7,901 research outputs found

    On the Use of XML in Medical Imaging Web-Based Applications

    Get PDF
    The rapid growth of digital technology in medical fields over recent years has increased the need for applications able to manage patient medical records, imaging data, and chart information. Web-based applications are implemented with the purpose to link digital databases, storage and transmission protocols, management of large volumes of data and security concepts, allowing the possibility to read, analyze, and even diagnose remotely from the medical center where the information was acquired. The objective of this paper is to analyze the use of the Extensible Markup Language (XML) language in web-based applications that aid in diagnosis or treatment of patients, considering how this protocol allows indexing and exchanging the huge amount of information associated with each medical case. The purpose of this paper is to point out the main advantages and drawbacks of the XML technology in order to provide key ideas for future web-based applicationsPeer ReviewedPostprint (author's final draft

    Security and confidentiality approach for the Clinical E-Science Framework (CLEF)

    Get PDF
    CLEF is an MRC sponsored project in the E-Science programme that aims to establish policies and infrastructure for the next generation of integrated clinical and bioscience research. One of the major goals of the project is to provide a pseudonymised repository of histories of cancer patients that can be accessed by researchers. Robust mechanisms and policies are needed to ensure that patient privacy and confidentiality are preserved while delivering a repository of such medically rich information for the purposes of scientific research. This paper summarises the overall approach adopted by CLEF to meet data protection requirements, including the data flows and pseudonymisation mechanisms that are currently being developed. Intended constraints and monitoring policies that will apply to research interrogation of the repository are also outlined. Once evaluated, it is hoped that the CLEF approach can serve as a model for other distributed electronic health record repositories to be accessed for research

    Security and confidentiality approach for the Clinical E-Science Framework (CLEF)

    Get PDF
    Objectives: CLEF is an MRC sponsored project in the E-Science programme that aims to establish methodologies and a technical infrastructure for the next generation of integrated clinical and bioscience research. Methods: The heart of the CLEF approach to this challenge is to design and develop a pseudonymised repository of histories of cancer patients that can be accessed by researchers. Robust mechanisms and policies have been developed to ensure that patient privacy and confidentiality are preserved while delivering a repository of such medically rich information for the purposes of scientific research. Results: This paper summarises the overall approach adopted by CLEF to meet data protection requirements, including the data flows, pseudonymisation measures and additional monitoring policies that are currently being developed. Conclusion: Once evaluated, it is hoped that the CLEF approach can serve as a model for other distributed electronic health record repositories to be accessed for research

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    Combining semantic web technologies with evolving fuzzy classifier eClass for EHR-based phenotyping : a feasibility study

    Get PDF
    In parallel to nation-wide efforts for setting up shared electronic health records (EHRs) across healthcare settings, several large-scale national and international projects are developing, validating, and deploying electronic EHR oriented phenotype algorithms that aim at large-scale use of EHRs data for genomic studies. A current bottleneck in using EHRs data for obtaining computable phenotypes is to transform the raw EHR data into clinically relevant features. The research study presented here proposes a novel combination of Semantic Web technologies with the on-line evolving fuzzy classifier eClass to obtain and validate EHR-driven computable phenotypes derived from 1956 clinical statements from EHRs. The evaluation performed with clinicians demonstrates the feasibility and practical acceptability of the approach proposed

    Enhanced Version Control for Unconventional Applications

    Get PDF
    The Extensible Markup Language (XML) is widely used to store, retrieve, and share digital documents. Recently, a form of Version Control System has been applied to the language, resulting in Version-Aware XML allowing for enhanced portability and scalability. While Version Control Systems are able to keep track of changes made to documents, we think that there is untapped potential in the technology. In this dissertation, we present novel ways of using Version Control System to enhance the security and performance of existing applications. We present a framework to maintain integrity in offline XML documents and provide non-repudiation security features that are independent of central certificate repositories. In addition, we use Version Control information to enhance the performance of Automated Policy Enforcement eXchange framework (APEX), an existing document security framework developed by Hewlett-Packard (HP) Labs. Finally, we present an interactive and scalable visualization framework to represent Version-Aware-related data that helps users visualize and understand version control data, delete specific revisions of a document, and access a comprehensive overview of the entire versioning history

    Authorization schema for electronic health-care records: for Uganda

    Get PDF
    This thesis discusses how to design an authorization schema focused on ensuring each patient's data privacy within a hospital information system
    corecore