
CHARACTERISTICS OF WEB-BASED TEXTUAL

COMMUNICATIONS

A DISSERTATION SUBMITTED TO

THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Tayfun Küçükyılmaz

December, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion itis fully adequate, in

scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Cevdet Aykanat(Advisor)

I certify that I have read this thesis and that in my opinion itis fully adequate, in

scope and in quality, as a dissertation for the degree of doctor of philosophy.

Dr. Berkant Barla Cambazoğlu(Co-Advisor)

I certify that I have read this thesis and that in my opinion itis fully adequate, in

scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Fazlı Can

ii

I certify that I have read this thesis and that in my opinion itis fully adequate, in

scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Enis Çetin

I certify that I have read this thesis and that in my opinion itis fully adequate, in

scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Ismail Hakkı Toroslu

I certify that I have read this thesis and that in my opinion itis fully adequate, in

scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Özgur Ulusoy

iii

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

iv

ABSTRACT

CHARACTERISTICS OF WEB-BASED TEXTUAL
COMMUNICATIONS

Tayfun Küçükyılmaz

PhD in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

December, 2012

In this thesis, we analyze different aspects of Web-based textual communications

and argue that all such communications share some common properties. In order to

provide practical evidence for the validity of this argument, we focus on two com-

mon properties by examining these properties on various types of Web-based textual

communications data. These properties are: All Web-based communications contain

features attributable to their author and reciever; and allWeb-based communications

exhibit similar heavy tailed distributional properties.

In order to provide practical proof for the validity of our claims, we provide three

practical, real life research problems and exploit the proposed common properties of

Web-based textual communications to find practical solutions to these problems. In

this work, we first provide a feature-based result caching framework for real life search

engines. To this end, we mined attributes from user queries in order to classify queries

and estimate a quality metric for giving admission and eviction decisions for the query

result cache. Second, we analyzed messages of an online chatserver in order to predict

user and mesage attributes. Our results show that several user- and message-based

attributes can be predicted with significant occuracy usingboth chat message- and

writing-style based features of the chat users. Third, we provide a parallel framework

for in-memory construction of term partitioned inverted indexes. In this work, in order

to minimize the total communication time between processors, we provide a bucketing

scheme that is based on term-based distributional properties of Web page contents.

Keywords:Web search engine, result caching, cache, chat mining, datamining, index

inversion, inverted index, posting list.

v

ÖZET

WEB TABANLI YAZILI İLETİŞİM
KARAKTERİSTİKLERİ

Tayfun Küçükyılmaz

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Aralik, 2012

Bu tezde, Web tabanlı iletişim metotlarının farklı özelliklerini inceleyip, değişik

iletişim metotlarının ortak karakteristikleri olduğunu öne sürdük. Bu tezimizi

kanıtlayabilmek için bu ortak özelliklerden iki tanesinin üzerinde yoğunlaşacak ve

bu özellikleri derinlemesine inceleyeceğiz. Bu özellikler: Bütün Web tabanlı iletişim

metotları yazarlarına,alıcılarına, veya mesajların kendilerine atfedilebilecek özellikler

taşırlar. Ve bütün Web tabanlı iletişim metotları benzer dağılımsal özellikler gösterirler.

Bu iki hipotezi kanıtlayabilmek amacıyla üç farklı, pratik, gerçek yaşamla ilgili

araştırma problemi üzerinde durduk ve bu iki hipotezi kullanarak sunulan araştırma

problemlerini çözmeye çalıs̈tık. Bu problemlerden ilkinde, halihazırda kullanılmakta

olan bir sorgu motoru için sorgu özelliklerine dayanan bir otomatik öğrenme yaklaşımı

öne sürdük. Bu çalışmada, kullanıcı sorgularından çeşitli özellikler çıkartarak bu

özellikleri otomatik öğrenilmiş bir model oluşturmak için kullandık. Bu mod-

ele göre her sorguya bir kalite metriği atayarak, arama motoru ön belleğine kabul

ve atılma kararlarını bu metrik sayesinde yaptık.İkinci problemde, kullanıcı ve

mesaj özelliklerini tahmin etmek amacı ile bir chat sunucusunun verilerini inceledik.

Sonuçlarımız birçok kullanıcı ve mesaj bazlı ozelliğintahmin edilebilirliğine ışık

tuttu. Üçüncü çalışmamızda, terim bazlı ters indekslerin hafıza bazlı ve paralel

olarak oluşturulmalarını inceledik. Bu araştırmada ise, işlemciler arası toplam iletişim

zamanını minimize edebilmek amacı ile, Web sayfalarındakiterimlerin dağılımsal

özelliklerini temel alan bir guruplama metodu önerdik. Bu özellikleri kullanarak,

işlemciler arası iletişim zamanını, işlemci görev da˘gılımını da dikkate alacak şekilde

nasıl azaltabileceğimiz yönünde araştırmalar yaptık.

Anahtar s̈ozc̈ukler: Arama Motoru, Sonuç ön belleği, ön bellek, Chat madenciliği, veri

madenciliği, indeks tersleme, ters dizin.

vi

Acknowledgement

I would like to thank Berkant Barla Cambazoglu for his constant help, support and

mentorship throughout this study.

I would also like to thank Prof. Dr. Fazli Can and Prof. Dr. Varol Akman for

believing me and supporting me at every step of this study.

vii

Contents

1 Introduction 1

1.1 A Cohesion of Definitions: Communication and Knowledge Dissemi-

nation . 1

1.2 Background . 5

1.3 Motivation . 9

2 A Machine Learning Approach for Result Caching 17

2.1 Introduction . 17

2.2 Related Work . 21

2.3 Machine Learning Approach for Result Caching 27

2.3.1 Features . 28

viii

CONTENTS ix

2.3.2 Class Labels . 31

2.4 Data and Setup . 34

2.4.1 Query Log and Experimental Setup 34

2.4.2 Setup - Classifiers . 37

2.5 Static Caching . 38

2.5.1 Techniques . 39

2.5.2 Results . 42

2.6 Dynamic Caching . 46

2.6.1 Techniques . 46

2.6.2 Results . 49

2.7 Static-Dynamic Caching . 52

2.7.1 Techniques . 53

2.7.2 Results . 55

2.8 Discussions . 61

3 Chat Mining:

CONTENTS x

Predicting User and Message Attributes in

Computer-Mediated Communication 65

3.1 Introduction . 65

3.2 Related Work . 69

3.3 Computer-Mediated Communication75

3.3.1 Characteristics . 75

3.3.2 Predictable Attributes . 77

3.4 Chat Mining Problem . 80

3.5 Dataset and Classification Framework 82

3.5.1 Dataset . 82

3.5.2 Classification Framework 83

3.6 Experimental Results . 88

3.6.1 Experimental Setup . 88

3.6.2 Analysis of Predictability . 91

3.6.3 User-Specific Attributes . 92

3.6.4 Message-Specific Attributes 96

CONTENTS xi

3.7 Concluding Remarks . 98

4 A Parallel Framework for

In-Memory Construction of

Term-Partitioned Inverted Indexes 102

4.1 Introduction . 102

4.1.1 Related Work . 104

4.1.2 Motivation and Contributions 107

4.2 Framework . 109

4.3 Parallel Inversion . 111

4.3.1 Local Inverted Index Construction 112

4.3.2 TermBucket-to-Processor Assignment114

4.3.3 Inverted List Exchange-and-Merge 117

4.4 Term-to-Processor Assignment Schemes 118

4.4.1 Minimum Communication Assignment (MCA) 121

4.4.2 Balanced-Load Minimum Communication Assignment (BLMCA)122

4.4.3 Energy-Based Assignment (EA) 122

CONTENTS xii

4.5 Communication-Memory Organization 125

4.5.1 1-Send (1s) versus(K-1)-Send (Ks) Buffer Schemes 127

4.5.2 1-Receive (1r) versus(K-1)-Receive (Kr) Buffer Schemes . . 128

4.6 Experiments . 131

4.6.1 Experimental Framework . 131

4.6.2 Evaluation of the Assignment Schemes 132

4.6.3 Evaluation of Communication-Memory Organization Schemes 141

5 Concluding Discussions 143

List of Figures

1.1 A taxonomy of Web-based textual communication media. 5

2.1 The division of the dataset in our experimental setting.. 35

2.2 Performance of different static caching strategies fora fully static cache. 42

2.3 Comparison of machine learned static caching strategy versus Oracle

static caching strategies and baseline frequency-based strategy. 45

2.4 Effect of segment size on hit rate. Machine learned dynamic caching

policy with varying segment sizes. 50

2.5 Comparison of machine learned caching policy, baselinepolicy LRU,

and Belady’s algorithm. 51

2.6 Comparison of different result caching policies for various cache sizes. 55

3.1 The classification framework. .84

xiii

LIST OF FIGURES xiv

3.2 A sample fragment of the chat corpus formed. The user nameis dei-

dentified to preserve the anonymity. English translations are added for

convenience. 85

3.3 The results of the PCA for four different attributes (following our ear-

lier convention): a) Author-3-20, b) Domain-3-20, c) Gender-2-200,

and d) DayPeriod-2-34. 92

4.1 Phases of the index inversion process. 113

4.2 Times (secs) of various phases of the parallel inversionalgorithm

for different assignment and communication-memory organization

schemes onK =8 processors. 138

4.3 The effect of the available communication-memory size (M) on in-

verted list exchange-and-merge phase of aK=8 processor parallel in-

version system utilizingE2A andKsKr. 142

List of Tables

2.1 The features used in our machine learning approach 57

2.2 The most discriminating 10 features for machine learnedstatic caching

strategy . 58

2.3 The most discriminating 10 features for machine learneddynamic

caching strategy. 58

2.4 The most discriminating 10 features for machine learnedSDC caching

strategy for cache capacities 1% and 16%. 59

3.1 The summary of abbreviations . 68

3.2 A summary of the previous works on authorship analysis 74

3.3 The attributes predicted in this work and the number of classes avail-

able for each attribute . 79

xv

LIST OF TABLES xvi

3.4 The stylistic features used in the experiments 82

3.5 Test sets, their parameters, and sample classes 90

3.6 Prediction accuracies of experiments conducted on user-specific at-

tributes . 93

3.7 Significance analysis conducted on user-specific attributes 94

3.8 Prediction accuracies of experiments conducted on message-specific

attributes . 96

3.9 Significance analysis conducted on message-specific attributes 97

3.10 The most discriminating words for each attribute. The discriminative

power of each word is calculated using theχ2 statistic 99

4.1 Percent query processing load imbalance values. 133

4.2 Percent storage load imbalance values. 134

4.3 Message volume (send + receive) handled per processor (in terms of

×106 postings) . 135

4.4 Parallel inversion times (in seconds) including assignment and inverted

list exchange times for different assignment and communication-

memory organization schemes. 136

Chapter 1

Introduction

1.1 A Cohesion of Definitions: Communication and

Knowledge Dissemination

It is widely believed that the first use of written language originates to Mesopotamia

around 3200 BC. At that time, the use of writing was either to keep track of valuable

resources such as grain or beer, or to preserve memorable events. For a very long time,

writing is used solely to preserve the available information and pass it to next genera-

tions. Around 500 BC, writing has started to be used for a completely different reason:

communication. First written communique according to the testimony of ancient his-

torian Hellanicus the first, is a hand written letter by Persian Queen Atossa daughter

of Syrus, mother of Xerxes. Although not an invention by itself, the use of writing

1

Chapter 1.Introduction 2

as a means of communication is a ground breaking event for thehuman kind that still

affects our lifestyle.

From the first appearance of letters in human history up untilmid 1940’s, writing

is used only for two distinct purposes: as a means of communication (such as us-

ing letters or telegrams), or for sharing and protecting knowledge (e.g., books, glyphs

and etc.). When we examine post-40’s writing style, communication-oriented writ-

ings have several distinctions from other literary products. First and foremost, all

communication-oriented writings target a person or a position, which implies a degree

of intimacy (acquaintance) between two peers. An even more important distinction

due to this intimacy is that, these writings are generally accepted as a private commu-

nication media and involve some sort of secrecy between communicating peers. Even

today, social custom dictates that we seal envelopes when posting letters as a courtesy

of privacy.

With the development of computers, the mankind finds new means to store valu-

able information. Instead of writing on paper, papyrus, or inscribing on temple walls,

computers allow information to be kept as electrical states, without physical limita-

tions or constraints. Just as in the case of the invention of the written text, the use of

computers as a means for communication followed the introduction of computers as

a knowledge storage medium. HERMES, the email system built within ARPANET,

was one of the first attempts of mankind for using computers asa means to communi-

cate. Still, the use of computers both as a storage and a communication medium was

Chapter 1.Introduction 3

not very different from the paper-based methods, up until mid-1980’s, until when the

Internet emerges.

The Internet phenomenon arose in mid 1990’s, when small networks start to merge

with each other, and the World Wide Web start to be available to common people.

Throughout the world, millions of people start to connect toInternet, building the

worlds’ largest society. Starting as a huge interactive knowledge repository, Internet

also rapidly assumed the mantle of a communications medium.However, it was evi-

dent from the first day that, letters or mails, as the sole method of traditional textual

communications, would both be unsuitable and insufficient means of communication

for such a large community. Thus, the community has devised its new ways to com-

municate.

As the Internet community grows larger and larger, people become acquainted with

a lot of new terms such as “forums, bulletin boards, and blogs.” While these terms

are derived from the physical world, the Internet communityassigns them whole new

meanings. With such communication platforms, people easily access expert knowl-

edge and opinions, share their personal feelings and thoughts, and even create new

relationships.

The most significant aspect of this new form of communicationis twofold. First,

the intimacy and privacy aspects of the traditional textualcommunications become

extinct in this new communication media. Most of the dialogson such platforms

Chapter 1.Introduction 4

cannot be classified as peer-to-peer communications, but rather peer-to-community

communications. Trust and privacy in these media are rathertargeted towards a self-

constructed community instead of individuals. Second, such indirect communication

methods combine both objectives of traditional writing: both writing as a knowledge

media, and writing as a communication media. In fact, what ishappening at the current

time is that we, the new Internet generation, are assigning acompletely new meaning

to communication. Today, communication through the World Wide Web does not only

mean a conversation between two peers, but also a textual life experience within a com-

munity. It also encapsulates the knowledge sharing phenomenon of traditional writing,

making everyday conversation a more elite and complex issue.

In this thesis, we address this amalgamation of communication and knowledge

dissemination. Throughout this text we will call this communication and information

sharing phenomenon the “Internet communication” and try toprove that every Internet

communication method shares some common properties. In order to prove our claim,

we will provide three works from various areas of computer science, each of which is

performed on different types of communication platforms.

Before presenting these varying works, we will first providea background on the

differing communication platforms over a taxonomy of today’s communications. Then

we continue by establishing the common properties of different communication plat-

forms, and present the connections of the works presented inthis thesis with the ac-

claimed properties.

Chapter 1.Introduction 5

Figure 1.1: A taxonomy of Web-based textual communication media.

1.2 Background

The number of proposals and presentations about Web-based textual Internet commu-

nications in the literature is so vast that it would be a futile attempt to list even the

mainstream publications. Instead we try to provide a classification of the textual Inter-

net communications on the Web. Figure 1.1 provides a taxonomy of Web-based textual

communications media. In this taxonomy, we first categorizetextual communications

media into two according to its target audience: peer-to-peer and indirect.

In peer-to-peer communications, each message/dialog is instantiated by a specific

user, and each user message/dialog is written to target a distinct recipient. Commonly,

the aim of peer-to-peer communications is to contact and converse with an acquain-

tance. This conversation can be on a real time basis similar to a face-to-face talk, or

Chapter 1.Introduction 6

without any timely obligation like writing a letter. Thus, peer-to-peer communication

media can be further classified according to their temporal features as instant peer-to-

peer and asynchronous peer-to-peer communication media.

In instant peer-to-peer communications, users can involvein real time textual con-

versations over the Internet. The Microsoft Network (commonly known as MSN) (89),

Google Talk (Gtalk), Instant Messaging Computer Program (icq) (155), chatting

servers (8; 81; 82; 118), and multi user dungeons (MUD’s) arevery well known exam-

ples of such communication platforms.

In asynchronous peer-to-peer communications, the intent of the user is to transmit

a message to another user. The most well known type of these communications me-

dia is emails (19; 22; 39; 40; 78; 130; 141; 144; 149) A large number of work has

been conducted on email messages and mailing platforms. Some of the streamline

topics of these research are focused on writing style analysis (149), author characteri-

zation (141), author attribution (39; 144), social networkmining (19; 22; 78; 130), and

forensic studies (40).

In indirect textual communication platforms, users communicate through access-

ing/producing published data. In this sense, indirect Internet communications resemble

a knowledge sharing activity more than a communication activity. In indirect com-

munication platforms, the accessible information could either be created by a user,

Chapter 1.Introduction 7

or published automatically according to the needs of the users by means of a com-

puterized system. Thus, indirect communications, by theirvery nature, are all asyn-

chronous. In these platforms, the use of the communication media is to disseminate

information within a computer-mediated society, or as a contribution to a knowledge

base over the Internet. According to the audience of these communications we cate-

gorize indirect communications into two: peer-to-community directed and anonymous

communications media. Within these categories, indirect communications can further

be categorized with respect to the author of the data: human generated or automated

communication platforms.

The peer-to-community directed human-generated communication platforms are

generally social networking sites where people can rate their intimacy by declaring

each other as friends, foes, or acquaintances. A common characteristic of such plat-

forms is that they allow their users to create communities, and disseminate informa-

tion within these communities. The asset of ability to create social communities is

twofold. First it allows users to establish a trust with other information publishers

based on common interests, and thus allow users to only browse trusted information.

Second it facilitates two types of communication alternatives; either to communicate

with the trusted users in a private manner, or disseminate knowledge publicly. Twit-

ter (66; 67; 115; 137), Facebook (43; 93; 150), Myspace (43; 139; 140), LinkedIn (90),

Club Nexus (3), and Slashdot Zoo (52; 85) are excellent examples of such platforms.

In user-directed automated communication media, through different statistical and

Chapter 1.Introduction 8

machine learning methods, the user patterns are analyzed inorder to extract user-

preferential information. As an illustrative example, theMovieLens (132) platform

is a movie recommendation site, where the user ratings are gathered and analyzed in

order to find user movie preferences. In the light of the findings, the site make rec-

ommendations to each user about upcoming movies. Recommender systems (84) and

e-commerce (102; 112) sites are other examples of such communication platforms.

Anonymous human-generated communication platforms correspond to knowledge

bases over the Internet. These knowledge bases are usually created and maintained

by Internet users either as a community effort or individually. Various forums (2),

blogs (1; 17), and bulletin boards fall into this category. With the recent popularity of

such platforms, some professional, corporate funded versions of this media has also

emerged. Some examples of such efforts are Wikipedia (123; 161), Wiktionary (161),

Yahoo!Answers (90), Youtube (20; 51), and Internet Movie Database (IMDB) (68).

Unlike other platforms, the objective of anonymous automated systems is analyz-

ing the already existing information base and facilitate user access instead of gener-

ating new information. The most commonly used example of anonymous automated

systems is Web search engines (53; 157). Web search engines provide a means to

”dig out” existing information without consulting to an expert or doing exhaustive

searches over the Internet. In order to provide sound responses to user queries, Web

search engines catalog the whole Internet knowledge base, rank this knowledge base

Chapter 1.Introduction 9

according to each user query, and by using several analysis tools extract the most rel-

evant results that would possibly satisfy the user requests. Other than Web search

engines, several more specialized cataloging services also fall into this category ac-

cording to our taxonomy. Co-authorship sites such as DBLP (3; 16), LiveJournal (16),

and GoogleScholar (37) are examples of such specialized services.

1.3 Motivation

As Section 1.2 suggests, the versatility of Internet communication media is unparallel.

However, literature also suggests that all communication platforms, and the text within

such communications have common properties. These common properties vary from

community graph-based properties (i.e. the connectivity of the community, the degree

and radius of the communication graph), vocabulary-based properties (i.e. the varia-

tions of peer vocabularies and vocabulary distributions),to structural properties (i.e.

heavy use of misspelling and noise due to anonymity of the communities).

Chapter 1.Introduction 10

In this work, we will concentrate on two of the most heavily used and exploitted

properties of the Internet communication media and try to provide practical evidence

that these properties hold no matter how versatile the communication structures are.

These properties are:

• Claim 1:All textual communications contain characteristic markers inherent to

its author and receiver.

• Claim 2:All textual Internet communications exhibit similar distributional prop-

erties. Here, as distributional properties, we refer to heavy tail distibutions ex-

hibitted by both message logs and vocabularies of textual Internet communica-

tions.

In order to prove that these properties hold for all communication types, we provide

three practical works on differing areas of computer science using data from differing

communication media:

• AS the first problem, we examined whether it is possible to improve the perfor-

mance of a query result cache for a search engine. To this end,we use the real

life query logs retrieved from a commercial search engine.

• In the second work, we analyzed an efficient framework for constructing in-

verted indexes in a distributed environment. We use a dataset composed of

Chapter 1.Introduction 11

crawls seeded from the university sites in the USA in this work. The dataset

contains more than 7 millin Web Pages.

• In the third work, we analyzed the chat message and user attributes on a chat

message log. We use a peer-to-peer chat data retrieved from the logs of a uni-

versity chat server. The data contains messages of over 1600people during a 30

day period.

In this thesis, we have used three different datasets to verify our claims. In order

to cover the presented taxonomy as wide as possible, we choose two datasets from

Indirect anonymous automated Internet communication platforms and one dataset from

peer-to-peer instant communication platforms.

As the indirect anonymous automated communications data, we used the query

logs of a commercial search engine and a crawl dataset. The query log dataset is not

publicly available and we are not permitted to disclose dataspecifications in this thesis.

The crawl dataset is created by downloading the contents of html pages starting from

several university sites in the United States. The raw size of this dataset is 30 GB. As

the peer-to-peer instant communications data, we used the conversation logs of 1616

people using a local chat server which originates in Bilkentuniversity, Turkey. The

dataset contains more than 200,000 chat messages between various peers.

The rest of this thesis is organized as follows:

In chapter 2, we will provide a discussion about a machine learning approach for

Chapter 1.Introduction 12

the query result caching using features extracted from the user queries submitted to

a commercial search engine. The problem of caching on a Web search engine can

be summarized as follows: A critical observation about Web search engines is that,

the query load of a Web search engine follows a heavy tail distribution. That is, a

small subset of queries are frequently submitted to the search engine, while most of

the distinct queries are submitted only once or no more than acouple of times. Given a

set of previously submitted queries and their results, by storing the frequent queries in

memory, it is possible to respond to a majority of future queries by using just memory

references.

The very nature of the caching problem requires that there should be some queries

that are more frequent than others. In fact, these frequent queries should be “common

enough” to compensate the computational costs. Thus, the work presented in Chap-

ter 2 would provide an insight on claim 2. Additionally, in this work, we provide a

methodology to improve the hit rate of the cache by using features extracted from user

queries. In this sense, the presented work exploits the userquery-based characteristics

in order to improve cache performance and thus verifies claim1. In this chapter our

contributions are as follows:

• First, we apply a machine learning approach to the query result caching problem.

To this end, we attempt to predict the next arrival time of each query and use this

perdiction as a quality metric.

Chapter 1.Introduction 13

• Second, in our machine learning approach, we used and evaluated an extensive

set of features and examine the importance values of different features in the

caching problem.

• Third, we identified several different class labels for our machine learning model

and evaluated their predictability and usefulness for the caching problem.

• Fourth, we conducted our experiments on a realistic search engine data. We also

discussed the results of the previous works, and evaluated their applicability on

realistic datasets.

• Fifth, we applied our approach to both static caching and dynamic caching and

evaluated its effectiveness.

• Sixth, during the analysis of static and dynamic caching, wepresent several accu-

rate optimality conditions for both caching methods, and identified the possible

room for improvement.

• Last, we applied our findings on a state-of-the-art caching framework with both

static and dynamic components and present our results.

In Chapter 3, we provide a chat mining framework, where we question whether

several user and message attributes are predictable by using text based features of

instant messaging conversations. Some of the examined userand message attributes

are: the author of a message, the receiver of the message, thehoroscope of the user,

Chapter 1.Introduction 14

the educational level of a user and etc. We have used several term-based and writing

style-based features in order to prove the predictability of user and message attributes.

The results of this work would be used to verify claim 1. Our contributions in this

work are as follows:

• To the best of our knowledge, the presented work is the first attempt to analyze

online chat messages in the literature.

• We propose a chat mining framework to analyze online chat messages. Our

framework also includes methods for analyzing very short chat messages and

dealing with several data imbalance problems.

• We analyze both user-specific and message-specific attributes of chat messages

and their predictability.

• We used both term-based and writing style-based features tosummarize and

examine the predictability of chat user and message-specific attributes.

In Chapter 4, we present a memory-based parallel inverted index framework. In a

nutshell, index inversion problem can also be formulated asa matrix transpose prob-

lem, where the transposed matrix would be a term-document matrix. In a parallel

formulation of the index inversion problem, the naive approach would be to trans-

pose local term-document matrices, find a suitable storage setting and communicate

the local indexes among processors. In this work, upon careful examination of this

Chapter 1.Introduction 15

model, we realized that the communication of all local vocabularies to a server ma-

chine would create a bottleneck and slow the communication considerably to a point

that naive approach would be inapplicable for real life systems. Thus, we exploit dis-

tributional properties of the term-document matrix and propose a bucketing strategy.

In this sense, the success of the proposed scheme hints to thecorrectness of claim 2.

In this chapter our contributions are:

• We propose an in-memory parallel inverted index construction scheme and com-

pare the effects of different communication-memory organization schemes to the

parallel inversion time.

• We propose a method to avoid the communication costs associated with global

vocabulary construction which also eliminates the need of creating a global vo-

cabulary completely.

• We investigate several assignment heuristics for improving the final storage bal-

ance, the final query processing loads, and the communication costs of inverted

index construction.

• We investigate the effects of various communication-memory organization

schemes.

• We test the performance of the proposed schemes by performing both simu-

lations and actual parallel inversion of a realistic Web dataset and report our

observations.

Chapter 1.Introduction 16

In Chapter 5, we first discuss each presented work in this thesis seperately, summa-

rize their scientific contributions and comment on possiblefuture directions of these

works. Next, we repeat our remarks on how we exploit our claims within these works

and conclude by explaining about how these works can be perceived as proof for our

claims in these thesis.

Chapter 2

A Machine Learning Approach for

Result Caching

2.1 Introduction

Today, Web search is the most dominating method for finding and accessing knowl-

edge. As the volume of information on the Web grows larger, itbecomes almost im-

possible to find relevant Web documents manually. Web searchengines alleviate this

problem by providing their users an easy way to access any information over the In-

ternet. However, considering the sheer volume of data on theInternet and the growing

number of Web users, responding to all user requests within areasonable time interval

is not an easy task. In order to respond to user queries, a search engine must identify

17

Chapter 2.A Machine Learning Approach for Result Caching 18

the relevant pages, rank them in relevance order and presentthe resulting set of pages.

All these operations should be carried out in a short amount of time before the Web

user loses interest to the result of his/her query. On the other hand, from the standpoint

of a Web user, the advances in networking and computational technologies are gen-

erating an even increasing demand for faster and more precise query results from the

Web search engines.

In order to meet these high access latency and throughput requirements of the Web

community, Web search engines employ several performance improvement techniques.

One of the most commonly used techniques for improving the search engine perfor-

mance is caching. Caching is motivated by the repetition tendency of popular queries

and the resulting high temporal locality of the user queries. The idea of caching is

straightforward. By storing only a small portion of the mostcommonly accessed data

in memory, a search engine can respond to future references of user queries without

wasting too much computational and networking resources.

Aside from its immediate benefits, caching could also be an asset for a search

engine in multiple perspectives: First, by reducing the data to be transmitted to the

servers, it reduces the network load of the search engine. Second, it reduces user per-

ceived delays by eliminating computation time that need to be spent on a query. Third,

by reducing the computational load on the server side, it enables higher throughput.

Last, it provides higher availability since cached data canalso be used as a replica of

the original data regardless of availability constraints (32).

Chapter 2.A Machine Learning Approach for Result Caching 19

Temporal locality in the caching problem for Web search engines manifests itself

in two forms: as recency and frequency. Recency describes the bursty behavior of

user queries. In that respect, a query that is submitted to a search engine is likely to

be submitted again within a very short time interval. As an illustrative example, this

behavior can be best explained by query submissions before the premiere of a new

sensational movie. It would be reasonable to expect that many people would search

about the movie or its’ cast right before it is shown in theaters. But after a couple of

weeks, the number of related queries start to decrease sincemost people have already

watched it. Frequency , describes the steady behavior of user queries. Some queries,

because of their general popularity, tend to be submitted more frequently than others.

For example, navigational queries directed to social network sites, shopping sites, and

Web search engines tend to cover a large proportion of the overall query load of a Web

search engine. Thus, it is reasonable to expect that such queries will be submitted

repetitively over long periods of time.

Although recency and frequency of user queries are major underlying features for

the caching problem, none of these two features have superiority over the other in terms

of caching. Past works (45) on caching show that, a combination of both works best

as a state-of-the-art caching strategy in Web caching. It isalso stated in literature (13;

50; 87) that Web search queries can be mined to extract several features that are not

directly related to temporal locality, but can still improve the effectiveness of caching.

As an illustrative example, it is reasonable to assume that short queries have a higher

Chapter 2.A Machine Learning Approach for Result Caching 20

probability of reoccurring than longer queries. For the sake of this example, a good

cache replacement policy should also take query length intoaccount. In that sense, for

an effective caching strategy, not only recency and frequency, but other features should

be incorporated into one policy.

In this chapter, we propose a machine learning approach to find a “good” caching

policy which incorporates several different aspects of query result caching. Our main

objective is to find a method for incorporating both recency and frequency, as well

as several other valuable features, into a caching policy. To this end, we first define

each query as a set of representative features extracted from the user queries. In our

approach, instead of a recency- or frequency-sorted cache,we use a machine learning

cache, where we try to predict the next re-occurrence (next arrival time or IAT-Next)

of each user query and use this information as the cache replacement policy. In that

respect, the work presented in this chapter is the first attempt in literature to use a

machine learning approach as a cache replacement policy. Recency and frequency,

as two major caching policies, are also incorporated into our approach as a set of

representative features.

The organization of this chapter is as follows: In Section 2.2, the previous work

on caching is presented, focusing mainly on the query resultcaching. In section 2.3,

the machine learning approach in this work is presented. Specifically, the features and

class labels that are used in this work are presented. In section 2.4, the dataset and

experimental setup are explained.

Chapter 2.A Machine Learning Approach for Result Caching 21

In Section 2.5 and 2.6, we look at the two extreme cases for result caching: First,

in Section 2.5 we analyze the effectiveness of result caching when the cache is fully

static. Then in Section 2.6, we evaluate the other extreme, when the cache is fully

dynamic. In these two Sections, different static and dynamic result caching methods

and optimality conditions of both approaches are analyzed,and application of the pro-

posed machine learning approach to both cases are examined along with experimental

results. In Section 2.7, we combine static and dynamic caching approaches into one.

We take the state-of-the-art static-dynamic cache (SDC) (45) as a baseline method,

and apply our machine learning strategy on SDC. We present anextended discussion

on the result caching problem and the results of our experiments in Section 2.8.

2.2 Related Work

For search engines caching can be employed on different dataitems such as the posting

lists, precomputed scores, query results, and documents (111). The literature mainly

concentrate on two of these data items: storing the posting lists and storing the query

results. Apart from these works, several hybrid models are also proposed in literature.

In (111), the authors propose a five-level caching architecture for different data items

and propose methods to adress dependencies between the cached data items. In (12),

the problem of storing posting lists, query results, and thelist intersections are exam-

ined on a static cache setting. The work of (95) and (129) concentrate on the similar

Chapter 2.A Machine Learning Approach for Result Caching 22

problem on a dynamic setting. In another work (99), the similar problem is examined

on a parallel architecture. In (134), the authors concentrate on pruning posting lists

and storing these pruned lists to conserve cache space.

The posting list caching (12; 14; 143; 162) corresponds to storing the inverted lists

of query terms in memory. The aim of posting list caching is toavoid disk accesses and

computations required to calculate the relevant query results. Since posting list sizes

follow a Zipfian (164) distribution for the Web data, it is possible to answer a large

number of queries by just storing a limited number of postinglists (12). However,

even when all the posting lists required to answer a query arestored in memory, these

posting lists may need to be combined to achieve final results, which would still require

additional computational power. Thus, even though high hitrates are easily possible

for posting list caching, the computational gain would be limited.

Query result caching (5; 6; 13; 45; 87; 88; 98; 101; 110; 133) corresponds to

storing the answers of a particular query in memory. The aim of query result caching

is to exploit temporal locality of popular queries and respond to later queries by using

pre-computed answers. Since a query result cache hit requires an exact matching of

the incoming query and the query that is in the cache, the hit rate of a query result

cache is lower than that of a posting list cache. However, when a hit occurs, the results

can be directly answered by the result cache, and thus no additional computation is

required. In this work, we focus on caching the query results. Thus, in this section, we

will concentrate on the proposals about query result caching in literature.

Chapter 2.A Machine Learning Approach for Result Caching 23

The methods for improving the efficiency of query result caching in literature

can be categorized into four classes according to policy decisions employed during

caching: admission, eviction, prefetching, and refreshing. Admission (13) relates to

giving a decision about whether to cache a query or not, basedon a quality metric. The

main purpose of admission is to identify queries that would pollute the cache and act

as if those queries were never submitted. Eviction (6; 12; 15; 45; 50; 98) corresponds

to selecting queries that are least likely to get a hit in the near future in order to provide

space for admitting newer query submissions. As a baseline eviction policy, recency

feature (evicting the least recently used query (LRU)) is widely adopted in literature.

Usually in most search engines, a query returns top 10 most relevant results to

the user. The search engine-generated response page containing the links to these

relevant pages is often referred to as a result page. For a search engine, sometimes it

could be more beneficial to admit more than only one result page to the result cache.

Prefetching (45; 87; 88; 100; 101) policies are used to decide how many of the result

pages would be most beneficial to store in the result cache while admitting a query to

the cache. This way, if a user requests the results of more than one page, the results

would be returned without any extra cost. The main drawback of prefetching is that

selecting an optimistic policy would pollute the cache withresults that would never be

required which would waste cache space.

Refreshing (24; 25; 31; 125; 126) aims to improve the hit rateof the result cache

by improving the freshness of the already existing results stored in cache. The main

Chapter 2.A Machine Learning Approach for Result Caching 24

motivation behind refreshing is that the contents of the cache might get older in time

and would not be able to serve as adequate answers to user queries. A refreshing policy

decides which query results should be re-fetched from the Web so that the freshness

of the cache contents are preserved and that, the Web search engine does not provide

users outdated information.

In this work, our aim is to find a caching policy by employing machine learning

methods to the query log, so that the hit rate of the query result cache is improved.

To this end, we use a static-dynamic cache assumption. In this method, the cache is

divided into two segments; a static segment and a dynamic segment. For the static

segment, we use our machine learning approach to find a quality metric among user

queries, and use that metric to fetch the most beneficial set of queries to fill the static

cache. For the dynamic segment, we use our machine learning approach as an eviction

policy, to find the least beneficial query within the dynamic cache and to evict that

query in order to provide cache space for more recent, and possibly more beneficial

submissions.

Our proposed method is motivated by several works in the literature. Throughout

this work, we also adopted some of the past proposals, use them as baseline for com-

parison, and evaluated their performances on a real life setting. We also feel that, some

of these works should be mentioned due to the parallelism in their approaches to the

caching problem.

Chapter 2.A Machine Learning Approach for Result Caching 25

The work of (98) examines the query result caching for the first time in the litera-

ture. In (98), the author evaluates the effectiveness of result caching with four recency

based eviction policies. The author also emphasizes the importance of frequency for

caching, and for the first time in literature, proposes a static caching scheme. Ac-

cording to his proposed scheme, a static cache is composed queries with the highest

frequency in the training set.

In (45), the authors, proposed the partitioning of the result cache into two segments:

a static segment and a dynamic segment. In their proposed model (SDC), the static

cache is filled with the most frequent queries using a query log while the dynamic

cache uses a LRU-based eviction policy. In essence, the static cache responds popular

(frequently submitted) queries while a small LRU-based dynamic component is used

to respond to bursty query behavior. Today, most of the worksin the literature accept

SDC as a state-of-the-art caching policy and use it as a second baseline method along

with LRU.

For result caching in search engines, in literature, there are several proposals that

emphasize using feature-based approaches to exploit different characteristics of the

user queries. In (13), the authors present a feature-based admission method for query

result caching. In their proposed method, cache is divided into two parts: an admission

cache and a controlled cache. Using the query length featurethe proposed policy

decides whether to admit the query into the admission cache or not. Remaining queries

are admitted into the controlled cache, which is using the LRU policy.

Chapter 2.A Machine Learning Approach for Result Caching 26

In (110), the authors present another feature-based approach to improve hit rate

of the static cache. In their approach, they define a stability metric, where stability is

defined as the standard deviation of query frequency within discretized time intervals.

In this method, a low standard deviation means that query is more likely to be received

again than other queries with higher deviations. Instead ofadmitting most frequent

queries into the static cache, they filled the cache with most“stable” queries.

Another feature-based result caching architecture is presented in (50). In their

work, the authors present a fully dynamic feature-based result cache eviction scheme.

Using several query-based features, the authors classify each incoming query into

“query buckets”, where each query bucket is essentially a LRU cache segment. Then

they prioritize these buckets with respect to their relative hit rates and evict queries in

from the bucket with the least hit rate. In that respect, the hit rate of a bucket can be

considered as a quality metric for that bucket.

Machine learning methods are also used in result caches in the literature. In a re-

cent article, (126) applied machine learning methods on query result caching. In their

work, th authors propose a machine learned cache invalidation technique is proposed-

for determining whether a query result/posting list is fresh or stale. In their approach,

the authors train a machine learning model in order to predict time-to-leave (TTL)

values for each query occurence. To this end, they use several query log features for

training their machine learning model. In the sense that their proposed machine learn-

ing approach is applied to each query occurence in the query log, their approach is

Chapter 2.A Machine Learning Approach for Result Caching 27

similar to our proposed mechine learning method in this work.

As a feature-based result caching policy, our proposed machine learning cache

has several differences from the previous works in the literature. First, we use sev-

eral query-, frequency-, recency-, term-, and user-based features in order to learn a

policy from the past query logs. In that respect, our proposed model not only incor-

porates query recency and frequency, but also exploits other characteristic markers of

user queries. Second, our model enables a more flexible approach for caching, where

the caching policy can be re-trained over time in order to reflect the changes in user

and query bevavior. Third, it allows us to analyze the impactof different features on

caching.

2.3 Machine Learning Approach for Result Caching

In this work, our aim is to find a “good quality metric” for userqueries, which would

encapsulate query recency, query frequency, and several other query characteristics.

For this purpose, we model the query quality metric as the next arrival time (IAT-Next)

of a query. In order to predict the IAT-Next of the queries, wemodel the result caching

problem as a single-label regression problem, where next arrival time is the predicted

class label. We experimented with several variants of IAT-Next using different machine

learning tools and algorithms. In this section, we first describe the features used as

variables in our machine learning approach, then we describe the class labels used in

Chapter 2.A Machine Learning Approach for Result Caching 28

our experiments.

2.3.1 Features

In this work, we used 30 different features extracted from a realistic query log. For a

clear presentation, we classify these features into six categories. These categories are:

query string-based, user-based, search engine related, term frequency-based, query

frequency-based, and temporal features. Table 2.1 summarizes the features used in

this work and their categories.

Query string-based features describe the structural properties of a query. We find

query string-based features particularly important in this work, because in the liter-

ature, there were several works that use such features for improving cache perfor-

mance (13; 50). These features are also quite popular in the caching research since

these features are static. That is, they do not need re-processing since queries do not

change feature values at every occurence. We use five such features. QueryLength

is the query size in characters and WordCount is the number of terms in a query.

Is URL Present is a binary feature, which takes value 1 if the query string contains

the sub-string “HTTP” or “FTP”, and 0 otherwise. IsDomainPresent is another bi-

nary feature that gets the value 1 if the query contains any ofthe top-level domain

names (94), and 0 otherwise. AverageQuery Term Length is the query length divided

by word count of a query.

Chapter 2.A Machine Learning Approach for Result Caching 29

User-based features describe general user behavior duringthe submission of the

query. We use four user-based features. IsUserLogged feature is the average num-

ber of users that are logged into their user accounts dividedby the query frequency.

PageNumber describes which page of the query result is requested/displayed by the

user. PageNumber is a particularly interesting feature for our work since it encap-

sulates the essence of prefetching. Although beyond the scope of the work presented

here, it is also possible to integrate prefetching in our proposed machine learning cache

using the PageNumber feature. ClickCount is the average number of clicks users is-

sue after getting the result of their query. We include this feature in our work, since

it is closely related with the accuracy of the query responses of the search engine.

First Link Click Count is a subset of the ClickCount feature. It is defined as the av-

erage number of first link clicks issued per occurrence of a query. We expect that both

accuracy and the popularity of a query could be exploited using both ClickCount and

First Link Click Count features.

Search engine related features describe attributes that are not directly visible

to the user, but could still contain hints about the popularity of a query. To-

tal NumberOf Hits is the average number of relevant result pages that is returned

by the search engine to the user query. Note that, the number of hits is not a static

feature since it is possible that the relevant pages may expand due to posting of

new pages during testing or some servers may contain partialor outdated informa-

tion. RarestQuery Term Index Size, MostCommonQuery Term Index Size, and

Chapter 2.A Machine Learning Approach for Result Caching 30

AverageQuery Term Index Size are the minimum, maximum, and average posting

list sizes of the query terms respectively.

The term frequency-based features describe the frequency related aspects of the

query log. These features relate to the general popularity of queries and may infer

the submission rate for each query over time. In order to incorporate frequency to

our approach, as well as to detect possible variances in query frequency, we use a

windowing mechanism. In our approach, we calculate the termfrequencies of each

query using its last one minute, one hour, and one day occurences in the query log.

Similar to recency, query frequency is another valuable feature for caching in the

literature. In order to incorporate query frequency in our machine learning approach,

we define four query frequency-based features. Like term frequency-based features,

we use a similar windowing method. We define four time frames and calculate query

frequencies within these time frames. These time frames are: query frequencies for

the last minute, last hour, and the overall query log.

Temporal features describe the behavior related with submission time of a query.

We define three different features for this purpose. QuerySubmissionHour is dis-

cretization of query time in hours in Greenwich timezone. Query Day Count is the

average number of times a query is submitted during day time,where day time is de-

fined as the interval between 7.00 AM to 19.00 PM. QueryTime Compatibility is a

binary classification for QueryDay Count feature. After QueryDay Count of a query

Chapter 2.A Machine Learning Approach for Result Caching 31

is calculated from the query log, queries are classified intothree groups: day queries,

night queries, and without timezone. If a query is submittedat night time more than

80% of the time in the observed portion of the query log, then it is considered as a

night query. Similarly, if a query is submitted at day time more than 80% of the time

in observed portion of the query log, it is considered as a dayquery. A query that is

submitted at a time inconsistent to its timezone is counted as incompatible and given

value 0, and in the latter case 1.

2.3.2 Class Labels

In this work, for predicting the next arrival time of the queries we used a two classifier-

approach. First, we trained a singleton classifier in order to predict the singleton

queries. Then, we train a second classifier with a training set where all singleton

queries are removed and try to find a regression for the next arrival time (IAT-Next) of

the remaining queries.

The rationale behind using a two-classifier approach is as follows: Since Web query

logs follow a power law distribution (164), most of the distinct queries occur only once.

However, singleton queries do not have inter-arrival timessince they appear only once

in the dataset, which makes such queries “uninformative” with regard to IAT-Next. Our

experiments also showed that using singleton queries in thetraining set for predicting

next arrival time of queries cause poorly predicted regression results.

Chapter 2.A Machine Learning Approach for Result Caching 32

In our approach, the first classifier maps each test instance to the interval (0,1) by

fitting a regression model, where class label 0 in the training set means that the query is

a singleton and class label 1 in the training set means otherwise. The results of the first

classifier gives an estimate for each test query being a singleton or not. Throughout

this work, we will refer to this classifier as “the singleton classifier”.

The second classifier takes only the non-singleton queries in the query log for fitting

a second regression model, where class label represents theestimated IAT-Next of a

query. Throughout this work, we will refer to this second classifier as “the IAT-Next

regressor”. The class labels in the training set is constructed using the next arrival times

of the queries within the training set. For the test set, the same label is the objective to

be predicted by the machine learning methods. In our approach, this prediction would

be used as the quality metric of a query during eviction; it would be most beneficial to

evict queries that are expected to come later than others, since they are the expectation

we infer from the predictions of the machine learning methods is that such queries will

reside in the cache longest without producing any hits. Notethat, in our approach,

predicting queries as singleton or non-singleton is a subset of the latter problem in

regard to the information to be predicted, since both classifiers compute a regression

of the re-occurence time for each query. However, since the IAT-Next regressor make

the predictions of IAT-Next for singleton queries in an almost-arbitrary fashion without

any prior knowledge of singleton queries, in terms of instance size, singleton prediction

is a superset of the latter problem.

Chapter 2.A Machine Learning Approach for Result Caching 33

In order to combine the results of these two classifiers we used two approaches. In

the first approach, we used the singleton classifier as an admission policy. According

to this admission policy, the queries that are predicted as singletons are eliminated

directly before cache admission, while the result cache is ordered according to the

next arrival time predictions. In the second approach, the predictions of the singleton

classifier are used as support values for the regression model. That is, the results of

both classifiers are multiplied in order to obtain the quality metric for each query. In

this sense, the latter approach is an eviction policy for thequery result cache. Our

experimental results show that, using singleton query prediction as a support value

perform consistently better than using it as an admission policy. For this reason, in

the forthcoming discussions we will only refer to the secondapproach as our caching

strategy.

For each of these classifiers, we experimented with four different class labels: The

number of queries between two appearances, logarithm of thenumber of queries be-

tween two appearances, time in seconds between two appearances, and logarithm of

time in seconds between two appearances of a query. Our experimental evaluations

showed that all of these class labels perform almost equallyin predicting the next

arrival time of queries. However, experiments using the number of queries between

two appearances as class label perform slightly better thanother class labels. For the

purpose of clarity, we will present the results of only this feature in the upcoming

discussions.

Chapter 2.A Machine Learning Approach for Result Caching 34

2.4 Data and Setup

In order to examine the effectiveness of the proposed machine learning approach, we

conducted extensive experiments on a realistic dataset constructed using query logs of

a commercial search engine. Furthermore, as machine learning algorithms, we used

several classifiers for training our result caching policy.In this section, we first in-

troduce the query log and discuss the experimental setup that we have used during

our experiments. Then, we present the classifiers that we have experimented with and

discuss our criterion while selecting these classifiers.

2.4.1 Query Log and Experimental Setup

In order to verify our claims, we conduct our experiment on a query log constructed us-

ing submissions to a commercial search engine during 2011. For our experiments, we

applied several preprocessing operations on the query strings. The punctuation marks

in the queries are cleared, and query strings are normalizedby converting all charac-

ters into lowercase. All query terms are rearranged in alphabetical order in order to

eliminate dissimilarity as a result of term positions. Finally, spell correction is applied

to the dataset.

In order to test our result caching approach and conduct our experiments, we di-

vide the dataset into five phases. These phases are called training-warmup, training,

Chapter 2.A Machine Learning Approach for Result Caching 35

Figure 2.1: The division of the dataset in our experimental setting.

cooldown, warmup, and test phases. Figure 2.1 summarizes this separation on the

query log. For a balanced partitioning of data among these phases while preserving

the practicality of our approach for deployment on a real search engine, the dataset is

divided as follows: The first day of the query log is used for warming up the query re-

sult cache for training, the next 6 days are used for traininga machine learning model.

The 8th day of the query log is used as the cooldown phase. The cooldown phase can

be considered as the dual of the warmup phase. It provides themachine learning model

a “future knowledge” so that the model can reflect to the fact that the data stream is

infinite and the queries at the end of the training log may appear again in the future.

The 9th day of the query log is used as warmup for testing and the last day of the query

log is used as the test phase. In a practical deployment strategy, the aim of this division

is to use an already existing query log for training a cachingpolicy every day, and at

the end of the day prepare a new caching policy for the forthcoming days in a pipelined

fashion.

As noted earlier in Table 2.1, several features used in this work are defined over a

Chapter 2.A Machine Learning Approach for Result Caching 36

time frame such as term and query frequency-based features.Using the queries from

the first day of the query log may lead to inconsistencies for such time-windowed

features. The purpose of the training-warmup phase is to allow stabilization of these

features. Queries within the training-warmup phase are skipped from the dataset for

training purposes.

The queries in the training phase are used for generating themachine learned evic-

tion policy. Each query in the training phase is labeled withits future interarrival time

(IAT-Next), and we fit our regression model on these queries.

One important problem while generating a regression model in the training phase

is that, the very last occurrence of every query in the training set would unavoidably

marked with infinite next arrival timestamp due to the fact that the training set is finite

and those queries would not be expected anymore. However, ina practical case, it is

highly likely that many such queries would appear again in the future. The purpose

of the cooldown phase is to provide the queries in the training phase a “finite future

knowledge”. This way, the last occurrences of queries in thetraining phase would be

labeled reflecting their future behaviors.

The last two days of the query log is used as warmup phase and test phase re-

spectively. For both phases, we use our fitted regression models in order to find a

likelihood of future occurrences, and sort the result cacheusing these likelihood val-

ues. The queries in the warmup phase are first used for filling the cache in order to

Chapter 2.A Machine Learning Approach for Result Caching 37

prevent cold-start. Then queries in the test phase are used to evaluate the effectiveness

of our algorithms.

2.4.2 Setup - Classifiers

We have used several machine learning tools such as Weka (57), Orange (41), Liblin-

ear (46), and GBDT (159) to fit a regression model to our training data. We analyzed

the results of several machine learning algorithms such as multilayer perceptron, pace

regression, support vector machines, k-nearest neighbours algorithm, logistic regres-

sion, and gradient boosted decision trees in order to find themost suitable algorithm

for our problem.

Our experiments showed that algorithms provided by both Weka and Orange are

not suitable for evaluating large scale data due to their poor running time performances.

In terms of efficiency, GBDT performed consistently better than Liblinear in all exper-

iments. Thus, we choose gradient boosted decision trees algorithm provided by GBDT

for training our proposed result cache eviction policy.

Gradient boosted decision trees (49) (GBDT) is one of the most widely used learn-

ing algorithms in machine learning today. Two appealing factors its popularity are that

first, the results produced by GBDT are simple and interpretable; second, the models

created by decision tree-based methods are non-parametricand non-linear. GBDT is

a machine learning method based on on decision trees. It builds a regression model in

Chapter 2.A Machine Learning Approach for Result Caching 38

stages, by computing a sequence of simple decision trees where, each successive tree

is built for refinement of the results of the preceding tree. In GBDT, decision trees are

generally binary trees, where each tree is composed of decision nodes. The learning

method is to find the most discriminative criteria for the data, use this criteria as a

decision node, and recursively partition the data at each node of the tree.

For our experiments, we have used a version of GBDT based on the implementation

of (159) which is currently deployed in some commercial search engines. After eval-

uating the effectiveness of GBDT with different number of decision trees and different

number of nodes in each decision tree, both in terms of running time and regression

accuracy, we set the maximum number of trees as 40 and the number of nodes in each

tree as 20 in our experiments.

2.5 Static Caching

In this section, we analyze the effects of static caching forthe result caching problem.

First, we present several static caching methods already presented in the literature.

Then, we propose two new methods for selecting which queriesto admit into the static

cache: A recency-frequency based approach and a machine learning based approach.

Additionally, in order to better evaluate the room for improvement in static caching,

we provide two new, and tighter, bounds for the optimality conditions of static caching.

Chapter 2.A Machine Learning Approach for Result Caching 39

2.5.1 Techniques

In the static cache assumption, the result cache should be filled prior to deployment

of the cache. The basic strategy is to use a quality metric to evaluate/predict which

queries would be more likely to come more frequent than others and construct the

static cache using these queries. In this work, in order to evaluate the effectiveness of

our proposed strategies we have implemented 5 different query selection strategies. In

order to evaluate the room for improvement in static cachingwe also propose two new

optimality conditions. These query selection strategies are:

Recency Sorted:Recency is the underlying metric for least recently used (LRU)

caching strategy. The LRU heuristic assumes that queries not submitted recently will

have a lower probability of getting submitted in the near future. LRU is considered as

a baseline method in most previous caching literature.

Frequency Sorted: Frequency is the underlying metric for least frequently used

(LFU) caching strategy. The LFU heuristic is closely related with temporal locality

and is based on the assumption that the most frequent queriesin the query log are also

likely to exhibit a similar behavior in the future. That is, they are more likely to be

submitted in the future.

Query Deviation Sorted: This strategy is based on the work presented in (110).

In this work, the authors emphasize the fact that frequency-based strategies have the

Chapter 2.A Machine Learning Approach for Result Caching 40

disadvantage of under-valuing the bursty behavior in querytraffic and propose a fre-

quency stability metric. In this strategy, queries that aresubmitted in a more steady

fashion are better candidates for the static cache.

In query deviation sorted caching strategy, in order to evaluate the stability of a

query, first the query log is divided into constant length time frames. Then, the query

submissions within each time frame is considered as a unit and submission variation

between frames is calculated for each query. Queries havingthe least variation is

considered as the best candidates for admission to the static cache. In our experiments,

we selected a time frame of 1 day for evaluating the effectiveness of this strategy.

Recency + Frequency Sorted:During our evaluations we observe that, the strat-

egy proposed in (110) suffers from the fact that it is possible to over-value queries that

are observed infrequently but have very stable behavior. Inthis strategy, we adopted

the proposed strategy and make several adjustments.

First, similar to (110), we divide the query log into unit time frames. We use a

time frame size of 1 day for our experiments. Second, we normalize the frequencies of

each query for each time frame using the total number of queries submitted during that

time frame. Our motivation is that, since the total number ofsubmissions within each

time frame is not constant, a normalized query frequency would serve better for the

stability of a query. Third, instead of using stability feature, we used query expected

frequency as the admission metric. In our strategy, query expected frequency is equal

Chapter 2.A Machine Learning Approach for Result Caching 41

to the average normalized frequency of a query for one time frame. Finally, we make

an attempt to combine the recency feature into our new strategy. To this end, we use

an aging function during the calculation of query expected frequency. According to

our strategy, the query frequency within a newer time frame has more effect than the

query frequency within an old time frame. For example, a query that is more frequent

recently but less frequent in the past is more valuable than aquery that is less frequent

recently but more frequent in the past.

Oracle - Test + Train: In order to propose a tighter optimal bound for the static

caching problem we used the Belady’s algorithm. According to Belady’s algorithm,

if, hypothetically, we have known all future occurrences ofeach query, we could have

decided which queries to keep in the cache in the best possible way. That is, given a

finite-sized cache, we could select the best set of queries tokeep in the static cache.

To this end, we calculated the query frequencies within the test set and pick the most

frequent queries to use in the static cache.

Oracle - Train Only: Although the above strategy is optimal, it requires us to

“clairvoyantly guess” the queries that have never occurredin the train set. In this

strategy, we only picked the most frequent queries in the test set, only if they also

occur in the training set.

Machine Learned: In this strategy, we used our proposed machine learning ap-

proach to the training set. We first fitted a regression model to all queries, where the

Chapter 2.A Machine Learning Approach for Result Caching 42

regression model predicts the next arrival time of the queries. According to this model,

queries with smaller next arrival times are likely to come earlier than others during

the test phase. Using these regression values, we calculated the estimated test phase-

frequencies of each query and use this value as admission metric for the static cache.

2.5.2 Results

1 2 4 8 16
Cache Capacity (%)

25

30

35

40

H
it
 R
at
e
(%
)

Recency Sorted

Frequency Sorted

Query Stability

Recency + Frequency

Machine Learned

Figure 2.2: Performance of different static caching strategies for a fully static cache.

In order to evaluate the effectiveness of different static caching strategies, we per-

form several experiments. We use the hit rate of each algorithm as the performance

metric. We have done experiments with each strategy on varying cache capacities. In

our experiments, we selected the cache capacity as a function of the number of distinct

Chapter 2.A Machine Learning Approach for Result Caching 43

queries in the test set and used 1%, 2%, 4%, 8% and 16% of the test set as cache ca-

pacities. Figure 2.2 summarizes the performances of different static caching strategies

on various cache capacities.

For the fully static caching problem, both LRU and LFU strategies perform almost

equally well, where LRU perform better for the cache capacities up to 8% and LFU per-

form better with the 16% cache capacity. Reminding that recency feature is more suited

for detecting bursts in query appearance, these results canbe best explained by the fact

that when the cache capacity is limited, increasing popularity of some queries over-

whelm the frequency order. That is, keeping new queries instead of frequent queries

have merits for a more effective caching. However, when the cache capacity is large

enough, frequency feature start to acknowledge the popularity of such new queries

and start performing similarly. And when the cache capacityis large enough recency

feature start to degrade with respect to frequency due to cache pollution caused by

singleton queries.

Among all policies, the query stability policy perform poorest for small cache sizes.

This is due to the fact that several less frequent queries have significantly better stability

values than some popular queries, polluting the static cache. However, when the cache

size is large enough stability perform better than both LRU and LFU policies, since

even with cache pollution there is enough cache space to accommodate the queries

which are both stable and popular at the same time. The results of this experiment

also show that, the real life search engine data and the observed query behavior in the

Chapter 2.A Machine Learning Approach for Result Caching 44

search engine data is quite different and much more robust than other datasets, and

methods proposed over such data are not directly applicableto real life problems.

In general, our proposed recency + frequency policy performvery poorly. This is

due to the fact that, even with normalization, the underlying feature of our method is a

combination of query stability and query frequency and bothmethods perform poorly

for small cache sizes. We also argue that combining recency and frequency into one

policy is not a trivial task that require a more complex relation than query aging.

Among all methods, our proposed machine learning strategy perform consistently

best for static caching. For small cache sizes the performance of the machine learned

static cache is almost similar to other methods. However, asthe cache capacity grows

larger the improvement due to machine learned caching strategy become even more

apparent. We can come up to two conclusions according to these results: First, ma-

chine learning is a viable way for combining both query recency and frequency into

one strategy. Second, in addition to recency and frequency there may be other global

characteristics of user queries that can be mined to facilitate caching.

Table 2.2 shows the 10 most discriminating features of the machine learning ap-

proach for static caching. Two of the top 3 most discriminating features is variants of

query frequency which validates the importance of the frequency feature in caching.

The QueryTime Compatibility feature shows that our machine learning approach also

identifies the fact that some queries are more susceptible tosubmission during certain

Chapter 2.A Machine Learning Approach for Result Caching 45

periods of time within a day. word count, page number, query length, and inverted

index sizes of user queries are also identified as several other query characteristics that

may be closely related to the popularity of a user query.

1 2 4 8 16
Cache Capacity (%)

20

30

40

50

60

H
it
 R
at
e
(%

)

Oracle - Test + Training

Oracle - Training Only

Machine Learned
Frequency Sorted

Figure 2.3: Comparison of machine learned static caching strategy versus Oracle static
caching strategies and baseline frequency-based strategy.

Figure 2.3 compares the baseline algorithm LFU and the machine learned caching

policy with two Oracle algorithms. Although the results seem that, our proposed ma-

chine learned caching policy improve the hit rate of the static cache only by 0.66%, the

comparison with the optimal methods show that this constitute a significant improve-

ment of 10% within the room of possible improvement. The comparison of the two

oracles also hints the difficulty of the caching problem. There is almost 8% difference

in hit rate when the queries that only appear in the test set isincluded in the static

Chapter 2.A Machine Learning Approach for Result Caching 46

cache. These queries require a “completely clairvoyant” method to be added to the

static cache, which is for all practical purposes, impossible. This also hints the robust-

ness of the user behavior and shows it may be possible that theroom for improvement

might be even tighter than what is presented here.

2.6 Dynamic Caching

In this section, we evaluate the dynamic result caching problem. For this purpose, we

take the other extreme case, where the result cache is composed of only the dynamic

part. In order to evaluate the room for improvement in the dynamic caching problem,

we present Belady’s algorithm as an optimal method of dynamic caching. We then

present our proposed machine learning approach for the dynamic caching problem and

validate its effectiveness.

2.6.1 Techniques

The dynamic caching problem is quite different than static caching. While in static

caching it is not possible to exchange queries that are in thecache, dynamic caching

allows us to evict queries from the cache in exchange for someother query that would

be more beneficial for the time being. In that sense, dynamic caching is more flexible

than static caching. In literature (45), the results with the hybrid models show that static

Chapter 2.A Machine Learning Approach for Result Caching 47

caching is more effective for detecting steady behavior (i.e. frequency) of user queries

while dynamic caching is used for elevating the effectiveness of a caching policy by

detecting bursty behavior (i.e recency) in user queries.

In order to evaluate the effects of dynamic caching, we conduct experiments on

a fully dynamic cache with several caching policies. As a baseline dynamic caching

policy we used the LRU caching policy. We also present the results of Belady’s algo-

rithm as an optimal dynamic caching policy. Finally, we applied our proposed machine

learning approach to dynamic caching and evaluate the results. The algorithms we have

used can be summarized as:

Least Recently Used (LRU):This is the underlying caching policy for recency.

LRU attempts to fill the cache with the most recent queries.

Belady’s Algorithm: The best possible strategy for a cache with finite size would

be to always keep the queries that would be referenced last inthe future. This optimal

caching strategy is referred to as the clairvoyant algorithm or the Belady’s algorithm.

The impracticality of implementing such a caching strategyin an online framework

comes from the fact that it is not possible to know future queries during execution.

For representing the room for improvement in the caching problem, we implemented

the Belady’s algorithm as a method that “knows” the future query references during

warmup and test phases.

Machine Learned: In this strategy, we again used our proposed machine learning

Chapter 2.A Machine Learning Approach for Result Caching 48

approach to the training set. Similar to the machine learnedstatic caching strategy,

we first fitted two regression models to all queries, where thefirst model gives an

estimate whether a query is singleton or not and the second model gives an estimation

of query’s IAT-Next. We then use the multiplication of both regressions and calculate a

query quality metric. For dynamic result caching, we keep the queries with the highest

quality values in the cache, evicting queries with lower quality values.

During our experiments, we have made an important observation concerning the

performance of the machine learned dynamic result cache. When the regression model

is used to decide which queries to keep in the dynamic cache, the predicted singleton

queries, the singleton queries that are predicted as popular, could pollute the cache

and degrade the performance of the result cache severely. The reason of this behavior

is that such singleton queries may rank better than some frequent queries, effectively

preventing them from getting admitted in the long run.

In order to prevent pollution of the cache due to misclassifications, we propose a

segmentation method that merges and honors the LRU policy. According to our seg-

mentation method, we partition the query result cache into afixed number of segments.

After each time we process a fixed number of queries, we start afresh cache partition

that we call a “segment”, in order to write the incoming queries. In our method, the old

segment become stale since the proposed method quits writing into the old segment.

The queries that take hits within the old segment/s are also removed from their re-

spective segments and admitted into the new segment. Additionally, whenever a query

Chapter 2.A Machine Learning Approach for Result Caching 49

needs to be evicted from the result cache, the eviction decision is performed only on

the queries that are in the oldest segment. Note that all segments are governed by the

same machine learned policy, and the only difference is thatby honoring LRU more,

it is possible to evict old, polluting queries from the cachewithout any other means of

interference.

2.6.2 Results

We conduct experiments on a dynamic cache using different cache capacities and seg-

ment sizes. These experiments have three motivations. First, we evaluate the effects of

varying segment size on the machine learned cache performance. Second, we analyze

whether there is a “most suitable” segment size for different cache capacities. Third,

we evaluate whether it is possible to find the best segment size for the machine learned

cache prior to testing. That is, whether the best segment size found by solely using the

training data would perform equally well while testing the performance of the cache

or not.

Figure 2.4 shows the performance of the machine learned cache with different

cache capacities and segment sizes. The main purpose of thisexperiment is to find

the best segment size for each cache capacity. Thus, the machine learning model used

in these experiments is tested the training data to find the most effective segment size

prior to testing..

Chapter 2.A Machine Learning Approach for Result Caching 50

0 1000 2000 3000 4000 5000 6000
Segment Size (x 1000 queries)

0

10

20

30

40

50

H
it

R
at

e
(%

)
1% Cache Capacity
2% Cache Cacpacity
4% Cache capacity
8% Cache Capacity
16% Cache capacity

Figure 2.4: Effect of segment size on hit rate. Machine learned dynamic caching policy
with varying segment sizes.

For all cases, when the segment size is 1 query, the machine learned caching

method performs exactly like LRU policy. This is because, eviction decisions are

given over the oldest segment, and due to the order of segments, our approach exhibit

a recency-sorted behavior. For the 1% cache capacity, increasing the segment size

up to 30,000 queries also increases the hit rate of the caching policy. However, with

larger segment sizes, the performance of the algorithm continuously drop down, even-

tually to 2.7% when using only 1 segment. This is due to the fact that, small segment

sizes respect LRU policy more while larger segment sizes respect the machine learned

Chapter 2.A Machine Learning Approach for Result Caching 51

1 2 4 8 16
Cache Capacity (%)

35

40

45

50

55
H
it
 R
at
e
(%
)

Belady’s Oracle

LRU
Machine Learned

Figure 2.5: Comparison of machine learned caching policy, baseline policy LRU, and
Belady’s algorithm.

approach more. Increasing the segment size in a small scale benefit the caching pol-

icy, since using the machine learning approach enables the policy to give more correct

caching decisions. However, further increasing the segment size leads to cache pol-

lution due to misclassification of singleton queries. When the cache capacity is very

small, the effects of this cache pollution is much more apparent. Both for cache ca-

pacities 1% and 2of the result cache drops down significantlywith increasing segment

size. However, with larger segment sizes the performance degradation due to cache

pollution is almost negligible.

Next, we conducted experiments to compare the effectiveness of the machine

learned dynamic caching policy with the optimal caching algorithm and the baseline

Chapter 2.A Machine Learning Approach for Result Caching 52

LRU. Figure 2.5 shows the results of these experiments. We use the best segment sizes

for each cache capacity by using the results from the experiment above. The results

show that our proposed machine learned approach performed consistently better than

the baseline LRU policy for all cache capacities. For 16% cache capacity, the machine

learned caching policy improves LRU by 0.65% which constitutes 7.4% of the possible

room for improvement.

Table 2.3 shows the 10 most discriminating features selected by GBDT for single-

ton prediction model and next arrival time regression model, respectively. In the ta-

ble, columns 1–3 denote the most discriminating features for singleton prediction, and

columns 4–6 denote the most discriminating features for next arrival time prediction.

It is notable that, frequency of a query is selected as the most important indicator of

the singleton prediction, while features that hint more on popularity of a query, such as

Query Time Compatibility and Top1CLICK are selected as best indicators for IAT-

Next regression. Another notable feature within these results are that PageNumber

being important in singleton prediction while not rated highly for IAT-Next regression.

2.7 Static-Dynamic Caching

In this section, we use the insights we have gathered from ourexperiments with the two

extreme cases in query result caching, the fully static and fully dynamic caching, and

combine these two methods in a sensible manner. As a baselinemethod we selected the

Chapter 2.A Machine Learning Approach for Result Caching 53

state-of-the-art SDC and apply our machine learning approach on SDC. To this end,

we will first explain the different techniques that we used for evaluating the machine

learning approach, and next we present experimental results.

2.7.1 Techniques

For evaluating the effectiveness of the machine learning approach for query result

caching we implemented several policies. As a baseline method, we implemented the

static-dynamic cache (SDC) strategy. We also perform experiments with two differ-

ent caching policies and propose three optimality bounds for the static-dynamic result

caching. The caching policies we evaluated are:

Static-Dynamic Cache (SDC):According to SDC (45), the result cache is divided

into 2 segments. A static segment and a dynamic segment. The static segment is cre-

ated using the most frequent queries in the dataset and the dynamic segment uses a

LRU eviction policy. For SDC, the best ratio of this divisionis found through ex-

perimentation and may vary for different datasets depending on the query submission

characteristics. For our dataset, our experiments yield the best results when we set the

static segment size as 70% of the total result cache.

Belady’s Algorithm: The optimal algorithm used in this caching policy is the

same as the policy explained in section 2.6.

Chapter 2.A Machine Learning Approach for Result Caching 54

SDC - Dynamic Oracle: This policy is based on the SDC strategy, where Be-

lady’s algorithm is used for admission and eviction decisions on the dynamic part. The

static part is created using the most frequent queries in thetraining set. This policy

gives an even tighter bound than the Belady’s algorithm for the optimality condition

of SDC strategy. The performance of this method gives an estimate for the room of

improvement in the dynamic segment of SDC.

SDC - Static Oracle: In this strategy, instead of filling the static segment of SDC

with the most frequent queries in the training set, we createthe static contents of the

result cache using the most referenced queries in the test set. The dynamic segment

uses LRU policy for admission and eviction decisions. The performance of this policy

would present an insight concerning the room for improvement in the static segment

of SDC.

SML + LRU: In this caching policy, we applied our proposed machine learning

approach to the static segment of SDC using the method presented in 2.5.

Machine Leaned Static-Dynamic Cache (MLRU):We applied our proposed ma-

chine learning approach to both static and dynamic segmentsof SDC. The training

method for both segments are the same techniques presented in sections 2.5 and 2.6

respectively.

Chapter 2.A Machine Learning Approach for Result Caching 55

1 2 4 8 16
Cache Capacity (%)

40

45

50

55

H
it

R
at

e
(%

)
SDC
Belady’s Algorithm
SDC - Dynamic Oracle
SDC - Static Oracle
SML + LRU
MLRU

Figure 2.6: Comparison of different result caching policies for various cache sizes.

2.7.2 Results

Figure 2.6 shows the relative performances of different static-dynamic caching poli-

cies on varying cache capacities. In this figure, Belady’s algorithm gives the optimal

caching algorithm when cache is fully dynamic. It can also beused to roughly es-

timate an optimality condition for static-dynamic caching. SDC-Dynamic and SDC-

Static Oracles do not actually show an upper bound for the room of improvement in the

static-dynamic caching problem. However, they give an ideaof room for improvement

in the dynamic and static segments of SDC.

Chapter 2.A Machine Learning Approach for Result Caching 56

One striking observation that can be made on the results of these experiments is

that, although Belady’s algorithm is indeed the optimal caching strategy, both SDC-

Dynamic and SDC-Static outperform it on large cache sizes. This is due to the fact

that Belady’s algorithm is optimal only for dynamic cachingand is prone to non-

compulsory misses (misses that happen when a query is seen for the first time), while

static segments of the two latter algorithms are not since static segments are pre-

computed and placed in the cache ahead of time. Thus, it is possible for a static

approach to outperform the dynamic optimal.

Comparison of the two machine learning approaches with SDC show that, both

machine learned caching policies outperform SDC for all cache capacities. Also, the

machine learned caching method perform better at larger cache capacities. For 16%

cache capacity, machine learned caching policy improves the performance of SDC by

0.47%, which is more than 11% of the possible improvement against the best oracle.

When two machine learned approaches are compared with each other, both machine

learned algorithms perform almost equally. Addition of thedynamic machine learned

strategy does not seem to benefit the static-dynamic case as large as expected, and al-

though MLRU performs better than SML+LRU, the improvement is almost negligible.

Chapter 2.A Machine Learning Approach for Result Caching 57

Table 2.1: The features used in our machine learning approach

Abbreviation Feature Description Feature Category
Q LEN Query Length
WORD C Word Count
URL PRESENT IsURL Present Query String-Based
DOM PRESENT IsDomain Present Features
SPELL CORR IsSpell Corrected
AVG QT LEN AverageQuery Term Length
USERLOGGED IsUser Logged
PAGE NUM PageNumber User-Based
CLICK C Click Count Features
TOP1CLICK First Link Click Count
HIT C Total NumberOf Hits
RARESTTERM RarestQuery Term Index Size Search Engine
COMMON TERM Most CommonQuery Term Index Size Related Features
AVG TERM AverageIndex Size
MIN TFREQMIN Minimum Term FrequencyLast Minute
MAX TFREQMIN Maximum Term FrequencyLast Minute
AVG TFREQMIN Average Term FrequencyLast Minute
MIN TFREQHOUR Minimum Term FrequencyLast Hour Term Frequency-
MAX TFREQHOUR MaximumTerm FrequencyLast Hour Based Features
AVG TFREQHOUR AverageTerm FrequencyLast Hour
MIN TFREQDAY Minimum Term FrequencyLast Day
MAX TFREQDAY Maximum Term FrequencyLast Day
AVG TFREQDAY Average Term FrequencyLast Day
QFREQ OverallQuery Frequency
QFREQMIN Query FrequencyLast Minute Query Frequency
QFREQHOUR QueryFrequencyLast Hour Features
QFREQDAY Query FrequencyLast Day
Q TIME Query SubmissionHour
DAY C QueryDay Count Temporal Features
TIME COMP QueryTime Compatibility

Chapter 2.A Machine Learning Approach for Result Caching 58

Table 2.2: The most discriminating 10 features for machine learned static caching
strategy

Rank Feature Feature
Importance
Rate

1 QFREQ 100
2 TIME COMP 35.3822
3 QFREQDAY 34.7971
4 WORD C 17.8072
5 RARESTTERM 17.1516
6 PAGENUM 11.9368
7 QFREQHOUR 11.9225
8 Q LEN 11.2414
9 CLICK C 9.6561
10 USERLOGGED 8.8371

Table 2.3: The most discriminating 10 features for machine learned dynamic caching
strategy.

Singleton Prediction Next Arrival Time Prediction
Rank Feature Feature Rank Feature Feature

Importance Importance
Rate Rate

1 QFREQ 100 1 TIME COMP 100
2 TIME COMP 41.1229 2 TOP1CLICK 49.1376
3 WORD C 17.2646 3 MIN TFREQHOUR 43.2057
4 USERLOGGED 14.8581 4 WORD C 42.1965
5 PAGENUM 10.8796 5 QFREQ 41.1560
6 CLICK C 10.2059 6 USERLOGGED 33.1946
7 Q LEN 9.1032 7 HIT C 30.6932
8 TOP1CLICK 9.0213 8 CLICK C 27.5653
9 MIN TFREQDAY 8.5213 9 MIN TFREQDAY 26.9315
10 HIT C 8.2852 10 SPELLCORR 22.8226

Chapter 2.A Machine Learning Approach for Result Caching 59

Table 2.4: The most discriminating 10 features for machine learned SDC caching strat-
egy for cache capacities 1% and 16%.

1% Cache Capacity
Singleton Prediction Next Arrival Time Prediction

Rank Feature Feature Rank Feature Feature
Importance Importance
Rate Rate

1 QFREQ 100 1 QFREQDAY 100
2 QFREQDAY 62.1077 2 WORD C 31.7027
3 QFREQHOUR 24/8774 3 QFREQ 22.6615
4 WORD C 23.0789 4 MIN TFREQDAY 21.4185
5 RARESTTERM 19.8314 5 RARESTTERM 20.1371
6 PAGENUM 16.1379 6 QFREQHOUR 18.8391
7 AVG TERM 8.6129 7 SPELLCORR 15.8205
8 QFREQDAY 6.3245 8 AVG TERM 13.3344
9 SPELLCORR 4.9722 9 AVG TFREQDAY 11.0508
10 MIN TFREQMIN 2.7914 10 PAGENUM 9.4277

16% Cache Capacity
Singleton Prediction Next Arrival Time Prediction

Rank Feature Feature Rank Feature Feature
Importance Importance
Rate Rate

1 QFREQ 100 1 QFREQDAY 100
2 QFREQDAY 37.1112 2 WORD C 29.6291
3 TIME COMP 35.7186 3 QFREQ 21.9625
4 WORD C 19.4112 4 HIT C 20.6426
5 RARESTTERM 17.0336 5 RARESTTERM 19.6790
6 QFREQHOUR 14.9345 6 TIME COMP 19.6191
7 PAGENUM 14.4185 7 QFREQHOUR 18.2379
8 Q LEN 9.3008 8 SPELLCORR 15.5671
9 DAY C 7.6380 9 AVG TERM 13.1281
10 AVG TERM 5.7492 10 DAY C 11.0828

Chapter 2.A Machine Learning Approach for Result Caching 60

Table 2.4 show the 10 most discriminating features for two different cache capac-

ities, 1% and 16%, for both singleton and IAT-Next prediction. In the table, columns

1–3 denote the most discriminating features for singleton prediction, and columns 4–

6 denote the most discriminating features for IAT-Next prediction. The first 10 rows

denote the feature importances for 1% cache capacity and thelast 10 rows denote the

feature importances for 16% cache capacity. First observation that can be done on

Table 2.4 is that the most discriminating features for both Singleton prediction and

IAT-Next prediction are very similar apart from several rank shifts for both cache ca-

pacities. When compared to the results presented in Table 2.3, addition of the static

cache to the dynamic problem seem to affect the IAT-Next prediction adversely, de-

grading the regression model towards the singleton prediction model.

Although when the cache capacity grows larger the improvement rate of the ma-

chine learned caching policy increases, the improvement fail to meet the expec-

tations that can be inferred from both fully static and fullydynamic caching ex-

periments. There can be two different explanations for thisbehavior. It is either

the frequency features start to lose their importance, or temporal features, such as

Query Time Compatibility and QueryDay Count start to gain importance. If the for-

mer case is true, then we can conclude that the dynamic modelsstart to suffer from

overfitting, which is a common problem in decision tree learning. However if the latter

case is true, then we can conclude that with the growing cachecapacity, the machine

learning algorithm start to utilize other features and start to perform better. Although

Chapter 2.A Machine Learning Approach for Result Caching 61

we indicate both of these two possibilities, since featuressuch as PageNumber and

Word Count still have similar feature importance rates with respect to query frequency

in both cache capacities, we strongly believe that the latter case is true.

2.8 Discussions

The query distribution of the query log is essential for understanding the nature of

the caching problem, the relationship between static and dynamic caching and the

effectiveness of the SDC policy. In this work, the query frequency distribution of the

examined search engine query log follows a power law distribution (164). In literature,

power law graphs, occording to their frequency distribution, can be partitioned into 3

segments (27) for sake of data analysis. These segments are called: The head, torso,

and tail. The head of the query log contains the most frequentqueries, which also

represent a large portion of the search engine query traffic.The queries in the tail on

the other hand, appear in the query log very rarely, which represent unpopular and

unanticipated queries.

The SDC policy partitions the cache exploiting these three segments. By storing

the head of the query log in the static segment, SDC policy is able to respond to a

large portion of the incoming queries from the cache withoutthe need of any dynamic

caching policy. The rest of the cache space is reserved as a dynamic cache, responding

to the torso and the tail of the query log, in the hope of detecting and responding to

Chapter 2.A Machine Learning Approach for Result Caching 62

rather infrequent queries. Although, the motivation of SDCputs a great emphasis on

the static portion of the cache for responding to frequency of queries, in both (98) and

(45) it is shown that a static cache alone does not perform well for real life querie sets.

In other words, for an effective caching policy, caching recent but rather less popular

queries is almost as important as caching the frequent queries.

During our experimentation we came up with similar conclusions. Some of the

features that we initially predicted as potentially very discriminative and influential

for differentiating turn out to rank low at feature importance order for both single-

ton prediction and IAT-Next regression. As an illustrativeexample, we anticipated

that PageNumber feature would be an important feature for distinguishing between

frequent and infrequent queries. However, the feature importance values in our experi-

ments show that this feature bear little value for a query being frequent or not. Our first

hand observations over the data lead us to the following hypothesis: some automated

systems, such as Web bots and crawlers are continuously submitting queries with large

page numbers, leading to unanticipated feature values. In fact, through observation,

we have also verified that there are several robot query submission activities within

our dataset. However, since we have no empirical method to identify or verify that a

query is definitely the result of some automated activity, weare unable to provide these

results here.

The application of the proposed machine learning approach to the static-dynamic

caching also introduce several difficulties. Although distinguishing the head segment

Chapter 2.A Machine Learning Approach for Result Caching 63

from the torso segment is rather a trivial problem for our approach, our machine learn-

ing models have difficulties for distinguishing torso queries from the tail queries. Our

experiments show that, for machine learned SDC caching policy, the improvements are

mostly gained via the machine learned static cache segment,and the benefit of machine

learned dynamic segment on top of the improvement gain from the static segment is

very small.

Introduction of the static cache to the caching problem alsoresults in a harder dy-

namic caching problem. Our experimental results show that,for our dataset, using an

SDC cache with 1% cache capacity where 70% of the cache dedicated to the static

cache, all queries with frequencies higher than 136 would bestored in the static cache.

For an SDC cache with 16% cache capacity and 70% static cache,the queries with fre-

quencies higher than only 4 are stored in the static cache. Using static cache segment,

where the cache size is considerably large leaves dynamic cache segment with only

a small, but harder portion of the problem where all queries are in the torso or in the

tail portion of the query log. The difficulty of dynamic caching problem with a static

component comes from the fact that, tail and torso queries contain very little distin-

guishable information. Our conclusion is that, the features we have used and that are

proposed in literature are not, without other inference mechanisms, such as storing ad-

ditional temporal information or using some other means of information for inferring

query popularity, adequate and does not contain enough distinguishable information

for addressing the dynamic caching problem for the current real-life query logs. That

Chapter 2.A Machine Learning Approach for Result Caching 64

is mostly because the user and query behavior in today’s search engines is much more

dynamic and unanticipated than query logs examined in the literature in the past.

Finally, our experiments also show a potential problem in using machine learning

techniques for finding a dynamic caching policy. Due to misclassifications during test-

ing, the use of machine learning methods cause a cache pollution, where the misclas-

sified queries start to occupy cache space. Due to the over-valuation of such queries,

the machine learned policy can tend to evict more valuable queries. In this work,

we propose a cache segmentation method to alleviate this problem. In our approach,

after processing a constant number of queries, the dynamic segment of the cache is

re-started so that the misclassified instances can be evicted from the cache. Although,

this method prevents pollution to a degree, more accurate machine learning methods is

ultimately required for a better caching policy.

Chapter 3

Chat Mining:

Predicting User and Message

Attributes in

Computer-Mediated Communication

3.1 Introduction

With the ever-increasing use of the Internet, computer-mediated communication via

textual messaging has become popular. This type of electronic discourse is observed in

point-to-point or multicast, text-based online messagingservices such as chat servers,

65

Chapter 3.Chat Mining 66

discussion forums, emails and messaging services, newsgroups, and IRCs (Internet

relay chat). These services constantly generate large amounts of textual data, providing

interesting research opportunities for mining such data. We believe that extracting

useful information from this kind of messages/conversations can be an important step

towards improving the human–computer interaction.

According to a study by (71), “electronic discourse is neither writing nor speech,

but rather written speech or spoken writing, or something unique.” Due to its mostly

informal nature, electronic discourse has major syntacticdifferences from discourse

in literary texts (e.g., word frequencies, use of punctuation marks, word orderings,

intentional typos). The informal nature of electronic discourse makes the information

obtained more realistic and reflects the author attributes more accurately. Analysis of

electronic discourse may provide clues about the attributes of the author of a discourse

and the attributes of the discourse itself.

Specifically, machine learning can be a powerful tool for analyzing electronic

discourse data. This work particularly concentrates on thedata obtained from chat

servers, which provide a point-to-point online instant messaging facility over the Inter-

net. We investigate the rate of success in the problem of predicting various author- and

message-specific attributes in chat environments using machine learning techniques.

For this purpose, we first employ a term-based approach and formulate the chat min-

ing problem as an automated text classification problem, in which the words occurring

in chat messages are used to predict the attributes of the authors (e.g., age, gender) or

Chapter 3.Chat Mining 67

the messages (e.g., the time of a message). Second, we employa style-based approach

and investigate the effect of stylistic features (e.g., word lengths, use of punctuation

marks) on prediction accuracies, again for both author and message attributes. Finally,

we briefly discuss the effect of the author and message attributes on the writing style.

The main contributions of this study are four-fold. First, the chat dataset used in

this work has unique properties: the messages are communicated between two users;

they are unedited; and they are written spontaneously. We believe that extracting in-

formation from real-time, peer-to-peer, computerized messages may have a crucial

impact on the areas such as financial forensics, threat analysis, and detection of ter-

rorist activities in the near future. Our work presents a neweffort in that direction,

aiming to retrieve previously unexplored information fromcomputerized communica-

tions. Second, for the first time in the literature, several interesting attributes of text

and its authors are examined. Examples of these attributes are educational affiliations

and connectivity domains of the authors and the receivers ofthe messages. Third, the

performance of term- and style-based feature sets in predicting the author and mes-

sage attributes are compared via extensive experimentation. Fourth, to the best of our

knowledge, our work is the first one that investigates real-time, peer-to-peer, comput-

erized communications in the context of authorship studies. Our findings are good

pointers for researchers in this new application area, namely chat mining.

The rest of this chapter is organized as follows. Table 3.1 displays a list of fre-

quently used abbreviations in this work. We provide a detailed literature survey of the

Chapter 3.Chat Mining 68

Table 3.1: The summary of abbreviations

AA Authorship attribution k-NN K-nearest neighbor
AC Authorship characterization NB Naive Bayesian
CE Cross entropy NN Neural networks
DA Discriminant analysis PCA Principal component analysis
DT Decision trees PRIM Patient rule induction method
EG Exponentiated gradient RM Regression models
GA Genetic algorithms SD Similarity detection
HMM Hidden Markov models SVM Support vector machines
IRC Internet relay chat TC Text classification

related work in Section 3.2. In Section 3.3, we discuss the characteristics of computer-

mediated communication environments and elaborate on the information that can be

extracted from such environments. Section 3.4 introduces the chat mining problem

and discusses our formulations, which are based on the use ofterm- and style-based

feature sets. In Section 3.5, we provide information about the dataset used in this study

and present our framework for solving the chat mining problem. Section 3.6 provides

the results of a large number of experiments conducted to evaluate the feasibility of

predicting various author and message attributes in a chat environment. In Section 3.7,

we finalize the chapter with a concluding discussion.

Chapter 3.Chat Mining 69

3.2 Related Work

In the last ten years, the Internet has become the most popular communication medium.

Chat servers, IRCs, and instant messaging services provideonline users the ability to

communicate with each other simultaneously. Discussion forums, emails, and news-

groups enable their users to create virtual communities regardless of geographical and

political barriers. This information dissemination platform provides new research pos-

sibilities such as assessing the task-related dimensions of the Internet use. In their

work, (42) examine the communication process of chat users in an industrial setting.

They investigate how customers and customer service representatives respond to each

other and identify the reasons of miscommunication betweenpartners. The collabo-

rative work within virtual groups is explored by (151). The authors identify six com-

munication rules for enhancing trust, which in turn enable chat users to work more

efficiently. (118) examines several problems concerning communications in a virtual

library reference service. The quality of chat encounters between librarians and clients,

compensation of lack of emotional cues, and relational dimensions of chat references

are among the questions investigated. The author identifiesseveral relational facilita-

tors, communication themes and concludes that computer-mediated communication is

no less personal than face-to-face communication.

Chapter 3.Chat Mining 70

Understanding the user behavior is another aspect of the ongoing research on

computer-mediated communication. (119) examine the communication and informa-

tion seeking preferences of the Internet users. They also compare traditional libraries

and the Internet as the means for an information repository and emphasize the fact that

the Internet is starting to become an alternative for text-based communication.

The investigation of chat user attributes is another dimension that attracts re-

searchers. (60) examine gender variations in Web logs usinglogistic regression tech-

niques. However, the authors cannot find any conclusive results binding the users’

genders and Web writings. In their work, (61) examine several aspects of the language

use in the Internet. They assert that gender is reflected in online discourse in every

language they studied.

Extracting interesting information from anonymous electronic document collec-

tions using authorship attribution may also provide several research opportunities. A

quick literature survey reveals the fact that the previous studies in authorship attribu-

tion were mostly considered in the context of law enforcement (145), religious studies

(117; 124), and humanities (33; 44; 109). In the past few years, the examination of

electronic discourse in the context of authorship studies started to got attention of a

growing number of researchers.

The history of authorship studies dates back to more than twomillennia. The first

work in literature is reported in the fourth century BC, whenthe librarians in the

Chapter 3.Chat Mining 71

famous library of Alexandria studied the authentication oftexts attributed to Homer

(96). Since then, a large number of documents have been the focus of authorship stud-

ies. Broadly, the authorship studies in literature can be divided into three categories

(40; 163): authorship attribution, similarity detection,and authorship characterization.

Authorship attribution is the task of finding or validating the author of a docu-

ment. Some well-known examples of authorship attribution are the examination of

Shakespeare’s works (44; 65; 105) and the identification of the authors of the disputed

Federalist Papers (64; 92; 109; 146). Similarity detectionaims to find the variations in

the writing style of an author (114) or to find the resemblances between the writings of

different authors, mostly for the purpose of detecting plagiarism (55).

Authorship characterization is the task of assigning the writings of an author into

a set of categories according to the author’s sociolinguistic attributes. Some attributes

previously investigated in literature are gender (77; 81; 149), language background

(149), and education level (72). (77) and (81) evaluated methods for determining the

gender of a document’s author. (149), in addition to gender,tried to predict the lan-

guage background of authors using machine learning techniques. (72) analyzed the

educational backgrounds of the authors employing cross entropy.

With the advent of computers, it has become possible to employ sophisticated

Chapter 3.Chat Mining 72

techniques in authorship analysis. The techniques employed in authorship analy-

sis can be broadly categorized as statistical and machine learning techniques. Ex-

amples of statistical techniques are Hidden Markov models (75), regression mod-

els (74), cross entropy (72), discriminant analysis (33; 73; 79; 141), and princi-

ple component analysis (10; 28; 63). Machine learning techniques are also fre-

quently used in authorship studies. Most commonly used techniques arek-nearest

neighbor (79; 81; 138), naive Bayesian (76; 81; 138), support vector machines

(39; 40; 70; 144; 163), genetic algorithms (64), decision trees (163), and neural net-

works (55; 76; 105; 79; 81; 138; 146; 163).

With the widespread use of computers, new pursuits that reflect the personal char-

acteristics of individuals drew attention of authorship studies. Computer programming

and musical composition are examples of such pursuits. (79;136) used several struc-

tural and syntactic features to predict the author of a program. They generate these

features by analyzing the variations in programming construct preferences of the au-

thors. The work of (136) achieved 73% accuracy in predictingthe author of 88 pro-

grams written by 29 different authors. In their work, (11) analyzed the musical style

of five well-known composers using various classification algorithms on a dataset with

computer-generated features like the stability measures of the composition, voice den-

sity, and entropy measures.

The emergence of electronic discourse also presents interesting opportunities for

Chapter 3.Chat Mining 73

authorship analysis. As electronic discourse becomes a popular form of communi-

cation, detecting illegal activities by mining electronicdiscourse turns out to be im-

portant. In their work, (149) analyzed the information in email messages in order to

identify the distinguishing features in writing styles of emails for predicting authors’

identity, gender, and language background. In addition to some well-known stylistic

features, they used features like smileys and emoticons. They achieved 72.1% and

85.6% accuracies in predicting the gender and language background of more than 300

authors, respectively.

(144) analyzed email messages for predicting the identity of their authors using a

term-based feature set. (141) analyzed the gender of a number of email authors and

concluded that email authors had used gender-preferentiallanguage in informal elec-

tronic discourse. (163) constructed a language-independent framework to predict the

identity of the author of online Chinese and English newsgroup messages. For a selec-

tion of 20 authors they have succeeded in predicting the identity of the authors with an

impressive 95% accuracy for the English message collectionand 88% accuracy for the

Chinese message collection. (7) also studied newsgroup messages for identification of

the authors using a style-based classification approach. Although they used a highly

imbalanced dataset, over 40% accuracy is achieved in predicting the messages of 20

different authors.

(163) presented a table that provides a summary (features used, type of analysis,

Chapter 3.Chat Mining 74

Table 3.2: A summary of the previous works on authorship analysis

Study Type Technique Features
(109) AA Statistics style
(28) AA PCA style
(44) AA Statistics both
(73) TC DA style
(76) AA NB, NN style
(105) AA NN style
(64) AA GA style
(10) AA PCA both
(74) TC RM style
(79) AA k-NN, DA, NN style
(70) TC SVM term
(138) AA, TC k-NN, NB, NN style
(75) AA HMM term
(141) AC DA style
(144) AA, AC SVM style
(149) AC SVM term
(7) AA EG style
(40) AA SVM style
(114) AC DA style
(55) SD NN style
(72) AA, AC CE term
(65) AC SVM style
(81) AC k-NN,NB, NN both
(163) AA SVM, DT, NN style

and dataset properties) of the previous works on authorshipanalysis. Here, we pro-

vide a similar table with additional information for a number of previous works. In

chronological order, Table 3.2 gives details such as the analysis techniques used in the

works and the type of the features used (i.e., term-based or style-based features). In

compliance with our previous taxonomy, the table categorizes each work as an author-

ship attribution (AA), similarity detection (SD), or authorship characterization (AC)

task. Several text classification (TC) works, which are closely related with authorship

studies, are also displayed in the table.

Chapter 3.Chat Mining 75

3.3 Computer-Mediated Communication

3.3.1 Characteristics

Using textual messages in order to interact with other people is a popular method in

computer-mediated communication. Point-to-point instant messaging, also referred to

here as chatting, has several properties which makes it unique with respect to both

literary writing and messaging in other types of online services: Messages (1) are

written by users with a virtual identity; (2) specifically target a single individual; (3)

are unedited; and (4) have a unique style and vocabulary. Below, we elaborate more

on these characteristics.

In most chat servers, the real identity of a user is hidden from other users by a

virtual identity, called “nickname.” Typically, the usershave the option of building

up this virtual identity and setting its different characteristic features. This gives the

users the opportunity to provide others false information about their real identities. For

example, a male user may set the gender of his virtual identity as female and try to

adapt his writing style accordingly to fool others. Having such misleading information

in chat environments makes authorship attribution and characterization quite difficult

even for domain experts.

Unlike literary writing, where the documents are written for public audience, chat

messages target a particular individual. Most often, chat messages are transmitted

Chapter 3.Chat Mining 76

between two users, that is, each message has a specific senderand a receiver. The

writing style of a user not only varies with his personal traits, but also heavily depends

on the identity of the receiver. For example, a student may send a message to another

student in a style which is quite different from the style of amessage he/she writes

to his supervisor. This type of an ability of effectively changing one’s writing style is

known as sociolinguistic awareness (56). As an interestinggenre detection task, chat

messages can be examined in order to find out who the receiver is.

Books and plays are the most common type of literary materialused in authorship

analysis (47). This type of documents are usually modified byeditors who polish the

initial drafts written by authors. Hence, most of the time, the writing style of the

original author is mixed with that of an editor. (122) discusses the undesirable effects

of this type of editing on authorship analysis and concludesthat edited texts are hard to

mine since stylistic traces of the author and the editor are not separable. The real-time

nature of chat messages prevents any editorial changes in electronic discourse, and thus

the writing style reflects that of the original author. In this aspect, it is quite valuable

to work on unedited chat messages. However, in the mean time,having no editorial

modifications means that, in chat messages, misspellings are more frequent compared

to edited text. It is debatable whether these misspellings are part of an author’s writing

style or not.

Due to its simultaneous nature, electronic discourse reflects the author’s current

emotional state much better than any other writing. Since the messages transmitted

Chapter 3.Chat Mining 77

between users are purely textual, chat messaging has evolved its own means for trans-

ferring emotions. Emoticons (emotion icons) are commonly known and widely used

ways of representing feelings within computer-mediated text (152). We restrict our

work on a particular subset of emoticons: smileys. Smileys,(e.g, “:-)” and “:-(”)

are sequences of punctuation marks that represent feelingssuch as happiness, enthu-

siasm, anger, and depression. Repetition of specific characters in a word can also

be used as a means of transferring emotions by putting an emphasis on a text. (e.g.

“Awesomeeee!”). In chat messages, the use of such consciously done misspellings is

also frequent. Since the use of smileys and emphasized wordsis highly dependent on

the writing style of an author, they pose valuable information. However, preserving

such information makes traditional text processing methods (e.g., stemming and part

of speech tagging) unsuitable for mining chat messages.

3.3.2 Predictable Attributes

In general, chat messages can be used to predict two different types of attributes: user-

or message-specific attributes. In the first type, the distinguishing features of a chat

message may be used to predict the biological, social, and psychological attributes of

the author who wrote the message. In the latter, the distinguishing features may be

used to predict the attributes of the message itself.

Chapter 3.Chat Mining 78

Examples of user-specific attributes are gender, age, educational background, in-

come, linguistic background, nationality, profession, psychological status, and race.

In this work, we concentrate on four different user-specificattributes: gender, age,

educational environment, and Internet connection domain of the users. Among these

attributes, the gender of an author is widely examined in literature (81; 149), and it is

observed that authors have the habit of selecting gender-preferential words (141). In

this work, we also try to predict the user age based on the factthat every generation

has its own unique vocabulary. Predicting the age of a user may be useful for profiling

the user and hence may help in forensic investigations. Educational environment is

also worth studying since it is possible that the vocabularyand writing style of a user

might be affected by the school he/she is affiliated with. In order to test this claim,

we analyzed the chat messages of users in different universities. We also noted that

computer-mediated communication adds new dimensions whose analysis may yield

valuable information. As an illustrative task, we try to predict the Internet connection

domains of users, which may have veiled means for the educational and occupational

status of a user. For example, a user connected from the “.edu” domain probably has an

affiliation with a university, whereas a user connected fromthe “.gov” domain possibly

works for the government.

For message-specific attributes, we concentrate on three attributes: author, receiver,

and time of the messages. The identity of the author of a giventext is the most fre-

quently studied attribute in authorship analysis (64; 79; 109; 163). In case of chat

Chapter 3.Chat Mining 79

Table 3.3: The attributes predicted in this work and the number of classes available for
each attribute

User-specific attributes # of classes Message-specific attributes # of classes
Gender 2 Receiver 1165
Age 17 Author identity 1616
School 60 Day period 4
Connection domain 7 – –

mining, the characteristics of chat messages are firmly attached to the author’s linguis-

tic preferences. Hence, we try to predict the authors of chatmessages as a typical

authorship attribution task. The audience of a chat messagemay also affect the lingual

preferences of an author. For the first time in literature, wetry to predict the audience

of textual documents; i.e., the receivers of the chat messages. The real time nature of

chat messages makes it possible to examine whether the time amessage is written is

predictable. For example, in active hours of the day (morning and afternoon), peo-

ple may compose long and complex sentences although, in passive hours (nighttime),

people may tend to create short and simple sentences. Hence,in this work, we also

investigate the predictability of the period of the day a chat message is written.

Table 3.3 presents a complete list of the attributes we try topredict in this work.

In this table, the number of classes refers to the maximum number of possible values

an attribute can have. For example, the gender attribute hastwo possible class val-

ues (male and female) while the connection domain attributehas seven possible class

values, each of which represents a different Internet connectivity domain.

Chapter 3.Chat Mining 80

3.4 Chat Mining Problem

The chat mining problem can be considered as a single-label classification problem. If

the attribute to be predicted is user-specific, a supervisedlearning solution to this prob-

lem is to generate a prediction function, which will map eachuser instance onto one

of the attribute classes. The prediction function can be learned by training supervised

classification algorithms over a representative set of userinstances whose attributes

are known. In case of message-specific attributes, the process is similar. However,

this time, the individual chat messages are the instances whose attributes are to be pre-

dicted, and the training is performed over a set of chat messages whose attributes are

known.

In predicting the user-specific attributes, each user instance is represented by a set

of features extracted from the messages that are generated by that particular user. Sim-

ilarly, in predicting message-specific attributes, each message instance is represented

by a set of features extracted from the message itself. In this work, for predicting

both types of attributes, we evaluate two competing types offeature sets: term-based

features versus style-based features.

When term-based features are used, the vocabulary of the message collection forms

the feature set, i.e., each term corresponds to a feature. Inpredicting user-specific

attributes, the set of terms typed by a user represents a userinstance to be classified.

In predicting message-specific attributes, the terms in a message represent a message

Chapter 3.Chat Mining 81

instance. This type of a formulation reduces the chat miningproblem to a standard text

classification problem (131).

In literature, term-based feature sets are widely used (86). Unfortunately, term-

based features may not always reflect the characteristics ofan author since the terms

in a document are heavily dependent on the topic of the document. In chat mining, a

feature set that is independent of the message topic may leadto better results in pre-

dicting the user- and message-specific attributes. Hence, using the stylistic preferences

instead of the vocabulary emerges as a viable alternative.

(122) states that there are more than 1000 different stylistic features that can be used

to define the literary style of an author. The most commonly used stylistic features are

word frequencies; sentence and word lengths; and the use of syllables, punctuation

marks, and function words (62). So far, there is no consensuson the set of the most

representative features.

This study, in addition to the traditional stylistic features, considers several new

and problem-specific stylistic features (e.g., smileys andemoticons) used in order to

find better representations for user or message instances. The smileys and emoticons

are two important features that are frequently found in chatmessages. A summary of

the style-based features used in this study is given in Table3.4. The stylistic features

used in this work are grouped into 10 categories. Each category contains one or more

features with categorical feature values. For example, theaverage word length feature

Chapter 3.Chat Mining 82

Table 3.4: The stylistic features used in the experiments

Feature category Features in the category Possible featurevalues
character usage frequency of each character low, medium, high
message length average message length short, average, long
word length average word length short, average, long
punctuation usage frequency of punctuation marks low, medium, high
punctuation marks a list of 37 punctuation marks exists, notexists
stopword usage frequency of stopwords low, medium, high
stopwords a list of 78 stopwords exists, not exists
smiley usage frequency of smileys low, medium, high
smileys a list of 79 smileys exists, not exists
vocabulary richness number of distinct words poor, average, rich

can possibly have three values: short, medium, and long. This discretization is per-

formed depending on the feature value distributions over a set of messages randomly

selected from the chat dataset.

3.5 Dataset and Classification Framework

3.5.1 Dataset

The chat dataset used in this chapter is obtained from a currently inactive chat server

called Heaven BBS, where users had peer-to-peer communication via textual mes-

sages. The outgoing chat messages (typed in Turkish) of 1616unique users is logged

for a one-month period in order to generate the dataset. The messages are logged with-

out the notice of the users, but respecting the anonymity of messages. The vocabulary

of the dataset contains 165 137 distinct words. There are 218742 chat messages, which

Chapter 3.Chat Mining 83

are usually very short (6.2 words per message on the average). The message log of a

typical user contains around 160 chat messages.

The dataset also contains users’ subscription informationsuch as the name, gender,

email address, and occupation. Some fields of the subscription information may be

missing as they are optionally supplied by the users. Also, against our best efforts

to validate the correctness of the entries, there may be fakes or duplicates among the

users.

3.5.2 Classification Framework

In this section, we provide an overview of the framework we developed for solving the

chat mining problem. Here, we restrict our framework to prediction of user-specific at-

tributes using the term-based feature set. Extensions of this framework to the message-

specific attributes and the style-based feature set are discussed later in this section.

Figure 3.1 summarizes the classification procedure used in predicting the user-specific

attributes. The framework consists of three stages: data acquisition, preprocessing,

and classification. The last two stages contain several software modules that execute

in a pipelined fashion.

The corpus creation module of the data acquisition stage forms a tagged corpus

from the raw message logs obtained from the chat server. In Figure 3.2, we provide

a sample fragment from this corpus. For each user instance inthe corpus, between

Chapter 3.Chat Mining 84

Test instances
cross validation is applied
Instances are shuffled and 10−fold

CROSS VALIDATION

Train instances

A classification model is built by
training with a classifier

TRAINING
Classification model

TESTING
A class is predicted for each test
instance using the classification
model

Predictions

CORPUS CREATION
Online chat messages are collected
and a chat corpus is formed

ACQUISITION

UNDERSAMPLING
Classes are balanced in terms of
the number of instances they have

Chat messages

CLASSIFICATION

Chat corpus

eliminated

number of features and features
occuring in only one instance are

eliminated. Instances with a small

CLEANSING/FILTERING
Whitespaces and stopwords are

FEATURE SELECTION
Most discriminating features are

PREPROCESSING

picked according to the χ2 scores

Figure 3.1: The classification framework.

an “INSTANCE” tag pair, the attributes of the user and the messages typed by the

user are stored. The target users receiving the messages of the user are separated by

the “RECEIVER” tag pairs. Each receiver may receive multiple messages, which are

separated by the “X” tag pairs.

After the chat corpus is generated, it undergoes several preprocessing steps to

improve classification accuracies. Each preprocessing step is designed as a separate

software module. In our framework, the preprocessing stageinvolves three modules:

cleansing/filtering, undersampling, and feature selection.

The cleansing/filtering module aims to obtain a set of representative terms for each

user. For this purpose, non-alphanumeric characters (e.g., whitespaces, punctuation

marks) are eliminated. A list of 78 Turkish stopwords (i.e.,connectives, conjunctions,

Chapter 3.Chat Mining 85

<INSTANCE=ali>

<NAME=ali guney>

<GENDER=male>

<EMAIL=Guney@alpha.eng.ege.edu.tr>

<DOMAIN=edu>

<SCHOOL=ege>

<BIRTHDAY=19>

<BIRTHMONTH=October>

<BIRTHYEAR=1979>

<HOROSCOPE=libra>

<RECEIVER=blandinka>

<X>

<DATE=Wed Apr 5 16:09:40 2000>

MESELA COK GENIS BIR INSANSIN AMA BAZEN COK KUCUK BIR SEYE
TAKIYOSUN GIBI
//For Example, you are a flexible person. But Sometimes you concentrate
on small things
</X>

</RECEIVER>

<RECEIVER=ageofeye>

<X>

<DATE=Wed Apr 5 16:10:48 2000>

KONUSMAK ISTIYORMUSUN BENLE
// do you want to talk with me
</X>

</RECEIVER>

</INSTANCE>

Figure 3.2: A sample fragment of the chat corpus formed. The user name is deidenti-
fied to preserve the anonymity. English translations are added for convenience.

and prepositions) is further used to eliminate content-independent terms. Single-word

messages are also ignored since these are mostly uninformative salutations. The fea-

tures of the user instances are formed by the remaining terms, where the tf-idf (term

frequency-inverse document frequency) values (127) are used as the feature values.

Finally, the user instances that contain only a small numberof features, i.e, those that

have less than a pre-determined number of terms, are eliminated.

Chapter 3.Chat Mining 86

The existence of imbalanced classes is a crucial problem in text classification (80).

If the number of instances selected from each class are not roughly equal, the classifiers

may be biased, favoring more populated classes. The main goal of the undersampling

module is to balance the number of instances in each class. For this purpose, an equal

number of instances with the highest term counts are selected from each class and the

remaining instances are discarded. In this dataset, an imbalance is also observed on

instance sizes since the number of distinct terms of each user greatly varies. In order

to balance instance sizes, a fixed number of consecutive terms is selected for each user,

and the remaining terms are discarded.

The high dimensionality of text datasets badly affects the applicability of classi-

fication algorithms. Feature selection (158) is a widely used preprocessing stage for

reducing the dimensionality of the datasets. In the featureselection module, we employ

theχ2 (CHI square) statistic for every term in order to calculate their discriminative

power. Most discriminative features are selected according to theχ2 scores and used as

the feature set. The remaining less discriminative features are eliminated in the feature

selection module.

The operation of the modules of the preprocessing stage shows variations in case

of message-specific attributes or the style-based feature set. For the case of message-

specific attributes, the cleansing/filtering module also employs word blocking. This is

because chat messages typically contain only a few words, and it is difficult to cor-

rectly classify a message with this little information. Thecleansing/filtering module

Chapter 3.Chat Mining 87

concatenates multiple consecutive messages of the same user into a single long mes-

sage. After blocking, the message instances become lengthyenough to have sensible

information (40).

In the case of the style-based feature set, instead of terms,a number of stylistic

features are extracted. Some of these features contain statistics about the punctuation

and stopword usage. Thus, for the construction of style-based feature sets, punctuation

marks and stopwords are not eliminated in the cleansing/filtering module. Addition-

ally, for user-specific attributes, the feature sets of all chat messages belonging to a

user are combined and used as the feature set for that user. Since the instances con-

tain roughly equal number of features in style-based feature sets, the undersampling

module does not try to balance the instance sizes.

The classification stage contains three modules. In the cross validation module, the

instances in the dataset are shuffled and divided into 10 equal-sized instance blocks.

One of these blocks is selected as the test instance block while other instance blocks

are used for the training the framework. The training moduleuses the training in-

stances supplied by the cross validation module. The outputof the training module

is a classification model, which is used by the testing modulein order to predict the

classes of each test instance. The testing module produces aset of predictions based on

the classification model and the accuracy of a test is defined as the number of correct

predictions divided by the number of total predictions. This operation is repeated 10

Chapter 3.Chat Mining 88

times, each time with a different block selected as the test instance block. The aver-

age of all predictions gives the prediction accuracy of a classifier. The testing module

uses a set of algorithms selected from the Harbinger machinelearning toolkit (30) and

SVM-light (70). An overview of the selected algorithms can be found in the corre-

sponding references.1

3.6 Experimental Results

3.6.1 Experimental Setup

In order to examine the predictability of user and message attributes, the personal

information within the chat server logs are used. The attributes retrieved from the

server logs such as the users’ birth years, and educational environments are submitted

voluntarily, they may be missing. As a consequence, some attribute classes are very

lightly populated and the use of such classes in evaluating the predictability of that

attribute may be impractical. Thus, the experiments are conducted on a selection of

the most populated classes of each attribute.

As an illustrative example, the connectivity domain attribute has seven possible

class values. For examining the predictability of the connectivity domain attribute, the

1The source codes of these algorithms are publicly availableonline and may be obtained from the
following Web addresses:
http://bmi.osu.edu/˜barla/coding/HMLT/download/HMLT.tar.gz
http://download.joachims.org/svmstruct/current/svmstruct.tar.gz

Chapter 3.Chat Mining 89

most populated two and three classes are selected from the possible seven classes, and

the experiments are conducted only on the instances belonging to those classes.

Table 3.5 summarizes the experiments conducted for estimating the prediction ac-

curacies of each attribute. The table contains informationabout the number of classes,

the number of instances, and a set of sample classes used in each test set. Test sets are

tagged by concatenating the attribute name, the number of classes, and the number of

instances used to represent each class. For example, the School-3-80 tag corresponds

to the experiment conducted for predicting the educationalenvironment of users. This

experiment involves three possible classes, each of which contains 80 representative

instances. As an example for the case of message-specific attributes, the experiment

tagged with Author-10-26 involves 10 possible classes, each of which contains 26 in-

stances. Here, each class represent a different author, andinstances correspond to

message blocks generated by concatenating a particular author’s messages.

A selection of classifiers from the Harbinger machine learning toolkit (30) is used

for predicting the user and message attributes. The selected classifiers arek-NN (58),

NB (103), and PRIM. Additionally, SVM-light (70) software is used in order to apply

SVM to the chat mining problem. In each test setting, 90% of the most discrimina-

tive features are used as the representatives. A sequence of3000 words is used as the

maximum document size for term-based feature sets. The remaining terms in the doc-

uments containing more than 3000 terms are discarded. For the k-NN classifier, the

Chapter 3.Chat Mining 90

Table 3.5: Test sets, their parameters, and sample classes

of instances
Test set # of classes in each class Sample classes
Author-2-35 2 35 Andromeda and Taru
Author-10-26 10 26 Andromeda, Taru, Zizer, ...
Author-100-10 100 10 Andromeda, Taru, Zizer, ...
BirthYear-2-30 2 30 birth year before 1976 (inclusive),

birth year after 1976 (exclusive)
BirthYear-4-30 4 30 1975, 1976, 1977, 1978
DayPeriod-2-34 2 34 Day, night

(representing 12-hour periods)
DayPeriod-4-17 4 17 Morning, afternoon,evening, night

(representing 6-hour periods)
Domain-2-35 2 35 .edu, .com
Domain-2-50 2 50 .edu, .com
Domain-2-65 2 65 .edu, .com
Domain-3-30 3 30 .edu, .com, .net
Gender-2-50 2 50 Male, Female
Gender-2-100 2 100 Male, Female
Gender-2-200 2 200 Male, Female
Receiver-2-35 2 35 Andromeda, Taru
Receiver-10-26 10 26 Andromeda, Taru, Zizer, ...
School-2-190 2 190 Bilkent, METU
School-3-80 3 80 Bilkent, METU, Ege
School-3-120 3 120 Bilkent, METU, Ege
School-5-50 5 50 Bilkent, METU, Ege, KHO, ...
School-10-29 10 29 Bilkent, METU, Ege, KHO, ...

cosine similarity measure is used as the distance metric andthe number of the near-

est neighbors,k, is selected as 10. A polynomial kernel (70) is used in SVM. Each

experiment is repeated 5 times and the average prediction accuracies are reported.

Chapter 3.Chat Mining 91

3.6.2 Analysis of Predictability

In order to visualize the predictability of different attributes, PCA is used. By using

PCA, it is possible to reduce the dimensionality of the instances, allowing them to

be plotted in two dimensions (21). Figure 3.3 shows PCA results for four different

attributes using a term-based feature set. These attributes are the gender, identity, and

Internet connectivity domain of an author and the time period of the messages. As the

PCAs of the style-based feature set is similar, they are omitted from this study. Also,

note that the coordinate values of the principle component analysis are not displayed.

In this work, PCA is only used for the reduction of dimensionality of the dataset.

Thus, the values of the data points are not indicative of anything, and only the relative

proximities of the data points are important.

Since the data points for each author cover separate regions, it is reasonable to

expect high accuracies in predicting the identity of the author of a message. For the

PCA of the Internet connection domain, it can be seen that thedistribution of data

points that belong to the “.com” and “.net” domains cover nearly identical regions

while the data points belonging to the “.edu” domain cover a separate region. Hence, it

would be reasonable to expect that the “.edu” class could be predicted accurately while

“com” and “net” domains would be frequently mispredicted. The results of PCA show

that it would not be possible to discriminate all attributesequally using a term-based

feature set.

Chapter 3.Chat Mining 92

Andromeda
Paprika
Taru

.edu

.com

.net

a) b)

Female users
Male users

Day time
Night time

c) d)

Figure 3.3: The results of the PCA for four different attributes (following our earlier
convention): a) Author-3-20, b) Domain-3-20, c) Gender-2-200, and d) DayPeriod-2-
34.

3.6.3 User-Specific Attributes

Table 3.6 summarizes the prediction accuracies of the experiments conducted on

the user-specific attributes. Among all experiments, the highest prediction rates are

achieved for the Internet connection domain of a user. For this attribute, the NB clas-

sifier predicts 91.8% and 68.7% of the test instances correctly for the Domain-2-50

and Domain-3-30 test cases respectively. The gender, education environment, and the

birth year attributes of a user are also predicted accurately. The prediction accuracies

Chapter 3.Chat Mining 93

Table 3.6: Prediction accuracies of experiments conductedon user-specific attributes

Term-based feature set Style-based feature set
Tag k-NN NB PRIM SVM k-NN NB PRIM SVM
BirthYear-2-30 50.1 60.8 53.8 56.3 50.0 75.4 55.5 48.0
BirthYear-4-30 24.0 27.3 20.0 26.5 22.8 37.4 19.9 22.0
Domain-2-35 59.7 90.0 77.2 64.3 63.9 90.0 66.9 59.7
Domain-2-50 58.2 91.8 74.0 63.6 64.2 88.2 74.4 69.0
Domain-2-65 55.9 91.4 79.3 65.2 68.6 89.8 78.0 74.1
Domain-3-30 34.0 67.4 49.6 39.6 34.7 68.7 48.2 45.8
Gender-2-50 73.4 80.0 53.4 81.5 63.2 71.8 51.2 71.4
Gender-2-100 74.5 81.5 58.3 82.2 61.7 81.9 64.2 72.3
Gender-2-200 72.2 78.2 56.4 80.2 62.4 81.7 64.9 77.8
School-2-190 56.8 68.8 55.8 66.8 59.3 55.2 50.3 62.9
School-3-80 43.6 56.7 35.9 59.7 43.1 47.0 34.0 51.0
School-3-120 42.7 53.2 41.1 61.0 44.1 40.4 32.0 63.7
School-5-50 30.8 48.9 26.8 53.4 29.1 41.2 25.9 43.7
School-10-29 22.5 37.8 17.6 39.0 20.4 26.7 13.9 26.2

of 82.2% and 75.4% are achieved in prediction of the gender and the birth year of a

user respectively. The educational environment of a user attains 68.8%, 53.4%, and

39.0% correct prediction rates for the School-2-190, School-5-50, and School-10-29

test cases respectively. The results of the classification experiments using a term-based

feature set lead to the conclusion that gender, identity, and Internet connection domain

attributes contain information that reflect the language preferences of a user and it is

possible to predict these attributes.

In order to verify whether the experiments are more than somelucky guessing,

the level of significance for each experiment is determined.For this purpose, two

prediction functions are generated. These functions are used to represent a control

group and a treatment group. The control group consists of random guesses for each

Chapter 3.Chat Mining 94

Table 3.7: Significance analysis conducted on user-specificattributes

Term-based feature set Style-based feature set
Tag z-score p-value z-score p-value
BirthYear-2-30 1.73 8.3e-1 2.10 2.7e-2
BirthYear-4-30 1.66 1.9e-1 2.03 5.8e-2
Domain-2-35 4.45 6.2e-7 3.74 8.0e-4
Domain-2-50 5.32 9.5e-9 4.27 3.3e-5
Domain-2-65 5.44 8.4e-8 5.61 7.1e-9
Domain-3-30 4.11 3.6e-6 3.94 6.6e-5
Gender-2-50 4.02 3.3e-5 2.32 3.7e-2
Gender-2-100 5.31 3.4e-7 5.39 5.1e-8
Gender-2-200 6.51 6.4e-10 7.11 1.1e-11
School-2-190 3.74 2.0e-4 2.92 3.2e-3
School-3-80 4.72 9.8e-7 2.60 1.2e-3
School-3-120 6.78 1.3e-12 6.64 5.2e-12
School-5-50 7.17 1.1e-12 4.49 2.1e-5
School-10-29 7.10 4.1e-10 3.44 2.1e-5

instance while the treatment group consists of predictionsafter the classifiers are used.

The value of the prediction function is 1 if the instance is correctly predicted and

0 otherwise. Wilcoxon signed-rank test (153) is used for determining the levels of

significance. The significance levels are computed for the best classification result,

represented in bold case in Table 3.6. Table 3.7 summarizes the z-scores and p-values

for each experiment group for user-specific attributes. Noting that the most common

level of significance is 5%, all experiments performed significantly better than random

guesses. The experiments conducted on the Internet connectivity domain, gender, and

educational environment attributes all result in very low levels of significance, which

means that the methods proposed in this work can be used effectively to predict these

attributes in chat messages.

Chapter 3.Chat Mining 95

In predicting the user-specific attributes, the use of term-and style-based feature

sets perform almost equally well. While the term-based feature sets performs better

than style-based feature sets for predicting the Internet connection domain and the

educational environment of a user, the use of style-based feature sets perform better

for predicting the birth year of a user.

The performance of different classifiers vary throughout the experiments. The ex-

perimental results on the prediction of user-specific attributes show that NB and SVM

perform best in all settings although the results show that no single classifier can be the

“best performer.” While NB performs better than SVM in predicting the connection

domain of a user, SVM performs slightly better in predictingthe educational environ-

ment of a user.k-NN produces the worst results for the prediction of the Internet con-

nection domain while PRIM performs the poorest in prediction of all other attributes.

PRIM’s poor performance is a result of it being a rule-based classifier. PRIM generates

a set of classification rules covering all the instances in a class, and use these rules to

classify the test instances. Due to the high dimensionalityof the dataset, these rules

contain only the most discriminative features, and thus, tend to be valid for only a small

subset of the instances in a class. Since such rules fail to classify a large enough subset

of the test instances, the classification of PRIM degenerates into random guesses.

Chapter 3.Chat Mining 96

Table 3.8: Prediction accuracies of experiments conductedon message-specific at-
tributes

Term-based feature set Style-based feature set
Tag k-NN NB PRIM SVM k-NN NB PRIM SVM
Author-2-35 100.0 100.0 98.7 100.0 98.3 99.7 92.9 97.1
Author-10-26 98.7 100.0 74.4 99.9 84.0 89.1 51.7 97.1
Author-100-10 88.3 89.9 44.0 99.7 31.2 29.7 5.8 78.9
DayPeriod-2-34 66.2 71.6 48.8 60.7 59.9 63.8 54.3 59.6
DayPeriod-4-17 34.6 47.6 25.4 39.6 30.7 38.9 28.5 41.6
Receiver-2-35 60.0 75.0 51.6 67.0 58.5 60.5 53.7 53.4
Receiver-10-26 25.1 40.9 21.8 41.1 12.4 11.2 9.2 10.6

3.6.4 Message-Specific Attributes

Table 3.8 summarizes the prediction accuracies of experiments conducted on the

message-specific attributes. The identity of the author is predicted with perfect ac-

curacy for two and 10 authors using term-based feature sets.The prediction accuracy

drops to 99.7% even when the number of users is increased to 100. The experiments

for predicting the identity of the author of a message show that each author has a dis-

tinct communication style and word selection habits. The use of style-based feature

sets also show that the receiver of a message and the time period the message is writ-

ten is also predictable. The receiver of a message is predicted with 75.0% and 40.9%

accuracy for the Receiver-2-25 and Receiver-10-26 test cases, respectively. The clas-

sification accuracies for the DayPeriod-2-34 and DayPeriod-4-37 test cases are 71.6%

and 47.6%, respectively. Table 3.9 also summarizes the significance tests conducted

on message-specific attributes.

The use of style-based feature sets perform equally with term-based feature sets

Chapter 3.Chat Mining 97

Table 3.9: Significance analysis conducted on message-specific attributes

Term-based feature set Style-based feature set
Tag z-score p-value z-score p-value
Author-2-35 5.24 1.5e-7 4.79 1.2e-5
Author-10-26 13.37 7.1e-73 13.12 9.2e-69
Author-100-10 27.19 3.3e-318 24.16 2.5e-200
DayPeriod-2-34 3.30 1.9e-3 1.46 1.8e-1
DayPeriod-4-17 2.32 3.9e-3 1.80 7.6e-2
Receiver-2-35 2.39 2.0e-3 1.20 2.4e-1
Receiver-10-26 6.18 5.2e-9 1.42 3.6e-1

when the number of classes is small. However, as the number ofclasses increases,

the decrease in the prediction accuracy is more significant when using style-based

feature sets than using term-based feature sets. The reasonof this rapid decrease in

the prediction accuracies is that the dimensionality of thestyle-based feature sets are

much smaller than that of the term-based feature sets; and asthe number of classes

increases, all classifiers exhibit difficulties in differentiating the instances of different

categories.

Contrary to the results of the experiments employed using the term-based feature

sets, the receiver and day period of a message can only be predicted almost with ran-

dom accuracy using a style-based feature set. This interesting finding shows that the

vocabulary use of a person is dependent on the target and the time of the message while

the communication style is only dependent on the person writing that message.

For predicting the message-specific attributes, NB and SVM achieve best results

among all classifiers. While both classifiers perform similarly for small number of

Chapter 3.Chat Mining 98

classes, the experiments on the authors’ identity show thatas the number of classes

increases SVM performs better than NB. The PRIM classifier performs the worst for

all attributes for both term- and style based feature sets.

3.7 Concluding Remarks

In this chapter, the predictability of various user- and message-specific attributes in

electronic discourse is examined. Specifically, the word selection and message orga-

nization of chat users are investigated by conducting experiments over a large real-life

chat dataset. Our observations show that many characteristics of chat users and mes-

sages can be predicted using their word selection and writing habits. The experiments

point out that some attributes have recognizable traces on the linguistic preferences of

an author. A possible alternative view to the chat mining problem is to examine how

the linguistic traits of a person effect the writing style. In this section, we take this

alternative view and discuss how a person’s attributes affect his writing style.

Table 3.10 shows the set of most discriminative terms for different attributes. As

chat conversations occur in a spontaneous environment, theuse of slang words and

mispellings is frequent. Two different users may write the same word quite differently.

For example, the word “something” (spelled as “birsey” in Turkish with ASCII charac-

ters) is used in its syntactically correct form by the user “Andromeda” while “Paprika”

uses a slang version (“bishiy” in Turkish with ASCII characters) of the same word in

Chapter 3.Chat Mining 99

Table 3.10: The most discriminating words for each attribute. The discriminative
power of each word is calculated using theχ2 statistic

Attribute name Example Class The most discriminating words
Author Andromeda byes (bye – slang), ok, birsey (something)

Paprika diil (nothing – misspelled), ehe (hah – slang)
bishiy (something – misspelled)

Taru hmm (emoticon), dakika (minute), ha (hah!)
BirthYear 1979 dusunuyon (thinking – misspelled), ucuza (cheaply

acar (opens)
1978 onemli (important), demek (then), git (go)

DayPeriod Afternoon kusura (fault), uzgunum (I’m sorry), lutfen (please)
Evening geceler (nights), hosca (finely), grad (graduate)

Domain .edu git (go), gelir (comes – 2nd person), saat (clock)
.com cikardin (you displace – 2nd person), muhabbet (chat)

karsindaki (opposite)
Gender male abi (brother), olm (buddy – misspelled)

lazim (required)
female ayyy (ohhh!), kocam (my husband)

sevgilimin (my lover’s)
Receiver Celefin olm (buddy – misspelled), falan (so)

yaw (hey! – misspelled)
Kebikec hmm (a notification), seker (sugar), adam (man)

School Ege Univ. Ege (a region), Bornova (a city in Agea region)
Izmirde (in Izmir, a city in Agea region)

Bilkent Univ. Bilkent (Univ. Name), BCC (Bilkent Computer Center)
Bilkentte (in Bilkent)

METU Univ. ODTU (univ. Name in Turkish), METU (Univ. name)
yurtlar (dormitories)

his messages. The receiver of a message also affects the wordselection habits. Some

users tend to receive messages containing more slang words than others. The vocab-

ulary use is additionally affected from the period of the day. Our observations show

that during the day hours, users tend to converse more politely, using apologetic words

more frequently.

Chapter 3.Chat Mining 100

The user-specific attributes also affect the word selectionhabits. The most discrim-

inative words of the users connected from the “.edu” domain contain more inquiries

and imperatives. On the contrary, the users connected from the “.com” domain employ

mostly responses and second person references. The users ofthe “.com” domain tend

to use shorter words than the users connected from other domains in their conversa-

tions. Another attribute that clearly affects the vocabulary of a user is gender. It is

apparent that males tend to use more decisive, dominating sentences using words that

can be considered as slang while female conversations involve more content-dependent

words and emoticons (e.g., Ayyy!). These findings show similarities with the findings

presented in (160). The most discriminative words for the classes of user’s educational

environment are mostly dominated by the regional terms. In Table 3.10, the most dis-

criminating words of users from three universities in different regions are given. The

vocabulary of the users contain many location-specific terms and is clearly affected by

the location of the university and its facilities.

The stylistic analysis also provides interesting results.Each chat user expresses

himself/herself using an almost-unique and identifiable set of linguistic preferences.

The messages of three different users is examined in order topresent their stylistic

differences. The user named “Andromeda” employs smileys and average-length words

more than others, while “Paprika” tend to converse using shorter messages, prevent

using punctuation marks, smileys, and function words. The user “Taru” communicates

with longer messages containing a large number of punctuation marks and function

Chapter 3.Chat Mining 101

words. The time of a message also affects the style and vocabulary of a message. Dur-

ing the day hours, messages are generally shorter and contain less auxiliary elements

such as smileys and punctuation marks, while during the night hours the messages tend

to be longer containing many function words and punctuationmarks.

The writing style shows variations between different domains. The users connected

from the “.edu” domain have a smaller vocabulary and use punctuation marks and

numerals frequently. On the contrary, the users of the “.com” domain have a larger

vocabulary, use a small number of numerals, and write longermessages. The educa-

tional environment of a user is another factor that affects the writing style. The users

from different universities prefer to use separate sets of smileys. The style of a person

is also affected by his/her gender. In general, female usersprefer longer and content

bearing words. They also prefer shorter sentences than maleusers and omit the use

of stopwords and punctuation marks. Long messages and use ofshort words are most

discriminating stylistic characteristics of male users. The use of style-based feature

sets prove to be more effective than the use of term-based feature sets for determining

the birth year of an author. This result also shows that the age group of an individual

is an important factor that affects the stylistic characteristics of a person’s messages.

The experiments conducted for determining the birth year attribute of a user show that

younger users mostly have a smaller vocabulary. Additionally, as (119) also pointed

out, younger users prefer using smileys more than older users.

Chapter 4

A Parallel Framework for

In-Memory Construction of

Term-Partitioned Inverted Indexes

4.1 Introduction

The evolution of communication technologies in recent years gave rise to a rapid in-

crease in the amount of textual digital information and the demand to search over this

type of information. One of the largest industries of our era, the searching industry,

has flourished around these demands.

102

Chapter 4.In-Memory Construction of Inverted Indexes 103

Inverted indexes, due to their superior performance in answering phrase

queries (128), are the most commonly used data structures inWeb search systems.

An inverted index consists of two parts: avocabularyandinverted lists. The vocabu-

lary contains the collection of distinctterms, which are composed of character strings

(words) that occur in the documents of the collection. For each termin the vocabulary,

there is an associatedinverted list, or posting list. The inverted list for a term is a list

of postings, where a posting contains an identifier for a document that contains that

term. Depending on the granularity of information, the frequency and the exact term

positions may also be stored in the postings.

Inverted index data structure is quite simple, yet Web-scale generation of a global

inverted index is very costly due to the size, distributed nature and growth/change rate

of the Web data (35). Fast and efficient index construction schemes are required to

provide fresh and up-to-date information to users. Furthermore, since the data to be

indexed is crawled and stored by distributed or parallel systems (due to performance

and scalability reasons), parallel index construction techniques are essential.

There are two major partitioning schemes used in distributing the inverted index

on parallel systems: document-based and term-based partitioning. In document-based

partitioning, the documents are assigned to index servers and all the postings related

with the assigned documents are stored in a particular indexserver. In term-based

partitioning, each term in the vocabulary and the related inverted lists are assigned to

an index server.

Chapter 4.In-Memory Construction of Inverted Indexes 104

Almost all of the major search engines use document-based partitioning due to

the ease in parallel index construction of document-based partitioned inverted indexes.

Term-based partitioning on the other hand has advantages that can be exploited for

better query processing (108). In this study, we propose an efficient parallel index

construction framework that can be used for generating term-based partitioned inverted

indexes starting from a document-based partitioned collection most possibly generated

via a parallel crawling of Web documents.

4.1.1 Related Work

Early studies on index construction are focused around disk-based algorithms designed

for sequential systems (59; 106; 154). In (154), authors present a method that traverses

the disk-based document collection twice; once for generating a term-based partition

to divide the work into loads, and once for inverting the dataset iteratively for each pass

defined in the previous pass. The emphasis is on using as little memory as possible.

In (106), authors use a multi-way, in-place, external mergealgorithm for inverted index

construction with less primary memory. In (59), authors propose an in-memory index

construction method for disk-based inverted indexes wherethe document set is divided

into batches that are inverted in memory and then merged and written into disk. In their

work, authors facilitate the use of compression in order to achieve a more effective

inversion.

Chapter 4.In-Memory Construction of Inverted Indexes 105

More recent works on sequential systems are mainly focused on on-line incremen-

tal updates over disk-based inverted indexes (29; 91). In (29), the authors propose a

hybrid indexing technique. The proposed method merges small posting lists with the

already existing index, while using posting list re-allocation for large posting lists. The

authors also propose two in-place merge techniques for updating long posting lists.

In (91), the authors evaluate two index maintenance strategies and propose alterna-

tives for improving these strategies. These improvements are based on over-allocation

of posting lists and keeping incremental updates within vocabulary before index re-

merging.

The following studies on index construction (48; 69; 104; 108; 120; 121; 135),

extend disk-based techniques for parallel systems. In (48), a document-based alloca-

tion scheme for inverted indexes is presented. The authors emphasize both storage

balance and inter-processor communication times and try tominimize both using ge-

netic algorithms. In (69), the authors evaluate the effectsof term- and document-based

partitioning methods on a shared-everything architecture. They use query statistics to

balance the required I/O times among processors on a disk-based architecture.

In (120) and (121), the authors present a disk-based parallel index construction al-

gorithm, where initially the local document collections are inverted by all processors in

parallel. The processors generate a global vocabulary on a host processor and the host

processor divides the document collection among all processors in lexicographic order

assuming global knowledge over the document collection. The authors also analyze

Chapter 4.In-Memory Construction of Inverted Indexes 106

the merging phase of the inverted lists in (121), presentingthree algorithms. In their

work, the authors mainly focus on the parallel generation ofthe distributed index and

the communication costs are not taken into consideration.

In (135), the author describes an index inversion frameworkfor distributed infor-

mation retrieval systems. Although the method presented in(135) achieves storage

balance among processors, it does not consider minimizing the communication loads

of the processors. In (135), it is also assumed that it is possible for the inverted indexes

to be incrementally updated over time, and specialized datastructures for minimizing

the index update times are proposed. The cost of the inversion process is also empha-

sized, and four different index inversion methods are presented. In (104), the authors

again start from a document partitioned collection and use asoftware-pipelined archi-

tecture to invert document collections. The collection is divided into runs, and for

each run, documents are parsed, inverted, sorted, and flushed into disk in a pipelined

fashion. In (108), the authors propose a load balancing strategy in a term-partitioned

inverted index on a pipelined query processing architecture (107). In (108), both repli-

cation of inverted lists and a query statistics-based assignment scheme is presented,

yielding up to %30 net query throughput improvements.

Chapter 4.In-Memory Construction of Inverted Indexes 107

4.1.2 Motivation and Contributions

We would like to repeat a catchy phrase often credited to Jim Gray: “Memory is the

new disk, disk is the new tape”. With the advent of 64-bit architectures, huge memory

spaces are available to single machines and even very large inverted indexes can fit

into the total distributed memory of a cluster of such systems, enabling memory-based

index construction. Furthermore, cloud computing systemssuch as Amazon EC2 are

commercially available today. They offer leasing of virtual machines without owning

and maintenance costs and thus ease the utilization and management of large cluster of

servers. Thus, we believe that the benefits of parallel indexconstruction is not limited

to dividing and distributing the computational task to different processors. The current

advances in network technologies, cloud computing and the high availability of low

cost memory provides an excellent medium for memory resident solutions for parallel

index construction.

In this work, we extend our previously proposed in-memory parallel inverted index

construction scheme (83) and compare the effects of different communication-memory

organization schemes to the parallel inversion time. In ourframework, we propose to

avoid the communication costs associated with global vocabulary construction with a

term-to-bucket assignment schema. This schema prevents term information to be sent

to a host, where a reasonable term-to-processor assignmentwould be computed using

the term distribution among processors, thus avoiding a possible bottleneck of commu-

nication. Furthermore, term-to-bucket partitioning allows the framework to completely

Chapter 4.In-Memory Construction of Inverted Indexes 108

avoid creating a global vocabulary, eliminating the need ofa further communication

phase.

We also investigate several assignment heuristics for improving the final storage

balance, the final query processing loads, and the communication costs of inverted

index construction. Here, storage balance is important since we are trying to build a

memory-based inverted index. Query processing load balance is important since the

reason for building the inverted index is for faster query processing and this can be

done better if the loads of the processors are balanced. Finally, the communication

cost is important since it effects the running time of parallel inversion.

Furthermore, we investigate the effects of various communication-memory orga-

nization schemes. Since parallel inversion is a communication-bound process, we

observe that the utilization of the communication-memory and the network has sig-

nificant effects on the overall inversion time. Our findings indicate that, dividing the

communication memory into2×K buffers, whereK of which are used for sending

messages and the remainingK are used for receiving messages, yields the best perfor-

mance. This is due to the fact that this communication-memory organization scheme

maximizes the communication/computation overlap.

Chapter 4.In-Memory Construction of Inverted Indexes 109

Finally, we test the performance of the proposed schemes by performing both sim-

ulations and actual parallel inversion of a realistic Web dataset and report our obser-

vations. Our contributions in this work are prior to optimizations such as compres-

sion (165). However, it is possible to apply data compression to the proposed model,

making it possible to work with even larger data collections.

The organization of this chapter is as follows: In Section 4.2, we introduce the

memory-resident distributed index inversion problem and describe our framework. In

Section 4.3, we provide our overall parallel inversion scheme. In Section 4.4, we de-

scribe the investigated assignment schemes in detail. In Section 4.5, we present several

memory organization schemes in order to reduce the communication time and discuss

their advantages and disadvantages. We provide our experiments, their analysis, and

extensive discussions on the results of our experiments in Section 4.6. Finally, in Sec-

tion 4.7 we conclude and discuss some future work.

4.2 Framework

Most of the largest text document collections that are actively in use today are Web-

based. These repositories are mainly created and used by Websearch engines. An

important consideration in the design of parallel index construction systems should

be their applicability to such real life data collections. In this work, our efforts are

based on presenting an efficient and scalable index construction framework specifically

Chapter 4.In-Memory Construction of Inverted Indexes 110

designed for Web-based document collections.

Parallel search engines collect Web pages to be indexed via distributed Web

Crawlers (26). In general, at the end of a crawling session, adocument-based par-

tition of the whole document collection is obtained, where each part is stored in a

physically separate repository (26). The state-of-the-art approach to distributing the

crawling and storage tasks uses a site-hash-based assignment, where the site names of

pages are hashed and documents are assigned to repositoriesaccording to those hash

values (18; 36; 34).

The framework presented in this study has three assumptionson the initial data

distribution. First, the initial document collection is assumed to be distributed among

the processors of a parallel system. That is, each processoris assumed to have a por-

tion of the crawled Web documents and maintain information about only its own local

dataset. Thus in this work, no processor contains a global view of the document col-

lection. Second, each processor is assumed to contain a disjoint set of documents.

This means that the overall system contains no replica of anydocument. Third, the

Web pages are assumed to be distributed among these processors using a site-based

hashing. That is, all pages from a site are assigned to a single processor, hence each

site is assumed to be an atomic storage task. Consequently, the initial storage loads of

the processors are not necessarily perfectly balanced. These three assumptions are in

concordance with the output format of general purpose crawling systems.

Chapter 4.In-Memory Construction of Inverted Indexes 111

In this framework, the objective of parallel index construction is to generate a final

term-partitioned parallel inverted index from a document-partitioned collection stored

on a distributed shared-nothing architecture. The final term-partitioned inverted index

will also be stored in a distributed fashion in order to allowboth inter- and intra-query

parallelism on query processing. In this context, our approach has similarities with

parallel matrix transpose operations.

4.3 Parallel Inversion

Our inversion scheme starts with a document-based initial partition. Such an initial

document-based partition is depicted in Figure 4.1(a). Ouroverall parallel inversion

scheme has the following phases:

• Local inverted index construction: Each processor generates a local inverted

index from its local document collection. This process is illustrated in Fig-

ure 4.1(b). Note that inverted lists for some terms can appear in multiple proces-

sors.

• TermBucket-to-processor assignment:Each processor uses hashing to find a

deterministic assignment of terms into a pre-determined number buckets. Buck-

ets are used to randomly group inverted lists so that the communication costs in

Chapter 4.In-Memory Construction of Inverted Indexes 112

the termBucket-to-processor assignment phase is reduced.All processors com-

municate the sizes of their term buckets to the host processor. The host processor

generates a termBucket-to-processor mapping under the constraint that in the fi-

nal assignment, the storage and query processing load balance is achieved and

communication cost is minimized. This process is illustrated in Figure 4.1(c).

Note that many buckets exist in multiple processors due to the initial document

partitioning.

• Inverted list exchange-and-merge:The processors communicate appropriate

parts of their local inverted indexes in an all-to-all fashion. This process is

illustrated in Figure 4.1(d). The remaining local invertedindex portions are

merged with the received portions and final inverted index isgenerated. The

final term-partitioned inverted index of the initial document-partitioned index in

Figure 4.1(b) can be seen in Figure 4.1(e).

4.3.1 Local Inverted Index Construction

In the local inverted index construction phase, each processor generates a local vocab-

ulary and local inverted lists from its local document collection. Since each processor

only contain a unique subset of documents, this operation can be achieved concur-

rently without any communication. In this phase, the local vocabularies and inverted

list sizes are determined and each term is given a unique identifier. In our local index

Chapter 4.In-Memory Construction of Inverted Indexes 113

(a) Initial document partition. (b) Local inverted index construction.

(c) TermBucket-to-processor assignment. (d) Inverted list exchange-and-merge.

(e) Final term-partitioned index

Figure 4.1: Phases of the index inversion process.

Chapter 4.In-Memory Construction of Inverted Indexes 114

construction scheme, the local document collection is readtwice. In the first pass,

the local vocabularies and inverted list sizes are determined and each term is given a

unique identifier. The memory required for local inverted lists is allocated according

to the determined inverted list sizes. In the second pass, the document collection is

parsed and stored in the respective inverted lists.

4.3.2 TermBucket-to-Processor Assignment

After the local inversion phase, processors contain a document-based partitioned in-

verted index. In this partition, processors contain different portions of inverted lists for

each term. In order to create a term-based partitioned inverted index, each inverted list,

in its full form, should be accumulated in one of the processors. To this end, each term

in the global vocabulary should be assigned to a particular processor.

This term-to-processor assignment depicts an inverted index partitioning problem.

A suitable index partitioning can be defined by many different criteria. In this work,

we set the following quality metrics for a “good” term-to-processor assignment:

QM1: Balancing the “expected” query processing loads of processors.

QM2: Balancing the storage loads of processors.

QM3: Reducing the communication overhead during the inversion process through

minimizing:

Chapter 4.In-Memory Construction of Inverted Indexes 115

(a) Total communication volume.

(b) Communication load of the maximally loaded processor.

The final query processing loads of processors indicate the amount of processing

that a processor is expected to perform once the inversion isfinished and the query

processing begins. We can estimate this load utilizing previous query logs.

The storage balance of processors guarantees an even distribution of the final in-

verted index allowing larger indexes to fit in the same set of processors.

Since inversion is a communication-bound process, the minimization of the com-

munication overhead ensures that the inverted list exchange phase of the parallel in-

version process takes less time. In this work, minimizationof the communication

overhead is modeled as the minimization of total communication volume while main-

taining the balance on the communication loads of the processors. These are the two

commonly used quality metrics that determine the communication performance of a

task-to-processor assignment when the message latency overhead remains negligible

compared to the message volume overhead (147), (23), which is the case for parallel

index inversion.

To optimize the above-mentioned metrics, we investigate existing assignment

schemes, comment on possible enhancements over these schemes, and propose a novel

assignment scheme which performs better than its’ counterparts. Our discussions about

bucket-to-processor assignment schemes are explained in detail in Section 4.4.

Chapter 4.In-Memory Construction of Inverted Indexes 116

For the purpose of finding a suitable term-to-processor assignment, the previous

works in the literature either assume the existence of a global vocabulary or generate

a global vocabulary from the local vocabularies. The globalvocabulary can be created

by sending each term string, in its word form, to a host processor, where they are

assigned global term-ids, and these global term-ids are broadcasted to all processors.

However in such a scheme, a particular term would be sent to the host machine by

all processors if all processors contain that specific term.Our observations indicate

that the cost of such an expensive communication stage is proportional to the cost of

inverted list exchange phase. Furthermore, since the host processor receives all the

communication, it constitutes a serious bottleneck.

In this work, we propose a novel and intelligent scheme that enables us to avoid

global vocabulary construction cost. We propose to group terms into buckets prior to

the term-to-processor assignment. Using string hashing functions, each word in a lo-

cal vocabulary is assigned to a bucket. Afterwards, only thebucket size information

is sent to the host processor. The host processor computes a termBucket-to-processor

assignment, which induces a term-to-processor assignment, and broadcasts this infor-

mation to the processors. The effect of bucket processing order on the quality of the

assignment is not investigated in this work and the same random bucket processing

order is used in evaluating the assignment schemes. We should also note here that it

is not necessary to build a global index at the host processorever. It suffices for the

host processor to store only a bucket-to-processor assignment array. Whenever the host

Chapter 4.In-Memory Construction of Inverted Indexes 117

processor receives a query term, all it has to do is to computethe hash of the term, find

the bucket for that term and forward the term to the owner processor of the bucket.

4.3.3 Inverted List Exchange-and-Merge

At the end of the termBucket-to-processor assignment phase, all bucket-to-processor

assignments are broadcast to the processors by host processor, so that each processor

is aware of the bucket-to-processor assignments. In order to create a term-partitioned

inverted index, the document-based partitioned local inverted list portions should be

communicated between processors in such a way that the wholeposting list of each

term resides in one of the processors. To this end, all processors should exchange their

inverted lists portions in an all-to-all fashion. However,utilizing termBuckets instead

of terms for assignment dictates a major change (and an additional cost) in the inverted

list exchange-and-merge phase.

Since termBucket-to-Processor assignment prevents the need of creating a global

vocabulary, when a processor receives a posting list portion of a term from another

processor, it also requires additional information to identify the posting list it receives.

To this end, upon sending the posting list portions, the processors should also send

the associated term, in its word form, to the receiving processor. Due to this, the all-

to-all inverted list exchange communication becomes slightly more costly. However,

since the processor-to-host bottleneck due to global vocabulary construction is already

Chapter 4.In-Memory Construction of Inverted Indexes 118

avoided, the performance degradation in all-to-all inverted list exchange communica-

tion is more than compensated. Furthermore, this vocabulary exchange is distributed

among all processors evenly, further reducing its overhead.

The inverted list exchange between processors is achieved in two steps. First,

terms, in their word form, and their posting sizes are communicated. This is done

by an all-to-all personalized communication phase, where each processor receives a

single message from each other processor. At the end of this step, all processors obtain

their final local vocabularies and can reserve space for their final local inverted index

structures. Second, inverted list portions are exchanged in bucket id order, and within

the buckets in alphabetical order. This step is again performed as an all-to-all person-

alized communication. However, since this step consumes significant amount of time,

the inverted list portions are sent via multiple messages. Memory organization and

communication scheme used in this phase is explained in detail in Section 4.5. At the

end of inverted list exchange, the remaining inverted lists, and obtained inverted lists

for each term are merged and written into their reserved spaces in memory.

4.4 Term-to-Processor Assignment Schemes

In this section, we try to solve the termBucket-to-processor assignment problem with

the objectives of minimizing the communication overhead during the inversion and

maintaining a balance on the query processing and storage loads of processors after

Chapter 4.In-Memory Construction of Inverted Indexes 119

the inversion. We present adaptations of two previously proposed assignment algo-

rithms (9) to the problem at hand, discuss the shortcomings of these algorithms and

propose a novel assignment algorithm that provides superior parallel performance.

In the forthcoming discussions we use the following notations: The vocabulary

of terms is indicated withT . Due to the initial site-hash-based crawling assumption,

the posting list of each termtj ∈ T is distributed among theK processors. In this

distribution,wk(tj) denotes the size of the posting list portion of termtj that resides

in processorpk at the beginning of the inversion, whereaswtot(tj) =
∑K

k=1
wk(tj)

denotes the total posting list size of termtj .

We assume that prior to bucket-to-processor assignment, each processor has built

its local inverted indexIk and partitioned the vocabularyT = {t1, t2, . . . , tn} contain-

ing n terms, into a predetermined numberm of buckets. The number of bucketsm is

selected such thatm ≪ n andm ≫ K. Let

B = Π(T)={T1 =b1, T2 =b2, . . . , Tm =bm}. (4.1)

denote a random term-to-bucket partition, whereTi denotes the set of terms that are

assigned to bucketbi. In this partition,wtot(bi) denotes the total size of the posting lists

of terms that belong tobi andwk(bi) denotes the total size of the posting list portions of

terms that belong tobi and that reside in processorpk at the beginning of the inversion.

Chapter 4.In-Memory Construction of Inverted Indexes 120

We also assume that we are given a query setQ where each queryq ∈ Q is a subset

of T , i.e.,q ⊂ T . The number of queries that a termtj is requested by is denoted with

f(tj).

In anm-bucket andK-processor system, the bucket-to-processor assignment can

be represented via aK-way partition

Π(B)={B1,B2, . . . ,Bk}. (4.2)

of the buckets among the processors. The quality of a bucket-to-processor assignment

Π(B) is measured in terms of three metrics: The query processing load balance (QM1),

storage load balance (QM2) and the communication cost (QM3). The query processing

loadQP (pk) of a processorpk induced by the assignmentΠ(B) is defined as follows:

QP (pk) =
∑

bi∈Bk

∑

tj∈bi

wtot(tj) × f(tj). (4.3)

The storage loadS(pk) of a processorpk induced by the assignmentΠ(B) is defined

as follows:

S(pk) =
∑

bi∈Bk

∑

tj∈bi

wtot(tj). (4.4)

Chapter 4.In-Memory Construction of Inverted Indexes 121

The communication cost of a processorpk induced by the assignmentΠ(B) has two

components. Each processor must receive all portions of thebuckets assigned to it

from other processors. Thus total reception cost/volume ofa processorpk is:

Recv(pk) =
∑

bi∈Bk

∑

tj∈bi

(wtot(tj) − wk(tj)). (4.5)

Each processor must also send all postings that are not assigned to it to some other

processor. The total transmission cost ofpk is represented bySend(pk) and is defined

as:

Send(pk) =
∑

bi 6∈Bk

∑

tj∈bi

wk(tj) (4.6)

The total communication cost of a processor is defined as:

Comm(pk) = Send(pk) + Recv(pk) (4.7)

4.4.1 Minimum Communication Assignment (MCA)

MCA algorithm minimizes the total communication volume while ignoring storage

and communication balancing (9). The MCA scheme is based on the following simple

observation. If a termBucket is assigned to the processor that contains the largest

Chapter 4.In-Memory Construction of Inverted Indexes 122

portion of the inverted lists of the terms belonging to that bucket, the total message

volume incurred due to this assignment will be minimized. Thus, if we assign each

termBucketbi ∈ B to the processorpk that has the largestwk(bi) value, the total volume

of communication for this term will be minimized. By assigning all terms using the

above criteria, an assignment with global minimum total communication volume can

be achieved.

4.4.2 Balanced-Load Minimum Communication Assignment (BLMCA)

The BLMCA scheme is an effort to incorporate storage balancing to MCA (9). In

this scheme, termBuckets are iteratively assigned to processors. In BLMCA, for each

termBucket, first the target processor that will incur the minimal total communica-

tion is determined using the criteria in MCA scheme. If assignment of the particular

termBucket to that processor does not make the storage loadsof the processors more

skewed (does not increase the maximum storage load of all processors) at that iteration,

the assignment proceeds as in MCA scheme. Otherwise, the termBucket is assigned to

the minimally loaded processor.

4.4.3 Energy-Based Assignment (EA)

In BLMCA, two separate cost metrics are evaluated: The storage load balance and total

communication cost. However, at each iteration, only one ofthese metrics is chosen

Chapter 4.In-Memory Construction of Inverted Indexes 123

to be optimized. Furthermore, both MCA and BLMCA models the communication

cost as the total communication volume and disregards the maximum communication

volume of a single processor. In order to minimize the maximum communication cost

of a processor, we should consider both the reception cost ofthe assigned processor

and the transmission costs of all other processors.

In the EA scheme, we propose a model that prioritizes reducing the maximum

communication cost of processors as well as maintaining storage and query processing

load balance. To this end we define the energyE of an assignmentΠ(B). This energy

definition is based on the storage loads, query processing loads and communication

costs of processors. Recall thatComm(pk) of a processor incorporates both reception

and transmission costs of processorpk. We define two different energy functions for a

given termBucket-to-processor assignmentΠ(B):

E1(Π(B)) = Max{Max1≤k≤K{Comm(pk)},

Max1≤k≤K{S(pk)},

Max1≤k≤K{QP (pk)}}

(4.8)

E2(Π(B)) =
K

∑

1

(Comm(pk))
2 +

K
∑

1

(S(pk))
2 +

K
∑

1

(QP (pk))
2 (4.9)

Chapter 4.In-Memory Construction of Inverted Indexes 124

Utilizing these two energy functions, we propose a constructive algorithm that as-

signs termBuckets to processors in a successive fashion. The termBuckets are pro-

cessed in some order, and the energy increase in the system byK possible assign-

ments of each bucket are considered. The assignment that incurs the minimum energy

increase is performed. That is, for the assignment of a termBucketbi in the given order,

we select the assignment that minimizes

E(Π(Bi−1 ∪ {bi})) − E(Π(Bi−1)). (4.10)

whereBi−1 denotes the set of already assigned termBuckets.

We should note here that proposed energy-based assignment schemes also have

the nice property of being easily adaptable for incrementalindex updates. To enable

this feature at the end of inversion process, it is sufficientto store the energy levels of

each process. These values then can be used to perform (re)assignment of indexes in

an incremental fashion. The minimization of inversion timefeature of these schemes

would be very helpful in minimizing the incremental update time as well. However,

we should note that enabling incremental update in these schemes would necessitate

the construction of a global vocabulary on the server node.

We consider bothE1 and E2 energy definitions and report the results of both

schemes in our experiments. We call theE1-based assignment scheme asE1A and

theE2-based assignment scheme asE2A.

Chapter 4.In-Memory Construction of Inverted Indexes 125

4.5 Communication-Memory Organization

In the final stage of the memory-based parallel inverted index construction, the por-

tions of each posting list are communicated between processors to accumulate each

posting list in one processor, where they would be merged in order to construct the

final inverted index. This phase can be summarized as an all-to-all personalized com-

munication phase with different number of messages and total message sizes. In this

phase, each processor should identify local posting list portions to be sent to other

processors, prepare message buffers to send them using the available memory for this

communication and send them to the target processors. At thesame time, each pro-

cessor should retrieve posting list portions assigned to them from other processors and

merge them in order to generate the final posting lists.

Posting list exchange operation requires intensive communication between proces-

sors and dominates the total time required to complete the index inversion. An im-

portant question when communicating the posting list portions is how to use/organize

the available memory so that the communication phase takes the least possible time.

In this work, we evaluate four different communication memory organization schemes

and their impact on total run time of index inversion. These schemes are:

Chapter 4.In-Memory Construction of Inverted Indexes 126

• 1-Send 1-Receive buffer scheme (1s1r)

• 1-Send (K-1)-Receive buffer scheme (1sKr)

• (K-1)-Send 1-Receive buffer scheme (Ks1r)

• (K-1)-Send (K-1)-Receive buffer scheme (KsKr)

In investigating different communication-memory organization schemes, we as-

sume that the total memory spared for communication is fixed,sayM . In 1s1r, the

communication memory is split into one send and one receive buffer, each with size

M/2. In 1sKr andKs1r, the memory is split intoK buffers each with sizeM/K.

In 1sKr, one of these buffers is used as a send buffer and the remaining K-1 buffers

are reserved for receiving messages from other processors.In Ks1r, each processor

maintains one receive buffer andK-1 send buffers, which are reserved for sending

messages to other processors. InKsKr, the memory is split into(2×K)−2 buffers

each with sizeM/((2×K)−2). K-1 of these buffers are reserved as send buffers as in

Ks1r, while the otherK-1 buffers are reserved as receive buffers as in 1sKr.

In all of these schemes, the communication commences through several stages.

First, all processors issue non-blocking receives for eachreceive buffer. Then, each

processor starts preparing the outgoing send buffer(s). During this preparation, the

vocabulary of the local inverted index is traversed in orderto copy the local posting

list portions to the send buffer(s). Whenever a send buffer is full, the owner processor

issues a blocking send operation. Blocking send operation stalls all computation on

Chapter 4.In-Memory Construction of Inverted Indexes 127

the sender-side until the send operation is successfully completed. Upon receiving

a message, each processor starts emptying its respective receive buffer by copying

the received posting list portions to the final inverted index, effectively finalizing the

merge of posting list portions. After the merging phase is completed, processors issue

a new non-blocking receive in order to receive any remainingmessages from other

processors, and restart filling their send buffers.

4.5.1 1-Send (1s) versus(K-1)-Send (Ks) Buffer Schemes

In the 1s buffer schemes, in order to prepare messages to be sent to other processors, all

posting list portions targeted to a specific processor should be put into the single send

buffer prior to sending it. For a single target processor, inorder to send all required

posting list portions, the vocabularies of each local inverted index must be traversed

once. As each processor probably requires to communicate with all other processors,

preparation of the send buffers requiresK-1 traversals over the local inverted index.

On the other hand, in theKs buffer schemes, in order to prepare outgoing mes-

sages, only one traversal of the local inverted index is sufficient. In this traversal, the

processor would pick any outgoing posting list portion and place it into the appropriate

send buffer. Once one of the send buffers is full, the communication can commence.

However, using blocking sends ultimately results in stalling the process every time a

send is issued, reducing the processor utilization.

Chapter 4.In-Memory Construction of Inverted Indexes 128

4.5.2 1-Receive (1r) versus(K-1)-Receive (Kr) Buffer Schemes

In 1r schemes, the communication memory is fairly utilized,whereas inKr schemes,

the utilization of the communication memory depends on the number of messages

received by each processor and may be poor for most of the processors. In 1sKr, since

there can be onlyK messages over the network at any time, onlyK of theK×(K−1)

receive buffers would be actively used. In this case,K×(K−2) unused receive buffers

are left idle, leaving the(K−2)×M of the totalK×M memory unused. InKsKr, since

there isK-1 send buffers, the processors can produce enough messagesto actively use

most of theK×(K−1) receive buffers, resulting with a more utilized communication

memory.

In Kr schemes, since each processor has a specific receive bufferfor all other

processors, cycles in the communication dependency graph do not cause deadlocks.

However, in 1r schemes, depending on the communication order, cycles in the com-

munication dependency graph may cause deadlocks. To avoid these deadlocks, we can

utilize non-blocking sends instead of blocking sends. Non-blocking sends allow a pro-

cessor to continue processing after a send is issued withoutthe need of waiting it to

finalize, thus avoiding any possible deadlocks. However, the issued send still requires

its particular send buffer to be intact. As a result, the processor should again be halted

in case a local posting list is required to be written in that send buffer. For this reason,

each send buffer is locked after a send, and all such buffers are probed after each mes-

saging iteration. If a send buffer is released after a successful send, the lock is freed

Chapter 4.In-Memory Construction of Inverted Indexes 129

allowing the processor to issue writes into that send bufferagain.

In Ks1r, whenever a non-blocking send is issued, it is possible to fill other send

buffers, allowing computation to overlap with communication. However, in 1s1r, dead-

lock avoidance via non-blocking sends may cause poor performance since there is only

one send buffer and it is not possible to overwrite the contents of this buffer until the

non-blocking send is completed, causing the computation tobe stalled.

It is also possible to avoid deadlocks in 1s1r scheme by employing a BSP-like (148)

communication/computation pattern and by ensuring that notwo processors send mes-

sages to the same processor in any given communication step.In 1s1r, sinceK-1

traversals over the local inverted index is required for each processor, it is possible

to divide the computation intoK-1 traversal steps and communicate at the end of

each computation step. We can also freely choose the communication order in such a

scheme. By exploiting this freedom, we can find a communication schedule that avoids

deadlocks. Minimizing the number of communication steps induced by this schedule

corresponds to minimizing the total inversion time of the proposed BSP-like scheme.

In this work, we show that the problem of finding a communication schedule with

minimum number of steps can be reduced to the “Open Shop Scheduling Problem”

(OSP). In OSP, there are|J | jobs and|W | workstations. Each jobji ∈ J has to visit

all workstations and perform a different task. There is an associated timet(ji, wk) for

finishing jobji at workstationwk ∈ W . No restrictions are placed on the execution

Chapter 4.In-Memory Construction of Inverted Indexes 130

order of jobs and it is given that no job can be carried out simultaneously on more than

one workstation.

In (54), the authors proposed an optimal algorithm to find minimum finish time in

an OSP. This is achieved by constructing a bipartite graph from the jobs and worksta-

tions, iteratively finding complete matchings over this graph, and modifying the graph

by decreasing edge weights of edges in the discovered matching by the smallest edge

weight until no more complete matchings can be found. Finding a complete matching

ensures that no two jobs are assigned to the same workstation, while no two worksta-

tions are working on the same job at any time.

The posting list exchange and merge phase of index inversionprocess can also be

modeled using the above mentioned algorithm. In the parallel index inversion problem,

each processor has to send inverted list portions to other processors. The send operation

of inverted list portions corresponds to jobs in the scheduling problem. Also, each send

should be received by a processor and merged into the final inverted lists. In that sense,

each processor also functions as a workstation in the scheduling problem. There are

two associated vertexes, one job vertex and one workstationvertex, for each processor

in the bipartite graph. That is, the send responsibilities of processors constitute the

jobs and the receive responsibilities of processors constitute the workstations. If a

processorpi has to send a message to processorpj , there is an associated edge between

the job vertex ofpi and workstation vertex ofpj and the number of the messages to

be sent frompi to pj is the weight of this edge. In this model, each match found on

Chapter 4.In-Memory Construction of Inverted Indexes 131

the constructed graph correspond to a schedule step, where finding an optimal finish

time schedule defines an optimal communication schedule with least possible number

of communication steps.

4.6 Experiments

4.6.1 Experimental Framework

We conducted our experiments on a realistic dataset obtained by crawling educational

sites across America. The raw size of the dataset is 30 GB and contains 1,883,037

pages from 18,997 different sites. The biggest site contains 10,352 pages while average

number of pages per site is 99.1. The vocabulary of the dataset consists of 3,325,075

distinct terms. There are 787,221,668 words in the dataset.The size of the inverted

index generated from the dataset is 2.8 GB. For query load balancing purposes, we

used a syntetically generated query log of 1,000,000 distinct queries each of which

contains 1 to 7 terms. In our experiments, we used a fixed number of buckets in

termBucket-to-processor assignment and set the number of buckets to 10,000.

We tested the performance of the proposed assignment schemes in two different

ways: First we report the relative performances of the assignment schemes in terms of

the quality metrics described in Section 4.3.2 through simulations. In simulations we

theoretically compute the assignment of terms to processors and compute the storage,

Chapter 4.In-Memory Construction of Inverted Indexes 132

query processing, and communication costs of the assignment without performing ac-

tual parallel inversion. The simulation experiments are conducted forK={4, 8, 16, 32,

64, 128} values on a Sun AMD-opteron machine with 128GB of RAM.

Second, we provide a set of experiments using actual parallel inversion runs in or-

der to show how improvements in quality metrics relate to parallel running times. For

this purpose, we developed an MPI-based parallel inversioncode that can utilize each

of the four communication-memory organization schemes described in Section 4.5 for

a given termBucket-to-processor assignment. These secondset of experiments are

conducted on a 32-node PC-cluster, where each node is an Intel Pentium IV 3.0 GHz

processors with 1 GB RAM connected via an interconnection network of 100 Mb/sec

fast Ethernet. The total communication-memory size M is setto 5 MB in these exper-

iments.

4.6.2 Evaluation of the Assignment Schemes

As a baseline inversion method, we implemented a random termassignment (RT) al-

gorithm. In RT scheme, each term is assigned to a random processor without a term-

to-bucket assignment. In this scheme, the global vocabulary has to be created. In order

to evaluate the viability of term-to-bucket assignment andas a baseline termBucket-

to-processor assignment scheme, we also implemented a random assignment (RA)

algorithm which assigns buckets to processors randomly. Note that RA requires the

Chapter 4.In-Memory Construction of Inverted Indexes 133

Table 4.1: Percent query processing load imbalance values.

K RT RA MCA BLMCA E!A E2A
4 30.5 54.3 91.4 51.6 47.8 19.6
8 55.5 86.3 115.0 78.2 74.1 24.1

16 100.4 102.8 352.1 92.4 90.1 44.8
32 319.3 233.8 457.3 167.1 123.4 61.7
40 437.2 284.9 755.8 225.6 189.3 79.8
64 602.5 503.7 1446.2 407.9 374.5 112.5

128 857.3 969.4 8456.8 821.7 682.1 216.4

least possible time to compute a termBucket-to-processor assignment while avoiding

the need for global vocabulary creation, and thus it can be used to compare/analyze

the merits of the proposed bucketing scheme and the assignment schemes. The perfor-

mance of the proposed assignment schemes are compared against RT and RA schemes.

4.6.2.1 Simulation Results

Tables 4.1, 4.2 and 4.3 compare the performance of the assignment schemes in terms

of the quality metrics described in Section 4.3.2.

Table 4.1 displays the performance of the proposed assignment schemes in opti-

mizing the quality metricQM1. In the table, the query load imbalance percentages for

different assignment schemes and different number of processors is presented. The

query load imbalance values are calculated according to thefollowing formula:

(Max1≤k≤K{Q(pk)}

(
∑K

k=1
(Q(pk)))/K

− 1
)

× 100. (4.11)

Chapter 4.In-Memory Construction of Inverted Indexes 134

Table 4.2: Percent storage load imbalance values.

Initial Final

K RT RA MCA BLMCA E1A E2A
4 13.8 4.4 12.1 38.3 0.0 2.8 5.9
8 31.9 11.7 09.9 60.0 0.1 7.2 14.1

16 38.2 18.2 27.4 66.2 1.7 9.3 23.2
32 58.4 44.1 29.6 83.0 5.4 16.1 32.5
40 66.3 32.2 37.0 77.4 6.2 17.9 33.1
64 69.0 44.7 56.6 92.2 11.5 21.7 36.0

128 81.4 65.3 94.7 95.6 15.7 32.6 45.8

Table 4.2 shows the performance of the proposed assignment schemes in optimiz-

ing quality metricQM2. In the table, the initial imbalances due to hash-based distri-

bution and the final imbalances after applying the assignment schemes are presented.

The storage imbalance values are computed according to the following formula:

(Max1≤k≤K{S(pk)}

(
∑K

k=1
(S(pk)))/K

− 1
)

× 100. (4.12)

Table 4.3 compares the communication performance of the assignment schemes in

terms of average and maximum message volume to be handled by aprocessor dur-

ing parallel index inversion. Total volume of communication required by an assign-

ment scheme can be computed from the table by multiplying therespective average

message volume value of the assignment scheme with the respective K value. Thus,

the “Avg” columns of Table 4.3 indicate the performance of the assignment schemes

in optimizingQM3(a). The “Max” columns in Table 4.3 indicate the communica-

tion load of the maximally loaded processor and thus indicate the performance of the

Chapter 4.In-Memory Construction of Inverted Indexes 135

Table 4.3: Message volume (send + receive) handled per processor (in terms of×106

postings)

RT RA MCA
K Avg Max Avg Max Avg Max

4 131.184 133.233 131.189 145.713 122.091 150.263
8 76.511 88.862 76.554 90.582 71.448 119.745

16 41.002 44.562 41.008 49.249 38.322 77.114
32 21.118 32.254 21.188 28.754 19.817 71.127
40 17.026 26.629 17.053 23.962 15.991 44.793
64 10.761 18.690 10.761 17.769 10.088 74.273

128 5.423 11.883 5.424 11.967 5.088 65.586

BLMCA E1A E2A
K Avg Max Avg Max Avg Max

4 127.450 128.619 129.437 134.683 131.857 131.154
8 73.402 75.974 77.562 80.327 77.385 78.229

16 39.217 43.443 43.205 44.944 42.792 42.953
32 20.283 26.025 21.218 25.788 21.047 21.695
40 16.322 20.014 17.072 20.576 17.471 18.118
64 10.339 15.421 10.981 15.222 11.201 12.354

128 5.222 10.980 5.662 10.437 7.233 8.178

assignment scheme in optimizingQM3(b). The communication-load balancing per-

formance of each assignment scheme can be evaluated by comparing the “Avg” and

“Max” columns.

The comparison of RT and RA schemes relates to the effectiveness of the proposed

term-to-bucket assignment. As shown in Table 4.2, RA performs slightly better than

RT for K ≤ 64. Both Tables 4.1 and 4.3 displays that RT and RA perform similarly

in terms of query load balancing and communication volumes.Comparison of these

two assignment schemes shows that term-to-bucket assignment prevents the global

vocabulary construction without much degrading our quality metrics.

Chapter 4.In-Memory Construction of Inverted Indexes 136

Table 4.4: Parallel inversion times (in seconds) includingassignment and inverted
list exchange times for different assignment and communication-memory organization
schemes.

K RT RA MCA BLMCA E1A E2A
2 105.90 109.80 85.72 106.08 108.15 108.13
4 71.60 69.19 81.34 68.63 69.34 68.49

1s1r 8 66.44 51.42 66.76 46.45 47.27 45.74
16 63.00 35.89 60.82 33.04 33.65 32.48
32 73.38 19.31 48.45 18.20 18.53 17.20
2 105.66 109.82 86.04 105.87 107.36 107.97
4 69.55 73.69 80.31 70.60 71.51 70.71

Ks1r 8 68.10 53.34 68.27 50.04 49.77 48.58
16 62.59 36.66 60.30 34.32 34.70 32.91
32 73.10 20.21 50.34 18.52 20.13 17.72
2 105.17 109.60 86.06 106.31 108.11 108.91
4 71.37 70.84 80.82 70.11 70.35 69.44

1sKr 8 69.60 58.13 64.97 45.78 47.63 45.22
16 60.17 34.67 59.13 32.54 32.97 31.41
32 73.31 20.24 48.36 18.59 19.02 18.07
2 106.30 110.05 86.13 106.01 108.14 108.12
4 67.25 66.79 71.89 64.50 64.08 62.51

KsKr 8 62.23 45.44 59.82 41.46 40.89 38.79
16 57.92 31.28 54.56 29.36 28.78 26.00
32 72.17 18.43 47.81 18.11 18.01 16.97

Chapter 4.In-Memory Construction of Inverted Indexes 137

As seen in Table 4.1, MCA achieves significantly worse query load imbalance than

all other assignment schemes. Similarly, Table 4.2 shows that MCA considerably de-

grades the initial storage balance. On the other hand, Table4.3 reveals that MCA

achieves the best average communication cost. These experimental findings are ex-

pected since MCA only considers the minimization of the total communication cost,

disregarding storage and communication balancing.

As mentioned in Section 4.4.2, BLMCA is a modified version of MCA with added

emphasis on storage balancing. As seen in Table 4.2, BLMCA achieves the best final

storage balance in all instances. However, as seen in Table 4.3, the storage balance

in BLMCA is achieved at the expense of increased total communication volume com-

pared with MCA. Table 4.1 also shows that especially with increasingK, BLMCA

fails in balancing query processing loads.

Table 4.1 displays that for all processor values,E2A performs significantly better

than all other assignment schemes in terms of query processing load balance. Addi-

tionally, in terms of query load imbalances,E1A is the second best performer. As seen

in Tables 4.2 and 4.3, althoughE2A slightly degrades the storage balance, it performs

better than the other schemes in terms of maximum communication volume handled by

a processor for almost allK values (except forK=2 and4). AlthoughE1A produces

better storage balance thanE2A, the communication volume handled by a processor

incurred byE1A is slightly worse than BLMCA. In terms of maximum communica-

tion volume handled by a processor,E2A achieves the best results forK >8. Table 4.3

Chapter 4.In-Memory Construction of Inverted Indexes 138

also indicates that the average and maximum communication volume values induced

by E2A are close, which shows thatE2A manages to distribute the communication

load among processors evenly.

4.6.2.2 Parallel Inversion Results

Figure 4.2: Times (secs) of various phases of the parallel inversion algorithm for dif-
ferent assignment and communication-memory organizationschemes onK = 8 pro-
cessors.

Table 4.4 compares the running times of our parallel inversion code for different

assignment schemes. Since the creation of the local inverted indexes from local doc-

ument sets is an operation prior to our inversion schemes, itis assumed that the local

inverted indexes are already created. Thus, the time for converting local document

collection to local inverted indexes is not included in the inversion times displayed in

Table 4.4.

Chapter 4.In-Memory Construction of Inverted Indexes 139

We provide RT scheme in order to present the benefits of using aterm-to-bucket

assignment. RT scheme differs from other schemes in two ways. First, in RT scheme

termBucket-to-processor assignment is replaced with a term-to-processor assignment.

Second, in RT scheme there is an additional phase called global vocabulary construc-

tion phase. As seen in Table 4.4, RT performs significantly worse than other assign-

ment schemes for allK values other thanK = 2. This indicates that our bucketing

scheme has a significant impact on performance.

As seen in Table 4.4, forK=2, MCA achieves the lowest inversion time compared

to the other schemes. This is because, forK=2, minimizing total communication

volume also minimizes the maximum communication volume handled by a processor.

However, for allK values greater than 2, MCA performs significantly worse since the

maximum message volume handled by a processor for MCA is considerably higher

than other assignment schemes. As seen in Table 4.4,E2A performs considerably

better than the other assignment schemes. For example forK =32, E2A performs up

to 9% better than RA in terms of running time and achieves better final query load and

storage balancing. The relative performance order of the assignment schemes in terms

of actual inversion time values displayed in Table 4.4 are generally in concordance

with the relative performance order of the assignment schemes in terms of the quality

metrics displayed in Tables 4.2 and 4.3.

Figure 4.2 displays the dissection of parallel inversion time into: local inverted

Chapter 4.In-Memory Construction of Inverted Indexes 140

index construction, termBucket-to-Processor assignmentand inverted list exchange-

and-merge phases for different assignment and communication-memory organization

schemes onK=8 processors. For the sake of a better insight on the overall index in-

version process, inverted list exchange-and-merge phase is further divided into two

components. The first component is called vocabulary communication, where pro-

cessors send each other the terms, in their word form, and theassociated posting list

sizes in an all-to-all personalized fashion. The second component is called inverted list

communication, where the posting list portions are communicated between processors.

Figure 4.2 shows that for the in-memory inversion task, the construction of a global

vocabulary takes considerable time. ForK=8 processors, almost 35% of the total

inversion time is spent on global vocabulary construction in RT scheme.

As seen in Figure 4.2, the local inverted index constructiontakes the same time in

all schemes since local index inversion depends only on the initial data distribution.

Figure 4.2 also shows that, as the complexity of the assignment schemes increases, the

time required for termBucket-to-processor assignment also increases. The RA-based

termBucket-to-processor assignment phase takes less than1% of the total inversion

time, whereas theE2A-based termBucket-to-processor assignment phase takes more

than 4% of the total inversion time. As the “Max” columns of Table 4.3 suggest, the

time spent on vocabulary communication phase is minimum forE2A and maximum

for MCA assignment scheme.

Chapter 4.In-Memory Construction of Inverted Indexes 141

As seen in Figure 4.2, the inverted list exchange-and-mergephase takes almost 85%

of the total inversion time, thus confirming that parallel inversion is a communication-

bound process. We compare and analyze the impact of different communication-

memory organization schemes on this phase in the following subsection.

4.6.3 Evaluation of Communication-Memory Organization Schemes

Table 4.4 compares the running times of parallel inversion for different communication-

memory organization schemes.Ks1r has the worst overall performance for allK val-

ues greater than 2. AlthoughKs1r avoids redundant memory reads by doing only

one traversal over the local inverted lists, the use of blocking sends causes stalls and

prevents overlap between communication and computation.

Although 1sKr performs better than 1s1r forK ≤ 16, its relative performance

decreases when the number of processors increases. This is due to lower memory

utilization of 1sKr on higher number of processors since each processor must maintain

K−1 receive buffers. We theorize that for higher number of processors, 1sKr would

perform even worse.

For all K values greater than 2,KsKr performs superior with respect to the other

communication-memory organization schemes. As the numberof processors increase,

the performance gap betweenKsKr and the other schemes increases in favor of

KsKr. This is becauseKsKr avoids redundant traversals during the preparation of

Chapter 4.In-Memory Construction of Inverted Indexes 142

Figure 4.3: The effect of the available communication-memory size (M) on inverted
list exchange-and-merge phase of aK=8 processor parallel inversion system utilizing
E2A andKsKr.

send buffers and overlaps computation with communication.For this reason, we select

KsKr as the de-facto communication-memory organization scheme for the remaining

experiment.

Figure 4.3 evaluates the effect of the available communication-memory size (M)

on the running time of parallel inversion code utilizing theE2A assignment scheme

andKsKr communication-memory organization scheme forK = 8 processors. As

seen in Figure 4.3,KsKr scales well with increasing communication-memory size.

The ability to continue to process several send buffers without stalling allowsKsKr to

function relatively better with larger communication-memory sizes.

Chapter 5

Concluding Discussions

In this work, we first theorized and then analyzed two common characteristics of Web-

based textual communication media. These common characteristics are: First, the

web-based textual communications all contain personal attributes that can be used to

exploit or identify several aspects of the communication and messages of all web-based

textual communications have similar distributional properties. Second, all Web-based

textual communications have similar heavy tailed distributions, for both message logs,

vocabularies, and user behavior.

In order to verify our claims, rather than going over a set of previous literature

work, we decided to select different web-based textual communications and examine

their patterns over real-life applications. In order to do this, first, a taxonomy of the

communication media with the corresponding state-of-the-art literature is provided.

143

Chapter 5.Concluding Discussions 144

Using this taxonomy, we selected three types of communication data from different

classes of the web-based communications and analyzed thesedata.

For this purpose, we also selected three different examplesof real life applications.

As a first application, we selected the query collection of a real life Web search engine

over a 10 day period and by the aid of our claims we proposed methods to improve

caching rate over the search engine architecture. In the second application, we se-

lected online messages on a real time chat server and examined the predictability of

several attributes of both users of this chat server and their messages. As a final work,

we selected a collection of Web pages and picked the invertedindex creation task. We

identified potential challenges on the distributed index inversion problem and using the

distributional properties of the Web data we theorize a method to efficiently carry out

the inversion task. Our results show that identifying and exploiting the common char-

acteristics of common characteristics of computer mediated communications is crucial

when undertaking any research challenge related to Web based communications. Our

findings and conclusions can be summarized as follows:

In Chapter 2, we presented a machine learning approach to train a feature-based

caching model for the query result caching problem. For training the caching mod-

els we have used in this work, we evaluated several features.These features can be

grouped into five categories. These categories are: query string-based, user-based,

search engine related, term frequency-based, query frequency-based, and temporal fea-

tures.

Chapter 5.Concluding Discussions 145

Using the features that are gathered from the logs of a real life Web search engine,

we trained two machine learning models. The first machine learning model trains a

singleton prediction model, where each query is ranked from0 to 1 with respect to its

probability of being a singleton query or not. The second model trains a regression of

each query’s next arrival time, that is the estimated time ofquery being re-submitted

to the search engine by some user. Using these two models, we constructed a caching

policy, where admission and eviction decisions are given based on which queries are

more likely to be observed in the near future and when.

For evaluating our models, we first examined two extreme caching organizations:

a fully static cache and a fully dynamic cache. Our results show that the proposed

machine learning approach improves the performance of caching in both conditions.

We have also provided several tighter optimality bounds forboth problems and show

that the machine learning approach in fact improves the query result cache up to 11%

of the possible room for improvement.

We then combine both caching organizations into one by applying the proposed

machine learning approach to SDC. Our experiments indicatethat the room for im-

provement in the caching problem is in fact smaller than whatwe have expected. Com-

bining machine learned static cache and machine learned dynamic cache did not lead

to the expected improvements. Although the resulting caching model still improves

SDC by 7.8% of the maximum possible improvement, our resultsindicate a deteriora-

tion in the quality of the regression model in the dynamic cache when a static cache is

Chapter 5.Concluding Discussions 146

also present.

In terms of our claims, we have shown that query features, combined with a ma-

chine learning approach, can be used to improve the performance of the query result

cache of a real life search engine. Moreover, our evaluations on the regression mod-

els show that, many of the most discriminative features contain non-temporal features.

In that respect, our findings validate claim 1, that Web-based textual communications

contain characteristic markers inherent to the text message itself or its user.

In this work, our results have also verified claim 2 by using the temporal locality

within the caching problem. Caching, as the main motivationof the proposed work,

is based on the fact that there is a strong temporal correlation within the query sub-

missions to a Web search engine. In order for caching to be beneficial for a search

engine, a small subset of queries should be frequent enough so that, by merely stor-

ing them in memory, the search engine can respond to most of the queries without

re-computing the results. Our evaluations on the query log also indicate that almost

40% of the queries are submitted to the search engine only once, corresponding to a

heavy tail distribution. Thus, we can conclude that search query logs follow a heavy

tail distribution which can be categorized as a power law or log-normal distribution,

which verifies that claim 2 holds for query search logs.

In Chapter 3, we examined a peer-to-peer instant messaging network. Personal and

message-based features are used to predict several user- and message-based classes.

Chapter 5.Concluding Discussions 147

The result of this study show that personal and environmental characteristics have sig-

nificant impact on ones’ vocabulary use and writing style in peer-to-peer communica-

tions. In this work, it is shown that by using the word selection patterns and stylistic

preferences of chat users, it is possible to predict their sociolinguistic characteristics

by employing classification techniques. It is also shown that external factors such as

the time of a conversation and the recipient of a message has considerable effect on the

vocabulary use and writing style of an author.

The dataset used in this work also has distinguishing properties. The spontaneous

nature of chatting and point-to-point nature of the chat messages makes the chat dataset

quite different from any literary writing. To the best of ourknowledge, in this study, for

the first time in literature, the authorship analysis techniques are applied to real-time

online conversations.

In terms of our claims which are presented in Chapter 1, analysis of peer-to-peer

instant messaging conversations show that messages between peers contain many pre-

dictable attributes. The identity of the author of a message, the receiver of a message,

the age group, connectivity domain, and gender are some examples of such attributes.

Our findings clearly indicate the truth of claim 1, which is instant messaging communi-

cations contain characteristic markers inherent to their author and receiver and verifies

its validity.

We believe that the outcome of this work will prove to be beneficial for many

Chapter 5.Concluding Discussions 148

application areas such as e-commerce and Internet security. For example, it is pos-

sible that companies supporting virtual reference services may use this method for

gathering client profiles, determining a target population, and provide better and more

customized service to these clients. With the growing use ofInternet communication,

spamming becomes a worldwide phenomenon. This applicationcan also be used in

the implementation of dynamic spam filters. Once the classifier is trained by a set of

previously available spam messages, it may be possible to identify the structural prop-

erties of spam messages and detect them. The style-based approach presented in this

chapter may prove to be useful for this purpose. Another direct implication is the use

of our work for ensuring security within virtual groups. In most messaging services,

a user is not permitted to have more than one account. Matching user profiles may

prevent duplicate user accounts and can be used to detect thetrue source of malicious

messages.

This work can be extended in several ways. First, our approach is tested using only

one corpus. Application of our methods on different datasets will strengthen the find-

ings of this work. Applying our methods to other types of electronic discourse such

as emails, IRC messages, and newsgroup messages may reveal similarities between

different computer-mediated communication media. Second, this work has only been

tested on Turkish documents. While the applied procedure seems to be independent of

the language, the effectiveness and applicability to otherlanguages remain untested.

Additionally, such a work may provide clues on common and language-independent

Chapter 5.Concluding Discussions 149

characteristics of electronic discourse. Third, this workrelies on the “supervised learn-

ing” assumption. This means that the procedures described here are applicable only

if a set of training samples is available. A framework based on unsupervised classifi-

cation seems to be a natural extension of this work. In the unsupervised classification

approach, the classifier generates a set of spectral classeswithout requiring any input.

Information classes are assigned to these spectral classesafterward with user inter-

vention. Fourth, the problem can be modeled as a probabilistic information retrieval

model. Using the procedure described in this work, it may be possible to answer

queries such as “find the documents that are predicted to be written during a certain

period of time” or “find the documents that are possibly written by someone who has

a PhD degree”.

In chapter 4, a memory-based, term-partitioned parallel inverted index construction

framework was examined. Several problems were identified and improvements were

proposed for a parallel index inversion framework.

First, we proposed a termBucket-to-processor assignment scheme. This scheme

minimizes the communication cost of local vocabularies among processors and dis-

tributes the final query processing and storage loads among all processors, allowing a

finer grained parallelism. We also showed that, by using a termBucket-to-processor

assignment scheme, the need to create a global vocabulary can be eliminated and all

associated communications can be prevented.

Chapter 5.Concluding Discussions 150

Second, we developed and investigated several heuristics for generating term-to-

processor assignment. The results of our experiments show that, compared to a base-

line random assignment scheme, our proposed methods improved the parallel inversion

times significantly while providing reasonable final query processing and storage bal-

ances.

Third, we presented and explored four different communication-memory organiza-

tion schemes in order to reduce the communication time required. We also presented

methods to avoid deadlocks and network congestion and commented on memory uti-

lization of the overall system. Our results show that, splitting the communication-

memory in2 × (K−1)parts yields the best results.

Fourth, Simulations and actual parallel inversion times are presented in order to

give insight on our improvements. According to the observedresults, we recommend

the use of theE2A scheme for termBucket-to-processor assignment, and theKsKr

scheme for communication-memory organization.

Our analysis of the index inversion problem show that a naiveapproach for a dis-

tributed inversion problem would be too slow for any practical use. As our experiments

also indicate, that is because the creation of a global vocabulary in such a system would

create a serious bottleneck on processors. In order to alleviate this problem, we used

our second claim; the Web page data distributions follow a heavy tail distribution, and

proposed a bucketing scheme. In the proposed method the terms are hashed into a

Chapter 5.Concluding Discussions 151

finite number of buckets and information about these bucketsare communicated be-

tween processors instead of posting list information. By applying this simple, yet

effective bucketing strategy we prevent almost 35 % of the total communication and

avoid global vocabulary communication all together. The success of this work also

verifies that Web based communications follow similar distributions which can also be

exploited in order to alleviate challenging problems on Websearch engines.

This work can also be extended in several ways. First, the framework used in this

work does not consider the effect of bucket processing order. For example, processing

buckets in decreasing size order might present better results both in respect of final

storage balance and communication costs. Second, the number of buckets is assumed

to be fixed throughout this work. The scaling of our frameworkusing different number

of buckets can also be considered.

Bibliography

[1] L.A. Adamic and N. Glance. 2005. The political blogosphere and the 2004 U.S.

election: divided they blog. InLinkKDD ’05 Proceedings of the 3rd International

Workshop on Link Discovery, pp. 36–43, Chicago, IL, USA.

[2] L.A. Adamic. 2008. Knowledge sharing and yahoo answers:everyone knows

something. InWWW ’08 Proceedings of the 17th International Conference on

World Wide Web, pp. 665–674, Beijing, China.

[3] B. Aleman-Meza, M. Nagarajan, C. Ramakrishnan, L. Ding,P. Kolari, A.P. Sheth,

I.B. Arpinar, A. Joshi, and T. Finin. 2006. Semantic analytics on social networks:

experiences in addressing the problem of conflict of interest detection. InWWW

’06 Proceedings of the 15th International Conference on World Wide Web, pp.

407–416, Edinburgh, Scotland.

[4] R. Alonso, D. Barbara, and H. Garcia-Molina. 1990. Data caching issues in an

information retrieval system.ACM Transactions on Database Systems (TODS),

15(3), 359–384.

152

Chapter 5.Concluding Discussions 153

[5] I.S. Altingovde, R. Ozcan, and O.Ulusoy. 2009. A cost-aware strategy for query

result caching in search engines. InProceedings of the 31st European Conference

on Information Retrieval Research, pp. 628–636.

[6] I.S. Altingovde, R. Ozcan, B.B. Cambazoglu, and O. Ulusoy. 2011. A hybrid

approach for dynamic result caching for search engines. InProceedings of the

33rd European Conference on Information Retrieval research, pp. 510–516.

[7] S. Argamon, M. Saric, and S.S. Stein. 2003. Style mining of electronic messages

for multiple authorship discrimination: first results. InProceedings of the 9th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.

475–480, Washington, DC, USA.

[8] D. Avrahami and S.E. Hudson. 2006. Communication characteristics of instant

messaging: effects and predictions of interpersonal relationships. InCSCW ’06

Proceedings of the 2006 20th Anniversary Conference on Computer Supported

Cooperative Work, pp 505–514, Banff, Alberta, Canada.

[9] C. Aykanat, B.B. Cambazoglu, F. Findik, and T. Kurc. 2007. Adaptive decompo-

sition and remapping algorithms for object-space-parallel direct volume rendering

of unstructured grids.Journal of Parallel Distributed Computing, 67,77–99.

[10] R.H. Baayen, H. van Halteren, and F.J. Tweedie. 1996. Outside the cave of

shadows: using syntactic annotation to enhanceauthorshipattribution. Literary

and Linguistic Computing, 11(3), 121–132.

Chapter 5.Concluding Discussions 154

[11] E. Backer and P. van Kranenburg. 2004. Musical style recognition - a quantita-

tive approach. InProceedings of the Conference on Interdisciplinary Musicology

(CIM04), Graz, Austria.

[12] R. Baeza-Yates and F. Saint-Jean. 2003. A three level search engine index based

in query log distribution. InSPIRE’03 Proceedings of the 10th String Processing

and Information Retrieval, pp. 56–65, Manaus, Brazil.

[13] R. Baeza-Yates, F. Junquiera, V. Plachouras, and H.F. Witschel. 2007. Admission

policies for caches of search engine results. InSPIRE’07 Proceedings of the 14th

International Conference on String Processing and Information Retrieval, pp. 74–

85, Berlin, Heidelberg, Germany.

[14] R. Baeza-Yates, A. Gionis, F. Junquiera, V. Murdock, V.Plachouras, and F. Sil-

vestri. 2007. The impact of caching on search engines. InSIGIR ’07 Proceedings

of the 30th Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, pp. 183–190, Amsterdam, The Netherlands.

[15] R. Baeza-Yates, A. Ginois, F.P. Junquiera, V. Murdock,V. Plachouras, and F. Sil-

vestri. 2008. Design trade-offs for search engine caching.ACM Transactions on

the Web (TWEB), 2(4), 20–28.

[16] L. Backstorm, D. Hottenlocher, J. Kleinberg, and X. Lan2006. Group formation

Chapter 5.Concluding Discussions 155

in large social networks: membership, growth, and evolution. In KDD ’06 Pro-

ceedings of the 12th International Conference on KnowledgeDiscovery and Data

Mining, pp. 44–54, Philadelphia, PA, USA.

[17] N. Bansal and N. Koudas 2007. BlogScope: spatio-temporal analysis of the

blogosphere. InWWW ’07 Proceedings of the 16th International Conference on

World Wide Web, pp. 1269–1270, Banff, Alberta, Canada.

[18] L. Barroso, J. Dean, and U. Holzle. 2003. Web search for aplanet: The google

cluster architecture.Micro, IEEE, 23(2), 22–28.

[19] J. Baumes, M. Goldberg, M. Hayvanovych, M. Magdon-Ismail, W. Wallace, and

M. Zaki 2006. Finding hidden group structure in a stream of communications. In

Intelligence and Security Informatics, pp. 201–212.

[20] F. Benevenueto, T. Rodrigues, V. Almeida, J. Almeida, and M. Goncalves 2009.

Detecting spammers and content promoters in online video social networks. In

SIGIR ’09 Proceedings of the 32nd International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, pp. 620–627, Boston, MA,

USA.

[21] J.N.G. Binongo and M.W.A. Smith. 1999. The applicationof principal compo-

nent analysis to stylometry.Literary and Linguistic Computing, 11(3), 121–131.

[22] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. 2006. Mining

Chapter 5.Concluding Discussions 156

email social networks InMSR ’06 Proceedings of the 2006 International Workshop

on Mining Software Repositories, pp. 137–143, Shangai, China.

[23] R.H. Bisseling and W. Meesen. 2005. Communication balancing in parallel

sparse matrix-vector multiplication.Electronic Transactions on Numerical Analy-

sis. Special Issue on Combinatorial Scientific Computing,21, 47–65.

[24] R. Blanco, E. Bortinkov, F. Junqueira, R. Lempel, L. Telloli, and H. Zaragoza.

2010. Caching search engine results over incremental indices. InProceedings of

the 33rd International ACM SIGIR Conference on Research andDevelopment in

Information Retrieval, pp. 82–89.

[25] E. Bortinkov, R. Lempel, and K. Vornovitski. 2011. Caching for real time search.

In ECIR’11, pp. 104–116.

[26] S. Brin, and L. Page. 1998. The anatomy of a large-scale hypertextual web search

engine. InProceedings of the 7th International Conference on World Wide Web,

Brisbane, 14–18 April, pp. 107–117, Australia.

[27] E. Brynjolfsson, H.J. Yu, and D.S. Michael. 2003. Consumer surplus in the digital

economy: estimating the value of increased product varietyat online booksellers.

Management Science, 4911.

[28] J. Burrows. 1987.Computation into criticism: A study of Jane Austen’s novels

and an experiment in method. Oxford: Clarendon Press.

Chapter 5.Concluding Discussions 157

[29] S. Buttcher, and C.L.A. Clarke. 2006. A hybrid approachto index maintenance

in dynamic text retrieval systems. InAdvances in Information Retrieval 28th Euro-

pean Conference on IR Research, pp. 229–240, 10–12 April, London, UK.

[30] B.B. Cambazoglu and C. Aykanat. 2005. Harbinger Machine Learning Toolkit

manual. Technical Report BU-CE-0503, Bilkent University,Computer Engineer-

ing Department, Ankara.

[31] B.B. Cambazoglu, F.P. Junquiera, and V. Plachouras. 2010. A refreshing perspec-

tive of search engine caching. InWWW ’10 Proceedings of the 19th International

Conference on World Wide Web, pp. 181–190, Raleigh, North Carolina, USA.

[32] B.B. Cambazoglu, I.S. Altingovde, R. Ozcan, and O.Ulusoy. 2012. Cache-based

query processing for search engines.ACM Transactions on the Web (TWEB), 6(4),

no. 14.

[33] F. Can and J.M. Patton. 2004. Change of writing style with time.Computers and

Humanities, 38(1), 61–82.

[34] A. Cevahir, C. Aykanat, A. Turk, A., and B.B. Cambazoglu. 2010. Site-based

partitioning and repartitioning techniques for parallel pagerank computation.IEEE

Transactions on Parallel and Distributed Systems, 22(5), 786–802.

[35] J. Cho and H. Garcia-Molina. 2000. The evolution of the web and implications

for an incremental crawler. InProceedings of the 26th International Conference

on VLDB, Cairo, 10–14 September, pp. 200-209, Egypt.

Chapter 5.Concluding Discussions 158

[36] J. Cho and H. Garcia-Molina. 2002. Parallel crawlers. In Procedings of the 11th

International Conference on World Wide Web, Honolulu, Hawaii, 7–11 May, pp.

124–135, USA.

[37] L. Chen, L. Zhang, F. Jing, K.F. Deng, and W.Y. Ma. 2006. Ranking web objects

from multiple communities. InCIKM ’06 Proceedings of the 15th ACM Inter-

national Conference on Information and Knowledge Management, pp. 377-386,

Arlington, Virginia, USA.

[38] E.G. Coffman and P.J.Denning. 1973. Operating SystemsTheory. Prentice-Hall,

New Jersey, Ch. 6, pp. 241–283.

[39] M.W. Corney, A. Anderson, G. Mohay, and D.O. Vel. 2001. Mining email content

for author identification forensics.SIGMOD Record Web Edition, 30(4), 55–64.

[40] M.W. Corney. 2003. Analyzing E-mail text authorship for forensic purposes.

M.S. Thesis. Queensland University of Technology.

[41] T. Curk, J. Demsar, Q. Xu, G. Leban, U. Petrovic, I. Bratko, G. Shaulsky, and

B. Zupan. 2005. Microarray data mining with visual programming Bioinformatics,

21(3), 396–8.

[42] M.H. Dickey, G. Burnett, K.M. Chudoba, and M.M. Kazmer.2007. Do you read

me? Perspective making and perspective taking in chat communities. Journal of

the Association for Information Systems, 8(1), 47–70.

Chapter 5.Concluding Discussions 159

[43] C. Dwyer, S.R. Hiltz, and K. Passerini 2007. Trust and privacy concern within

social networking sites: a comparison of Facebook and MySpace,. InProceedings

of AMCIS 2007.

[44] W.E.Y. Elliot and R.J. Valenza. 1991. Was the Earl of Oxford the true Shake-

speare? A computer aided analysis.Notes and Queries, 236, 501–506.

[45] T. Fagni, R. Perego, F. Silvestri, and S. Orlando. 2006.Boosting the perfor-

mance of web search engines: caching and prefetching query results by exploiting

historical usage data.ACM Transactions on Information Systems (TOIS), 24(1),

51–78.

[46] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. 2008. LIBLINEAR:

A Library for Large Linear Classification.Journal of Machine Learning Research,

9, 1871–1874.

[47] D.W. Foster. 2000.Author unknown: on the trail of anonymous. New York:

Henry Holt.

[48] O. Freider and H.T. Siegelmann. 1991. On the allocationof documents in mul-

tiprocessor information systems. InProceedings of the 14th International ACM

SIGIR Conference on Research and Development in Information Retrieval, Illi-

nois, 13–16 October, pp 230–239. USA.

[49] J.H. Friedman. 2002. Sthocastic gradient boosting.Computational Statistics and

Data Analysis, 38(4), 367–378.

Chapter 5.Concluding Discussions 160

[50] G. Gan and T. Suel. 2009. Improved techniques for resultcaching in web search

engines. InWWW ’09 Proceedings of the 18th International Conference onWorld

Wide Web, New York, pp. 431–440, USA.

[51] G. Geisler and S. Burns. 2007. Tagging video: conventions and strategies of the

YouTube community. InJCDL ’07 Proceedings of the 7th ACM/IEEE-CS Joint

Conference on Digital Libraries, pp. 480, Vancouver, BC, Canada.

[52] V. Gomez, A. Kaltenbrunner, and V. Lopez 2008. Statistical analysis of the social

network and discussion threads in slashdot. InWWW ’08 Proceedings of the 17th

International Conference on World Wide Web, pp. 645–654, Beijing, China.

[53] http://www.google.com, Retrieved in January 2012.

[54] T. Gonzales and S. Sahni. 1976. Open shop scheduling to minimize finish time.

Journal of the ACM (JACM), 23(4), 665–679.

[55] N. Graham, G. Hirst, and B. Marthi. 2005. Segmenting documents by stylistic

character.Natural Language Engineering, 11(4), 397–415.

[56] K. Hakuta. 1991. Bilingualism as a gift. InStanford Center for Chicano Research

Working Paper Series33.

[57] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten 2009.

he WEKA Data Mining Software: An Update. InSIGKDD Explorations, Volume

11, Issue 1.

Chapter 5.Concluding Discussions 161

[58] E. Han, G. Karypis, and V. Kumar. 2001. Text categorization using weight

adjusted k-nearest neighbor classification. InProceedings of the 5th Pacific-Asia

Conference on Knowledge Discovery and Data Mining, pp. 53–65.

[59] S. Heinz and J. Zobel. 2003. Efficient single-pass indexconstruction for text

databases.Journal of American Society for Information Science and Technology,

54(8), 713–729.

[60] S.C. Herring and J.C. Paolillo. 2006. Gender and genre variations in Weblogs

Journal of Sociolinguistics, 10(4), 439–459.

[61] S.C. Herring and B. Danet (Eds.) 2007.Multilingual Internet: Language, Cul-

ture, and Communication Online, New York: Oxford University Press.

[62] D.I. Holmes. 1985. Analysis of literary style - a review. Journal of the Royal

Statistical Society, 148(4), 328–341.

[63] D.I. Holmes. 1994. Authorship attribution.Computers and the Humanities,

28(2), 87–106.

[64] D.I. Holmes and R. Forsyth. 1995. The Federalist revisited: new directions in

authorship attribution.Literary and Linguistic Computing, 10(2), 111–127.

[65] S. Hota, S. Argamon, and R.Chung. 2006. Gender in Shakespeare: automatic

stylistics gender classification using syntactic, lexical, and lemma features. In

Chicago Colloquium on Digital Humanities and Computer Science, Chicago, Illi-

nois.

Chapter 5.Concluding Discussions 162

[66] J. Huang, K.M. Thornton, and E.M. Efhimiadis. 2010. Conversational tagging

in twitter. In HT ’10 Proceedings of the 21st ACM Conference on Hypertext and

Hypermedia, pp. 173–178, Toronto, Canada.

[67] A. Java, X. Song, T. Finin, and B. Tseng 2007. Why we twitter: understanding

microblogging usage and communities. InWebKDD/SNA-KDD ’07 Proceedings

of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social

Network Analysis, pp. 56–65, San Jose, California, USA.

[68] D. Jensen and J. Neville 2002. Data mining in social networks. In ational

Academy of Sciences Symposium on Dynamic Social Network Modeling and Anal-

ysis.

[69] B.S. Jeong and E. Omiecinski. 1995. Inverted file partitioning schemes in mul-

tiple disk systems.IEEE Transactions on Parallel and Distributed Systems, 6(2),

142–153.

[70] T. Joachims. 1998. Text categorization with support vector machines: learning

with many relevant features. InProceedings of 10th European Conference on

Machine Learning (ECML-98), pp. 137–142, Heidelberg, Germany.

[71] E. Jonsson. 1998. Electronic discourse - on speech and writing on the Internet.

Retrieved June 24, 2006, from www.ludd.luth/ jonsson/D-essay/index.html.

[72] P. Juola and R.H. Baayen. 2005. A controlled-corpus experiment in authorship

identification by cross-entropy.Literary and Linguistic Computing, 20(1), 59–67.

Chapter 5.Concluding Discussions 163

[73] J. Karlgren and D. Cutting. 1994. Recognizing text genres with simple metrics

using discriminant analysis. InProceedings of the 15th International Conference

on Computational Linguistics - Volume 2, pp. 1071–1075, Kyoto, Japan.

[74] B. Kessler, G. Nunberg, and H. Schutze. 1997. Automaticdetection of text genre.

In Proceedings of the 35th Annual Meeting on Association for Computational Lin-

guistics, pp. 32–38, Madrid, Spain.

[75] D.V. Khmelev and F.J. Tweedie. 2001. Using Markov chains for identification of

writers. Literary and Linguistic Computing, 16(3), 299–307.

[76] B. Kjell. 1994. Authorship attribution of text samplesusing neural networks

and Bayesian classifiers. InIEEE International Conference on Systems, Man and

Cybernetics, San Antonio, Texas.

[77] M. Koppel, S. Argamon, and A.R. Shimoni. 2002. Automatically categorizing

written texts by author gender.Literary and Linguistic Computing, 17(4), 401–

412.

[78] G. Kossinets, J. Kleinberg, and D. Watts. 2008. The structure of information

pathways in a social communication network. InKDD ’08 Proceedings of the

14th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 435–443, Las Vegas, Nevada, USA.

[79] I. Krusl and E.H. Spafford. 1997. Authorship analysis:identifying the author of

a program.Computers and Security, 16(3), 233–257.

Chapter 5.Concluding Discussions 164

[80] M. Kubat and S. Matwin. 1997. Addressing the curse of imbalanced data sets:

one-sided sampling. InProceedings of the Fourteenth International Conference

on Machine Learning, pp. 179–186, Nashville, Tennessee.

[81] T. Kucukyilmaz, B.B. Cambazoglu, C. Aykanat, and F. Can. 2006. Chat min-

ing for gender prediction. InProceedings of the Fourth Biennial Conference on

Advances in Information Sciences, pp. 274–284, Izmir, Turkey.

[82] T. Kucukyilmaz, B.B. Cambazoglu, C. Aykanat, and F. Can. 2008. Chat min-

ing: Predicting user and message attributes in computer-mediated communication.

Information Processing and Management, 44(4), 1448–1466.

[83] T. Kucukyilmaz, A. Turk, and C. Aykanat. 2011. Memory resident parallel

inverted index construction. InProceedings of the 26th International Symposium

on Computer and Information Sciences, London, 26–28 September, UK.

[84] R. Kumar 1998. Recommendation systems: a probabilistic analysis. InPro-

ceedings of the 39th Annual Symposium on Foundations of Computer Science, pp.

664–673, San Jose, California, USA.

[85] J. Kungenis, A. Lommatzsch, and C. Bauckhage 2009. The slashdot zoo: min-

ing a social network with negative edges. InWWW ’09 Proceedings of the 18th

International Conference on World Wide Web, pp. 741–750, Madrid, Spain.

[86] W. Lam, M.E. Ruiz, and P. Srinivasan. 1999. Automatic text categorization

Chapter 5.Concluding Discussions 165

and its applications to text retrieval.IEEE Transactions on Knowledge and Data

Engineering, 11(6), 865–879.

[87] R. Lempel and S. Moran 2003. Predictive caching and prefetching of query

results in search engines. InWWW ’03 Proceedings of the 12th International

Conference on World Wide Web, pp. 19–28, Budapest, Hungary.

[88] R. Lempel and S. Moran. 2004. Optimizing result prefetching in web search

engines with segmented indices.ACM Transactions on Internet Technology, 4(1),

31–59.

[89] J. Leskovec and E. Horvitz 2008. Planetary-scale viewson a large instant-

messaging network. InProceedings of the 17th International Conference on World

Wide Web, Beijing, China.

[90] J. Leskovec, L. Backstorm, R. Kumar, and A. Tomkins 2008. Microscopic evo-

lution of social networks. InKDD ’08 Proceedings of the 14th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, pp.462–470,

Las Vegas, Nevada, USA.

[91] Lester, N., Zobel, J., and Williams, H. 2006. Efficient online index maintenance

for contigious inverted lists. Information Processing and Management, 42(4),

916–933.

[92] S. Levitan and S. Argamon. 2006. Fixing the Federalist:correcting results and

Chapter 5.Concluding Discussions 166

evaluating editions for automated attribution. InDigital Humanities, pp. 323–328,

Paris, France.

[93] K. Lewis, J. Kaufman, M. Gonzalez, A. Wimmer, and N. Cristakis 2008. Tastes,

ties, and time: A new social network dataset using Facebook.com. Social Net-

works, 30(4), 330–342.

[94] 2012 Obtained fromhttp://www.livinginternet.com/i/iwdns name.htm

25.11.2012.

[95] X. Long and T. Suel. 2006. Three-Level Caching for Efficient Query Processing

in Large Web Search Engines.World Wide Web, 9(4), 369–395.

[96] H. Love. 2002.Attributing authorship: an introduction. Cambridge: Cambridge

University Press.

[97] Z. Lu and K.S. McKinley. 2000. Partial collection replication versus caching for

information retrieval systems. InSIGIR ’00 Proceedings of the 23rd Annual In-

ternational ACM SIGIR Conference on Research and Development in Information

Retrieval, pp. 248–255, Athens, Greece.

[98] E.P. Markatos. 2001. On caching search engine query results. Computer Com-

munications, 24(2), 137–143.

[99] M. Marin, V. Gil-Costa, and C. Gomez-Pantoja. 2010. Newcaching techniques

for web search engines. InProceedings of the 19th ACM International Symposium

on High Performance Distributed Computing, pp. 215–226, New York, NY, USA.

Chapter 5.Concluding Discussions 167

[100] T.P. Martin, I.A. MacLeod, J.I. Russel, K. Leese, and B. Foster. 1990. A case

study of caching strategies for a distributed full text retrieval systems.Information

Processing and Management, 26(2), 227–247.

[101] T.P. Martin and J.I. Russel. 1991. Data caching strategies for distributed full

text retrieval systems.Information Systems, 16(1), 1–11.

[102] Y. Matsuo and H. Yamamoto 2009. Community gravity: measuring bidirec-

tional effects by trust and rating on online social networks. In WWW ’09 Pro-

ceedings of the 18th International Conference on World WideWeb, pp. 751–760,

Madrid, Spain.

[103] A. McCallum and K. Nigam. 1998. A comparison of event models for naive

Bayes text classification. InAAAI-98 Workshop on Learning for Text Categoriza-

tion, Madison, Wisconsin.

[104] S. Melnik, S. Raghavan, B. Yang, and H. Garcia-Molina.2001. Building a

distributed full-text index for the web.ACM Transactions on Information Systems,

19, 217–241.

[105] T. Merriam and R. Matthews. 1994. Neural computation in stylometry II: an

application to the works of Shakespeare and Marlowe.Literary and Linguistic

Computing, 9, 1–6.

[106] A. Moffat and T.A.H. Bell. 1995. In situ generation of compressed inverted

files. Journal of the American Society for Information Science, 45, 537–550.

Chapter 5.Concluding Discussions 168

[107] A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates. 2005. A pipelined archi-

tecture for distributed text query evaluation.Information Retrieval, 10(3), 205–

231.

[108] A. Moffat, W. Webber, and J. Zobel. 2006. Load balancing for term-distributed

parallel retrieval. InProceedings of the 29th International ACM SIGIR Conference

on Research and Development in IR, Seattle, Washington, 6–11 August, pp. 348–

355. USA.

[109] F. Mosteller and D.L. Wallace. 1964.Inference and disputed authorship: the

Federalist. Reading: Addison-Wesley.

[110] R. Ozcan, I.S. Altingovde, O. Ulusoy. 2004. Static query result caching re-

visited. InWWW ’08 Proceedings of the 17th International Conference onWorld

Wide Web, pp. 1169–1170, Beijing, China.

[111] R. Ozcan, I.S. Altingovde, B.B. Cambazoglu, F.P. Junqueira, and O. Ulusoy

2012. A five-level static cache architecture for web search engines. Information

Processing and Management, 48(5), 828–840.

[112] S. Pandit, D.H. Chau, S. Wang, and C. Faloutsos. 2007. Netprobe: a fast

and scalable system for fraud detection in online auction networks. InWWW ’07

Proceedings of the 16th International Conference on World Wide Web, pp. 201–

210, Bannf, Alberta, Canada.

Chapter 5.Concluding Discussions 169

[113] G. Pass, A. Chowdhury, and C. Torgeson. 2006. A pictureof search. InInter-

national Conference on Scalable Information Systems.

[114] J.M. Patton and F. Can. 2004. A stylometric analysis ofYasar Kemal’s Ince

Memed tetralogy.Computers and the Humanities, 38(4), 457–467.

[115] S. Petrovic, M. Osborne, and V. Lavrenko 2010. Streaming first story detec-

tion with application to Twitter. InHLT ’10 Human Language Technologies: The

2010 Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pp. 181–189, Los Angeles, California, USA.

[116] S. Podliping and L. Bozsormenyi. 2003. A survey of web cache replacement

strategies.ACM Computing Surveys (CSUR), 35(4), 374–398.

[117] M. Pollatschek and Y.T. Radday. 1981. Vocabulary richness and concentration

in Hebrew biblical literature.Association for Literary and Linguistic Computing

Bulletin, 8, 217–231.

[118] M.L. Radford. 2005. Encountering virtual users: A qualitative investigation of

interpersonal communication in chat reference.Journal of the American Society

for Information Science and Technology, 57(8), 1046–1059.

[119] M.L. Radford and L.S. Connaway. 2007. “Screenagers” and live chat reference:

Living up to the promise.Scan, 26(1), 31–39.

[120] B.A. Ribeiro-Neto, J.P. Kitajima, G. Navarro, C.R.G.Sant’Ana, and N. Ziviani.

Chapter 5.Concluding Discussions 170

1998. Parallel generation of inverted files for distributedtext collections. InPro-

ceedings of the 18th International Conference of the Chilean Computer Science

Society, Antofagasta, 12–14 November, pp. 149. Chile.

[121] B.A. Ribeiro-Neto, E.S. Moura, M.S. Neubert, and N. Ziviani. 1999. Efficient

distributed algorithms to build inverted files. InProceedings of the 22nd Interna-

tional ACM SIGIR Conference on Research and Development in IR, Berkeley, CA,

15–19 August, pp. 105–112. USA.

[122] J. Rudman. 1998. The state of authorship attribution studies: some problems

and solutions.Computers and the Humanities, 31(4), 351–365.

[123] J. Rzeszortaski and A. Kittur. 2012. Learning from history: predicting reverted

work at the word level in Wikipedia. InCSCW ’12 Proceedings of the ACM Con-

ference on Computer Supported Cooperative Work, pp. 437–440, Seattle, Wash-

ington, USA.

[124] M. Sabordo, S.Y. Chai, M.J. Berryman, and D. Abbott. 2005. Who wrote

the “Letter to the Hebrews”?: data mining for detection of text authorship. In

Proceedings of the SPIE, 5649, 513-524.

[125] S. Alici, I.S. Altingovde, R. Ozcan, B.B. Cambazoglu,and O. Ulusoy. 2011.

Timestamp-based result cache invalidation for Web search engines. InProceedings

of the 34th International ACM SIGIR Conference on Research and Development

in Information Retrieval, pp. 973–982.

Chapter 5.Concluding Discussions 171

[126] S. Alici, I.S. Altingovde, R. Ozcan, B.B. Cambazoglu,and O. Ulusoy. 2012

Adaptive time-to-live strategies for query result cachingin Web search engines. In

ECIR’12, pp. 401–412.

[127] G. Salton and M.J. McGill. 1983.Introduction to Modern Information Retrieval:

McGraw-Hill.

[128] G. Salton. 1989. Automatic text processing: the transformation, analysis,

and retrieval of information by computer. Addison-Wesley Longman Publishing,

Boston, MA, USA.

[129] P.C. Saravia, E.S. de Moura, N. Ziviani, W. Meira, R. Fonseca, and B. Ribeiro-

Neto. 2001. Rank-preserving two-level caching for scalable search engines. In

SIGIR ’01 Proceedings of the 24th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pp. 51–58, New Orleans,

Louisiana, USA.

[130] M.F. Schwartz and D.C.M. Wood. 1993. Discovering shared interests using

graph analysis.Communications of the ACM, 36(8), 78–89, 1993.

[131] F. Sebastiani. 2002. Machine learning in automated text categorization.ACM

Computing Surveys, 34(1), 1–47.

[132] S. Sen, J. Vig, and J. Reidl 2009. Tagommenders: connecting users to items

through tags. InWWW ’09 Proceedings of the 18th International Conference on

World Wide Web, pp. 671–680, Madrid, Spain.

Chapter 5.Concluding Discussions 172

[133] P. Simpson and R. Alonso. 1987. Data cashing in IR systems. InSIGIR ’87

Proceedings of the 10th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pp. 296–305, New Orleans, Louisiana,

USA.

[134] G. Skobeltsyn, F. Junqueira, V. Plachouras, and R. Baeza-Yates. 2008. ResIn:

a combination of results caching and index pruning for high-performance web

search engines. InSIGIR ’08 Proceedings of the 31st Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pp.

131–138, Singapore, Singapore.

[135] O. Sornil. 2001.Parallel inverted index for large scale dynamic digital libraries.

Ph.D. Thesis, Virginial Polytechnic Institute and State University.

[136] E.H. Spafford and E.H. Weeber. 1993. Software forensics: can we track code

to its authors?Computers and Security, 12(6), 585–595.

[137] B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, M. Demirbas. 2010. Short

text classification in twitter to improve information filtering. In SIGIR ’10 Pro-

ceedings of the 33rd International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval, pp. 841–842, Geneva, Switzerland.

[138] E. Stamatos, N. Fakotakis, and G. Kokkotakis. 2000. Automatic text catego-

rization in terms of genre and author.Computational Linguistics, 26(4), 471–495.

[139] M. Thelwall. 2008. Social networks, gender, and friending: An analysis of

Chapter 5.Concluding Discussions 173

MySpace member profiles.Journal of the American Society for Information Sci-

ence and Technology, 59(8), 1321–1330.

[140] M. Thelwall, D. Wilkinson, and S. Uppal. 2010. Data mining emotion in social

network communication: Gender differences in MySpace.Journal of the Ameri-

can Society for Information Science and Technology, 61(1), 190–199.

[141] R. Thomson and T. Murachver. 2001. Predicting gender from electronic dis-

course.British Journal of Social Psychology, 40(2), 193–208.

[142] A. Tomasic,H. Garcia-Mollina. 1993. Caching and database scaling in dis-

tributed shared-nothing information retrieval systemsACM Sigmod Record, 22(2),

129–138.

[143] Y. Tsegay, A. Turpin, and J. Zobel. 2007. Dynamic indexpruning for effec-

tive caching. InProceedings of the 16th ACM Conference on Information and

Knowledge Management. pp. 987–990, New York, USA.

[144] Y. Tsuboi and Y. Matsumoto. 2002. Authorship identification for heterogeneous

documents.M.S. Thesis. Nara Institute of Science and Technology.

[145] M.T. Turell. 2004. Textual kidnapping revisited: thecase of plagiarism in

literary translation.The International Journal of Speech, Language and the Law,

11(1), 1–26.

[146] F.J. Tweedie, S. Singh, and D.I. Holmes. 1996. Neural network applications in

stylometry: the federalist papers.Computers and the Humanities, 30(1), 1–10.

Chapter 5.Concluding Discussions 174

[147] B. Uçar and C. Aykanat. 2004. Encapsulating multiplecommunication-cost

metrics in partitioning sparse rectangular matrices for parallel matrix-vector mul-

tiplies. SIAM Journal of Scientific Computing, 25(6),1837–1859.

[148] L.G. Valiant. 1990. A bridging model for parallel computation. Communica-

tions of the ACM, 33(8), 103–111.

[149] D.O. Vel, M. Corney, A. Anderson, and G. Mohay. 2002. Language and gen-

der author cohort analysis of e-mail for computer forensics. In Second Digital

Forensics Research Workshop, Syracuse, USA.

[150] B. Viswanath, A. Mislove, M. Cha, and K.P. Gummadi 2009. On the evolu-

tion of user interaction in Facebook. InWOSN ’09 Proceedings of the 2nd ACM

Workshop on Online Social Networks, pp. 37–42, Barcelona, Spain.

[151] J.B. Walther, U. Bunz, and N.N. Bazarova. 2005. Rules of virtual groups.

In Proceedings of the 38th Annual Hawaii International Conference on System

Sciences, Big Island, Hawaii.

[152] Wikipedia. 2007. Emoticon.

Retrieved October 23, 2007, from http://en.wikipedia.org/wiki/Emoticon.

[153] F. Wilcoxson. 1945. Individual comparisons by ranking methods.Biometrics,

1, 80–83.

Chapter 5.Concluding Discussions 175

[154] I.H. Witten, A. Moffat, and T.C. Bell. 1999.Managing Gigabytes : Compress-

ing and Indexing Documents and Images. Von Nostrand Reinhold, San Francisco,

CA, 2. edition.

[155] Z. Xiao, L. Guo, and J. Tracey. 2007. Understanding instant messaging traffic

characteristics. In7th International Conference on Distributed Computing Sys-

tems, Toronto, Canada, June 25–27, 2007.

[156] Y. Xie and D. O’Hallaron. 2002. Locality in search engine queries and its im-

plications for caching. InINFOCOM 2002. Twenty-First Annual Joint Conference

of the IEEE Computer and Communications Societies, pp. 1238–1247.

[157] http://www.yahoo.com

[158] Y. Yang and J.O. Pedersen. 1997. A comparative study onfeature selection in

text categorization. InProceedings of the Fourteenth International Conference on

Machine Learning, pp. 412–420, Nashville, Tennessee, USA.

[159] J.Ye, J.H. Chow, J. Chen, and Z. Zheng 2009. Stochasticgradient boosted dis-

tributed decision trees. InProceedings of the 18th ACM Conference on Information

and Knowledge Management, pp. 2061–2064, New York, N.Y., USA.

[160] A. Zelenkauskatie and S.C. Herring. 2006. Gender encoding of typographical

elements in Lithuanian and Croatian IRC InProceedings of Cultural Attitudes

Towards Technology and Communication, pp. 474–489, Tartu, Estonia.

Chapter 5.Concluding Discussions 176

[161] T. Zesch, C. Muller, and I. Gurevych. 2008. Extractinglexical semantic knowl-

edge from Wikipedia and Wiktionary. InLREC’08 Proceedings of the Sixth In-

ternational Conference on Language Resources and Evaluation, Marrakech, Mo-

rocco.

[162] J. Zhang, X. Long, and T. Suel. 2008. Performance of compressed inverted

list caching in search engines. InWWW ’08 Proceedings of the 17th International

Conference on World Wide Web, pp. 387–396. New York, USA.

[163] R. Zheng, J. Li, H. Chen, and Z. Huang. 2006. A frameworkfor authorship iden-

tification of online messages: writing-style and classification techniques.Journal

of the American Society for Information Science and Technology, 57(3), 378–393.

[164] G. Zipf. 1932. Selective Studies and the Principle of Relative Frequency in

Language. Harvard University Press, MA.

[165] J. Zobel, A. Moffat, and K. Ramamohanarao. 1998. Inverted files versus signa-

ture files for text indexing.ACM Transactions on Database Systems, 23, 453–490.

