64 research outputs found

    Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

    Get PDF
    We develop a framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then lift the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, (l-)Dominating Set, Edge (l-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of a few important graph classes (in some cases these are bicriteria algorithms which simultaneously approximate both the number of editing operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r log{n})-approximation and a bicriteria (4,4)-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w}))-approximation, and for bounded pathwidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w} * log n))-approximation. For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove complementary hardness-of-approximation results assuming P != NP: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor 2 (assuming UGC)

    Correlation Clustering and Two-edge-connected Augmentation for Planar Graphs

    Get PDF
    In correlation clustering, the input is a graph with edge-weights, where every edge is labelled either + or - according to similarity of its endpoints. The goal is to produce a partition of the vertices that disagrees with the edge labels as little as possible. In two-edge-connected augmentation, the input is a graph with edge-weights and a subset R of edges of the graph. The goal is to produce a minimum weight subset S of edges of the graph, such that for every edge in R, its endpoints are two-edge-connected in Rcup S. For planar graphs, we prove that correlation clustering reduces to two-edge-connected augmentation, and that both problems have a polynomial-time approximation scheme

    Tight bounds for parameterized complexity of Cluster Editing

    Get PDF
    In the Correlation Clustering problem, also known as Cluster Editing, we are given an undirected graph G and a positive integer k; the task is to decide whether G can be transformed into a cluster graph, i.e., a disjoint union of cliques, by changing at most k adjacencies, that is, by adding or deleting at most k edges. The motivation of the problem stems from various tasks in computational biology (Ben-Dor et al., Journal of Computational Biology 1999) and machine learning (Bansal et al., Machine Learning 2004). Although in general Correlation Clustering is APX-hard (Charikar et al., FOCS 2003), the version of the problem where the number of cliques may not exceed a prescribed constant p admits a PTAS (Giotis and Guruswami, SODA 2006). We study the parameterized complexity of Correlation Clustering with this restriction on the number of cliques to be created. We give an algorithm that - in time O(2^{O(sqrt{pk})} + n+m) decides whether a graph G on n vertices and m edges can be transformed into a cluster graph with exactly p cliques by changing at most k adjacencies. We complement these algorithmic findings by the following, surprisingly tight lower bound on the asymptotic behavior of our algorithm. We show that unless the Exponential Time Hypothesis (ETH) fails - for any constant 0 <= sigma <= 1, there is p = Theta(k^sigma) such that there is no algorithm deciding in time 2^{o(sqrt{pk})} n^{O(1)} whether an n-vertex graph G can be transformed into a cluster graph with at most p cliques by changing at most k adjacencies. Thus, our upper and lower bounds provide an asymptotically tight analysis of the multivariate parameterized complexity of the problem for the whole range of values of p from constant to a linear function of k.publishedVersio

    Tight bounds for parameterized complexity of cluster editing with a small number of clusters

    Get PDF
    In the Cluster Editing problem, also known as Correlation Clustering, we are given an undirected n-vertex graph G and a positive integer k. The task is to decide if G can be transformed into a cluster graph, i.e., a disjoint union of cliques, by changing at most k adjacencies, i.e. by adding/deleting at most k edges. We give a subexponential-time parameterized algorithm that in time View the MathML source decides whether G can be transformed into a cluster graph with exactly p cliques by changing at most k adjacencies. Our algorithmic findings are complemented by the following tight lower bound on the asymptotic behavior of our algorithm. We show that unless ETH fails, for any constant 0<σ≤1, there is p=Θ(kσ) such that there is no algorithm deciding in time View the MathML source whether G can be transformed into a cluster graph with at most p cliques by changing at most k adjacencies

    Exploiting Dense Structures in Parameterized Complexity

    Get PDF
    Over the past few decades, the study of dense structures from the perspective of approximation algorithms has become a wide area of research. However, from the viewpoint of parameterized algorithm, this area is largely unexplored. In particular, properties of random samples have been successfully deployed to design approximation schemes for a number of fundamental problems on dense structures [Arora et al. FOCS 1995, Goldreich et al. FOCS 1996, Giotis and Guruswami SODA 2006, Karpinksi and Schudy STOC 2009]. In this paper, we fill this gap, and harness the power of random samples as well as structure theory to design kernelization as well as parameterized algorithms on dense structures. In particular, we obtain linear vertex kernels for Edge-Disjoint Paths, Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut, Multiway Cut and Multicut on everywhere dense graphs. In fact, these kernels are obtained by designing a polynomial-time algorithm when the corresponding parameter is at most ?(n). Additionally, we obtain a cubic kernel for Vertex-Disjoint Paths on everywhere dense graphs. In addition to kernelization results, we obtain randomized subexponential-time parameterized algorithms for Edge Odd Cycle Transversal, Minimum Bisection, and d-Way Cut. Finally, we show how all of our results (as well as EPASes for these problems) can be de-randomized
    • …
    corecore