1,866 research outputs found

    Design of a wideband low-power continuous-time sigma-delta (ΣΔ) analog-to-digital converter (ADC) in 90nm CMOS technology

    Get PDF
    The growing trend in VLSI systems is to shift more signal processing functionality from analog to digital domain to reduce manufacturing cost and improve reliability. It has resulted in the demand for wideband high-resolution analog-to-digital converters (ADCs). There are many different techniques for doing analog-to-digital conversions. Oversampling ADC based on sigma-delta (ΣΔ) modulation is receiving a lot of attention due to its significantly relaxed matching requirements on analog components. Moreover, it does not need a steep roll-off anti-aliasing filter. A ΣΔ ADC can be implemented either as a discrete time system or a continuous time one. Nowadays growing interest is focused on the continuous-time ΣΔ ADC for its use in the wideband and low-power applications, such as medical imaging, portable ultrasound systems, wireless receivers, and test equipments. A continuous-time ΣΔ ADC offers some important advantages over its discrete-time counterpart, including higher sampling frequency, intrinsic anti-alias filtering, much relaxed sampling network requirements, and low-voltage implementation. Especially it has the potential in achieving low power consumption. This dissertation presents a novel fifth-order continuous-time ΣΔ ADC which is implemented in a 90nm CMOS technology with single 1.0-V power supply. To speed up design process, an improved direct design method is proposed and used to design the loop filter transfer function. To maximize the in-band gain provided by the loop filter, thus maximizing in-band noise suppression, the excess loop delay must be kept minimum. In this design, a very low latency 4-bit flash quantizer with digital-to-analog (DAC) trimming is utilized. DAC trimming technique is used to correct the quantizer offset error, which allows minimum-sized transistors to be used for fast and low-power operation. The modulator has sampling clock of 800MHz. It achieves a dynamic range (DR) of 75dB and a signal-to-noise-and-distortion ratio (SNDR) of 70dB over 25MHz input signal bandwidth with 16.4mW power dissipation. Our work is among the most improved published to date. It uses the lowest supply voltage and has the highest input signal bandwidth while dissipating the lowest power among the bandwidths exceeding 15MHz

    A CMOS Digital Beamforming Receiver

    Full text link
    As the demand for high speed communication is increasing, emerging wireless techniques seek to utilize unoccupied frequency ranges, such as the mm-wave range. Due to high path loss for higher carrier frequencies, beamforming is an essential technology for mm-wave communication. Compared to analog beamforming, digital beamforming provides multiple simultaneous beams without an SNR penalty, is more accurate, enables faster steering, and provides full access to each element. Despite these advantages, digital beamforming has been limited by high power consumption, large die area, and the need for large numbers of analog-to-digital converters. Furthermore, beam squinting errors and ADC non-linearity limit the use of large digital beamforming arrays. We address these limitations. First, we address the power and area challenge by combining Interleaved Bit Stream Processing (IL-BSP) with power and area efficient Continuous-Time Band-Pass Delta-Sigma Modulators (CTBPDSMs). Compared to conventional DSP, IL-BSP reduces both power and area by 80%. Furthermore, the new CTBPDSM architecture reduces ADC area by 67% and the energy per conversion by 43% compared to previous work. Second, we introduce the first integrated digital true-time-delay digital beamforming receiver to resolve the beam squinting. True-time-delay beamforming eliminates squinting, making it an ideal choice for large-array wide-bandwidth applications. Third, we present a new current-steering DAC architecture that provides a constant output impedance to improve ADC linearity. This significantly reduces distortion, leading to an SFDR improvement of 13.7 dB from the array. Finally, we provide analysis to show that the ADC power consumption of a digital beamformer is comparable to that of the ADC power for an analog beamformer. To summarize, we present a prototype phased array and a prototype timed array, both with 16 elements, 4 independent beams, a 1 GHz center frequency, and a 100 MHz bandwidth. Both the phased array and timed array achieve nearly ideal conventional and adaptive beam patterns, including beam tapering and adaptive nulling. With an 11.2 dB array gain, the phased array achieves a 58.5 dB SNDR over a 100 MHz bandwidth, while consuming 312 mW and occupying 0.22 mm2. The timed array achieves an EVM better than -37 dB for 5 MBd QAM-256 and QAM-512, occupies only 0.29 mm2, and consumes 453 mW.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147716/1/smjang_1.pd

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure

    An Improved Recursive and Non-recursive Comb Filter for DSP Applications

    Get PDF
    The recursive and non-recursive comb filters are commonly used as decimators for the sigma delta modulators. This paper presents the analysis and design of low power and high speed comb filters. The comparison is made between the recursive and the non-recursive comb filters with the focus on high speed and saving power consumption. Design procedures and examples are given by using Matlab and Verilog HDL for both recursive and non-recursive comb filter with emphasis on frequency response, transfer function and register width. The implementation results show that non-recursive comb filter has capability of speeding up the circuit and reducing power compared to recursive one when the decimation ratio and filter order are high. Using Modified Carry Look-ahead Adder for summation and also apply pipelined filter structure makes it more compatible for DSP application

    Arquiteturas paralelas avançadas para transmissores 5G totalmente digitais

    Get PDF
    The fifth generation of mobile communications (5G) is being prepared and should be rolled out in the early coming years. Massive number of Radio-Frequency (RF) front-ends, peak data rates of 10 Gbps (everywhere and everytime), latencies lower than 10 msec and huge device densities are some of the expected disruptive capabilities. At the same time, previous generations can not be jeopardized, fostering the design of novel flexible and highly integrated radio transceivers able to support the simultaneous transmission of multi-band and multi-standard signals. The concept of all-digital transmission is being pointed out as a promising architecture to cope with such challenging requirements, due to its fully digital radio datapath. This thesis is focused on the proposal and validation of fully integrated and advanced digital transmitter architectures that excel the state-of-the-art in different figures of merit, such as transmission bandwidth, spectral purity, carrier agility, flexibility, and multi-band capability. The first part of this thesis introduces the concept of all-digital RF transmission. In particular, the foundations inherent to this thematic line are given, together with the recent advances reported in the state-of-the-art architectures.The core of this thesis, containing the main developments achieved during the Ph.D. work, is then presented and discussed. The first key contribution to the state-of-the-art is the use of cascaded Delta-Sigma (∆Σ) architectures to relax the analog filtering requirements of the conventional All-Digital Transmitters while maintaining the constant envelope waveform. Then, it is presented the first reported architecture where Antenna Arrays are directly driven by single-chip and single-bit All-Digital Transmitters, with promising results in terms of simplification of the RF front-ends and overall flexibility. Subsequently, the thesis proposes the first reported RF-stage All-Digital Transmitter that can be embedded within a single Field-Programmable Gate Array (FPGA) device. Thereupon, novel techniques to enable the design of wideband All-Digital Transmitters are reported. Finally, the design of concurrent multi-band transmitters is introduced. In particular, the design of agile and flexible dual and triple bands All-DigitalTransmitter (ADT) is demonstrated, which is a very important topic for scenarios that demand carrier aggregation. This Ph.D. contributes withseveral advances to the state-of-the-art of RF all-digital transmitters.A quinta geração de comunicações móveis (5G) está a ser preparada e deve ser comercializada nos próximos anos. Algumas das caracterı́sticas inovadoras esperadas passam pelo uso de um número massivo de font-ends de Rádio-Frequência (RF), taxas de pico de transmissão de dados de 10 Gbps (em todos os lugares e em todas as ocasiões), latências inferiores a 10 mseg e elevadas densidades de dispositivos. Ao mesmo tempo, as gerações anteriores não podem ser ignoradas, fomentando o design de novos transceptores de rádio flexı́veis e altamente integrados, capazes de suportar a transmissão simultânea de sinais multi-banda e multi-standard. O conceito de transmissão totalmente digital é considerado como um tipo de arquitetura promissora para lidar com esses requisitos desafiantes, devido ao seu datapath de rádio totalmente digital. Esta tese é focada na proposta e validação de arquiteturas de transmissores digitais totalmente integradas e avançadas que ultrapassam o estado da arte em diferentes figuras de mérito, como largura de banda de transmissão, pureza espectral, agilidade de portadora, flexibilidade e capacidade multibanda. A primeira parte desta tese introduz o conceito de transmissores de RF totalmente digitais. Em particular, os fundamentos inerentes a esta linha temática são apresentados, juntamente com os avanços mais recentes do estado-da-arte. O núcleo desta tese, contendo os principais desenvolvimentos alcançados durante o trabalho de doutoramento, é então apresentado e discutido. A primeira contribuição fundamental para o estado da arte é o uso de arquiteturas em cascata com moduladores ∆Σ para relaxar os requisitos de filtragem analógica dos transmissores RF totalmente digitais convencionais, mantendo a forma de onda envolvente constante. Em seguida, é apresentada a primeira arquitetura em que agregados de antenas são excitados diretamente por transmissores digitais de um único bit inseridos num único chip, com resultados promissores em termos de simplificação dos front-ends de RF e flexibilidade em geral. Posteriormente, é proposto o primeiro transmissor totalmente digital RF-stage relatado que pode ser incorporado dentro de um único Agregado de Células Lógicas Programáveis. Novas técnicas para permitir o desenho de transmissores RF totalmente digitais de banda larga são também apresentadas. Finalmente, o desenho de transmissores simultâneos de múltiplas bandas é exposto. Em particular, é demonstrado o desenho de transmissores de duas e três bandas ágeis e flexı́veis, que é um tópico essencial para cenários que exigem agregação de múltiplas bandas.Apoio financeiro da Fundação para a Ciência e Tecnologia (FCT) no âmbito de uma bolsa de doutoramento, ref. PD/BD/105857/2014.Programa Doutoral em Telecomunicaçõe

    An Improved Recursive and Non-recursive Comb Filter for DSP Applications

    Get PDF
    The recursive and non-recursive comb filters are commonly used as decimators for the sigma delta modulators. This paper presents the analysis and design of low power and high speed comb filters. The comparison is made between the recursive and the non-recursive comb filters with the focus on high speed and saving power consumption. Design procedures and examples are given by using Matlab and Verilog HDL for both recursive and non-recursive comb filter with emphasis on frequency response, transfer function and register width. The implementation results show that non-recursive comb filter has capability of speeding up the circuit and reducing power compared to recursive one when the decimation ratio and filter order are high. Using Modified Carry Look-ahead Adder for summation and also apply pipelined filter structure makes it more compatible for DSP application

    Optimal decoding for data acquisition applications of sigma delta modulators

    Full text link
    corecore