2,049 research outputs found

    A parallel framework for in-memory construction of term-partitioned inverted indexes

    Get PDF
    Cataloged from PDF version of article.With the advances in cloud computing and huge RAMs provided by 64-bit architectures, it is possible to tackle large problems using memory-based solutions. Construction of term-based, partitioned, parallel inverted indexes is a communication intensive task and suitable for memory-based modeling. In this paper, we provide an efficient parallel framework for in-memory construction of term-based partitioned, inverted indexes. We show that, by utilizing an efficient bucketing scheme, we can eliminate the need for the generation of a global vocabulary. We propose and investigate assignment schemes that can reduce the communication overheads while minimizing the storage and final query processing imbalance. We also present a study on how communication among processors should be carried out with limited communication memory in order to reduce the total inversion time. We present several different communication-memory organizations and discuss their advantages and shortcomings. The conducted experiments indicate promising results. © 2012 The Author. Published by Oxford University Press on behalf of The British Computer Society

    Prospects and limitations of full-text index structures in genome analysis

    Get PDF
    The combination of incessant advances in sequencing technology producing large amounts of data and innovative bioinformatics approaches, designed to cope with this data flood, has led to new interesting results in the life sciences. Given the magnitude of sequence data to be processed, many bioinformatics tools rely on efficient solutions to a variety of complex string problems. These solutions include fast heuristic algorithms and advanced data structures, generally referred to as index structures. Although the importance of index structures is generally known to the bioinformatics community, the design and potency of these data structures, as well as their properties and limitations, are less understood. Moreover, the last decade has seen a boom in the number of variant index structures featuring complex and diverse memory-time trade-offs. This article brings a comprehensive state-of-the-art overview of the most popular index structures and their recently developed variants. Their features, interrelationships, the trade-offs they impose, but also their practical limitations, are explained and compared

    Characteristics of Web-based textual communications

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University 2012.Thesis (Ph. D.) -- Bilkent University, 2012.Includes bibliographical references.In this thesis, we analyze different aspects of Web-based textual communications and argue that all such communications share some common properties. In order to provide practical evidence for the validity of this argument, we focus on two common properties by examining these properties on various types of Web-based textual communications data. These properties are: All Web-based communications contain features attributable to their author and reciever; and all Web-based communications exhibit similar heavy tailed distributional properties. In order to provide practical proof for the validity of our claims, we provide three practical, real life research problems and exploit the proposed common properties of Web-based textual communications to find practical solutions to these problems. In this work, we first provide a feature-based result caching framework for real life search engines. To this end, we mined attributes from user queries in order to classify queries and estimate a quality metric for giving admission and eviction decisions for the query result cache. Second, we analyzed messages of an online chat server in order to predict user and mesage attributes. Our results show that several user- and message-based attributes can be predicted with significant occuracy using both chat message- and writing-style based features of the chat users. Third, we provide a parallel framework for in-memory construction of term partitioned inverted indexes. In this work, in order to minimize the total communication time between processors, we provide a bucketing scheme that is based on term-based distributional properties of Web page contents.Küçükyılmaz, TayfunPh.D

    Efficient Indexing for Structured and Unstructured Data

    Get PDF
    The collection of digital data is growing at an exponential rate. Data originates from wide range of data sources such as text feeds, biological sequencers, internet traffic over routers, through sensors and many other sources. To mine intelligent information from these sources, users have to query the data. Indexing techniques aim to reduce the query time by preprocessing the data. Diversity of data sources in real world makes it imperative to develop application specific indexing solutions based on the data to be queried. Data can be structured i.e., relational tables or unstructured i.e., free text. Moreover, increasingly many applications need to seamlessly analyze both kinds of data making data integration a central issue. Integrating text with structured data needs to account for missing values, errors in the data etc. Probabilistic models have been proposed recently for this purpose. These models are also useful for applications where uncertainty is inherent in data e.g. sensor networks. This dissertation aims to propose efficient indexing solutions for several problems that lie at the intersection of database and information retrieval such as joining ranked inputs, full-text documents searching etc. Other well-known problems of ranked retrieval and pattern matching are also studied under probabilistic settings. For each problem, the worst-case theoretical bounds of the proposed solutions are established and/or their practicality is demonstrated by thorough experimentation

    Toward Entity-Aware Search

    Get PDF
    As the Web has evolved into a data-rich repository, with the standard "page view," current search engines are becoming increasingly inadequate for a wide range of query tasks. While we often search for various data "entities" (e.g., phone number, paper PDF, date), today's engines only take us indirectly to pages. In my Ph.D. study, we focus on a novel type of Web search that is aware of data entities inside pages, a significant departure from traditional document retrieval. We study the various essential aspects of supporting entity-aware Web search. To begin with, we tackle the core challenge of ranking entities, by distilling its underlying conceptual model Impression Model and developing a probabilistic ranking framework, EntityRank, that is able to seamlessly integrate both local and global information in ranking. We also report a prototype system built to show the initial promise of the proposal. Then, we aim at distilling and abstracting the essential computation requirements of entity search. From the dual views of reasoning--entity as input and entity as output, we propose a dual-inversion framework, with two indexing and partition schemes, towards efficient and scalable query processing. Further, to recognize more entity instances, we study the problem of entity synonym discovery through mining query log data. The results we obtained so far have shown clear promise of entity-aware search, in its usefulness, effectiveness, efficiency and scalability

    High-Performance Computing Algorithms for Constructing Inverted Files on Emerging Multicore Processors

    Get PDF
    Current trends in processor architectures increasingly include more cores on a single chip and more complex memory hierarchies, and such a trend is likely to continue in the foreseeable future. These processors offer unprecedented opportunities for speeding up demanding computations if the available resources can be effectively utilized. Simultaneously, parallel programming languages such as OpenMP and MPI have been commonly used on clusters of multicore CPUs while newer programming languages such as OpenCL and CUDA have been widely adopted on recent heterogeneous systems and GPUs respectively. The main goal of this dissertation is to develop techniques and methodologies for exploiting these emerging parallel architectures and parallel programming languages to solve large scale irregular applications such as the construction of inverted files. The extraction of inverted files from large collections of documents forms a critical component of all information retrieval systems including web search engines. In this problem, the disk I/O throughput is the major performance bottleneck especially when intermediate results are written onto disks. In addition to the I/O bottleneck, a number of synchronization and consistency issues must be resolved in order to build the dictionary and postings lists efficiently. To address these issues, we introduce a dictionary data structure using a hybrid of trie and B-trees and a high-throughput pipeline strategy that completely avoids the use of disks as temporary storage for intermediate results, while ensuring the consumption of the input data at a high rate. The high-throughput pipelined strategy produces parallel parsed streams that are consumed at the same rate by parallel indexers. The pipelined strategy is implemented on a single multicore CPU as well as on a cluster of such nodes. We were able to achieve a throughput of more than 262MB/s on the ClueWeb09 dataset on a single node. On a cluster of 32 nodes, our experimental results show scalable performance using different metrics, significantly improving on prior published results. On the other hand, we develop a new approach for handling time-evolving documents using additional small temporal indexing structures. The lifetime of the collection is partitioned into multiple time windows, which guarantees a very fast temporal query response time at a small space overhead relative to the non-temporal case. Extensive experimental results indicate that the overhead in both indexing and querying is small in this more complicated case, and the query performance can indeed be improved using finer temporal partitioning of the collection. Finally, we employ GPUs to accelerate the indexing process for building inverted files and to develop a very fast algorithm for the highly irregular list ranking problem. For the indexing problem, the workload is split between CPUs and GPUs in such a way that the strengths of both architectures are exploited. For the list ranking problem involved in the decompression of inverted files, an optimized GPU algorithm is introduced by reducing the problem to a large number of fine grain computations in such a way that the processing cost per element is shown to be close to the best possible
    corecore