5,959 research outputs found

    Holonomies of gauge fields in twistor space 6: incorporation of massive fermions

    Get PDF
    Following the previous paper arXiv:1205.4827, we formulate an S-matrix functional for massive fermion ultra-helicity-violating (UHV) amplitudes, i.e., scattering amplitudes of positive-helicity gluons and a pair of massive fermions. The S-matrix functional realizes a massive extension of the Cachazo-Svrcek-Witten (CSW) rules in a functional language. Mass-dimension analysis implies that interactions among gluons and massive fermions should be decomposed into three-point massive fermion subamplitudes. Namely, such interactions are represented by combinations of three-point UHV and next-to-UHV (NUHV) vertices. This feature is qualitatively different from the massive scalar amplitudes where the number of involving gluons can be arbitrary.Comment: 24 pages; v2. references added; v3. supplemental paragraph inserted below (3.42), typos corrected, published versio

    Holonomies of gauge fields in twistor space 5: amplitudes of gluons and massive scalars

    Full text link
    Scattering amplitudes of gluons coupled with a pair of massive scalars, so-called massive scalar amplitudes, provide the simplest yet physically useful examples of massive amplitudes. In this paper we construct an S-matrix functional for the massive scalar amplitudes in a recently developed holonomy formalism in supertwistor space. From the S-matrix functional we derive ultra helicity violating (UHV), as well as next-to-UHV (NUHV), massive scalar amplitudes at tree level in a form that agrees with previously known results. We also obtain recursive expressions for non-UHV tree amplitudes in general. These results will open up a new avenue to the study of phenomenology in the spinor-helicity formalism.Comment: 32 pages; v2. minor revisions, published versio

    Theory of anharmonically modified Coriolis coupling in the S1 state of benzene and relation to experiment

    Get PDF
    Avoided crossings between quasidegenerate rovibrational states in the Doppler-free two-photon excitation of the 141 mode in the S1 excited state of benzene are treated theoretically. Two sets of avoided crossings in plots of spectral line frequency vs J at a given K and DeltaK have been reported experimentally between an initially prepared "light" state (141 in zeroth order) and dark states, namely, one which in zeroth order is a 51101161 state, the other being in zeroth order a 62111 and/or possibly a 31161 state, implicated earlier by Neusser et al. The identification of these states makes the phenomenon an excellent candidate for treatment of the avoided crossing via a Van Vleck transformation, no other basis set states being needed for the diagonalization in order to extract the important features. Two successive transformations are used for handling direct coupling and coupling via virtual states. The dominant calculated contribution to the coupling is, jointly, Coriolis plus cubic–cubic anharmonic interactions between vibrational modes.Playing less of a role are Coriolis terms in which the inverse moment of inertia tensor is expanded up to quadratic terms in the coordinates. There results a 5×5 (for coupling to 51101161 ) and a 3×3 (for coupling to 62111 or 31161 ) matrix of the transformed Hamiltonian, each of which can also be described, if desired, to a very good approximation by a 2×2 matrix. The coupling element V0 and the difference of the rotational constants for the light and dark states (DeltaB) are obtained from the plots of line position vs J(J+1) obtained. For the 141 to 51101161 and for the 141 to 62111 couplings the theoretical results are in reasonable agreement with the experimental results, no adjustable parameters being employed. For a coupling of 141 to 31161 the calculated V0 would be much too high compared with experiment (a factor of 10), the coupling involving the exchange of only three instead of four vibrational quanta. A situation in which the 141 state is coupled to the 62111 state to yield an avoided crossing and off-resonantly coupled to the 31161 state would be consistent with some experimental results and not affect the reasonable agreement of the slope difference and splitting for the avoided crossing plots

    Extended Iterative Scheme for QCD: the Four-Gluon Vertex

    Full text link
    We study the self-consistency problem of the generalized Feynman rule (nonperturbatively modified vertex of zeroth perturbative order) for the 4-gluon vertex function in the framework of an extended perturbation scheme accounting for non-analytic coupling dependence through the Lambda scale. Tensorial structure is restricted to a minimal dynamically closed basis set. The self-consistency conditions are obtained at one loop, in Landau gauge, and at the lowest approximation level (r=1) of interest for QCD. At this level, they are found to be linear in the nonperturbative 4-gluon coefficients, but strongly overdetermined due to the lack of manifest Bose symmetry in the relevant Dyson-Schwinger equation. The observed near decoupling from the 2-and-3-point conditions permits least-squares quasisolutions for given 2-and-3-point input within an effective one-parameter freedom. We present such solutions for N_F=2 massless quarks and for the pure gluon theory, adapted to the 2-and-3-point coefficients determined previously.Comment: 46 pages, 11 figure

    Condensation of Ideal Bose Gas Confined in a Box Within a Canonical Ensemble

    Full text link
    We set up recursion relations for the partition function and the ground-state occupancy for a fixed number of non-interacting bosons confined in a square box potential and determine the temperature dependence of the specific heat and the particle number in the ground state. A proper semiclassical treatment is set up which yields the correct small-T-behavior in contrast to an earlier theory in Feynman's textbook on Statistical Mechanics, in which the special role of the ground state was ignored. The results are compared with an exact quantum mechanical treatment. Furthermore, we derive the finite-size effect of the system.Comment: 18 pages, 8 figure

    Automated Identification and Classification of Stereochemistry: Chirality and Double Bond Stereoisomerism

    Full text link
    Stereoisomers have the same molecular formula and the same atom connectivity and their existence can be related to the presence of different three-dimensional arrangements. Stereoisomerism is of great importance in many different fields since the molecular properties and biological effects of the stereoisomers are often significantly different. Most drugs for example, are often composed of a single stereoisomer of a compound, and while one of them may have therapeutic effects on the body, another may be toxic. A challenging task is the automatic detection of stereoisomers using line input specifications such as SMILES or InChI since it requires information about group theory (to distinguish stereoisomers using mathematical information about its symmetry), topology and geometry of the molecule. There are several software packages that include modules to handle stereochemistry, especially the ones to name a chemical structure and/or view, edit and generate chemical structure diagrams. However, there is a lack of software capable of automatically analyzing a molecule represented as a graph and generate a classification of the type of isomerism present in a given atom or bond. Considering the importance of stereoisomerism when comparing chemical structures, this report describes a computer program for analyzing and processing steric information contained in a chemical structure represented as a molecular graph and providing as output a binary classification of the isomer type based on the recommended conventions. Due to the complexity of the underlying issue, specification of stereochemical information is currently limited to explicit stereochemistry and to the two most common types of stereochemistry caused by asymmetry around carbon atoms: chiral atom and double bond. A Webtool to automatically identify and classify stereochemistry is available at http://nams.lasige.di.fc.ul.pt/tools.ph

    A Central Partition of Molecular Conformational Space.III. Combinatorial Determination of the Volume Spanned by a Molecular System

    Full text link
    In the first work of this series [physics/0204035] it was shown that the conformational space of a molecule could be described to a fair degree of accuracy by means of a central hyperplane arrangement. The hyperplanes divide the espace into a hierarchical set of cells that can be encoded by the face lattice poset of the arrangement. The model however, lacked explicit rotational symmetry which made impossible to distinguish rotated structures in conformational space. This problem was solved in a second work [physics/0404052] by sorting the elementary 3D components of the molecular system into a set of morphological classes that can be properly oriented in a standard 3D reference frame. This also made possible to find a solution to the problem that is being adressed in the present work: for a molecular system immersed in a heat bath we want to enumerate the subset of cells in conformational space that are visited by the molecule in its thermal wandering. If each visited cell is a vertex on a graph with edges to the adjacent cells, here it is explained how such graph can be built
    corecore