27,947 research outputs found

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    A new sequential covering strategy for inducing classification rules with ant colony algorithms

    Get PDF
    Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms

    Computational steering of a multi-objective genetic algorithm using a PDA

    Get PDF
    The execution process of a genetic algorithm typically involves some trial-and-error. This is due to the difficulty in setting the initial parameters of the algorithm – especially when little is known about the problem domain. The problem is magnified when applied to multi-objective optimisation, as care is needed to ensure that the final population of candidate solutions is representative of the trade-off surface. We propose a computational steering system that allows the engineer to interact with the optimisation routine during execution. This interaction can be as simple as monitoring the values of some parameters during the execution process, or could involve altering those parameters to influence the quality of the solutions produce by the optimisation process

    A System for Accessible Artificial Intelligence

    Full text link
    While artificial intelligence (AI) has become widespread, many commercial AI systems are not yet accessible to individual researchers nor the general public due to the deep knowledge of the systems required to use them. We believe that AI has matured to the point where it should be an accessible technology for everyone. We present an ongoing project whose ultimate goal is to deliver an open source, user-friendly AI system that is specialized for machine learning analysis of complex data in the biomedical and health care domains. We discuss how genetic programming can aid in this endeavor, and highlight specific examples where genetic programming has automated machine learning analyses in previous projects.Comment: 14 pages, 5 figures, submitted to Genetic Programming Theory and Practice 2017 worksho

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks

    Reactive with tags classifier system applied to real robot navigation

    Get PDF
    7th IEEE International Conference on Emerging Technologies and Factory Automation. Barcelona, 18-21 October 1999.A reactive with tags classifier system (RTCS) is a special classifier system. This system combines the execution capabilities of symbolic systems and the learning capabilities of genetic algorithms. A RTCS is able to learn symbolic rules that allow to generate sequence of actions, chaining rules among different time instants, and react to new environmental situations, considering the last environmental situation to take a decision. The capacity of RTCS to learn good rules has been prove in robotics navigation problem. Results show the suitability of this approximation to the navigation problem and the coherence of extracted rules
    corecore