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Abstract
In correlation clustering, the input is a graph with edge-weights, where every edge is labelled
either + or − according to similarity of its endpoints. The goal is to produce a partition of the
vertices that disagrees with the edge labels as little as possible.

In two-edge-connected augmentation, the input is a graph with edge-weights and a subset R
of edges of the graph. The goal is to produce a minimum weight subset S of edges of the graph,
such that for every edge in R, its endpoints are two-edge-connected in R ∪ S.

For planar graphs, we prove that correlation clustering reduces to two-edge-connected aug-
mentation, and that both problems have a polynomial-time approximation scheme.
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1 Introduction

1.1 Correlation Clustering
Correlation clustering takes as input a graph whose edges are labelled either 〈+〉 or 〈−〉.
A 〈+〉 edge represents evidence that its endpoints belong in the same cluster, and a 〈−〉
edge represents evidence that its endpoints belong in different clusters. Each edge has a
non-negative weight reflecting the strength of the evidence. The goal is to find a clustering
minimizing the total weight of edges inconsistent with that evidence. This formulation,
previously from computational biology [10], was introduced by Bansal, Blum, and Chawla [8].
They suggested as an application the clustering of documents into topics.

In this paper, we study the case when the graph is planar. The motivation comes from
image segmentation. The goal is to partition the image into regions representing different
image components. An image is represented by a grid of pixels. For each pair of neighboring
pixels, comparing the pixels’ values yields an assessment of how likely the pixels are to belong
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Figure 1 In this unweighted grid, every solid (resp. dashed) edge represents a pair of similar
(resp. dissimilar) pixels. Dotted lines indicate an optimal partition with inconsistent edges e1, e2, e3.

to the same region. There can be spurious assessments. So global optimization is needed
to find a good segmentation. See Figure 1. When an image is large, it is common for a
visual task to first coalesce coherent uniform neighborhoods of pixels into superpixels, using
preprocessing based on local properties such as brightness, color, and texture, see [3, 30]. We
then extract a local similarity measure on pairs of adjacent superpixels, and the goal is to find
a good segmentation of the superpixel graph under that measure. To achieve this, researchers
used correlation clustering as the formulation [4, 5, 6, 26, 36]. They gave experimental results
based on techniques such as integer linear programming or linear programming relaxation.

Note that the superpixel graph is planar. However, correlation clustering is NP-hard
for planar graphs [7]. Prior to this work, the best result with theoretical guarantee was a
constant-factor approximation for minor-excluded graphs by Demaine, Emanuel, Fiat, and
Immorlica [17]. In this paper, we give a polynomial-time approximation scheme (PTAS).

I Theorem 1. For any ε > 0, there is a polynomial-time (1 + ε)-approximation algorithm
for correlation clustering in weighted planar graphs.

Related work

Why do we restrict ourselves to planar graphs? Because the general (weighted) problem is
APX-hard [8]. Charikar, Guruswami, and Wirth [16] and independently Demaine, Emanuel,
Fiat, and Immorlica [17] gave logarithmic-factor approximation algorithms. There have been
improved approximation algorithms when the graph is complete [1, 8, 16]; or when, for each
edge, the agreement weight and disagreement weight of that edge sum to one [1, 8]; or when,
in addition, the weights satisfy the triangle inequality [22]. When the number of clusters
is limited to a constant, Giotis and Guruswami [23] gave a PTAS. The problem was also
studied in a planted model [31] and from the viewpoint of fixed-parameter tractability [15].

We discussed the problem of minimizing weight of disagreement; maximizing weight of
agreement is equivalent at optimality but easier to approximate [8, 16, 35]. Researchers have
also considered other objective functions [2].

1.2 Two-edge-connected Augmentation
In the field of telecommunications, an important task is to ensure that the network is resilient
against single-link failures [34]. The two-edge-connected augmentation problem takes as input
a graph G with non-negative edge-weights and a subset R of edges of the graph. The goal is
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556 Correlation Clustering and Two-edge-connected Augmentation for Planar Graphs

to find a minimum-weight subset S of edges of the graph such that for every edge uv ∈ R,
u and v are two-edge-connected in the subgraph R ∪ S. We give a PTAS for this problem
when the graph is planar.

I Theorem 2. For any ε > 0, there is a polynomial-time (1 + ε)-approximation algorithm
for two-edge-connected augmentation in weighted planar graphs.

Related work

A closely related problem is two-edge-connected spanning subgraph, for which a constant-factor
approximation algorithm was known [25]. When the graph is planar, Berger and Grigni [11]
gave a PTAS. One might think that this would lead to a PTAS for our problem, but it is
not the case because the weight of a two-edge-connected augmentation can be much smaller
than the minimum weight of a two-edge-connected spanning subgraph. For the Steiner-type
generalization of the two-edge-connected subgraph problem, there was a constant-factor
approximation algorithms [28]. When the graph is planar, Borradaile and Klein [13] gave a
PTAS.1

There is a variety of other related work, see [29] for a survey. Some studied the special
case when the weights are all one [20, 21, 32], or when, in addition, the graph is complete [19].
There was a 2-approximation algorithm for the related problem of augmenting a connected
subgraph to achieve two-edge-connectivity among a pre-specified set of terminal vertices [33].
Edge-connectivity augmentation problems were subsumed by the work of Jain [24] on
survivable network design.

2 Techniques and Notations

Our techniques for proving Theorem 1 and Theorem 2 include planar duality, prize-collecting
clustering, brick decomposition, sphere-cut decomposition, and dynamic programming.

Throughout the paper, we allow graphs to have parallel edges. For a graph G, we note
V [G] as its vertex set and E[G] as its edge set. For a subset H ⊆ E[G], we identify H with
the subgraph induced by edges from H. The weight of H is defined by

∑
e∈H weight (e).

The boundary ∂(H) is the set of vertices u that are incident to some edge of H and to some
edge of E[G] \H. Similarly, for a subset U ⊆ V [G], its boundary ∂(U) is the set of edges
uv such that u ∈ U and v ∈ V [G] \ U . A plane graph is a planar graph together with a
planar embedding. We use the phrases plane graph and planar graph interchangeably. We
use OPT (G,R) to denote the weight of the optimal two-edge-connected augmentation for
(G,R). The parameters G and R are omitted when they are clear from the context.

3 Theorem 2 Implies Theorem 1

We address correlation clustering and two-edge-connected augmentation in one paper because
of the reduction in Theorem 3, which shows that Theorem 2 implies Theorem 1.

I Theorem 3. There is an approximation-preserving reduction from correlation clustering
in a weighted planar graph to two-edge-connected augmentation in a weighted planar graph.

1 In their problem, a solution is allowed to include multiple copies of edges of the input graph.
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Figure 2 In the example, R = {e1, e2, e3, e4}. The optimal two-edge-connected augmentation
consists of edges e5 and e6. However, any Steiner tree connecting the edges of R must include one
of the edges e7 and e8, whose weight may be much higher than weight ({e5, e6}).

I Remark. In practice, we may use an approximation algorithm for two-edge-connected
augmentation that is different from the algorithm in Theorem 2, and then from the reduc-
tion (Theorem 3), we obtain an algorithm for planar correlation clustering with the same
approximation factor.

I Lemma 4 (Bridge-Deletion Lemma). Let G be a plane graph. Let R be a subset of E[G].
Let S be a minimal two-edge-connected augmentation for (G,R). Then every connected
component in the subgraph R ∪ S is two-edge-connected.

Proof of Theorem 3. Given a correlation-clustering instance G0 with 〈−〉 edges, construct
an instance (G,R) of two-edge-connected augmentation as follows: To obtain the graph G,
start with the planar dual of the G0, and add duplicates of the duals of the 〈−〉 edges. The
weights are preserved. Define R to be the original (non-duplicate) duals of the 〈−〉 edges. Let
S be a minimal two-edge-connected augmentation. By the Bridge-Deletion Lemma, every
connected component in R ∪ S is two-edge-connected. Define the clusters of G0 to be the
connected components when edges dual to R ∪ S are removed. J

4 Reduction to Instance with a Connected Skeleton

Without loss of generality, we assume for the rest of the paper that the edges of R have
weight zero.

To prove Theorem 2, we focus on a related version (Theorem 5), where we are given
in addition a connected subgraph T that contains every edge of R. We defer the proof of
Theorem 5 to later sections.

I Theorem 5 (Augmentation Theorem). Let G be a plane graph with edge-weights. Let R
be a subset of E[G]. Let T be a connected subgraph of G that contains every edge of R.
For every ε > 0, there is a polynomial-time algorithm Augment-Connected(G,R, T, ε)
that computes a two-edge-connected augmentation S for (G,R) such that weight (S) ≤
(1 + ε)OPT (G,R) + ε2 · weight (T ).

In the rest of this section, we prove Theorem 2 using the Augmentation Theorem. One
might consider connecting all edges of R with a Steiner tree T , and then applying the
Augmentation Theorem. However, OPT could be much smaller than the minimum weight
of a Steiner tree when the solution is not connected (see Figure 2). In that case, the upper
bound given by the Augmentation Theorem would not imply an approximation scheme.

Fortunately, there is an algorithmic tool, called prize-collecting clustering, due to Bateni,
Hajiaghayi, and Marx [9], that addresses exactly this kind of obstacle. They used it in
addressing the Steiner forest problem. They started with a 2-approximate solution, and used
prize-collecting clustering to decompose the instance into subinstances. We use the same
approach for two-edge-connected augmentation, see Algorithm 1.
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Algorithm 1 Reduce-to-Connected
Input: a weighted planar graph G and a subset R of edges, ε > 0
Output: connected subgraphs T1, . . . , Tk

1: Y ← two-edge-connected augmentation with weight at most 2 ·OPT
2: (U1, · · · , U`)← two-edge-connected components of R ∪ Y
3: Contract each component Ui to build a new graph Ĝ
4: For every v ∈ Ĝ, let φv be ε−1 times the weight of the component corresponding to v
5: Do prize-collecting clustering on Ĝ and φ, obtaining a forest F
6: Return the connected components T1, . . . , Tk of the subgraph F ∪R ∪ Y of G

Algorithm 2 Augment
Input: a planar graph G, a subset of edges R, and ε > 0
Output: two-edge-connected augmentation S for (G,R)
1: (T1, . . . , Tk)← Reduce-to-Connected(G,R, ε/7) . Theorem 7
2: for i← 1 to k do
3: Si ← Augment-Connected(G,R ∩ Ti, Ti, ε/7) . Theorem 5
4: return (

⋃
i Si) \R

Line 1 computes a 2-approximate solution using Jain’s algorithm [24] (which solves a
much more general problem).

I Lemma 6 (corollary from [24]). There is an algorithm that computes in polynomial time
a two-edge-connected augmentation Y for (G,R) such that weight (Y ) ≤ 2 ·OPT and that
every connected component in R ∪ Y is two-edge-connected.

Line 5 uses prize-collecting clustering, which receives a graph with vertex-potentials φv

and returns a forest F of edges of weight at most 2
∑

v φv. Since the sum of vertex-potentials
is at most 2ε−1 ·OPT , the weight of F is at most 4ε−1 ·OPT . Using essentially the same
arguments as in [9], we obtain the following.

I Theorem 7 (variant of Theorem 1.3 in [9]). Let G be a plane graph with edge-weights.
Let R be a subset of E[G]. For fixed ε, Algorithm 1 computes in polynomial time a set of
connected subgraphs T1, . . . , Tk with the following properties:⋃

i Ti contains every edge of R.∑
i weight (Ti) ≤ (4/ε+ 2)OPT (G,R).∑
i OPT (Gi, Ri) ≤ (1 + ε)OPT (G,R ∩ Ti)

Proof of Theorem 2. The top-level algorithm of Theorem 2 is given in Algorithm 2. By
the Augmentation Theorem (Theorem 5) and Property 1 of Theorem 7, the output is a
two-edge-connected augmentation for (G,R).

For each i, the weight of Si is at most (1 + ε/7)OPT (G,R ∩ Ti) + (ε/7)2 · weight (Ti).
Summing over i and combining Properties 2 and 3 of Theorem 7, we infer that the weight of
the output solution is at most (1 + ε)OPT (G,R). J
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Figure 3 The rectangle is a brick. The solid curves are parts of a near-optimal solution. The
dashed curves illustrate the u1-to-v1 path and the u2-to-v2 path inside the brick.

5 Techniques for Proving the Augmentation Theorem

5.1 New Use of Brick Decomposition
For non-local problems in weighted planar graphs in which the weight of the optimal solution
can be much smaller than the weight of the graph, the brick decomposition technique of [14]
has proved to be quite versatile: a planar embedded subgraph M (called the mortar graph) is
selected, and the bricks are the subgraphs of G embedded in the faces of M (see Section 6.1).
The key is the following properties of M .
Property 1: M has weight O(OPT );
Property 2: There exists a near-optimal solution that crosses the boundary of each brick

only a constant number of times.
Both properties are achievable for problems such as Steiner tree [14], Steiner forest [9],
TSP [12], and two-edge-connected survivability [13] for the variant in which the solution is
allowed to include multiple copies of edges of the input graph.

The main obstacle in applying this approach to two-edge-connected augmentation is
that Property 2 seems unachievable using the known brick-decomposition construction. We
therefore use the mortar graph in a new way. We take additional care in the construction of
the mortar graph because of the edges of R. As a consequence, instead of Property 2, we
can show that, after a transformation2 of the instance, we have:

Property 2′ (Structure Theorem): There exists a near-optimal solution such that, for any
brick and any two vertices u, v on the boundary of the brick, there exists a u-to-v Jordan
curve inside the brick that intersects the near-optimal solution at only a constant
number of points.3 See Figure 3.

Property 2′ is proved by reducing nesting and adding boundary cycles. See Section 6.

5.2 Outline of Algorithm Augment-Connected
We use ideas from [14] which we now summarize:
1. Build a mortar graph of G based on the connected skeleton T .
2. Do Breadth-First Search (BFS) on the dual of the mortar graph, and select a mod-k

residue j such that edges whose levels are congruent to j have total weight at most 1/k
times the weight of the mortar graph.

2 The transformation is to add artificial copies of the brick boundaries. See Figure 4 in Section 6.
3 The constant depends on ε.
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3. Commit to including these edges in the ultimate solution; this decomposes the graph into
subinstances each consisting of at most k levels of bricks.

4. A planar graph consisting of only k BFS levels has branchwidth 2k, i.e., can be recursively
decomposed into clusters of edges such that each cluster is bounded by at most 2k vertices.

However, here we must diverge. Note that the branch decomposition obtained above has
a special form: it is a sphere-cut decomposition, which means that each cluster of edges
is precisely the set of edges enclosed by a Jordan curve J that intersects no edges (and
intersects a constant number of vertices) of the mortar graph. This is where Property 2′
comes in: each segment of J traversing a brick can be replaced with a curve that intersects a
constant number of points of the near-optimal solution. This yields a new Jordan curve J ′
that passes through a constant number of points of the near-optimal solution. Such structure
enables us to design a dynamic program (DP), given in Section 7.

For each cluster of the sphere-cut decomposition, the DP enumerates all possibilities of
the intersection points of the unknown near-optimal solution with the partially unknown
Jordan curve J ′. The DP also enumerates all possiblities of the connected structure of the
part of the solution inside J ′. See Section 7.2. Note that there may be some edges of the
graph that are in the parent cluster but not in the child clusters (Figure 8), so the DP must
do a bit of extra work to go from tables for the children to the table for the parent. See
Section 7.3.

6 Structure Theorem

The Structure Theorem (Theorem 11) is the key to the polynomial-time performance of
the dynamic program (Section 7). Before stating the theorem, we recall the definition and
properties of brick decomposition from [14] in Section 6.1, and we illustrate the transformation
of doubling brick boundaries in Section 6.2.

6.1 Mortar Graph and Brick Decomposition
I Definition 8 (Mortar Graph and Bricks, slight adaptation from [14]). Let G be a plane graph
with edge-weights. Let R be a subset of E[G]. Let M be a subgraph of G. For each face F of
M , we define a brick B as the planar subgraph of G embedded inside the face, including the
boundary edges of F . We denote the interior of B as the brick without the boundary edges
of F . We call M a mortar graph of G if the boundary of every brick B, in counter-clockwise
order, is the concatenation of four paths NorthB , SouthB , EastB , WestB (the subscript B is
omitted when it is clear from the context), such that:
1. No edge of R is in the interior of B, or on SouthB , EastB , or WestB .
2. SouthB is a shortest path in B, and every proper subpath of NorthB is an almost shortest

path in B, i.e., its weight is at most (1 + ε) times the weight of the shortest path between
its endpoints in B;

3. There exists an integer k = O(1/ε4) and vertices s0, s1, . . . , sk ordered from west to east
along SouthB such that, for any vertex x on the segment [si, si+1) of SouthB , the weight
of the segment between x and si along SouthB is less than ε times the weight of the
shortest path between x and NorthB in B.

I Lemma 9 (Brick-Decomposition Lemma, slight adaptation from [14]). Let G be a planar
graph with edge-weights. Let R be a subset of E[G]. Let T be a connected subgraph of G
that contains every edge of R. There is a polynomial-time algorithm that computes a mortar
graph M of G such that:
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Figure 4 Doubling the South, East, and West boundaries of the brick B. The new edges between
vertices and their copies have weight 0.

1. weight (M) = O(weight (T ) /ε);
2.

∑
brick B weight (EastB ∪WestB) = O(ε2 · weight (T )).

6.2 Doubling Brick Boundaries
The proof of the Structure Theorem applies to a modified version of the graph in which
artificial copies of the South, East, and West brick boundaries are added (Figure 4), and
zero-weight edges are added between corresponding vertices. We call this doubling these
boundaries. Note that no edges of R are duplicated (according to Property 1 of Definition 8).
Let H be the resulting graph.

I Lemma 10 (Boundary-Doubling Lemma). A two-edge-connected augmentation for (G,R)
can be transformed into a two-edge-connected augmentation for (H,R) in linear time without
increasing the weight, and vice versa.

As a consequence, it suffices to find a near-optimal solution for (H,R).

6.3 Theorem Statement
I Theorem 11 (Structure Theorem). Let G be a plane graph with edge-weights. Let R be a
subset of E[G]. Let M be the mortar graph of G. Let H be the graph obtained from G by
doubling the South, East, and West boundaries of every brick.

For any two-edge-connected augmentation S0 for (H,R), there exists a two-edge-connected
augmentation S for (H,R) such that:

weight (S) ≤ (1 + ε)weight (S0) + 3
∑

brick B weight (EastB ∪WestB);
For any brick and any two vertices u, v on the boundary of the brick, there exists a u-to-v
Jordan curve inside the brick that has O(1/ε4) crossings with S, all occurring at vertices.

6.4 Proof Sketch
The proof of the Structure Theorem consists in modifying the initial solution so that any pair
of vertices on the boundary of a brick can be connected by a curve that has few crossings
with the modified solution. Figure 5 shows the kind of curve we use. It starts at a given
vertex u on the brick boundary, traverses nested paths to reach the South boundary, then
bypasses South-to-North paths using cycles formed by the duplicated edges of the South
boundary, and finally again traverses nested paths to reach the given vertex v on the brick
boundary. In order to have a small number of crossings, we must ensure that the number of
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u

v

Figure 5 The dashed path from u to v has few crossings with the modified solution (solid).

Southd1/εe

=⇒

Southd1/εe

Figure 6 Reducing nesting of the solution: if there are more than d1/εe nested paths (left figure),
add a piece of the South boundary (the bold segment in the right figure) and empty the cycle thus
created. The same operation is applied to nested paths connected to the North boundary, with the
caveat that edges of R need not be added to the solution (since the solution is supposed to be an
augmentation of R).

nested paths is small and that only a small number of South cycles are used to bypass the
South-to-North paths. This is illustrated in Figures 6 and 7.

The construction of the solution S works on each brick in turn, modifying the initial
solution S0 inside that brick: adding the East and West cycles (i.e., the East and West
boundaries together with their duplicates), reducing nesting as in Figure 6, and adding South
cycles (i.e., parts of South together with their duplicates) as in Figure 7.

7 Dynamic Programming

In this section, we design a dynamic program (Theorem 12) to solve the two-edge-connected
augmentation problem for (H,R) in the special case where the dual of the mortar graph has
bounded diameter. From the Structure Theorem, in order to get a near-optimal solution,
we may restrict attention to solutions that satisfy the property defined there. A dynamic
program computes the best among all such solutions.

I Theorem 12 (Dynamic-Programming Theorem). Let R,M,H be defined as in the Structure
Theorem (Theorem 11). Assume, in addition, that the dual graph of M has diameter O(1/ε3).
There is an algorithm that computes in polynomial time a two-edge-connected augmentation S
for (H,R) such that weight (S) ≤ (1 + ε)OPT (H,R) + 3

∑
brick B weight (EastB ∪WestB).
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=⇒

Figure 7 Adding South cycles (the bold cycles in the right figure) into the solution. The number
of South cycles needed is O(1/ε4) due to Property 3 in the definition of bricks.

7.1 Sphere-Cut Decomposition
Our DP is based on a special kind of branch-decomposition of plane graphs, called a sphere-cut
decomposition (see [18]): A noose of a plane graph is a Jordan curve that intersects only
vertices of the graph and not edges. A sphere-cut decomposition of width w is a family of
non-crossing nooses each intersecting at most w vertices; the nooses form a binary tree by
the enclosure relation, each leaf noose encloses exactly one edge, and each edge is enclosed
by a leaf noose. For each noose in the sphere-cut decomposition, we refer to the set of edges
enclosed as a cluster.

I Lemma 13 (trivial adaptation from [27]). Let G be a plane graph whose dual graph has
diameter k. Then G has a sphere-cut decomposition of width 2k, and it can be computed in
linear time.

7.2 Specification of DP Table
In this section, we define the index of the DP table and the value at an index.

By Lemma 13, M has a sphere-cut decomposition SC of width O(1/ε3). The first index
of the DP table is a cluster E of SC.

Let S0 be the optimal two-edge-connected augmentation for (H,R), and let S be the
solution obtained in the Structure Theorem (Theorem 11). By the Bridge-Deletion Lemma
(Lemma 4), we can modify S so that every connected component in R ∪ S is two-edge-
connected, without increasing the weight of S. For every cluster E of SC, let JE be the
noose enclosing E and of minimum number of crossings with R∪S (all occurring at vertices),
breaking ties by choosing the minimally enclosing one.4 It is easy to show that the family of
nooses {JE}E∈SC is non-crossing.

I Lemma 14. For every cluster E of SC, JE intersects O(1/ε7) vertices of R ∪ S.

Proof. Since SC has widthO(1/ε3), there is a noose enclosing E that hasO(1/ε3) intersections
with M . From one intersection to the next, it goes across a single brick, and by the Structure
Theorem (Theorem 11), the part inside this brick can be chosen so as to have O(1/ε4)
intersections with S. This results in a noose enclosing E that has O(1/ε7) intersections with
R ∪ S. J

Let Q∗ ⊆ V [H] denote the (unknown) set of O(1/ε7) intersection vertices of JE with
S ∪R. The second index of the DP table is a subset Q ⊆ V [H] of size O(1/ε7).

4 Since the noose is a geometric object, it is not uniquely defined, but a discrete formulation can be given
using the face-vertex incidence graph.
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Next, we encode the connectivity structure of the part of R ∪ S inside JE . Let RE (resp.
Γ∗) denote the set of edges of R (resp. S) that are inside JE . Define a forest F ∗0 from RE ∪Γ∗
by contracting every two-edge-connected component into a node. A node of F ∗0 is called
internal if its corresponding two-edge-connected component in RE ∪ Γ∗ does not contain any
node from Q∗, i.e., the component is strictly inside JE . We then define a forest F ∗ from F ∗0
by splicing internal nodes of degree 2 and removing internal nodes that are singletons. By
the construction, F ∗ has at most |Q∗| non-internal nodes, and it does not contain internal
nodes of degree 0, 1, or 2. So F ∗ has at most 2|Q∗| − 2 nodes. The third index of the DP
table is a forest F of at most 2|Q| − 2 nodes. Moreover, there is a map ψ∗ giving the natural
many-to-one map from Q∗ to nodes of F ∗. The fourth index of the DP table is a map ψ
from Q to V [F ]. To summarize:

I Definition 15 (DP index). An index of the DP table, also called a DP index, contains the
following:

E: a cluster of the sphere-cut decomposition SC
Q: a subset of V [H] of size O(1/ε7)
F : a forest of size at most 2|Q| − 2
ψ: a map from Q to V [F ], such that every node of degree 0, 1, or 2 in the forest F
belongs to the image of ψ.

In addition, the triple (Q,F, ψ) as defined above is called a partial DP index.5

A set of edges Γ is consistent with a DP index (E,Q, F, ψ) if applying the previous
construction to RE ∪ Γ leads to the connectivity structure described by (F,ψ). For every
DP index (E,Q, F, ψ), define its value DP (E,Q, F, ψ) as the minimum weight among a
collection of Γ’s, such that:

Correctness: Every Γ in this collection is consistent with (E,Q, F, ψ);
Optimality: If (Q,F, ψ) = (Q∗, F ∗, ψ∗), then Γ∗ is in this collection.

In order to prove the Dynamic-Programming Theorem (Theorem 12), we only need to find a
polynomial-time algorithm to fill in the DP table and to output the value DP(M, ∅, ∅, ∅∅). 6

7.3 Hole Region between Parent and Children
Let E be a cluster of SC and let E1 and E2 be its child clusters. Let Q∗, Q∗1, Q∗2 ⊆ V [H] be
the sets of intersections of R ∪ S with JE , JE1 , JE2 . The hole region is the area inside JE

but outside JE1 and JE2 in the plane.7 See Figure 8. We remark that the hole region cannot
contain edges from R.

Let Γ̂∗ denote the set of edges of S in the hole region. Let Q̂∗ denote the set of intersections
of S with the boundary of the hole region. We have Q̂∗ ⊆ Q∗∪Q∗1 ∪Q∗2, thus |Q̂∗| = O(1/ε7).
From Γ̂∗ and Q̂∗, we encode the connectivity structure of the part of S in the hole region as
a forest F̂ ∗ of at most 2|Q̂∗| − 2 nodes and a map ψ̂∗ : Q̂∗ → V [F̂ ∗]. This is similar to the
encoding in Section 7.2.

We use a side table T for the computation at hole regions. The table is indexed by a
partial DP index (Q̂, F̂ , ψ̂). The value T (Q̂, F̂ , ψ̂) is defined as the minimum weight of any
Γ̂ that is consistent with (Q̂, F̂ , ψ̂) and contains no cycles.

5 Note that the description of Q,F, ψ is independent of E.
6 The DP outputs the value of a solution, not the solution itself; but it is easy to enrich the DP in the
standard manner so that it also outputs the solution achieving the value.

7 Note that JE , JE1 , and JE2 are non-crossing.
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Figure 8 JE is the outermost boundary. It encloses 4 areas that are separated by the solid curves.
JE1 (resp. JE2) is the boundary of the left (resp. right) area. The hole region contains the top and
bottom areas. The dashed paths represent R ∪ S inside JE . The points represent vertices from
Q∗ ∪Q∗

1 ∪Q∗
2.

7.4 Implementation of DP Table

First, the algorithm fills in the side table T during the preprocessing. Notice that any
Γ̂ ⊆ E[H] that is consistent with (Q̂, F̂ , ψ̂) and contains no cycles is such that, every node a
in F̂ corresponds to a vertex ua in the graph H, and every edge ab in F̂ corresponds to a
path between ua and ub in Γ̂. Therefore, to compute the value T (Q̂, F̂ , ψ̂), the algorithm
enumerates, for every a ∈ F̂ , the vertex ua among V [H]. For every ab ∈ F̂ , it then computes
the shortest path between ua and ub in H. The union of all these shortest paths defines the
current Γ̂. The value T (Q̂, F̂ , ψ̂) is the minimum weight of all Γ̂’s during the enumeration.
The overall running time of the preprocessing is thus polynomial.

Next, the algorithm fills in the DP table in the order of the index E from bottom up
in SC. Consider a DP index (E,Q, F, ψ). Let E1 and E2 be the child clusters of E. The
algorithm enumerates every combination of (E1, Q1, F1, ψ1), (E2, Q2, F2, ψ2), and (Q̂, F̂ , ψ̂)
that are compatible with (E,Q, F, ψ), and the current weight is the sum of the three entries.
DP (E,Q, F, ψ) is assigned with the minimum weight during the enumeration.
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