information.

Let (T,L) be a branch-decomposition of a subspace arrangement V . We will assume that
T is a rooted binary tree by picking an arbitrary edge e and subdividing e to create a degree-2
root node r, and call (T,L) a rooted branch-decomposition. For a node v of T , let Vv be the
set of all elements of V associated with v and its descendants by L. For a set X of vectors
from a vector space over a field F, the span 〈X〉 of X is the subspace consisting of all (finite)
linear combinations of vectors in X, where the scalars are taken from F. For two subspaces
X and Y , we denote the subspace {x+y : x ∈ X, y ∈ Y } by X+Y . For a set X of subspaces,
let 〈X 〉 =

∑
X∈X X. The boundary space Bv at v is defined as Bv = 〈Vv〉 ∩ 〈V − Vv〉. Later,

we shall encode partial branch-decompositions with respect to the boundary spaces of a given
branch-decomposition (T,L). For this, we need to know Bv in advance.

A transcript of (T,L) is a pair Λ = ({Bv}v∈V (T ), {B′v}v∈V (T )) of sets of ordered bases
Bv and B′v of subspaces Bv = 〈Bv〉 and B′v = 〈B′v〉 of Fr, respectively, such that

the first |Bv| elements of B′v are precisely Bv for each node v,
〈B′v〉 = 〈Bw1〉+ 〈Bw2〉 for each node v having two children w1 and w2,
〈B′v〉 = 〈Bv〉 for each leaf v.

If a node u of T is a parent of a node v of T , then Bv = 〈Bv〉 is a subspace of B′u = 〈B′u〉 and
therefore there exists the unique |B′u| × |Bv| matrix Tv over F such that Tv[x]Bv

= [x]B′
u

for all x ∈ Bv. This matrix Tv is called the transition matrix of Λ at a node v. (For the root
node r, let Tr be the null matrix. For a vector x in a vector space with a basis B over a
field F, [x]B denotes the coordinate vector with respect to the basis B, which is a |B| × 1
matrix over F.)

We can compute the transcript of a given branch-decomposition as follows.

I Theorem 2.1. Let V be a subspace arrangement of Fr represented by an r ×m matrix M
in reduced row echelon form with no zero rows such that each V ∈ V has dimension at most
k. Let n = |V|. Given branch-decomposition (T,L) of V, in time O(k3n2), one can correctly
compute a basis of 〈Vv〉 ∩ 〈V − Vv〉 for all nodes v of T or confirm that (T,L) has width
larger than k. In addition, if (T,L) has width at most k, then we can compute the transcript
Λ = ({Bv}, {B′v}) of (T,L) with its transition matrices in time O(k3n2).

3 Pure branch-decompositions

We are going to assume that a subspace arrangement V and its rooted branch-decomposition
(T b,Lb) are given. For two nodes x, y of T b, we say that x ≤ y if either x = y or x is a
descendant of y. We write x < y if x ≤ y and x 6= y. For a node x of T b, let Vx be the set of
all subspaces Lb(`) where ` is a leaf of T b with ` ≤ x and let Bx = 〈Vx〉∩〈V −Vx〉. Let (T,L)
be a branch-decomposition6 of V0 ⊆ V . Let x be a node of T b such that Vx ⊆ V0. We define
L(T, u, v) = {L(w) : w ∈ Av(T − uv)} and write Lx(T, u, v) = L(T, u, v) ∩ Vx. (We remark
that L(T, u, v) is a set of subspaces and 〈L(T, u, v)〉 is the sum of members of L(T, u, v).)

6 One may consider (T,L) as a (partial) solution whereas (T b,Lb) is the given branch-decomposition over
which dynamic programming is executed.
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u v w

(a) T

u v v′ w

(b) T ′

Figure 1 Constructing T ′ by forking at v by Vx. represents a leaf node mapped to an element
of Vx by L and represents a leaf node mapped to an element of V0 − Vx by L.

We say that an edge uv of T x-guards its end v if 〈Lx(T, u, v)〉 ∩Bx ( 〈Lx(T, v, u)〉 ∩Bx.
An edge uv of T is x-degenerate if 〈Lx(T, u, v)〉∩Bx = 〈Lx(T, v, u)〉∩Bx. A 2-edge path uvw
of T is an x-blocking path if 〈Lx(T, u, v)〉 ∩ Bx = 〈Lx(T, v, w)〉 ∩ Bx, 〈Lx(T,w, v)〉 ∩ Bx =
〈Lx(T, v, u)〉 ∩Bx, and neither uv nor vw is x-degenerate or x-guarding.

We give a general idea behind the notion of totally pure branch-decompositions. For
Vx ⊆ V0, one can consider the branch-decomposition ‘induced’ by Vx from (T,L); such a
branch-decomposition can be canonically defined by choosing a minimal subtree of T whose
leaf set is mapped to Vx by L (and smoothing degree-2 nodes if necessary). Similarly, the
branch-decomposition ‘induced’ by V0−Vx can be obtained. Let (Tx,Lx) and (Tx̄,Lx̄) be the
respective branch-decompositions. If uvw is an x-blocking path of Tx, then it can be shown
that the connected component of Tx − uv − vw containing v does not need to be mixed with
another branch-decomposition in the future. Specifically, if the subtree of T homeomorphic to
Tx is ‘mixed’ with some subtree of Tx̄ in T , then one can ‘untangle’ the mixing: one ‘lifts’ the
former subtree and ‘plants’ it on the x-blocking path uvw (so as to be rooted at a new node
subdividing vw provided dim〈Lx(T, u, v)〉 ∩ 〈Lx(T, v, u)〉 ≥ dim〈Lx(T, v, w)〉 ∩ 〈Lx(T,w, v)〉).
This operation on (T,L) is called the forking (see Figure 1). It can be proved that forking
operations under above assumption do not increase the width. This is why we can ‘forget’ a
subtree of Tx, namely the subtree of Tx − uv − vw containing v. A similar observation can
be made in regards to x-guarding edges, for which the related operation is splitting.

Then how do we know whether there is unwanted mixing in regards to an x-guarding
edge or an x-blocking path? The following notions formalize this. An edge uv of T that
x-guards v is called improper x-guarding if v has two neighbors v1, v2 in T − uv such that
Lx(T, v, v1), Lx(T, v, v2), and L(T, u, v)∩(V0−Vx) are nonempty. An x-blocking path uvw of
T is improper if v has a neighbor t in T −u−w such that Lx(T, v, u), Lx(T, v, w), Lx(T, v, t),
and L(T, v, t) ∩ (V0 − Vx) are nonempty.

When T has an x-degenerate edge e, it turns out that we can apply splitting operations
at any x-degenerate edge and untangle Tx and Tx̄ so that the new branch-decomposition
is a disjoint union of Tx and Tx̄ connected by a single edge (which will be incident with a
subdividing node of the x-degenerate edge e). Hence, it is conceivable that we might be
able to forget all nodes of Tx, possibly except for one node as a placeholder representing
Tx. In this way, we request that any extension of Tx in the future shall be in the form of
disjoint union plus one edge. However, it is possible that e is also a z-degenerate edge for
some z < x. In this case, forcing the join of Tx and Tx̄ at a subdividing node of e can violate
the disjointness of Tz and Tz̄. We want to prevent this, and it leads us to the definition of
x-degenerate branch-decompositions.

For S ⊆ V0, an edge uv of T is said to cut S if L(T, u, v) ∩ S 6= ∅ and L(T, v, u) ∩ S 6= ∅.
We say that (T,L) is x-degenerate if T has an x-degenerate edge uv such that uv cuts Vx

and for all z < x, if (T,L) is z-degenerate, then uv does not cut Vz. Such an edge uv is
called improper x-degenerate. Note that if x is a leaf of T b, then (T,L) is not x-degenerate
because T has no edge cutting Vx. We say that (T,L) is x-disjoint if V0 = Vx or T has an
edge uv such that L(T, u, v) = Vx and v is incident with an improper x-degenerate edge.

ICALP 2018
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We say that (T,L) is x-pure if the following hold.
If (T,L) is x-degenerate, then (T,L) is x-disjoint.
If (T,L) is not x-degenerate, then all x-blocking paths and all x-guarding edges of T are
not improper.

We say that a branch-decomposition (T,L) of V0 is totally pure with respect to (T b,Lb) if
(T,L) is x-pure for all nodes x of T b with Vx ⊆ V0. We prove that if the branch-width of a
subspace arrangement is at most k, then there exists a totally pure branch-decomposition
of the subspace arrangement whose width is at most k. The proof strategy is to apply
forking and splitting operations for every node x of T b in a bottom-up manner. If (T,L) is
x-degenerate, then applying the operations will create a new branch-decomposition which is
x-disjoint. If it is not x-degenerate, then the operations will resolve entanglements at the
improper x-guarding edges and at the improper x-blocking paths so that no improper ones
are left. For this approach to work, we need to ensure that applying these operations do not
create new entanglements at nodes z of T b where disentanglement already happened (or is
happening now). That is, z-disjointness is preserved, and no new improper z-guarding edge
or z-blocking path is created.

I Proposition 3.1. Let (T b,Lb) be a rooted branch-decomposition of a subspace arrangement
V and let V0 ⊆ V. If the branch-width of V0 is at most k, then V0 has a branch-decomposition
of width at most k that is totally pure with respect to (T b,Lb).

4 Namus

Let F be a finite field and let B be a subspace of Fr of dimension θ. In this section, we
introduce the data structure for encoding partial solutions and operations on this data
structure required for dynamic programming. For a tree T , an incidence is a pair (v, e) of a
node v of T and an edge e incident with v. Let I(T ) be the union of {(∗, ∅), (0, ∅)} and the
set of all incidences of T . A B-namu Γ is a quadruple (T, α, λ, U) of

a subcubic tree T having at least one node,
a function α from I(T ) to the set of all subspaces of B,
a function λ from the union of {∅} and the set of all edges of T to the set of integers, and
a subspace U of B

such that
(i) for every two-edge path v0, e1, v1, e2, v2 in T , α(v0, e1) is a subspace of α(v1, e2),
(ii) for all incidences (v, e) of T , α(v, e) is a subspace of U ,
(iii) α(∗, ∅) = U , α(0, ∅) = {0}, and λ(∅) = 0,
(iv) for every edge e = uv of T , λ(e) ≥ dimα(v, e) ∩ α(u, e).
The width of a B-namu Γ = (T, α, λ, U) is the maximum of λ(e) over all edges e = uv of T .
(If T has no edges, then the width of Γ is defined to be 0.) For a B-namu Γ = (T, α, λ, U),
we write T (Γ) = T .

Canonical B-namus. The canonical B-namu of a branch-decomposition (T,L) of a subspace
arrangement V is the B-namu (T, α, λ, U) such that

α(v, e) = B ∩
∑

x∈Av(T−e) L(x) for each node v of T and an edge e incident with v,
λ(e) = dim

∑
x∈Au(T−e) L(x) ∩

∑
y∈Av(T−e) L(y) for each edge e = uv of T ,

U = B ∩
∑

x∈A(T ) L(x) where A(T ) is the set of all leaves of a tree T .
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Projections. For two subspaces B and B′ with B′ ⊆ B, we define the projection Γ|B′ of
a B-namu Γ = (T, α, λ, U) on B′ as the B′-namu (T, α′, λ′, U ′) such that U ′ = U ∩ B′,
α′(v, e) = α(v, e) ∩B′ for all incidences (v, e) of T , and λ′(e) = λ(e) for all edges e of T .

Compact B-namus. We have two operations, trimming and compressing, on B-namus,
which will transform a B-namu into a ‘compact’ B-namu. Roughly speaking, trimming
is an operation to remove irrelevant edges and compressing is an operation to suppress
redundant edges. Irrelevant edges are those edges which can be ‘untangled’ by forking or
splitting operations as described in Section 3. As addressed in Proposition 3.1, there exists a
branch-decomposition of minimum width that is totally pure with respect to (T b,Lb). Such
a branch-decomposition is minimally ‘mixed’ at every node x of T b in the sense that forking
and splitting operations has been fully applied at every x without causing additional mixing.
The idea behind trimming is that, for keeping track of totally pure branch-decompositions in
the dynamic programming algorithm, those edges to be untangled by forking or splitting
operations can be ignored. For a B-namu Γ, let trim(Γ) denote the B-namu obtained by
trimming Γ.

For a node x of (T b,Lb), can we bound the size of an arbitrary trimmed Bx-namu Γ,
namely the size of T (Γ)? As T (Γ) is a subcubic tree, bounding the size of T (Γ) is equivalent
to bounding the diameter of T (Γ). By condition (i) in the definition of B-namu, it is not
difficult to see that T (Γ) has a large diameter if and only if T (Γ) contains a long path in which
any length-two path is x-blocking. Assuming that Γ is trimmed, such a long path induces a
substructure in which every internal node has degree two and α maps every incidence to the
same subspace. That is, the information on such a path dictated by Γ is almost uniform
except that the values of λ changes over the edges and the values of λ can be viewed as an
integer sequence. Now, the idea of compressing operation is to keep only the edges associated
with local minimum and maximum values of this integer sequence and ignore all other edges.
An integer sequence obtained in this way is called a typical sequence in the literature [1] and
it is known to have length at most 2k + 1 when the integers are in the range {0, . . . , k}.

We say that a B-namu is compact if it contains no ‘irrelevant’ nodes or edges so that
trimming or compressing does not affect to the B-namu. Let Uk(B) be the set of all compact
B-namus Γ of width at most k such that V (T (Γ)) = {1, 2, . . . , n} for some integer n. The
previous discussion is summarized in the next statement, which ensures in Section 5 that the
number of partial solutions stored at each node of (T b,Lb) for the dynamic programming
algorithm will be bounded.

I Lemma 4.1. The set Uk(B) contains at most f(k, θ, |F|) elements and can be generated
from B in g(k, θ, |F|) steps for some functions f and g.

Sum of two B-namus. For two B-namus Γ1 = (T1, α1, λ1, U1) and Γ2 = (T2, α2, λ2, U2),
we define a sum (T, α, λ, U1 + U2) of Γ1 and Γ2. Roughly speaking, we first take a tree T
such that a subdivision of T1 is a subtree of T and a subdivision of T2 is a subtree of T (see
Figure 2). For each incidence (v, e) of T , if it corresponds to both an incidence (v1, e1) of
T1 and an incidence (v2, e2) of T2, then α(v, e) is the sum of α1(v1, e1) and α2(v2, e2), and
if it corresponds to only one of (v1, e1) and (v2, e2), say (v1, e1), then α(v, e) = α1(v1, e1).
Similarly, we can define λ on every edge of T (with some correction term). The formal
definition is given in the full version. Note that a sum of two B-namus is not unique because
there are many choices of taking a tree T . Given B-namus Γ1 and Γ2, let us denote by
Γ1 ⊕ Γ2 the set of all sums of Γ1 and Γ2.
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T1 T2 T

Figure 2 Obtaining a sum of two B-namus.

I Lemma 4.2. Let Γ1, Γ2 be compact B-namus of width at most k. Then the set Γ1 ⊕ Γ2
contains at most 222(2θk+θ+k+3)

B-namus.

Comparing two B-namus. A B-namu (T ′, α′, λ′, U) is a subdivision of a B-namu Γ =
(T, α, λ, U) if T ′ is a subdivision of T , α′(v′, e′) = α(v, e), and λ′(e′) = λ(e) for every
incidence (v′, e′) of T ′ and its corresponding incidence (v, e) of T .

For two B-namus Γ1 = (T1, α1, λ1, U1) and Γ2 = (T2, α2, λ2, U2), we say that Γ1 ≤ Γ2 if
T1 = T2, α1 = α2, U1 = U2 and λ1(e) ≤ λ2(e) for every edge e of T1. For two B-namus Γ1
and Γ2, we say that Γ1 4 Γ2 if there exist a subdivision Γ′1 of Γ1 and a subdivision Γ′2 of Γ2
such that Γ′1 ≤ Γ′2.

I Lemma 4.3. For two B-namus ∆ and Γ, we can decide whether ∆ 4 Γ by executing at
most f(|V (T (∆))|, |V (T (Γ))|, θ, |F|) comparison operations (on integers and on subspaces of
B) for some function f .

5 The algorithm

We present an algorithm to solve the Branch-Width problem. Given a matrix M and a set
Y of column indices, M [Y ] denotes the submatrix of M induced by columns indexed by Y .

Preprocessing. We will first describe the preprocessing steps to reduce the input size. The
subspace arrangement of n subspaces is given by an r ×m matrix where r and m could be
arbitrary large. Our aim here is to reduce r and m or confirm that branch-width is larger
than k. Eventually, we will convert the input into a smaller one. Furthermore, we will convert
M into the reduced row echelon form, which is crucial for our algorithm for computing the
transcript of a branch-decomposition in Theorem 2.1. In the Branch-Width problem, if a
branch-decomposition of width at most k exists, then we say that (M, I, k) is a YES instance.
Otherwise, it is a NO instance. For a matrix M , let col(M) be the column space of M , that
is the span of all column vectors of M .

I Lemma 5.1. Let F be a finite field and let k be a nonnegative integer. Let n ≥ 2. Let M
be an r×m matrix over F with an ordered partition I = {I1, I2, . . . , In} of {1, 2, . . . ,m} and
let Vi be the column space of M [Ii] for every i. In time O(rm2 + (k + 1)rmn), we can either
find i ∈ {1, 2, . . . , n} such that dim(Vi ∩ (

∑
j 6=i Vi)) > k or find an r′ ×m′ matrix M ′ over F

with an ordered partition I ′ = {I ′1, I ′2, . . . , I ′n} of {1, 2, . . . ,m′} such that
(i) r′ ≤ m′ ≤ kn,
(ii) M ′ is of the reduced row echelon form with no zero rows,
(iii) for each i, the column vectors of M ′[I ′i] are linearly independent and |I ′i| ≤ k,
(iv) for each i, col(M ′[I ′i]) ⊆ col(M ′[{1, 2, . . . ,m′} − I ′i]),
(v) (M, I, k) is a YES instance with a branch-decomposition (T,L) if and only if (M ′, I ′, k)

is a YES instance with (T,L′) where L′ maps a leaf v to col(M ′[I ′i]) whenever L maps
v to col(M [Ii]).
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The full set. Our dynamic programming algorithm constructs a set of compact Bx-namus
of width at most k at each node x of the given branch-decomposition (T b,Lb) in a bottom-up
manner. This set is called the full set at x of width k with respect to (T b,Lb) and written
as FSk(x;T b,Lb) or FSk(x) for brevity. The full set needs to be defined so that at the root
node r of T b, FSk(r) 6= ∅ if and only if the branch-width of V is at most k. Moreover, we
need to ensure that the full set at every node of T b can be constructed from the full sets of
its children.

Roughly speaking, the full set at x is an upward closed set of (Uk(Bx),4), where Uk(Bx)
and 4 are defined in the previous section. Every minimal7 element in this upward closed
set is a B-namu that can be obtained from a branch-decomposition (T,L) of Vx having
width at most k that is totally pure with respect to (T b,Lb) by discarding some subtrees
of T . This concept is captured in the notion of reduced B-namus below. Any discarded
subtrees keep the rest of T connected. The subtrees of T that will not be mixed with
another partial solution shall qualify as the disposable parts. Two types of disposable parts
arise: one is a subtree consisting of x-blocked nodes (which will be defined soon), and the
other type is a subtree whose entire leaf set is precisely mapped with Vz for some z ≤ x

such that (T,L) is z-degenerate. In particular, if (T,L) is x-degenerate, then we discard
all nodes except one node. Because we only consider totally pure branch-decompositions
(T,L), if (T,L) is z-degenerate for some z < x, then (T,L) is a disjoint union of Vz and
Vx − Vz joined via a single edge. It is intuitively easy to understand that we want to keep
the subtree containing Vz intact from any mixing in the future and thus want to discard this
part. However, implementing this idea with full technical details is quite tricky.

Moreover, not every reduced B-namu obtained in this way can be a member of a full set.
A technical condition called k-safeness must be met by any edge that gets discarded. This
condition is expressed as an inequality, indicating that when the current partial solution
grows into a branch-decomposition for V, the width at the forgotten edge is at most k.

For a B-namu Γ = (T, α, λ, U) and a subtree T ′ of T , we say that a B-namu Γ′ =
(T ′, α′, λ′, U) is induced by T ′ from Γ if α′(v, e) = α(v, e) and λ′(e) = λ(e) for every incidence
(v, e) of T ′. For a node x of T b and a branch-decomposition (T,L) of Vx which is totally
pure with respect to (T b,Lb), we obtain the reduced Bx-namu of (T,L) induced by a subtree
T ′ of T from the canonical Bx-namu of (T,L) where T ′ is obtained by the following rule.

If (T,L) is x-degenerate, then T ′ is a subtree having only one node of T .
If (T,L) is not x-degenerate, then T ′ is obtained by deleting every node w if

(i) there is an x-blocking path v1vv2 centered at v 6= w such that there is a path from w

to v in T − vv1 − vv2, or
(ii) some edge uv x-guards v 6= w such that there is a path from w to v in T − uv, or
(iii) w is a node of a subtree T ′′ of T with a root v 6= w having two children such that the

leaf set of T ′′ is precisely mapped to Vz for some z < x and (T,L) is z-degenerate.
A node w satisfying (i) or (ii) is said to be x-blocked. A branch-decomposition (T,L) is k-safe
with respect to x if for every edge uv of T which is not contained in T ′,

dim
∑

s∈Av(T−uv)

L(s) ∩
∑

t∈Au(T−uv)

L(t) + dimBx − dimBx ∩
∑

t∈Au(T−uv)

L(t) ≤ k.

Now, for each node x of T b, the full set at x of width k with respect to (T b,Lb) is defined

7 Technically, a minimal element in our definition might not be a compact Bx-namu but just a trimmed
Bx-namu. However, a compact B-namu of the minimal element defines the same upper set due to the
transitivity of 4.
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as the set of all Γ in Uk(Bx) such that ∆ 4 Γ for the reduced Bx-namu ∆ of some branch-
decomposition (T,L) of Vx having width at most k that is k-safe with respect to x, and
totally pure with respect to (T b,Lb).

Dynamic programming. For computing the full sets, we assume the following are given:
A rooted branch-decomposition (T b,Lb) of V of width at most θ.
A set of transition matrices {Tv}v∈V (T b) of some transcript Λ of (T b,Lb).

A B-namu Γ = (T, α, λ, U) is a k-safe extension of trim(Γ) if for every edge uv in
E(T )−E(trim(T )), we have λ(uv) + dimU −max(dimα(v, uv),dimα(u, uv)) ≤ k. For two
sets R1, R2 of B-namus, we define R1⊕R2 as the set

⋃
Γ1∈R1,Γ2∈R2

Γ1 ⊕ Γ2. Note that
for two children x1, x2 of a node x in T b, when we compute FSk(x1)⊕ FSk(x2), we regard
FSk(x1), FSk(x2) as the sets of (Bx1 +Bx2)-namus. Thus, FSk(x1)⊕FSk(x2) is well defined.
If B′ is a subspace of B, then we define R|B′ as the set of projections Γ|B′ for all Γ ∈ R.
For a subspace B of Fr and a set R of B-namus, the set upk(R, B) is the collection of all
B-namus Γ ∈ Uk(B) with trim(Γ′) 4 Γ for some Γ′ ∈ R such that Γ′ is a k-safe extension of
trim(Γ′).

I Proposition 5.2. Let k be a nonnegative integer. Let (T b,Lb) be a rooted branch-
decomposition of a subspace arrangement V over a finite field F of width at most θ.

For a leaf ` of T b, we have FSk(`) = {∆`} where ∆` = (T, α, λ,B`) is the B`-namu such
that T is a tree with V (T ) = {1}.
For two children x1 and x2 of a node x in T b, FSk(x) = upk((FSk(x1)⊕FSk(x2))|Bx , Bx).
For the root node r of T b, FSk(r) 6= ∅ if and only if the branch-width of V is at most k.

Moreover, we can compute FSk(r), and construct a (rooted) branch-decomposition of V of
width at most k if FSk(r) 6= ∅, in time f(k, θ, |F|)|V| for some function f .

Proposition 5.2 states that when FSk(x) 6= ∅, the same B-namu or a better one can be
constructed by conducting operations on B-namus in the full set at its child nodes. Therefore,
when FSk(r) 6= ∅, one can identify a B-namu Γx at each node x of T b which participates in
the construction of the element in FSk(r). Additionally, we have the information including
how Γx’s are combined and how the combined B-namu is related to the B-namu at its parent.
We construct a branch-decomposition of V having width at most k by backtracking based on
such information. However, proving the correctness of this backtracking algorithm is highly
nontrivial. For this, we introduce the notion of witnesses. Details are in the full version.

Summary. Now we are ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1. We preprocess the input by applying Lemma 5.1 to (M, I, k) in time
O(rm2 +(k+1)rmn) and obtain an equivalent instance (M ′, I ′, k) as described in Lemma 5.1
and otherwise, we confirm that the branch-width of V exceeds k. We may assume that k > 0
because if I ′i = ∅ for all i, then every branch-decomposition has width 0. Henceforth, we
assume M = M ′, I = I ′, Vi = col(M ′[I ′i]) to simplify notations.

We may also assume that dimVi 6= 0 for all i because otherwise we delete all such Vi

and later we can extend a branch-decomposition of V − {Vi} to that of V of the same width.
After the preprocessing, if n = 1, then an arbitrary branch-decomposition has width 0 and so
we simply output an arbitrary branch-decomposition of V . If n = 2, then the branch-width is
at most k because dimV1,dimV2 ≤ k by (iii) of Lemma 5.1. So we may assume that n ≥ 3.

We will apply iterative compression on Vi = {V1, . . . , Vi} for i = 3, . . . , n. We initially
start with a trivial branch-decomposition (T2,L2) of V2 = {V1, V2} having width at most k.
We carry out a compression step for each i = 3, . . . , n as follows.
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(1) By adding a new leaf v to Ti−1 and extending Li−1 to map v to Vi, we create a branch-
decomposition (T ′i ,L′i) of Vi. Note that the width of (T ′i ,L′i) is at most 2k because
(Ti−1,Li−1) has width at most k and Vi has dimension at most k.

(2) We use the algorithm in Theorem 2.1 to compute transition matrices {Tv}v∈V (T ′
i
) of the

transcript for (T ′i ,L′i) in time O(k3n2). Note that the submatrix M [I1 ∪ I2 ∪ · · · ∪ Ii] is
in reduced row echelon form and so we can apply Theorem 2.1 by ignoring zero rows.

(3) Given a rooted branch-decomposition (T ′i ,L′i) of Vi of width at most 2k and a set of the
transition matrices {Tv}v∈V (T ′

i
), we compute the full set in time g(k, 2k, |F|)i for some

function g by Proposition 5.2. If the full set at the root is empty, then the branch-width
of Vi is larger than k. If so, we conclude that the branch-width of V is larger than k and
stop. If the full set at the root is nonempty, then the algorithm in Proposition 5.2 also
provides a branch-decomposition (Ti,Li) of Vi having width at most k.

If this algorithm finds (Tn,Ln), then (Tn,Ln) is a branch-decomposition of V having width
at most k. For each i, (1)–(3) runs in at most O(k3n2) + f(k, |F|)n time for some function f
and therefore the total running time of this step is O(k3n3) + f(k, |F|)n2. J
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