17 research outputs found

    A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS

    Get PDF
    A Wireless Personal Area Network (WPAN) is an ad hoc network that consists of devices that surround an individual or an object. Bluetooth® technology is especially suitable for formation of WPANs due to the pervasiveness of devices with Bluetooth® chipsets, its operation in the unlicensed Industrial, Scientific, Medical (ISM) frequency band, and its interference resilience. Bluetooth® technology has great potential to become the de facto standard for communication between heterogeneous devices in WPANs. The piconet, which is the basic Bluetooth® networking unit, utilizes a Master/Slave (MS) configuration that permits only a single master and up to seven active slave devices. This structure limitation prevents Bluetooth® devices from directly participating in larger Mobile Ad Hoc Networks (MANETs) and Wireless Personal Area Networks (WPANs). In order to build larger Bluetooth® topologies, called scatternets, individual piconets must be interconnected. Since each piconet has a unique frequency hopping sequence, piconet interconnections are done by allowing some nodes, called bridges, to participate in more than one piconet. These bridge nodes divide their time between piconets by switching between Frequency Hopping (FH) channels and synchronizing to the piconet\u27s master. In this dissertation we address scatternet formation, routing, and security to make Bluetooth® scatternet communication feasible. We define criteria for efficient scatternet topologies, describe characteristics of different scatternet topology models as well as compare and contrast their properties, classify existing scatternet formation approaches based on the aforementioned models, and propose a distributed scatternet formation algorithm that efficiently forms a scatternet topology and is resilient to node failures. We propose a hybrid routing algorithm, using a bridge link agnostic approach, that provides on-demand discovery of destination devices by their address or by the services that devices provide to their peers, by extending the Service Discovery Protocol (SDP) to scatternets. We also propose a link level security scheme that provides secure communication between adjacent piconet masters, within what we call an Extended Scatternet Neighborhood (ESN)

    AN EFFICIENT COMBINED CONGESTION HANDLING=--A--cN-:cD~-­ ROUTE MAINTENANCE PROTOCOL FOR DYNAMIC ENVIRONMENT IN BLUETOOTH NETWORK

    Get PDF
    Bluetooth IS a widespread technology for small wireless networks that permits Bluetooth devices to construct a multi-hop network called a scatternet. A large number of connections passing through a single master/ bridge device may create the problem of congestion in a Bluetooth scatternet. In addition, routing in a multi-hop dynamic Bluetooth network, where a number of masters and bridges exist, sometimes creates technical hitches in a scatternet. It has been observed that frequent link disconnections and a new route construction consume more system resources that ultimately degrade the performance of the whole network. As, Bluetooth specification has defined piconet configuration, scatternet configuration has still not been standardized. The main objective of this thesis is to provide an efficient combined protocol for scatternet congestion handling and route maintenance. The methodology contains three parts

    Distributed Topology Organization and Transmission Scheduling in Wireless Ad Hoc Networks

    Get PDF
    An ad hoc network is a set of nodes that spontaneously form a multi-hop all-wireless infrastructure without centralized administration. We study two fundamental issues arising in this setting: topology organization and transmission scheduling. In topology organization we consider a system where nodes need to coordinate their transmissions on a non-broadcast frequency hopping channel to discover each other. We devise a symmetric technique where two nodes use a randomized schedule to synchronize and connect in minimum time. This forms the basis for a topology construction protocol where a set of initially unsynchronized nodes are quickly grouped in multiple interconnected communication channels such that the resulting topology is connected subject to channel membership constraints imposed by the physical layer. In the transmission scheduling problem we consider Time Division Multiple Access (TDMA)the network operates with a schedule where at each slot transmissions can be scheduled without conflicts at the intended receivers. TDMA can provide deterministic allocations but typically relies on two restrictive assumptions: network-wide slot synchronization and global knowledge of network topology and traffic requirements. We first introduce an asynchronous TDMA communication model where slot reference for each link is provided locally by the clock of one of the node endpoints. We study the overhead introduced when nodes switch among multiple time references and propose algorithms for its minimization. We then introduce a distributed asynchronous TDMA protocol where nodes dynamically adjust the rates their adjacent links via local slot reassignments to reach a schedule that realizes a set of optimal link rates. We introduce fairness models for both links and multi-hop sessions sharing the network and devise convergent distributed algorithms for computing the optimal rates for each model. These rates are enforced by a distributed algorithm that decides the slots reassigned during each link rate adjustment. For tree topologies we introduce an algorithm that incrementally converges to the optimal schedule in finite time; for arbitrary topologies an efficient heuristic is proposed. Both topology organization and transmission scheduling protocols are implemented over Bluetooth, a technology enabling ad hoc networking applications. Through extensive simulations they demonstrate excellent performance in both static and dynamic scenarios

    Wireless remote patient monitoring on general hospital wards.

    Get PDF
    A novel approach which has potential to improve quality of patient care on general hospital wards is proposed. Patient care is a labour-intensive task that requires high input of human resources. A Remote Patient Monitoring (RPM) system is proposed which can go some way towards improving patient monitoring on general hospital wards. In this system vital signs are gathered from patients and sent to a control unit for centralized monitoring. The RPM system can complement the role of nurses in monitoring patients’ vital signs. They will be able to focus on holistic needs of patients thereby providing better personal care. Wireless network technologies, ZigBee and Wi-Fi, are utilized for transmission of vital signs in the proposed RPM system. They provide flexibility and mobility to patients. A prototype system for RPM is designed and simulated. The results illustrated the capability, suitability and limitation of the chosen technology

    Wireless remote patient monitoring on general hospital wards

    Get PDF
    A novel approach which has potential to improve quality of patient care on general hospital wards is proposed. Patient care is a labour-intensive task that requires high input of human resources. A Remote Patient Monitoring (RPM) system is proposed which can go some way towards improving patient monitoring on general hospital wards. In this system vital signs are gathered from patients and sent to a control unit for centralized monitoring. The RPM system can complement the role of nurses in monitoring patients’ vital signs. They will be able to focus on holistic needs of patients thereby providing better personal care. Wireless network technologies, ZigBee and Wi-Fi, are utilized for transmission of vital signs in the proposed RPM system. They provide flexibility and mobility to patients. A prototype system for RPM is designed and simulated. The results illustrated the capability, suitability and limitation of the chosen technology.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Enhancement of The IEEE 802.15.4 Standard By Energy Efficient Cluster Scheduling

    Get PDF
    The IEEE 802.15.4 network is gaining popularity due to its wide range of application in Industries and day to day life. Energy Conservation in IEEE 802.15.4 nodes is always a concern for the designers as the life time of a network depends mainly on minimizing the energy consumption in the nodes. In ZigBee cluster-tree network, the existing literature does not provide combined solution for co-channel interference and power efficient scheduling. In addition, the technique that prevents network collision has not been provided. Delay and reliability issues are not addressed in the QoS-aware routing. Congestion is one of the major challenges in IEEE 802.15.4 Network. This network also has issues in admitting real time flows. The aim of the present research is to overcome the issues mentioned above by designing Energy Efficient Cluster Scheduling and Interference Mitigation, QoS Aware Inter-Cluster Routing Protocol and Adaptive Data Rate Control for Clustered Architecture for IEEE 802.15.4 Networks. To overcome the issue of Energy efficiency and network collision energy efficient cluster scheduling and interference mitigation for IEEE 802.15.4 Network is proposed. It uses a time division cluster scheduling technique that offers energy efficiency in the cluster-tree network. In addition, an interference mitigation technique is demonstrated which detects and mitigates the channel interference based on packet-error detection and repeated channel-handoff command transmission. For the issues of delay and reliability in cluster network, QoS aware intercluster routing protocol for IEEE 802.15.4 Networks is proposed. It consists of some modules like reliability module, packet classifier, hello protocol module, routing service module. Using the Packet classifier, the packets are classified into the data and hello packets. The data packets are classified based on the priority. Neighbour table is constructed to maintain the information of neighbour nodes reliabilities by Hello protocol module. Moreover, routing table is built using the routing service module. The delay in the route is controlled by delay metrics, which is a sum of queuing delay and transmission delay. For the issues of congestion and admit real-time flows an Adaptive data rate control for clustered architecture in IEEE 802.15.4 Networks is proposed. A network device is designed to regulate its data rate adaptively using the feedback message i.e. Congestion Notification Field (CNF) in beacon frame received from the receiver side. The network device controls or changes its data rate based on CNF value. Along with this scalability is considered by modifying encoding parameters using Particle Swarm Optimization (PSO) to balance the target output rate for supporting high data rate. Simulation results show that the proposed techniques significantly reduce the energy consumption by 17% and the network collision, enhance the performance, mitigate the effect of congestion, and admit real-time flows

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Development of a power monitoring and control system to provide demand side management of electric vehicle charging activity.

    Get PDF
    Due to the recent inflow of Electric Vehicles (EVs) to the automobile market, new concerns have risen with respect to the additional electrical load and the resultant effects on an overloaded electric grid. Either for convenience purposes or possibly necessity due to limited electric range on EVs, some EV owners may desire to charge their EV while at work in addition to charging at home. These forward-thinking daytime charging providers are typically Commercial and Industrial (C&I) electric ratepayers, or other large electric consumers which constitute the majority of businesses, shopping centers, academic campuses and manufacturing facilities. Increased electricity consumption due to EV charging activity results in higher electricity costs due to differences in the billing structures between residential and C&I electric ratepayers. Therefore, it is beneficial to the EVSE charging provider to minimize charging activity around peak demand periods which would result in lower electrical costs overall. A solution is developed that can provide this control without creating a nuisance to electric vehicle owners since EV charging demand is somewhat inelastic due to range anxiety. The primary objective of the research detailed in this dissertation is to develop a novel demand side management system for monitoring the peak demand of commercial time-of-day electric ratepayers that cost effectively predicts and controls electric vehicle charging during peak demand periods. This objective is achieved, therefore confirming the hypothesis that such a system can provide cost and demand benefits to forward-thinking commercial electric ratepayers that provide daytime charging capabilities. This work proposes and evaluates a novel Power Monitoring and Control System (PMCS) that can be implemented at C&I EV charging locations to minimize or eliminate the negative impacts of charging electric vehicles at the workplace in C&I environments. Operation of the PMCS begins by forecasting electrical demand in advance of every 15 minute demand interval throughout the day. The forecast is generated using an artificial neural network and a number of input data streams. Electrical demand has been shown to correlate well with weather data such as temperature and dew point. Therefore, using those measurements along with a date and time stamp, and historical electrical demand measurements, a highly accurate forecast for the following 15-minute demand interval was achieved. From that forecast, the number of EV charging stations that may be active, without the chance of creating new electrical demand peaks, is calculated. Finally, the forecast is then used to properly schedule EV charging activity so that electrical demand peaks can be avoided but charging activity is maximized. The avoidance of charging activity at or near peaks in electrical demand results in lower total electric costs associated with the charging process. The final design was implemented in an EV charging testbed at the University of Louisville and data was collected to verify the operation and performance of the PMCS. With a properly designed scheduling and prioritization control algorithm, increases in electrical demand and associated costs are limited to the error in the forecasting algorithm used for predicting electrical demand levels. The final design of the forecasting algorithm results in a mean absolute percent error of 0.02% to 0.08% in the electrical demand forecast. This corresponds to approximately 3 to 10 kVA of error in electrical demand. Taking this error into account, total cost of charging several EVs is reduced by nearly 90%. Furthermore, for scenarios where there are several more electric vehicles requiring charge than there are charging stations available, several scheduling algorithms are presented in an attempt to minimize the total processing time required for completing all charging transactions
    corecore