
Tight bounds for Parameterized Complexity of
Cluster Editing∗

Fedor V. Fomin1, Stefan Kratsch2, Marcin Pilipczuk3, Michał
Pilipczuk1, and Yngve Villanger1

1 Department of Informatics, University of Bergen, Bergen, Norway,
{fomin,michal.pilipczuk,yngve.villanger}@ii.uib.no

2 MPI Informatics, Saarbrücken, Germany, skratsch@mpi-inf.mpg.de
3 Institute of Informatics, University of Warsaw, Poland, malcin@mimuw.edu.pl

Abstract
In the Correlation Clustering problem, also known as Cluster Editing, we are given an
undirected graph G and a positive integer k; the task is to decide whether G can be transformed
into a cluster graph, i.e., a disjoint union of cliques, by changing at most k adjacencies, that
is, by adding or deleting at most k edges. The motivation of the problem stems from various
tasks in computational biology (Ben-Dor et al., Journal of Computational Biology 1999) and
machine learning (Bansal et al., Machine Learning 2004). Although in general Correlation
Clustering is APX-hard (Charikar et al., FOCS 2003), the version of the problem where the
number of cliques may not exceed a prescribed constant p admits a PTAS (Giotis and Guruswami,
SODA 2006).

We study the parameterized complexity of Correlation Clustering with this restriction
on the number of cliques to be created. We give an algorithm that

in time O(2O(
√
pk) + n + m) decides whether a graph G on n vertices and m edges can be

transformed into a cluster graph with exactly p cliques by changing at most k adjacencies.

We complement these algorithmic findings by the following, surprisingly tight lower bound on
the asymptotic behavior of our algorithm. We show that unless the Exponential Time Hypothesis
(ETH) fails

for any constant 0 ≤ σ ≤ 1, there is p = Θ(kσ) such that there is no algorithm deciding in
time 2o(

√
pk) · nO(1) whether an n-vertex graph G can be transformed into a cluster graph

with at most p cliques by changing at most k adjacencies.
Thus, our upper and lower bounds provide an asymptotically tight analysis of the multivariate
parameterized complexity of the problem for the whole range of values of p from constant to a
linear function of k.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases parameterized complexity, cluster editing, correlation clustering, subex-
ponential algorithms, tight bounds

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.32

∗ The authors from University of Bergen are supported by the European Research Council (ERC) via
grant Rigorous Theory of Preprocessing, reference 267959 and by the Research Council of Norway. The
third author is supported by the National Science Centre grant N206 567140 and Foundation for Polish
Science.

© F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 32–43

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bergen

https://core.ac.uk/display/479089013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.32
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 33

1 Introduction

Correlation clustering, also known as clustering with qualitative information or cluster editing,
is the problem to cluster objects based only on the qualitative information concerning
similarity between pairs of them. For every pair of objects we have a binary indication
whether they are similar or not. The task is to find a partition of the objects into clusters
minimizing the number of similarities between different clusters and non-similarities inside of
clusters. The problem was introduced by Ben-Dor, Shamir, and Yakhini [6] motivated by
problems from computational biology, and, independently, by Bansal, Blum, and Chawla
[5], motivated by machine learning problems concerning document clustering according
to similarities. The correlation version of clustering was studied intensively, including
[1, 3, 4, 13, 14, 24, 34].

The graph-theoretic formulation of the problem is the following. A graph K is a cluster
graph if every connected component of K is a complete graph. Let G = (V,E) be a graph;
then F ⊆ V × V is called a cluster editing set for G if G4F = (V,E4F) is a cluster graph.
Here E4F is the symmetric difference between E and F . In the optimization version of
the problem the task is to find a cluster editing set of minimum size. Constant factor
approximation algorithms for this problem were obtained in [1, 5, 13]. On the negative side,
the problem is known to be NP-complete [34] and, as was shown by Charikar, Guruswami,
and Wirth [13], also APX-hard.

Giotis and Guruswami [24] initiated the study of clustering when the maximum number
of clusters that we are allowed to use is stipulated to be a fixed constant p. As observed by
them, this type of clustering is well-motivated in settings where the number of clusters might
be an external constraint that has to be met. It appeared that p-clustering variants posed
new and non-trivial challenges. In particular, in spite of the APX-hardness of the general
case, Giotis and Guruswami [24] gave a PTAS for this version of the problem.

A cluster graph G is called a p-cluster graph if it has exactly p connected components
or, equivalently, if it is a disjoint union of exactly p cliques. Similarly, a set F is a p-cluster
editing set of G, if G4F is a p-cluster graph. In parameterized complexity, correlation
clustering and its restriction to bounded number of clusters were studied under the names
Cluster Editing and p-Cluster Editing, respectively.

Cluster Editing Parameter: k.
Input: A graph G = (V,E) and a non-negative integer k.
Question: Is there a cluster editing set for G of size at most k?

p-Cluster Editing Parameters: p, k.
Input: A graph G = (V,E) and non-negative integers p and k.
Question: Is there a p-cluster editing set for G of size at most k?

The parameterized version of Cluster Editing, and variants of it, were studied intens-
ively [7, 8, 9, 10, 11, 16, 20, 25, 27, 28, 31, 33]. The problem is solvable in time O(1.62k+n+m)
[7] and it has a kernel with 2k vertices [12, 15] (see Section 2 for the definition of a kernel).
Shamir et al. [34] showed that p-Cluster Editing is NP-complete for every fixed p ≥ 2. A
kernel with (p+ 2)k + p vertices was given by Guo [26].

Our results

We study the impact of the interaction between p and k on the parameterized complexity of
p-Cluster Editing. Our main algorithmic result is the following.

STACS’13

34 Tight bounds for Parameterized Complexity of Cluster Editing

I Theorem 1. p-Cluster Editing is solvable in time O(2O(
√
pk) +m+ n).

It is straightforward to modify our algorithm to work also in the following variants of the
problem, where each edge and non-edge is assigned some edition cost: either (i) all costs are
at least one and k is the bound on the maximum total cost of the solution, or (ii) we ask for
a set of at most k edits of minimum cost. Let us also remark that, by Theorem 1, if p = o(k)
then p-Cluster Editing can be solved in 2o(k)nO(1) time, and thus it belongs to complexity
class SUBEPT defined by Flum and Grohe [21, Chapter 16]. Until very recently, the only
problems known to be in the class SUBEPT were the problems with additional constraints
on the input, like being a planar, H-minor-free, or tournament graph [2, 17]. However, recent
algorithmic developments indicate that the structure of the class SUBEPT is much more
interesting than expected. It appears that some parameterized problems related to chordal
graphs, like Minimum Fill-in or Chordal Graph Sandwich, are also in SUBEPT [23].

We would like to remark that p-Cluster Editing can be also solved in worse time
complexity O((pk)O(

√
pk) +m+ n) using simple guessing arguments. One such algorithm is

based on the following observation: Suppose that, for some integer r, we know at least 2r+ 1
vertices from each cluster. Then, if an unassigned vertex has at most r incident modifications,
we know precisely to which cluster it belongs: it is adjacent to at least r + 1 vertices already
assigned to its cluster and at most r assigned to any other cluster. On the other hand, there
are at most 2k/r vertices with more than r incident modifications. Thus (i) guessing 2r + 1
vertices from each cluster (or all of them, if there are less than 2r + 1), and (ii) guessing all
vertices with more than r incident modifications, together with their alignment to clusters,
results in at most n(2r+1)pn2k/rp2k/r subcases. By pipelining it with the kernelization of
Guo [26] and with simple reduction rules that ensure p ≤ 6k (see Section 3.1 for details), we
obtain the claimed time complexity for r ∼

√
k/p.

An approach via chromatic coding, introduced by Alon et al. [2], also leads to an algorithm
with running time O(2O(p

√
k log p) + n+m). However, one needs to develop new concepts

to construct an algorithm for p-Cluster Editing with complexity bound as promised in
Theorem 1, and thus obtain a subexponential complexity for every sublinear p.

The crucial observation is that a p-cluster graph, for p = O(k), has 2O(
√
pk) edge cuts of

size at most k (henceforth called k-cuts). As in a YES-instance to the p-Cluster Editing
problem each k-cut is a 2k-cut of a p-cluster graph, we infer a similar bound on the number
of cuts if we are dealing with a YES-instance. This allows us to use dynamic programming
over the set of k-cuts. Pipelining this approach with a kernelization algorithm for p-Cluster
Editing proves Theorem 1.

A new and active direction in parameterized complexity is the pursuit of asymptotically
tight bounds on the complexity of problems. In several cases, it is possible to obtain a
complete analysis by providing matching lower (complexity) and upper (algorithmic) bounds.
We refer to the recent survey of Marx [32], where recent developments in the area are
discussed, and the “optimality program" is announced among the main future research
directions in parameterized complexity. The most widely used complexity assumption for
such tight lower bounds is the Exponential Time Hypothesis (ETH), which posits that no
subexponential-time algorithms for k-CNF-SAT or CNF-SAT exist [29].

Following this direction, we complement Theorem 1 with two lower bounds. Our first,
main lower bound is based on the following technical Theorem 2, which shows that the
exponential time dependence of our algorithm is asymptotically tight for any choice of
parameters p and k, where p = O(k). As one can provide polynomial-time reduction rules
that ensure that p ≤ 6k (see Section 3.1 for details), this provides a full and tight picture of
the multivariate parameterized complexity of p-Cluster Editing: we have asymptotically

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 35

matching upper and lower bounds on the whole interval between p being a constant and linear
in k. To the best of our knowledge, this is the first fully multivariate and tight complexity
analysis of a parameterized problem.

I Theorem 2. For any ε > 0 there is δ > 0 and a polynomial-time algorithm that, given
positive integers p and k and a 3-CNF-SAT formula Φ with n variables and m clauses, such
that k, n ≥ εp and n,m ≤

√
pk/ε, computes a graph G and integer k′, such that k′ ≤ δk,

|V (G)| ≤ δ
√
pk, and

if Φ is satisfiable then there is a 6p-cluster graph G0 with V (G) = V (G0) and such that
|E(G)4E(G0)| ≤ k′;
if there exists a p′-cluster graph G0 with p′ ≤ 6p, V (G) = V (G0) and |E(G)4E(G0)| ≤ k′,
then Φ is satisfiable.

As the statement of Theorem 2 may look technical, we gather its two main consequences
in Corollaries 3 and 4. We state both corollaries in terms of an easier p≤-Cluster Editing
problem, where the number of clusters has to be at most p instead of precisely equal to
p. Clearly, this version can be solved by an algorithm for p-Cluster Editing with an
additional p overhead in time complexity by trying all possible p′ ≤ p, so the lower bound
holds also for harder p-Cluster Editing; however, we are not aware of any reduction in the
opposite direction. In both corollaries we use the fact that existence of a subexponential, in
both the number of variables and clauses, algorithm for verifying satisfiability of 3-CNF-SAT
formulas would violate ETH [29].

I Corollary 3 (♠1). Unless ETH fails, for every 0 ≤ σ ≤ 1, there is p = Θ(kσ) such that
p≤-Cluster Editing is not solvable in time 2o(

√
pk)|V (G)|O(1).

I Corollary 4 (♠). Unless ETH fails, for every constant p ≥ 6, there is no algorithm solving
p≤-Cluster Editing in time 2o(

√
k)|V (G)|O(1) or 2o(|V (G)|).

Note that Theorem 2 and Corollary 3 do not rule out possibility that the general Cluster
Editing is solvable in subexponential time. Our second, complementary lower bound shows
that when the number of clusters is not constrained, then the problem cannot be solved in
subexponential time unless ETH fails. This disproves the conjecture of Cao and Chen [12].
We note that Theorem 5 was independently obtained by Komusiewicz in his PhD thesis [30].

I Theorem 5 (♠). Unless ETH fails, Cluster Editing cannot be solved in time 2o(k)nO(1).

Clearly, by Theorem 1, the reduction of Theorem 5 must produce an instance where the
number of clusters in any solution, if there exists any, is Ω(k). Therefore, intuitively the
hard instances of Cluster Editing are those where every cluster needs just a constant
number of adjacent editions to be extracted.

2 Preliminaries

We use n to denote the number of vertices and m the number of edges in the input graph G.
For graphs G,H with V (G) = V (H), by H(G,H) we denote the number of edge modifications
needed to obtain H from G, i.e., H(G,H) = |E(G)4E(H)|. By E(X,Y) we denote the set
of edges having one endpoint in X and second in Y .

1 Due to space constraints, the proofs of all statements marked with ♠ are omitted. The full version of
this paper is available at http://arxiv.org/abs/1112.4419.

STACS’13

36 Tight bounds for Parameterized Complexity of Cluster Editing

A parameterized problem Π is a subset of Γ∗ ×N for some finite alphabet Γ. An instance
of a parameterized problem consists of (x, k), where k is called the parameter. A central
notion in parameterized complexity is fixed-parameter tractability (FPT) which means, for a
given instance (x, k), solvability in time f(k) · p(|x|), where f is an arbitrary computable
function of k and p is a polynomial in the input size. We refer to the book of Downey and
Fellows [19] for further reading on parameterized complexity.

A kernelization algorithm for a parameterized problem Π ⊆ Γ∗ × N is an algorithm that
given (x, k) ∈ Γ∗ × N outputs in time polynomial in |x|+ k a pair (x′, k′) ∈ Γ∗ × N, called
a kernel such that (x, k) ∈ Π if and only if (x′, k′) ∈ Π, |x′| ≤ g(k), and k′ ≤ k, where g is
some computable function.

We also need the following result of Guo [26].
I Proposition 6 ([26]). p-Cluster Editing admits a kernel with (p+ 2)k + p vertices. The
running time of the kernelization algorithm is O(n+m), where n is the number of vertices
and m the number of edges in the input graph G.

3 A subexponential algorithm for p-Cluster Editing

In this section we prove Theorem 1, that is, we show a O(2O(
√
pk) + n+m)-time algorithm

for p-Cluster Editing.

3.1 Reduction for large p

The first step of our algorithm is an application of the kernelization algorithm by Guo [26]
(Proposition 6) followed by some additional preprocessing rules that ensure that p ≤ 6k.
These additional rules are encapsulated in the following technical lemma.

I Lemma 7 (♠). There exists a polynomial time algorithm that, given an instance (G, p, k)
of p-Cluster Editing, outputs an equivalent instance (G′, p′, k), where G′ is an induced
subgraph of G and p′ ≤ 6k.

The key idea behind Lemma 7 is the observation that if p > 2k, then at least p − 2k
clusters in the final cluster graph cannot be touched by the solution, hence they must have
been present as isolated cliques already in the beginning. Hence, if p > 6k then we have to
already see p− 2k > 4k isolated cliques; otherwise, we may safely provide a negative answer.
Although these cliques may be still merged (to decrease the number of clusters) or split (to
increase the number of clusters), we can apply greedy arguments to identify a clique that
may be safely assumed to be untouched by the solution. Hence we can remove it from the
graph and decrement p by one. Although the greedy arguments seem very intuitive, their
formal proofs turn out to be somewhat technical.

3.2 Small cuts
We now proceed to the algorithm itself. Let us introduce the key notion.

I Definition 8. Let G = (V,E) be an undirected graph. A partition (V1, V2) of V is called
a k-cut of G if |E(V1, V2)| ≤ k.

I Lemma 9. k-cuts of a graph G can be enumerated with polynomial time delay.

Proof. We follow the standard branching. We order the vertices arbitrarily, start with empty
V1, V2 and for each consecutive vertex v we branch into two subcases: we put v either into V1

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 37

or into V2. Once the alignment of all vertices is decided, we output the partition. However,
each time we put a vertex in one of the sets, we run a polynomial-time max-flow algorithm
to check whether the minimum edge cut between V1 and V2 constructed so far is at most k.
If not, then we terminate this branch as it certainly cannot result in any solutions found.
Thus, we always pursue a branch that results in at least one feasible solution, and finding
the next solution occurs within a polynomial number of steps. J

Intuitively, k-cuts of the graph G form the search space of the algorithm. Therefore, we
would like to bound their number. We do this by firstly bounding the number of cuts of a
cluster graph, and then using the fact that a YES-instance is not very far from some cluster
graph. We begin with the following bound on binomial coefficients.

I Lemma 10 (♠). If a, b are nonnegative integers, then
(
a+b
a

)
≤ 22

√
ab.

I Lemma 11. Let K be a cluster graph containing at most p clusters, where p ≤ 6k. Then
the number of k-cuts of K is at most 28

√
pk.

Proof. By slightly abusing the notation, assume that K has exactly p clusters, some of
which may be empty. Let C1, C2, . . . , Cp be these clusters and c1, c2, . . . , cp be their sizes,
respectively. We firstly establish a bound on the number of partitions (V1, V2) such that the
cluster Ci contains xi vertices from V1 and yi from V2. Then we discuss how to bound the
number of ways of selecting pairs xi, yi summing up to ci for which the number of k-cuts is
positive. Multiplying the obtained two bounds gives us the claim.

Having fixed the numbers xi, yi, the number of ways in which the cluster Ci can be
partitioned is equal to

(
xi+yi

xi

)
. Note that

(
xi+yi

xi

)
≤ 22√xiyi by Lemma 10. Observe that

there are xiyi edges between V1 and V2 inside the cluster Ci, so if (V1, V2) is a k-cut, then∑p
i=1 xiyi ≤ k. By applying the Cauchy-Schwarz inequality we infer that

∑p
i=1
√
xiyi ≤√

p ·
√∑p

i=1 xiyi ≤
√
pk. Therefore, the number of considered cuts is bounded by

p∏
i=1

(
xi + yi
xi

)
≤ 22

∑p

i=1
√
xiyi ≤ 22

√
pk.

Moreover, observe that min(xi, yi) ≤
√
xiyi; hence,

∑p
i=1 min(xi, yi) ≤

√
pk. Thus, the

choice of xi, yi can be modeled by first choosing for each i, whether min(xi, yi) is equal to xi
or to yi, and then expressing b

√
pkc as the sum of p+ 1 nonnegative numbers: min(xi, yi) for

1 ≤ i ≤ p and the rest, b
√
pkc −

∑p
i=1 min(xi, yi). The number of choices in the first step is

equal to 2p ≤ 2
√

6pk, and in the second is equal to
(b√pkc+p

p

)
≤ 2
√
pk+
√

6pk. Therefore, the

number of possible choices of xi, yi is bounded by 2(1+2
√

6)
√
pk ≤ 26

√
pk. Hence, the total

number of k-cuts is bounded by 26
√
pk · 22

√
pk = 28

√
pk, as claimed. J

I Lemma 12. If (G, p, k) is a YES-instance of p-Cluster Editing with p ≤ 6k, then the
number of k-cuts of G is bounded by 28

√
2pk.

Proof. LetK be a cluster graph with at most p clusters such thatH(G,K) ≤ k. Observe that
every k-cut of G is also a 2k-cut of K, as K differs from G by at most k edge modifications.
The claim follows from Lemma 11. J

3.3 The algorithm
Proof of Theorem 1. Let (G = (V,E), p, k) be the given p-Cluster Editing instance. By
making use of Proposition 6, we can assume that G has at most (p+ 2)k+ p vertices, thus all

STACS’13

38 Tight bounds for Parameterized Complexity of Cluster Editing

the factors polynomial in the size of G can be henceforth hidden within the 2O(
√
pk) factor.

Application of Proposition 6 gives the additional O(n+m) summand to the complexity. By
further usage of Lemma 7 we can also assume that p ≤ 6k. Note that application of Lemma 7
can spoil the bound |V (G)| ≤ (p+ 2)k + p as p can decrease; however the number of vertices
of the graph is still bounded in terms of initial p and k.

We now enumerate k-cuts of G with polynomial time delay. If we exceed the bound
28
√

2pk given by Lemma 12, we know that we can safely answer NO, so we immediately
terminate the computation and give a negative answer. Therefore, we can assume that we
have computed the set N of all k-cuts of G and |N | ≤ 28

√
2pk.

Assume that (G, p, k) is a YES-instance and let K be a cluster graph with at most p
clusters such that H(G,K) ≤ k. Again, let C1, C2, . . . , Cp be the clusters of K. Observe that
for every j ∈ {0, 1, 2, . . . , p}, the partition

(⋃j
i=1 V (Ci),

⋃p
i=j+1 V (Ci)

)
has to be the k-cut

with respect to G, as otherwise there would be more than k edges that need to be deleted
from G in order to obtain K. This observation enables us to use a dynamic programming
approach on the set of cuts.

We construct a directed graph D, whose vertex set is equal to N × {0, 1, 2, . . . , p} ×
{0, 1, 2, . . . , k}; note that |V (D)| = 2O(

√
pk). We create arcs going from ((V1, V2), j, `) to

((V ′1 , V ′2), j + 1, `′), where V1 (V ′1 (hence V2) V ′2), j ∈ {0, 1, 2, . . . , p − 1} and `′ =
`+ |E(V1, V

′
1 \ V1)|+ |E(V ′1 \ V1, V

′
1 \ V1)| ((V,E) is the complement of the graph G). The

arcs can be constructed in 2O(
√
pk) time by checking for all the pairs of vertices whether

they should be connected. We claim that the answer to the instance (G, p, k) is equivalent to
reachability of any of the vertices of form ((V, ∅), p, `) from the vertex ((∅, V), 0, 0).

In one direction, if there is a path from ((∅, V), 0, 0) to ((V, ∅), p, `) for some ` ≤ k, then the
consecutive sets V ′1 \V1 along the path form clusters Ci of a cluster graph K, whose editing dis-
tance toG is accumulated on the last coordinate, thus bounded by k. In the second direction, if
there is a cluster graph K with clusters C1, C2, . . . , Cp within editing distance at most k from
G, then vertices

((⋃j
i=1 V (Ci),

⋃p
i=j+1 V (Ci)

)
, j,H

(
G
[⋃j

i=1 V (Ci)
]
,K
[⋃j

i=1 V (Ci)
]))

form a path from ((∅, V), 0, 0) to ((V, ∅), p,H(G,K)). Note that all these triples are indeed
vertices of the graph D, as

(⋃j
i=1 V (Ci),

⋃p
i=j+1 V (Ci)

)
are k-cuts of G.

Reachability in a directed graph can be tested in linear time with respect to the number
of vertices and arcs. We can now apply this algorithm to the graph D and conclude solving
the p-Cluster Editing instance in O(2O(

√
pk) + n+m) time. J

4 Multivariate lower bound

This section is devoted to sketching the proof of Theorem 2. As the provided reduction is
very technical, in this extended abstract we only provide the construction of the graph G,
explaining also all the necessary intuition, and sketch the completeness implication, i.e., how
to translate a satisfying assignment of Φ into a 6p-cluster graph G0 close to G. To ease the
presentation, in this extended abstract we show the proof for ε = 1.

4.1 Preprocessing of the formula
We start with a step that regularizes the input formula Φ, while increasing its size only by a
constant factor. The purpose of this step is to ensure that, when we translate a satisfying
assignment of Φ into a cluster graph G0 in the completeness step, the clusters are of the same
size, and therefore contain the minimum possible number of edges. This property is crucial

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 39

in the argumentation of the soundness step. The proof of the following lemma consists of
several steps that ensure consecutive properties of formula Φ′ by syntactic modifications, like
copying variables and clauses.

I Lemma 13 (♠). There exists a polynomial-time algorithm that, given a 3-CNF formula Φ
with n variables and m clauses and an integer p ≤ n, constructs a 3-CNF formula Φ′ with
n′ variables and m′ clauses together with a partition of the variable set Vars(Φ′) into p parts
Varsr, 1 ≤ r ≤ p, such that the following properties hold:

(a) Φ′ is satisfiable iff Φ is;
(b) in Φ′ every clause contains exactly three literals corresponding to different variables;
(c) in Φ′ every variable appears exactly three times positively and exactly three times negatively;
(d) n′ is divisible by p and, for each 1 ≤ r ≤ p, we have |Varsr| = n′/p (i.e., the variables

are split evenly between the parts Varsr);
(e) if Φ′ is satisfiable, then there exists a satisfying assignment of Vars(Φ′) with the property

that in each part Varsr the numbers of variables set to true and to false are equal.
(f) n′ +m′ = O(n+m).

4.2 Construction
We now sketch how to compute the graph G and the integer k′ from the formula Φ′ given by
Lemma 13. As Lemma 13 increases the size of the formula by a constant factor, we have
that n′,m′ = O(

√
pk) and |Varsr| = n′/p = O(

√
k/p) for 1 ≤ r ≤ p. The idea is to pack the

variables from each part Varsr, for 1 ≤ r ≤ p, into group gadgets, each costing 6 cliques.
Evaluation of the variables from each part corresponds to some clustering strategy inside the
group gadget. The clauses are encoded by additional groups of vertices, whose connections
to group gadgets ensure that they can be split among the clusters optimally iff at least one
literal satisfies the clause.

We proceed with the description of group gadgets. Let L = 1000 ·
(

1 + n′

p

)
= O(

√
k/p).

For each part Varsr, 1 ≤ r ≤ p, we create six cliques Qrα, 1 ≤ α ≤ 6, each of size L. Let Q
be the set of all vertices of all cliques Qrα. In this manner we have 6p cliques. Intuitively, if
we seek for a 6p-cluster graph close to G, then the cliques are large enough so that merging
two cliques is too expensive — in the intended solution we have exactly one clique in each
cluster. One may view the construction as a procedure of assigning vertices not from Q to
different cliques Qrα.

For every variable x ∈ Varsr, we create six vertices wx1,2, wx2,3, . . . , wx5,6, wx6,1. Connect
them into a cycle in this order; this cycle is called a 6-cycle for the variable x. Moreover,
for each 1 ≤ α ≤ 6 and v ∈ V (Qrα), create edges vwxα−1,α and vwxα,α+1 (we assume that the
indices behave cyclically, i.e., wx6,7 = wx6,1, Qr7 = Qr1 etc.). Let W be the set of all vertices
wxα,α+1 for all variables x. Intuitively, the cheapest way to cut the 6-cycle for variable x is to
assign the vertices wxα,α+1, 1 ≤ α ≤ 6, all either to the clusters with cliques with only odd
indices or only with even indices. Choosing even indices corresponds to setting x to false,
while choosing odd ones corresponds to setting x to true, and both choices lead to saving
exactly 3 editions inside the 6-cycle. By property (e) of formula Φ′ we know that if Φ′ is
satisfiable, then in some satisfying assignment exactly half of the variables in each group are
assigned true value, and half false. For this satisfying assignment, each clique Qrα will be
assigned exactly the same number of vertices from W.

We now proceed with the description of the encoding of the clauses. Let r(x) be the index
of the part that contains variable x, that is, x ∈ Varsr(x). In each clause C we (arbitrarily)

STACS’13

40 Tight bounds for Parameterized Complexity of Cluster Editing

enumerate variables: for 1 ≤ η ≤ 3, let var(C, η) be the variable in the η-th literal of C, and
sgn(C, η) = 0 if the η-th literal is negative and sgn(C, η) = 1 otherwise.

For every clause C create nine vertices: sCβ,ξ for 1 ≤ β, ξ ≤ 3. Let S be the set of all the
vertices created in this manner. Let us first focus on vertices sC1,1, sC1,2, sC1,3.

For each 1 ≤ η ≤ 3 and each ξ ∈ {1, 2, 3}, create an edge sC1,ξw
var(C,η)
2η−1,2η ;

for each 1 ≤ η ≤ 3 connect sC1,1 to all the vertices of one of the cliques adjacent to
w

var(C,η)
2η−1,2η depending on the sign of the η-th literal in C, that is, the clique Qr(var(C,η))

2η−sgn(C,η);
for each 1 ≤ η ≤ 3 and ξ ∈ {2, 3}, connect sC1,ξ to all vertices of both cliques the vertex
w

var(C,η)
2η−1,2η is adjacent to, that is, the cliques Qr(var(C,η))

2η−1 and Qr(var(C,η))
2η .

In this manner, vertex sC1,1 is adjacent to three cliques Qrα, while sC1,2 and sC1,3, which are
twins, are adjacent to six of them. Assuming that each clique Qrα is in a different cluster, we
need to edit two connections to the cliques for vertex sC1,1, and five for each of vertices sC1,2,
sC1,3. Checking satisfaction of the assignment is performed on the edges between sC1,1 and
vertices from W. The crucial observation is that:

if at least one of the literals in the clause is satisfied, then at least one of the three vertices
from W adjacent to sC1,1 is already assigned to a clique that is connected to sC1,1.
if none of the literals of the clause is satisfied, then all the vertices from W , to which sC1,1
is adjacent, are assigned to cliques not connected to sC1,1.

Hence, if the first possibility takes place, we can save one edition by not changing adjacency
between sC1,1 and the corresponding vertex from W. However, if the second possibility takes
place, we need to change all three adjacencies, unless we want to separate sC1,1 from all the
three adjacent cliques Qrα, which is too expensive.

Vertices sC1,2 and sC1,3 help us to balance the sizes of the clusters, as we may assign them
to any clique that is adjacent to them. For example, if sC1,1 was assigned to Qr(x)

1 , then
we can assign sC1,2 to Qr(y)

3 and sC1,3 to Qr(z)
6 . The construction of vertices {sC2,1, sC2,2, sC2,3}

and {sC3,1, sC3,2, sC3,3} follow the same rules, but the lower indices of the cliques and vertices
from W to which the constructed vertices are adjacent, are cyclically shifted by 2 and 4,
respectively. In this manner we are able to ensure the following properties: if the assignment
satisfies clause C, then vertices sCβ,ξ can be assigned to the cliques so that (i) each vertex is
assigned to a clique it is connected to, (ii) for each vertex we save one edition on editing
adjacencies to vertices from W, (iii) each clique with an odd lower index is assigned one
vertex if the corresponding literal appears positively in C, and zero otherwise, (iv) each
clique with an even lower index is assigned one vertex if the corresponding literal appears
negatively in C, and zero otherwise. By property (c) of the formula Φ′ we know that for the
satisfying assignment all the cliques are assigned exactly the same number of vertices from S.

This concludes the construction. We note that |V (G)| = 6pL+O(n′ +m′) = O(
√
pk).

We now calculate the budget k′ for edge editions in the created instance. Then we argue
why in case of existence of a satisfying assignment there is a set of at most k′ edge editions
that turns G into a 6p-cluster graph. (The argument for the converse is deferred to the full
version.) In the constructed solution all the cliques Qrα will be in different clusters.

To make the presentation more clear, we split this budget into few summands. Let

kQ−Q = 0, kQ−WS = (6n′ + 36m′)L, kall
WS−WS = 6p

(6n′+9m′

6p
2

)
,

kexist
WS−WS = 6n′ + 27m′, ksave

W−W = 3n′, ksave
W−S = 9m′,

and finally

k′ = kQ−Q + kQ−WS + kall
WS−WS + kexist

WS−WS − 2ksave
W−W − 2ksave

W−S .

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 41

Note that, as p ≤ k, L = O(
√
k/p) and n′,m′ = O(

√
pk), we have k′ = O(k).

The intuition behind this split is as follows. The intended solution for the p-Cluster
Editing instance (G, 6p, k′) creates no edges between the cliques Qrα, each clique is contained
in its own cluster, and kQ−Q = 0. For each v ∈ W ∪ S, the vertex v is assigned to a cluster
with one clique adjacent to v; kQ−WS accumulates the cost of removal of other edges in
E(Q,W∪S). Finally, we count the editions in (W∪S)× (W∪S) in an indirect way. First we
cut all edges of E(W∪S,W∪S) (summand kexist

WS−WS). We group the vertices of W∪S into
clusters and add edges between vertices in each cluster; the summand kall

WS−WS corresponds
to the cost of this operation when all the clusters are of the same size (and the number of
edges is minimum possible, due to the convexity of function t→

(
t
2
)
). Finally, in summands

ksave
W−W and ksave

W−S we count how many edges are removed and then added again in this
process: ksave

W−W corresponds to saving three edges from each 6-cycle in E(W,W) and ksave
W−S

corresponds to saving one edge in E(W,S) per each vertex sCβ,ξ. By the described properties
of clause encoding it directly follows, that a satisfying assignment can be translated into an
edition set of size at most k′.

Having sketched the completeness proof, we would like to intuitively describe the difficulties
that arise in the proof of soundness, i.e., that the existence of a p′-cluster graph within
edition distance at most k′, for p′ ≤ 6p, implies that Φ′ is satisfiable. If we assume that the
solution behaves ’sensibly’, then the minimal possible budget given for kall

WS−WS and the
properties of clause encoding already ensure that it translates to an assignment satisfying Φ′.
Unfortunately, we need to argue also that the solution does not ’cheat’; the main two ways
of cheating are (i) trying to merge two cliques Qrα, (ii) trying to separate a vertex sCβ,ξ from
all the adjacent cliques. Clearly, each of these operations is locally suboptimal, but we need
to guarantee that one cheat cannot lead to a lot of further savings. For example, merging
two cliques Qrα implies that some vertices sCβ,ξ may be separated from less cliques they are
adjacent to, than intended.

Usually, one copes with such problems by creating several ’layers’ of the budget and
ensuring that all the possible savings from any cheating cannot compensate even cost of one
cheat. In our setting, making cliques Qrα much bigger would solve the problem. However,
then we would need to increase the budget as well and the reduction would yield a weaker
lower bound. Instead, we have to provide an extremely careful bookkeeping analysis of the
possible shape of the solution in order to show that, indeed, the possible gains from cheating
cannot amortise the costs.

5 Conclusion and open questions

We gave an algorithm that solves p-Cluster Editing in time O(2O(
√
pk) + n + m) and

complemented it by a multivariate lower bound, which shows that the running time of our
algorithm is asymptotically tight for all p sublinear in k.

In our multivariate lower bound it is crucial that the cliques and clusters are arranged in
groups of six. However, the drawback of this construction is that Theorem 2 settles the time
complexity of p-Cluster Editing problem only for p ≥ 6 (Corollary 4). It does not seem
unreasonable that, for example, the 2-Cluster Editing problem, already NP-complete
[34], may have enough structure to allow an algorithm with running time O(2o(

√
k) + n+m).

Can we construct such an algorithm or refute its existence under ETH?
Secondly, we would like to point out an interesting link between the subexponential

parameterized complexity of the problem and its approximability. When the number of
clusters drops from linear to sublinear in k, we obtain a phase transition in parameterized

STACS’13

42 Tight bounds for Parameterized Complexity of Cluster Editing

complexity from exponential to subexponential. As far as approximation is concerned, we
know that bounding the number of clusters by a constant allows us to construct a PTAS [24],
whereas the general problem is APX-hard [13]. The mutual drop of the parameterized
complexity of a problem — from exponential to subexponential — and of approximability —
from APX-hardness to admitting a PTAS — can be also observed for many hard problems
when the input is constrained by additional topological bounds, for instance excluding a fixed
pattern as a minor [17, 18, 22]. It is therefore an interesting question, whether p-Cluster
Editing also admits a PTAS when the number of clusters is bounded by a non-constant,
yet sublinear function of k, for instance p =

√
k.

Acknowledgements

We thank Christian Komusiewicz for pointing us to the recent results on Cluster Editing
[7, 31] and his thesis [30]. Moreover, we thank Pål Grønås Drange, M. S. Ramanujan and
Saket Saurabh for helpful discussions.

References
1 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:

ranking and clustering. In Proc. of STOC’05, pages 684–693. ACM, 2005.
2 Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In Proc. of ICALP’09,

volume 5555 of Lecture Notes in Comput. Sci., pages 49–58. Springer, 2009.
3 Noga Alon, Konstantin Makarychev, Yury Makarychev, and Assaf Naor. Quadratic forms

on graphs. In Proc. of STOC’05, pages 486–493. ACM, 2005.
4 Sanjeev Arora, Eli Berger, Elad Hazan, Guy Kindler, and Muli Safra. On non-

approximability for quadratic programs. In Proc. of FOCS’05, pages 206–215. IEEE Com-
puter Society, 2005.

5 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56:89–113, 2004.

6 Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns.
Journal of Computational Biology, 6(3/4):281–297, 1999.

7 Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. In Proc. of
IWOCA’11, pages 85–95, 2011.

8 Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke Truß. A fixed-
parameter approach for weighted cluster editing. In Proc. of APBC’08, volume 6 of Ad-
vances in Bioinformatics and Computational Biology, pages 211–220, 2008.

9 Sebastian Böcker, Sebastian Briesemeister, and Gunnar W. Klau. Exact algorithms for
cluster editing: Evaluation and experiments. Algorithmica, 60(2):316–334, 2011.

10 Sebastian Böcker and Peter Damaschke. Even faster parameterized cluster deletion and
cluster editing. Inf. Process. Lett., 111(14):717–721, 2011.

11 Hans L. Bodlaender, Michael R. Fellows, Pinar Heggernes, Federico Mancini, Charis
Papadopoulos, and Frances A. Rosamond. Clustering with partial information. Theor.
Comput. Sci., 411(7-9):1202–1211, 2010.

12 Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. In Proc. of
IPEC’10, volume 6478 of Lecture Notes in Computer Science, pages 60–71. Springer, 2010.

13 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. In Proc. of FOCS’03, pages 524–533. IEEE Computer Society, 2003.

14 Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending Grothen-
dieck’s inequality. In Proc. of FOCS’04, pages 54–60. IEEE Computer Society, 2004.

15 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences, 78(1):211 – 220, 2012.

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 43

16 Peter Damaschke. Fixed-parameter enumerability of cluster editing and related problems.
Theory Comput. Syst., 46(2):261–283, 2010.

17 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. Journal of the ACM, 52(6):866–893, 2005.

18 Erik D. Demaine and Mohammadtaghi Hajiaghayi. Bidimensionality: New connections
between FPT algorithms and PTASs. In Proc. of SODA’05, pages 590–601, 2005.

19 R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag, New York,
1999.

20 Michael R. Fellows, Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes
Uhlmann. Graph-based data clustering with overlaps. Discrete Optimization, 8(1):2–17,
2011.

21 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

22 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimension-
ality and EPTAS. In Proc. of SODA’11, pages 748–759. SIAM, 2011.

23 Fedor V. Fomin and Yngve Vilanger. Subexponential parameterized algorithm for minimum
fill-in. In Proc. of SODA’12, pages 1737–1746. SIAM, 2012.

24 Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of
clusters. In Proc. of SODA’06, pages 1167–1176. ACM Press, 2006.

25 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data cluster-
ing: Exact algorithms for clique generation. Theory Comput. Syst., 38(4):373–392, 2005.

26 Jiong Guo. A more effective linear kernelization for cluster editing. Theor. Comput. Sci.,
410(8-10):718–726, 2009.

27 Jiong Guo, Iyad A. Kanj, Christian Komusiewicz, and Johannes Uhlmann. Editing graphs
into disjoint unions of dense clusters. Algorithmica, 61(4):949–970, 2011.

28 Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. A more
relaxed model for graph-based data clustering: s-plex cluster editing. SIAM J. Discrete
Math., 24(4):1662–1683, 2010.

29 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

30 Christian Komusiewicz. Parameterized Algorithmics for Network Analysis: Clustering &
Querying. PhD thesis, Technische Universität Berlin, 2011. Available at http://fpt.akt.
tu-berlin.de/publications/diss-komusiewicz.pdf.

31 Christian Komusiewicz and Johannes Uhlmann. Alternative parameterizations for cluster
editing. In Proc. of SOFSEM’11, volume 6543 of Lecture Notes in Computer Science, pages
344–355. Springer, 2011.

32 Dániel Marx. What’s next? future directions in parameterized complexity. In Hans L.
Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate
Algorithmic Revolution and Beyond, volume 7370 of Lecture Notes in Computer Science,
pages 469–496. Springer, 2012.

33 Fábio Protti, Maise Dantas da Silva, and Jayme Luiz Szwarcfiter. Applying modular
decomposition to parameterized cluster editing problems. Theory Comput. Syst., 44(1):91–
104, 2009.

34 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004.

STACS’13

http://fpt.akt.tu-berlin.de/publications/diss-komusiewicz.pdf
http://fpt.akt.tu-berlin.de/publications/diss-komusiewicz.pdf

	Introduction
	Preliminaries
	A subexponential algorithm for p-Cluster Editing
	Reduction for large p
	Small cuts
	The algorithm

	Multivariate lower bound
	Preprocessing of the formula
	Construction

	Conclusion and open questions

