
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2009

A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA

NETWORKS NETWORKS

Karl E. Persson
University of Kentucky, karl@cs.uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Persson, Karl E., "A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS" (2009). University of
Kentucky Doctoral Dissertations. 698.
https://uknowledge.uky.edu/gradschool_diss/698

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232560434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

Karl E. Persson

The Graduate School
University of Kentucky

2009

A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By
Karl E. Persson

Lexington, Kentucky
Director: Dr. D. Manivannan, Associate Professor of Computer

Science
Lexington, Kentucky

2009
Copyright c© Karl E. Persson 2009

ABSTRACT OF DISSERTATION

A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS

A Wireless Personal Area Network (WPAN) is an ad hoc network that consists of de-
vices that surround an individual or an object. BluetoothR© technology is especially suitable
for formation of WPANs due to the pervasiveness of devices with BluetoothR© chipsets, its
operation in the unlicensed Industrial, Scientific, Medical (ISM) frequency band, and its
interference resilience. BluetoothR© technology has great potential to become the de facto
standard for communication between heterogeneous devices in WPANs.

The piconet, which is the basic BluetoothR© networking unit, utilizes a Master/Slave
(MS) configuration that permits only a single master and up to seven active slave devices.
This structure limitation prevents BluetoothR© devices from directly participating in larger
Mobile Ad Hoc Networks (MANETs) and Wireless Personal Area Networks (WPANs). In
order to build larger BluetoothR© topologies, called scatternets, individual piconets must
be interconnected. Since each piconet has a unique frequency hopping sequence, piconet
interconnections are done by allowing some nodes, called bridges, to participate in more than
one piconet. These bridge nodes divide their time between piconets by switching between
Frequency Hopping (FH) channels and synchronizing to the piconet’s master.

In this dissertation we address scatternet formation, routing, and security to make
BluetoothR© scatternet communication feasible. We define criteria for efficient scatternet
topologies, describe characteristics of different scatternet topology models as well as com-
pare and contrast their properties, classify existing scatternet formation approaches based on
the aforementioned models, and propose a distributed scatternet formation algorithm that
efficiently forms a scatternet topology and is resilient to node failures.

We propose a hybrid routing algorithm, using a bridge link agnostic approach, that
provides on-demand discovery of destination devices by their address or by the services
that devices provide to their peers, by extending the Service Discovery Protocol (SDP) to
scatternets.

We also propose a link level security scheme that provides secure communication between
adjacent piconet masters, within what we call an Extended Scatternet Neighborhood (ESN).

KEYWORDS: Wireless Personal Area Network (WPAN), Bluetooth, Piconet, Scatternet
Formation, Scatternet Routing

Karl E. Persson

A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS

By
Karl E. Persson

Director of Dissertation
Dr. D. Manivannan

Director of Graduate Studies
Dr. Andrew Klapper

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the University
of Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but quotations
or summaries of parts may be published only with the permission of the author, and with
the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part also requires the
consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure the sig-
nature of each user.

Name Date

DISSERTATION

Karl E. Persson

The Graduate School
University of Kentucky

2009

A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By
Karl E. Persson

Lexington, Kentucky
Director: Dr. D. Manivannan, Associate Professor of Computer

Science
Lexington, Kentucky

2009
Copyright c© Karl E. Persson 2009

DEDICATION

This is dedicated to my parents, Hans Persson and Marianne Lindh-Persson, and to Katie

for all their love and support. Without their encouragement and affection I would have never

reached this milestone in my life.

ACKNOWLEDGMENTS

I would like to express my gratitute to my advisor Dr. D. Manivannan, who has supported

me wholeheartedly throughout the entire process. His guidance and direction have been

invaluable to me. I thank my committee members: Dr. Mukesh Singhal, Dr. Zongming Fei,

and Dr. James E. Lumpp Jr., for their encouragement, support, and assistance.

In addition, I would like to thank: my former lab colleague Dr. Jianchang Yang, for

many interesting discussions and his assistance with the formatting of my dissertation; Dr.

Judy Goldsmith of the University of Kentucky Department of Computer Science, for her

encouragement and advice that I pursue a Ph.D.; Mr. Joseph E. Smith III of Leesburg,

Virginia and formerly of IBM Corporation, for his encouragement and advice that I pursue

an advanced degree in the first place; Dr. Patricia Whitlow, Assistant Dean of the University

of Kentucky Graduate School, for her inspiration and organization of a dissertation writing

workshop; and Mrs. Kathleen Carter, for editing my dissertation and providing many helpful

comments and suggestions.

I would also like to thank Dr. Jerzy W. Jaromczyk and Dr. Grzegorz W. Wasilkowski,

both with the University of Kentucky Department of Computer Science, for their continu-

ous support, encouragement, and positive impact during my entire academic career at the

University.

Last I would like to thank all my friends, fellow students, and faculty in the Department of

Computer Science and throughout the University of Kentucky for their collective inspiration

and assistance throughout the time I have spent at the University.

iii

Table of Contents

Acknowledgments iii

List of Tables vii

List of Figures viii

List of Files ix

1 Introduction 1
1.1 Problems Addressed And Solved In This Dissertation 2
1.2 Organization of the Dissertation . 3

2 Preliminaries 4
2.1 Wireless Personal Area Networks (WPANs) 4
2.2 Bluetooth Technology . 4

2.2.1 Overview . 5
2.2.2 Technical Details . 6
2.2.3 Piconets . 10
2.2.4 Scatternets . 10
2.2.5 Evolution of the Bluetooth Specification 11

3 Bluetooth Scatternets: Criteria, Models and Classification 13
3.1 Introduction . 13
3.2 Bluetooth Topology Fundamentals . 14

3.2.1 Piconets . 14
3.2.2 Scatternet Formation Metrics and Constraints 16
3.2.3 Scatternet Models . 18
3.2.4 Link Formation . 21
3.2.5 Intra Piconet Scheduling (IRPS) . 22
3.2.6 Inter Piconet Scheduling (IPS) . 24
3.2.7 Scatternet Routing . 26

3.3 Topologies Resulting from Scatternet Formation 27
3.3.1 Single-hop Topologies . 27
3.3.2 Multi-hop Topologies . 33
3.3.3 Optimized Topologies . 36

3.4 Summary . 40

iv

4 A Fault-Tolerant Distributed Formation Protocol for Bluetooth Scatter-
nets 41
4.1 Introduction . 41
4.2 Related Work . 43
4.3 A Fault-Tolerant Distributed Scatternet Formation Algorithm 47

4.3.1 Preliminaries . 47
4.3.2 Device Discovery . 47
4.3.3 Basic Idea And Motivation . 49
4.3.4 Algorithm . 50
4.3.5 Fault Tolerance and Scatternet Maintenance 56

4.4 Performance Evaluation . 58
4.4.1 Parameter Optimization . 59
4.4.2 Comparative Simulation Study . 64

4.5 Summary . 68

5 Hybrid Bluetooth Scatternet Routing 70
5.1 Introduction . 70
5.2 Related Work . 73
5.3 Routing Preliminaries . 75

5.3.1 Scatternets . 75
5.3.2 Extended Scatternet Neighborhood (ESN) 76
5.3.3 Probabilistic Gossiping . 77

5.4 A Hybrid Bluetooth Scatternet Routing Algorithm 78
5.4.1 Basic Idea . 78
5.4.2 Algorithm . 82

5.5 Performance Evaluation . 93
5.5.1 Extended Scatternet Neighborhood (ESN) 93
5.5.2 Route Acquisition Delay . 95
5.5.3 Parameter Optimization . 97

5.6 Summary . 101

6 Security in Bluetooth Scatternets 103
6.1 Introduction . 103
6.2 Security Preliminaries . 104

6.2.1 Concepts . 104
6.2.2 Overview . 104
6.2.3 Security Threats . 109

6.3 Inter-Piconet Security . 111
6.3.1 Secure Scatternet Models . 111
6.3.2 General Password-based Secure Scatternet 113
6.3.3 Private PAN Security . 118

6.4 Summary . 119

7 Conclusions and Future Work 120
7.1 Problems Addressed and Solutions Proposed 120
7.2 Future Work . 122

v

Bibliography 125

Acronyms 131

Index 136

Vita 139

vi

List of Tables

3.1 Protocol Comparison Chart . 37

4.1 Bridge Table for scatternet formation . 54

5.1 Piconet master MA’s ESN Routing Table . 84

6.1 Keys used for BluetoothR© security . 105
6.2 Redefined Bridge Table for link-level scatternet security 117

vii

List of Figures

2.1 BluetoothR© Core Architecture . 7
2.2 BluetoothR© Protocol Stack . 8

3.1 Basic description of a BluetoothR© Piconet 15
3.2 Illustration of Scatternet Topology Models 20

4.1 BTDSP initialization procedure BT-Init . 51
4.2 BTDSP master procedure BT-Master . 53
4.3 BTDSP bridge scan procedure BT-Bridge 54
4.4 Example of a bridge node connection to form a scatternet 55
4.5 Pseudo code for BTDSP modified initialization procedure BT-Init-Repair 57
4.6 pthres=fp candidate functions . 60
4.7 Scatternet Connectivity for pthres candidate functions with variable pthresInit 63
4.8 Scatternet Connectivity for pthres candidate functions with variable bthres . . 64
4.9 Comparison of Singlehop Scatternet Connectivity 65
4.10 Comparison of Multihop Scatternet Connectivity 67
4.11 Comparison of Formation Delay . 68

5.1 Extended Scatternet Neighborhood (ESN) 72
5.2 A 4-piconet hop route within the ESN . 77
5.3 HBSR ESN update procedure Hbsr-Esn . 82
5.4 Example ESN Routing Zone . 83
5.5 HBSR discovery procedure Hbsr-Discovery 87
5.6 Extended Scatternet Neighborhood (ESN) Node Reachability 94
5.7 HBSR Route Acquisition Delay . 96
5.8 HBSR gossiping node reachability with single threshold 98
5.9 HBSR gossiping node reachability with two thresholds, p1 and p2 100

6.1 E21 and E22 key generation . 105
6.2 Challenge-response authentication . 107
6.3 E3 Encryption key generation algorithm . 108
6.4 E0 Cipher stream encryption engine . 109
6.5 Private PAN piconets connected to the scatternet 112
6.6 Secure connection establishment . 115
6.7 Inter-piconet key exchange values . 116
6.8 Inter-piconet authenticated key exchange procedure 116

viii

List of Files

1. Persson-Dissertation.pdf

ix

Chapter 1

Introduction

BluetoothR© is a short range wireless networking technology suitable for both stationary and

portable devices with low-power consumption. It was initially developed by LM Ericsson in

Sweden, but is governed as an open specification by the Bluetooth Special Interest Group

(SIG) and also adopted as the IEEE 802.15.1 standard for Wireless Personal Area Networks

(WPANs). A WPAN is generally considered to be a small, short range ad hoc network,

made up primarily of low power devices, that surround a person or an object, e.g. a desktop

computer or a vehicle. Although BluetoothR© technology is suitable for WPANs, the basic

BluetoothR© networking topology unit, a piconet, restricts membership to a single master

and up to seven active slave devices with no direct interconnections between the slaves.

Therefore the formation of BluetoothR© scatternets is essential for communication between

larger groups of devices.

A scatternet topology is formed by interconnecting piconets. Since each piconet has

a unique Frequency Hopping Sequence (FHS), piconet interconnections are accomplished

by asking some selected nodes to participate in more than one piconet. These so called

bridge nodes divide their time between piconets by switching between FH channels and

synchronizing to each piconet’s master. In general, a node can only be the master in one

piconet but is allowed to participate in other piconets as a slave.

The BluetoothR© Special Interest Group (SIG) has published several versions of the Blue-

tooth specificationR© [11]. An overview of its evolution is provided in Chapter 2.2.5. The

1

specification defines the concept of a scatternet, but does not provide detail on how scatter-

nets should be formed or how actual scatternet communication can take place.

1.1 Problems Addressed And Solved In This Disserta-

tion

BluetoothR© technology has great potential to become the de facto standard for commu-

nication between heterogeneous devices in WPANs. However, the piconet size limit of a

single master and up to seven active slaves prevents BluetoothR© devices from being part of

larger Mobile Ad Hoc Networks (MANETs) or Wireless Personal Area Networks (WPANs).

The BluetoothR© specification [11] has defined the concept of a scatternet for interconnect-

ing multiple piconets using overlapping bridge nodes, but does not specify any protocols or

procedures for the formation of scatternets, routing and data communication, or scatternet

security.

In this dissertation we address scatternet formation, routing, and security to make com-

munication in scatternets possible. With the adoptation of over one billion devices already

and the BluetoothR© SIG on the verge of producing a specification that enables high-speed

BluetoothR© communication, it is important to provide protocols for scatternet communi-

cation so that we can take full advantage of the increasing pervasiveness and capability of

BluetoothR© enabled devices.

Scatternet formation is the precursor to any communication between devices in a scatter-

net. Numerous approaches have been proposed to solve the problem of scatternet formation.

However, many of these approaches depend on centralized entities, consist of phase divided

algorithms, lack fault-tolerance, and hence are of limited use. We discuss many of these

approaches in detail, then establish criteria and topology models for defining efficient scat-

ternet formation algorithms and classify existing solutions accordingly. We also propose the

Bluetooth Distributed Scatternet Formation Protocol (BTDSP), which is a fault-tolerant

distributed scatternet formation protocol. BTDSP is based on the observations that cen-

2

tralized leader elections, phase divisions, and use of Master/Slave (MS) bridges result in

inefficient scatternet topologies.

For devices in a scatternet to be able to communicate, a routing protocol is necessary.

We propose Hybrid Bluetooth Scatternet Routing (HBSR), which is a hybrid scatternet

routing protocol above the L2CAP layer that utilizes a zone routing approach to proactively

maintain an Extended Scatternet Neighborhood (ESN) between adjacent piconets and uses

gossip-based reactive discovery of either individual devices (destination based) or devices that

offer a service (service based) outside the ESN. We also take Inter Piconet Scheduling (IPS)

into consideration to ensure that HBSR operates as efficiently as possible.

Security is another important area that is necessary for scatternets to be properly utilized.

We discuss different security scenarios and present a link level algorithm for enabling security

associations between adjacent ESN piconet masters in a scatternet.

1.2 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 establishes the necessary

background by defining major concepts in more detail. In Chapter 3 we define criteria for

scatternet formation, establish general scatternet topology models, and classify proposed

solutions according to the aforementioned criteria and models. Thereafter, in Chapter 4

we describe our Bluetooth Distributed Scatternet Formation Protocol (BTDSP) in detail

and also compare and contrast it to other scatternet formation algorithms. In Chapter 5

we introduce our Hybrid Bluetooth Scatternet Routing (HBSR) protocol and evaluate the

performance of the algorithm. Chapter 6 presents our approach for establishing link level

security in a scatternet. Finally, in Chapter 7 we conclude the dissertation and describe the

direction of our future work.

Copyright c© Karl E. Persson 2009

3

Chapter 2

Preliminaries

In this section we define some of the concepts discussed in this dissertation.

2.1 Wireless Personal Area Networks (WPANs)

A wireless ad hoc network can generally be considered an autonomous group of communicat-

ing peers that use unreliable wireless links and does not rely on a central authority or infras-

tructure [34]. More specifically, a Personal Area Network (PAN) can be defined as a short

range ad hoc network that inter-connects devices within close proximity; typically surround-

ing a single person or an object [55]. When wireless Infrared (IR) or Radio Frequency (RF)

transmissions are used to inter-connect PAN members the network is called a Wireless Per-

sonal Area Network (WPAN) [23]. Further, the IEEE 802.15 Working Group (WG) for

WPANs has developed a Wireless Personal Area Network (WPAN) standard based on ver-

sion 1.1 of the Bluetooth specification [33]. The main purpose of a WPAN is to enable

ubiquitous connectivity of heterogeneous wireless devices surrounding a person. BluetoothR©

is especially suitable as the underlying WPAN technology because of its clustering properties

and low-power operation.

2.2 Bluetooth Technology

In this section we cover BluetoothR© history, purpose, and technical details, as well as define

networking concepts and nomenclature.

4

2.2.1 Overview

BluetoothR© is a networking technology aimed at providing short range wireless communi-

cation to low-powered devices. The name BluetoothR© was adopted from the 10th century

Scandinavian Viking king Harald Bluetooth who successfully united Denmark and Norway.

BluetoothR© was initially developed by LM Ericsson in Sweden, but has since 1998 been

governed as an open specification by the BluetoothR© Special Interest Group (SIG) [30].

Given that Bluetooth was developed in Sweden, naming the technology after a Scandinavian

Viking king could be seen as suitable without further explanation. However, Harald Blue-

tooth and the wireless technology named after him also share the characteristic as uniters of

heterogeneous entities, which might have contributed to the naming choice. While Harald

Bluetooth united Sweden and Denmark under Christianity in the 10th century, Bluetooth

wireless technology unites, or inter-connects, heterogeneous electronic devices.

As the BluetoothR© specification [11] was developed, a number of basic usage scenarios,

or profiles, were proposed to simplify adaptation and interoperability, and ultimately per-

suade device manufacturers to include BluetoothR© chipsets in their devices. These profiles

can generally be classified into the following four categories [51]: generic profiles, including

the Generic Access Profile (GAP) and Service Discovery Protocol (SDP) profiles: telephony

profiles, including headset, cordless telephony, and intercom profiles; networking profiles, in-

cluding fax, Dial-up Networking (DUN), PAN, and LAN access profiles; and object exchange

profiles, including object push, file transfer, and automatic synchronization profiles.

The Generic Access Profile (GAP) [8] defines procedures for discovery of devices, link

management and pairing of devices, as well as link level security aspects within a piconet [11].

GAP procedures are used extensively in the management of piconets and link level security.

The use of security modes from the Generic Access Profile (GAP) is discussed in Section 6.3.

Another profile that fits into the generic profile classification is the Service Discovery

Protocol (SDP) [11] profile, which allows devices to discover services that are offered by other

devices. The Service Discovery Protocol (SDP) operates using a client/server model, without

5

knowledge of underlying Master/Slave (MS) relationships, to discover the capabilities of a

specific piconet device or to determine which piconet devices support a requested application

or service [50]. We discuss extending SDP functionality to scatternets in Section 5.4.

The PAN profile defines the inter-connection of BluetoothR© devices with heterogeneous

networking devices using the Bluetooth Network Encapsulation Protocol (BNEP). This

can be accomplished using either a Network Access Point (NAP), which functions as a

gateway between the BluetoothR© piconet and the rest of the network, or in a Group Ad Hoc

Network (GN) scenario where non-Bluetooth devices are able to form temporary links and

exchange data with Bluetooth devices using BNEP for Ethernet encapsulation [9, 11].

2.2.2 Technical Details

BluetoothR© operates in the 2.4 GHz Industrial, Scientific, Medical (ISM) frequency band.

ISM is unlicensed and available worldwide, making it suitable for pervasive technologies such

as BluetoothR©. The BluetoothR© core system consists of the Bluetooth Controller, the Host

Controller Interface (HCI), and a set of profiles outlined in the previous section. The basic

layering and core architectures are illustrated in Figure 2.11.

The BluetoothR© radio is designed to minimize interference using a Frequency Hopping

Spread Spectrum (FHSS) system across 79 hop carriers in the ISM band, with 1 MHz

spacing, at a nominal rate of 1,600 hops per second. For devices to communicate with each

other they must all follow the same pseudo-random Frequency Hopping Sequence (FHS)

and be synchronized on the same Radio Frequency (RF) carrier at the same time. For

the basic data rate of 1 Mbps the baseband signal is modulated using Gaussian Frequency

Shift Keying (GFSK) and then transmitted on an RF carrier according to the FHS. The

Enhanced Data Rate (EDR), which was introduced in version 2.0 of the specification [11],

defines two new modulation techniques for transmission of the synchronization sequence,

payload, and trailer sequence, while the access code and packet header are transmitted at

1Illustration derived from BluetoothR© Core v2.0 + EDR specification [11] page 21. Copyright
2004 c© Bluetooth SIG [30].

6

L2CAP

LMP

LC

Radio

HCI
B

lu
et

oo
th

 C
on

tro
lle

r

Synchronous
unframed traffic

Asynchronous and
isochronous framed traffic

Device
control

services

data control data control

L2CAP
layer

L2CAP
Resource
Manager

Channel
Manager

Link
Manager

layer Link
Manager

Device
Manager

Baseband Resource
Manager

Baseband
layer

Link Controller

Radio
layer RF

C-plane and control
services
U-plane and data traffic

Protocol signalling

Figure 2.1: BluetoothR© Core Architecture

basic data rate for backwards compatibility. For 2 Mbps Enhanced Data Rate (EDR), π/4-

rotated differential encoded Quarternary Phase Shift Keying (π/4-DQPSK) is used, while 3

Mbps EDR is achieved by using differential encoded 8-ary Phase Shift Keying (8DPSK) [11].

After each packet transmission on an RF carrier, following the FHS, devices hop to

the next carrier in the sequence to remain synchronized to the Frequency Hopping (FH)

channel. The FH channel can be thought of as a virtual channel as it consists of multiple RF

carriers that are visited according to a FHS, and it is not a physical carrier itself. Further,

the FH channel is divided into time slots. Each time slot is 625 µs and contains a single

baseband transmission. A baseband transmission can last for one, three or five time slots. To

maintain synchronization across different carriers and to align time slots, BluetoothR© uses

loosely synchronized clocks, which means that slaves use an offset from the master’s clock

to stay synchronized. The master’s BD ADDR provides the identity of the piconet and its

native clock determines the time slot boundaries. The BD ADDR is a unique 48-bit MAC

address that is assigned to every BluetoothR© device.

7

Telephony Control
Protocol (TCS)

Service Discovery
Protocol (SDP)

Object Exchange
Protocol (OBEX)

RFCOMM

Baseband [Link Controller (LC)]

Link Manager Protocol (LMP)

Logical Link Control and Adaptation Protocol (L2CAP)

Figure 2.2: BluetoothR© Protocol Stack

The Bluetooth protocol stack is illustrated in Figure 2.22. The BluetoothR© baseband pro-

tocol performs basic link management, frequency hop selection, piconet creation, timing and

synchronization, error control, and basic link level security operations. The baseband pro-

tocol is also used for passing data between the radio and higher layers [50] in the Bluetooth

Link Controller (LC) Finite State Machine (FSM). There are two types of physical links

that can be formed between devices: Asynchronous Connectionless (ACL) and Synchronous

Connection-Oriented (SCO). ACL links are used for non-time sensitive data communication

and have error control functionality. SCO links are used for time-sensitive data communi-

cation such as voice or multimedia applications. For SCO links, there are two packet types

available specifically for latency sensitive traffic. Depending on the required voice quality

and type of Forward Error Correction (FEC) needed, either single slot Data/Voice Bluetooth

packet type (DV) or High-quality voice Bluetooth packet type (HV) packets are available.

For ACL links, data can be transmitted in one, three, or five slot Data - Medium Rate (DM)

or Data - High Rate (DH) packets of different types depending on the type of error control

needed, as well as in AUX1 packets for raw data.

BluetoothR© allows piconet-wide broadcasts as well as point-to-point logical links on Asyn-

chronous Connectionless (ACL) and Synchronous Connection-Oriented (SCO) physical links

to be established. These are contained within logical transports, which are used for Intra

2Illustration derived from BluetoothR© Core v2.0 + EDR specification [11] page 181. Copyright
2004 c© Bluetooth SIG [30].

8

Piconet Scheduling (IRPS). Each active slave in a piconet is identified by a 3-bit logical

transport address, or LT ADDR. The intra piconet communication is exclusively controlled

by the master, which periodically polls each slave to keep it synchronized. Slaves are only

permitted to transmit during odd time slots directly following a master poll.

Above the baseband and Link Controller (LC) in the BluetoothR© protocol stack resides

the Link Manager Protocol (LMP), which controls link formation and communicates with

Link Managers (LMs) in peer devices. A number of LMP Packet Data Unit (PDU) commands

have been defined to communicate link management functionality between LMs in peer

devices to configure the links, manage the piconet, or implement link level security [50].

Above the LC and LM resides the Logical Link Control and Adaptation Protocol (L2CAP),

which is used as a conduit for higher layer application protocols on connection-oriented ACL

links [50]. L2CAP is not used for SCO real-time links as there are strict latency requirements

for traffic across such links. L2CAP uses Connection-oriented (CO) or Connection-less (CL)

channels, as well as a signalling channel, between devices to abstract details of the underly-

ing BluetoothR© layers from application protocols for simplicity of implementation. L2CAP

functionality can be divided into the following categories [50]: protocol multiplexing, packet

segmentation and reassembly, Quality of Service (QoS), and group management. L2CAP

protocol multiplexing is used to establish the virtual channels and hide lower layers from

application protocols. Application protocol packet payloads are segmented into BluetoothR©

ACL packets, and control is transfered down to the Link Controller (LC). Conversely, pay-

loads are reassembled from BluetoothR© ACL packets and directed up to the corresponding

application protocol. L2CAP also provides per application protocol Quality of Service (QoS)

and device group management, since the piconets are not directly visible to higher layer pro-

tocols.

9

2.2.3 Piconets

The piconet is the fundamental networking unit for BluetoothR© Wireless Personal Area

Networks (WPANs). A piconet consists of a single master device and up to seven active slave

devices. The piconet master determines the Frequency Hopping Spread Spectrum (FHSS)

that the slaves must follow in order to stay synchronized to the piconet channel. The Time

Division Duplex (TDD) Frequency Hopping (FH) channel is divided into 625 µs time slots.

It is driven by the master, which eliminates contention problems within a piconet. The

master transmits during even time slots, while slaves are restricted to sending packets back

to the master during the subsequent odd time slots. The master addresses each slave either

individually by its LT ADDR, or by a piconet-wide broadcast using LT ADDR 000.

Devices can be connected into piconets, the basic BluetoothR© networking unit, directly,

or they can use a device discovery mechanism to locate peers. By entering the inquiry state

in the Link Controller (LC) Finite State Machine (FSM), a device transmits special inquiry

packets on a pre-determined subset of frequencies. If other devices simultaneously engage

in inquiry scanning and receive the inquiry, they respond and can subsequently be directly

paged and incorporated into the piconet. This is called device discovery and is the primary

method for locating devices to form a piconet.

2.2.4 Scatternets

Although multiple piconets can coexist without significant interference from each other, it is

desirable to be able to interconnect them to form larger WPANs with more than eight nodes.

This is where the concept of a scatternet comes into play. The BluetoothR© specification

defines scatternet as an interconnection of piconets, but states that it is not within the scope

of the core protocols [11]. Conceptually, any time a piconet member participates in more

than one piconet a scatternet exists. However, in order to utilize the benefit of additional

connectivity the bridge nodes must be able to relay data packets between piconets. This

requires both Inter Piconet Scheduling (IPS) and a scatternet routing algorithm. This is

10

discussed in more detail in Chapter 5.

2.2.5 Evolution of the Bluetooth Specification

For the purpose of this dissertation we assume that all algorithms and assumptions are based

on version 1.2 of the BluetoothR© specification [11]. For clarity, we outline the evolution of

the specification and the changes between versions.

• Version 1.0 - Initial version released by the BluetoothR© Special Interest Group (SIG)

in 1998. This version has been deprecated.

• Version 1.0B - Included many errata items from the BluetoothR© Special Interest Group

(SIG) website [30]. This version has been deprecated.

• Version 1.1 - Included many errata items from the BluetoothR© Special Interest Group

(SIG) website [30] and fixed compatibility problems in initial versions based on feedback

from unplugfests held by the Bluetooth SIG [30]. Received Signal Strength Indicator

(RSSI) was also added. This was the first truly interoperable version. This version has

been deprecated.

• Version 1.2 - Many new features were added in this version including faster connec-

tion and discovery, Adaptive Frequency-Hopping Spread Spectrum (AFH), Extended

Synchronous Connection-Oriented (eSCO) links, enhanced error detection and flow

control, enhanced synchronization capability, and enhanced flow specification.

• Version 2.0 + EDR - Enhanced Data Rate (EDR) for 2.0 and 3.0 Mbps transmission

speeds added.

• Version 2.1 + EDR - New features added including Encryption Pause and Resume,

Extended Inquiry Response, Secure Simple Pairing, Sniff Subrating, and Security Mode

4.

11

Copyright c© Karl E. Persson 2009

12

Chapter 3

Bluetooth Scatternets: Criteria,
Models and Classification

3.1 Introduction

In this chapter we describe the fundamental challenges related to scatternet formation,

define general scatternet topology models, establish different topology criteria, and classify

existing solutions for scatternet formation.

A scatternet topology is formed by interconnecting piconets. Since each piconet has

a unique frequency hopping sequence, piconet interconnections are done by allowing some

nodes to participate in more than one piconet. These bridge nodes divide their time between

piconets by switching between Frequency Hopping (FH) channels and synchronizing to the

piconet’s master. In general a node can be the master only in one piconet but is allowed to

participate in other piconets as a slave.

In the BluetoothR© specification [11] the functionality and membership properties of pi-

conets are described in detail while scatternet formation is only mentioned briefly. Numerous

approaches for scatternet formation have been proposed since the specification was first pub-

lished. The main idea behind scatternet formation is to interconnect adjacent piconets. We

can interconnect piconets by scheduling disjoint slots during which the interconnecting bridge

nodes can communicate with the master of each connected piconet.

The rest of this chapter is organized as follows. In Section 3.2 we cover the fundamen-

13

tal concepts behind BluetoothR© network topologies. We briefly overview how BluetoothR©

piconets are formed in Section 3.2.1. In Section 3.2.2 we discuss different formation metrics

and constraints for scatternet formation. Thereafter, in Section 3.2.3 we define scatternet

models and describe their differing characteristics. We cover link formation in Section 3.2.4,

since BluetoothR© devices must discover each other and form links before they can communi-

cate. Section 3.2.5 describes some proposed solutions for Intra Piconet Scheduling (IRPS).

Section 3.2.6 covers Inter Piconet Scheduling (IPS) and its implications for better scatter-

net performance. Section 3.2.7 discusses the general problem of routing in scatternets. In

Section 3.3 we review the state-of-the-art approaches with respect to scatternet formation

and classify the approaches according to the models defined in Section 3.2.3. We begin with

single-hop protocols in Section 3.3.1, in which all devices must be within transmission range

of each other to form a scatternet. Thereafter, we cover multi-hop protocols in Section 3.3.2.

These approaches offer more flexibility since not all devices are required to be within radio

proximity of each other. Section 3.3.3 describes optimized solutions that provide theoretical

results on how scatternet topologies could be constructed efficiently. Finally, in Section 3.4

we offer some summarizing remarks.

3.2 Bluetooth Topology Fundamentals

3.2.1 Piconets

BluetoothR© devices communicate with each other in a Master/Slave (MS) configuration.

That means that devices do not communicate as equal peers on a collision prone medium, as

in IEEE 802.11 [35]. Figure 3.1(a) shows a two node piconet with one master and one slave

device. The FH channel is divided into time slots. Each time slot is 625 µs and contains a

baseband transmission. A baseband transmission can last for one, three or five time slots.

After each transmission, the piconet devices hop to another one of the 79 FH carriers. To

maintain synchronization BluetoothR© uses loosely synchronized clocks, which means that

slaves use an offset from the master’s clock to stay synchronized. The master’s BD ADDR

14

provides the identity of the piconet and its native clock determines the time slot boundaries.

master

slave

t0
0 1 2 3 4 5 6 7

625µs

b) Packet transmission between master and slave on FH TDD channel

a) 2 node piconet with a master and a slave device

Master
Slave

Figure 3.1: Basic description of a BluetoothR© Piconet

Communication pattern in a piconet is controlled by the master. The master polls each

slave in a round-robin fashion during even numbered time slots. The slaves are allowed

to transmit only during odd time slots subsequent to a poll from the master. Figure 3.1(b)

illustrates an example of communication on the TDD slotted channel between the master and

the slave. The figure shows the communication pattern where the master transmits during

even time slots and the slave responds during odd time slots. Based on the specification, in

larger piconets the master addresses each slave using a round-robin Intra Piconet Scheduling

(IRPS) algorithm. Section 3.2.5 covers other proposed IRPS algorithms.

Multiple piconets can coexist without significant interference from each other since all

slaves maintain synchronization to a uniquely identified FH channel. In [77] Zurbes concludes

that inter-piconet interference is only significant in dense scenarios of 50-100 overlapping

piconets. Although piconets can coexist, it is also desirable to be able to interconnect them.

As previously stated, the eight device upper bound on active piconet capacity and the use

of FH channels necessitate piconet switching for piconet interconnections. To interconnect

two or more piconets at least one device must participate in more than a single piconet. By

allowing certain devices to function as bridges and switch between participating piconets,

these bridge nodes can relay packets between piconets. The bridge node must also keep track

of all its connected piconet masters’ identities and clock offsets, since clocks are merely loosely

15

synchronized. Upon switching from a piconet, the bridge node changes its operational mode

from ACTIVE to either HOLD or SNIFF. Consequently the bridge node cannot respond

to master polls while it is absent from the piconet. In HOLD mode, the device maintains

an LT ADDR but is not active for a fixed time interval. In SNIFF mode the device also

maintains an LT ADDR and schedules periodic sniff intervals during which is it available.

The main difference is that SNIFF is scheduled periodically while HOLD is a one-time

operation that does not begin until 6*Tpoll slots from the time of the request [50]. Upon

switching back the bridge must re-synchronize to the master to follow the FHS again. Miklos

et al. [31] conclude that piconet switching poses a significant overhead and has a major

impact on system performance. It is therefore important for overall scatternet performance

not only that the scatternet topology is carefully constructed, but also that piconet switching

is scheduled as efficiently as possible. Section 3.2.6 describes some of the proposed approaches

for Inter Piconet Scheduling (IPS).

3.2.2 Scatternet Formation Metrics and Constraints

In the BluetoothR© specification [11] scatternets are entirely conceptual. There are no guide-

lines for forming scatternets. Two scatternet topologies that are formed by separate ap-

proaches can appear radically different and retain dissimilar characteristics. The resulting

scatternet topology is therefore based on how the piconets are inter-connected. The underly-

ing purpose for formation of a specific scatternet and any constraints placed on how devices

form connections may have a significant impact on the resulting topology.

Some criteria used for scatternet formation are listed below:

• Complete scatternet connectivity

• Maximized aggregate bandwidth

• Minimized average routing path length

16

• Maximized average node availability

• Minimized bridge switching overhead

• Communication group clustering

• Self-healing

• Multi-hop node participation

• On-demand scatternet formation

Complete scatternet connectivity means that every node in the scatternet is able to reach

every other node. In other words, there are no partitions in the scatternet. By choosing

to maximize aggregate bandwidth the user wishes to increase goodput and reduce overhead

from formation, scheduling, or routing. To minimize average routing path length means that

the scatternet topology is as compact as possible with few routing hops between nodes.

Maximized average node availability refers to ensuring that a dense and connected topology

with multiple routes between nodes is available. Minimizing bridge switching overhead is a

commonly used criterion and refers to controlling the number of piconets in which a bridge

node participates. Scatternets that are optimized for communication group clustering often

have special purposes which necessitates that certain devices are always clustered together.

Self-healing refers to the ability of the algorithm to re-incorporate nodes that either move,

lose power, or otherwise are disconnected from the scatternet. Multi-hop node participation

means that the scatternet is able to accommodate devices that might or might not be within

direct radio vicinity of each other. On-demand scatternet formation refers to the ability to

form temporary scatternets only when they are needed.

One of the most important decisions to make before designing a new or choosing an

existing algorithm for scatternet formation is to determine the desired constraints placed

on bridge nodes. A node is allowed to participate only as a master in a single piconet,

but can join any number of other piconets as a slave on a time share basis. This type of

17

bridge is called a Master/Slave (MS) bridge. The other more restrictive type of bridge is

the Slave/Slave (SS) bridge. An SS bridge is allowed to operate only as a slave node in the

piconets in which it participates, but not as a master in any of them. In [48] Misic et al. find

that the mean access delay in scatternets with SS bridges is lower than when MS bridges

are used. The main reason is that intra-piconet communication ceases while the MS bridge

is participating in another piconet, for which it is not a master. In contrast, disallowing

MS bridges eliminates some tree, ring, and mesh topologies from consideration that can, in

some cases, produce shorter average path lengths, prevent routing loops, and provide simpler

scatternet routing.

Another formation metric that directly affects scatternet performance is the bridge degree,

defined as the number of piconets in which a node is allowed to participate. In [31] and [61]

the authors conclude that there is a direct correlation between bridge switching overhead

and scatternet performance. Scatternet performance can be increased by placing constraints

on the maximum bridge degree [61, 67, 16, 5]. Restricting bridge overlap by allowing only

one bridge between any two piconets is another possible constraint [67].

A performance metric that is difficult to determine a priori is the traffic pattern [19].

Traffic-flows between nodes have significant impact on throughput and overall performance

[14]. More specifically, groups of devices that frequently communicate with each other make

up Communicating Groups (CGs) and can be clustered together for better performance [44].

Generally this metric has only theoretical significance for designing scatternets that improve

performance, since it requires knowledge of traffic patterns and node relationships. This is

described in more detail in Section 3.3.3.

3.2.3 Scatternet Models

Based on the metrics and constraints discussed in the previous section, a number of general

scatternet models can be derived. In this section we categorize different types of scatternet

topologies and compare their characteristics.

18

Scatternet formation approaches can be classified into the following general topology

models:

• Single Piconet Model (SPM)

• Slave/Slave Mesh (SSM)

• Master/Slave Mesh (MSM)

• Tree Hierarchy (TH)

• Master/Slave Ring (MSR)

• Slave/Slave Ring (SSR)

The simplest type of scatternet is the Single Piconet Model (SPM), illustrated in Figure

3.2(a) [44]. SPM is the only scatternet type that is natively supported in the BluetoothR©

specification. In an SPM, as in a traditional piconet, a single master and up to seven active

slaves communicate. The rest, if any, of the participating slaves, up to 255 of them, are

placed in PARK mode and can be substituted in when the master needs to communicate

with them. Although this model is simple and natively supported in the specification, it is

very inefficient and requires active slaves to be placed in PARK mode to accommodate a

parked slave.

Two variations of mesh topologies are shown in Figures 3.2(b) and (c). In Figure 3.2(c),

a Master/Slave Mesh (MSM) that interconnects piconets using MS or SS bridges is shown.

MSM is the least restrictive scatternet model, since it allows any type of piconet intercon-

nection to be formed. Degree constrained MSMs place an upper-bound on the number of

piconets in which a bridge node participates. For example, the Bluetooth Topology Construc-

tion Protocol (BTCP) protocol [67] forms a 2-MSM degree constrained scatternet, while our

Bluetooth Distributed Scatternet Formation Protocol (BTDSP) (described in Section 4.3)

forms a 2-SSM degree constrained scatternet. In both cases the number 2 corresponds to

19

a) Single Piconet Model (SPM) b) Slave/Slave Mesh (SSM) c) Master/Slave Mesh (MSM)

d) Tree Hierarchy (TH)

Master/Slave Bridge
Slave/Slave Bridge

Master
Slave

e) Master/Slave Ring (MSR) f) Slave/Slave Ring (SSR)

Figure 3.2: Illustration of Scatternet Topology Models

the upper-bound on the number of piconets in which a bridge node participates. Slave/Slave

Mesh (SSM) scatternets are illustrated in Figure 3.2(b) and are very similar to MSMs, except

that they allow only SS bridges. This limitation generally increases scatternet performance

at the cost of additional protocol complexity.

Figure 3.2(d) shows a Tree Hierarchy (TH) topology. TH scatternet topologies differ

from the preceding models in that they have a single root node and descendant tree nodes.

The Tree Scatternet Formation Protocol (TSF) protocol by Tan et al. is an example of a

TH scatternet [27]. TSF is discussed in detail in Section 3.3.1. The main advantages of TH

topologies over the preceding models are that they have logarithmic average path length and

simplify scatternet routing. On the other hand, the root node is a bottleneck point and node

disconnections close to the root node can partition the scatternet and substantially reduce

node availability.

Master/Slave Ring (MSR) and Slave/Slave Ring (SSR) models, in Figures 3.2(e) and (f),

are ring structured scatternets. The main reason to form a ring topology is to alleviate the

bottleneck problems seen in TH topologies [17] while maintaining simple scatternet routing

20

[68]. However, ring models suffer from partitioning problems and significantly longer average

path lengths and mean access delays.

Depending on the purpose of the scatternet and the metrics that are emphasized, any of

the aforementioned models could be appropriate. For instance, in applications where routing

and access delay are of great importance, Tree Hierarchy (TH) solutions might be the most

suitable. In other scenarios where connectivity and availability are the predominant metrics,

the mesh models might work better.

3.2.4 Link Formation

After determining the purpose of the scatternet, the participating nodes must be discovered

before a topology can be formed. This is called device discovery. Devices cannot simply

overhear other nodes within radio proximity, as done in IEEE 802.11 [35], due to the FH

channel scheme employed in Bluetooth. Instead, BluetoothR© devices must enter INQUIRY or

INQUIRY SCAN states to transmit inquiry packets or listen for inquiries respectively. Two

trains of 16 predetermined frequency hop carriers are used for device discovery. Since there

is no way for inquiry-scanning devices to know exactly at which FH channel an inquiring

device is transmitting, the inquiring device broadcasts Inquiry Access Code (IAC) packets

and changes hop carriers at twice the rate of the inquiry scanning device. This allows devices

to discover each other independent of clock synchronization, since there is no a priori clock

synchronization in BluetoothR© and each device merely has a native clock. If the inquiry

scanning device receives an IAC packet it backs off for a Random Backoff (RB) delay period

and then responds with a Frequency Hopping Sequence (FHS) packet, which contains its own

BD ADDR and clock value. Thereafter, paging procedures can commence and the previously

inquiring device can page the respondent using a Device Access Code (DAC) packet. If the

paging procedure is successfully completed, a link is established with the initially inquiring

device as the master. If the roles need to be reversed, a Master/Slave (MS) switch can

also be performed. After the link has been established, the slave stays synchronized to the

21

piconet using the FHS and clock value it received from the master during paging.

As described in the BluetoothR© specification [11], device discovery is not a spontaneous

process. For device discovery to begin roles must be preassigned and devices must enter

either INQUIRY or INQUIRY SCAN states. However, for scatternet formation the link

establishment process should happen gratuitously. Devices that wish to participate in the

scatternet should automatically engage in device discovery and form a link, either as a master

or as a slave. Gratuitous link establishment can be accomplished either symmetrically or

asymmetrically.

Salonidis et al. propose a symmetric link protocol in [67] and [66]. In their approach

devices alternate independently between INQUIRY and INQUIRY SCAN states with ran-

domized state residence intervals. Two devices successfully discover each other if they remain

in complementary states for longer than a lower-bound interval.

Ching et al. propose an asymmetric approach to link establishment in [16]. Their ran-

domized approach probabilistically determines inquiry and inquiry scan roles. Devices then

repeat this procedure until a link is established.

Ramachandran et al. evaluate both a deterministic and a randomized algorithm that are

variations of the two preceding solutions respectively [2]. Their results suggest that the ran-

domized approach produce significantly lower link establishment delay than the deterministic

(or symmetric) algorithm.

3.2.5 Intra Piconet Scheduling (IRPS)

The BluetoothR© specification describes a round-robin Intra Piconet Scheduling (IRPS) al-

gorithm, in which the master polls each slave in a cyclic manner without considering queue

lengths or other traffic dependent metrics [11]. This naive polling scheme is generally called

Pure Round Robin (PRR). PRR provides fairness between the slaves, but wastes unneces-

sary time slots and does not provide any Quality of Service (QoS) bounds.

Kalia et al. [43] propose more efficient polling schemes. Their polling algorithms utilize

22

the queue state of the masters and slaves to determine the polling order. Their Priority

Polling (PP) scheme prioritize links where both the master and the slave have non-empty

queues. To prevent link starvation and provide fairness among the links, they also propose

the K-Fairness Scheduling Policy (KFP). KFP performs round-robin scheduling among links

on which one or both queues are non-empty. When one of the queues is empty, the algorithm

sacrifices the current link polling to a link where both queues are full. An absolute fairness

bound of K slots is guaranteed by not sacrificing additional link polls when the difference

between the maximum and minimum provided service exceeded K slots. Both algorithms

significantly increases slot utilization over the PRR scheme. However, both PP and KFP

assume that the master has complete knowledge of the queue lengths at the slaves and is

therefore not practically feasible.

Capone et al. [3] point out that the algorithms in [43] are idealistic, since the master

has only partial knowledge of the queue lengths. Due to the master-driven polling structure,

slaves cannot inform the master of their queue lengths until after being polled by the master.

The authors emphasize that the PRR scheme provides fairness but is not exhaustive. Instead,

they propose the Limited and Weighted Round Robin (LWRR) intra-piconet scheduling

scheme. In LWRR slaves are polled in a weighted round-robin manner. The weights are

adaptively decreased when an empty queue was encountered and reset to their original values

when the queue is non-empty again. The authors do suggest, based on their simulation

results, that the Exhaustive Round-Robin (ERR) IRPS algorithm outperforms both LWRR

and other polling schemes, except under extremely high load where using LWRR results in

less retransmissions.

Golmie et al. present the Bluetooth Interference Aware Scheduling (BIAS) algorithm,

which reduces the impact of interference in the channel [53]. The idea is to detect excessive

interference on frequency carriers and then avoid packet transmissions. Thereafter the band-

width leftover by the constrained (by interference) devices is reallocated fairly among the rest

using a credit system. The algorithm provides short term fairness between unconstrained

23

(interference-free) devices and also maintains their guaranteed service rates.

A precursor to efficient scatternet communication is the existence of an Inter Piconet

Scheduling (IPS) algorithm. This is described further in the next section.

3.2.6 Inter Piconet Scheduling (IPS)

Inter Piconet Scheduling (IPS) is a prerequisite to scatternet formation. Efficient IPS mini-

mizes wasted time slots when bridge nodes that are participating in other piconets are polled.

Therefore, it is important that time slots are scheduled efficiently. Miklos et al. suggest in

their performance analysis that decreasing the bridging overhead and number of links is

fundamental for good performance in a scatternet [31]. It is therefore necessary to introduce

an IPS algorithm.

Johansson et al. propose an IPS approach based on Rendezvous Points (RPs) in [55].

A Rendezvous Point (RP) is a scheduled time slot at which the master will poll the bridge

node. Thus, the bridge node should be present in the piconet at the RP. Johansson et al.

present an RP-based algorithm in [56]. They emphasize that for IPS algorithms to be efficient

there should be some coordination with an Intra Piconet Scheduling (IRPS) algorithm. The

authors also assume that master devices are never selected as bridges. This assumption

is well supported by the experimental analysis by Misic et al. [48], who conclude that the

mean access delay is lower when Slave/Slave (SS) bridges are used. If Master/Slave (MS)

bridges are used slaves in a piconet cannot communicate at all when their master is away,

since all communication is master initiated. The Rendezvous Point (RP) IPS algorithm

by Johansson et al. in [56] is called Maximum Distance Rendezvous Point (MDRP). The

basic idea is to maximize the distance between RPs within a periodic super frame. Based

on the analysis by Miklos et al. in [31], maximizing the time between the polling of bridge

nodes increases performance for static traffic models. However, the MDRP algorithm is not

adaptive and therefore does not react to bursty traffic. It also requires complex coordination

of the Rendezvous Points (RPs).

24

Racz et al. propose the Pseudo-Random Coordinated Scatternet Scheduling (PCSS) IPS

algorithm in [4]. In their approach, they use a pseudo-random sequence of checkpoints

generated from the master clock and BD ADDR of the bridge slave, instead of the RPs

used in [56]. In the event of checkpoint collisions (when a bridge has multiple checkpoints

scheduled in different piconets or when traffic patterns change), the checkpoint intensity can

be increased or decreased adaptively.

Johansson et al. propose a scheduling algorithm which they called JUMP mode [54].

JUMP mode is a propose new operational mode. Hence, it requires modification to the

current specification. The JUMP mode approach is very similar to the approaches proposed

in [56] and [4]. Bridge nodes signal their presence on a link at pseudo-random rendezvous

windows. Both Slave/Slave (SS) and Master/Slave (MS) bridge nodes are allowed and are

called jumping slaves and jumping masters respectively. By signaling its presence on a link,

the jumping node notifies the link peer that it will be present during the entire RP window.

To reduce wasted polling of jumping slaves, Johansson et al. allow jumping slaves to establish

a long term signaling scheme. A jumping master can also signal to its slaves that it will be

absent during an RP window, so that the slaves will not have to listen for polls during the

master’s absence.

Zhang et al. propose another approach to mitigate the problem of masters polling ab-

sent bridge nodes, called the bridge conflict problem, in [75]. Their Flexible Scatternet-wide

Scheduling (FSS) scheme polls slaves in a weighted round-robin fashion. The polling weight

is represented by a tuple (P,R) where P indicates the scheduled cycle period of the node

and R indicates the maximum polls in a scheduled cycle. The polling weight can be adap-

tively adjusted by the master, based on estimated traffic on the link. Each bridge node

has an associated switch-table that indicates when the bridge will be present in a piconet.

This bridge table is replicated at the connected master, but modified by each bridge node

independently (based on its queue length). The algorithm provides an adaptive scheduling

scheme. However, it requires a multi-phased single-hop scatternet formation protocol, such

25

as BTCP [67], since the switch tables are initially created by a coordinator.

Har-Shai et al. [39] present an approach applicable to smaller scatternets that do not re-

quire complex coordination. Their Load Adaptive Algorithm (LAA) is a completely dynamic

approach, in which the next rendezvous point os scheduled when the bridge switches piconets.

This approach avoids establishing inflexible periodic schedules. The Slave/Slave (SS) bridge

node is also assumed to be connected to exactly two piconets. LAA determines when a bridge

node should switch piconets based on several factors. The algorithm uses queue length to

determine how soon it should switch piconets. An upper bounded time commitment interval

is used to notify the master of how long the bridge will be absent to prevent wasted polls.

This algorithm is adaptive and requires minimal coordination.

Wang et al. [70] propose the Dichotomized Rendezvous Point (DRP) approach, which

attempts to coordinate RPs throughout the scatternet. The authors assume that only

Slave/Slave (SS) bridges are used and that the bridge degree is exactly 2, or in other words

that a 2-SSM degree constrained scatternet topology is used. Their two-phased algorithm

assigns suboptimal RP during the first phase and thereafter utilizes traffic flow information

during the second phase to dynamically adjust the Rendezvous Point (RP) schedule. As

an enhancement to the DRP algorithm they also propose Dichotomized Rendezvous Point

Broadcasting (DRPB), which adds a third phase that attempts to seek common RP reference

points across the scatternet.

3.2.7 Scatternet Routing

In most topologies a scatternet routing protocol is necessary to efficiently accommodate data

traffic. There are numerous different approaches to form a scatternet. This is due to the

fact that scatternets are not part of the BluetoothR© specification. Therefore, the resulting

topologies can have very different characteristics and consequently a general scatternet rout-

ing protocol that works across all possible topologies is highly unlikely. Further, although

general wireless ad hoc network routing protocols such as Ad hoc On-demand Distance

26

Vector (AODV) [13] and Dynamic Source Routing (DSR) [21] have the potential to work

in BluetoothR© scatternets, they would require extensive modification. Depending on the

scatternet formation protocol that is used, different modifications are necessary. In some

strictly structured topologies, such as tree (TH) or ring (MSR and SSR), routing is trivial.

For instance, in the protocol by Sun et al. routing reduces to traversing a binary search tree

with packets forwarded unidirectionally around the ring [68]. However, most scatternet mesh

topologies require an explicit routing protocol. We cover scatternet routing fundamentals in

more detail and present our hybrid scatternet routing algorithm in Chapter 5.

3.3 Topologies Resulting from Scatternet Formation

Scatternet formation can be accomplished in several different ways. We distinguish between

single-hop, multi-hop, and optimized solutions. Single-hop solutions require all devices to be

within radio transmission range of each other, while multi-hop solutions allow devices to join

the scatternet if they are within the proximity of at least one participating device. Optimal

solutions for scatternet formation are often not of practical use, but offer theoretical insight

into how scatternet topologies can be efficiently constructed.

Multi-hop solutions are distributed by nature. Within the category of single-hop solu-

tions we also distinguish between coordinated and distributed approaches. For coordinated

solutions some entity has complete knowledge of the network and assigns roles and connec-

tions to all participating devices. This can be done by electing a coordinator using a leader

election process [29].

3.3.1 Single-hop Topologies

The scatternet formation approaches described in this section are classified to produce single-

hop topologies. This means that they rely on the assumption that all devices involved in the

formation are within radio transmission range of each other. The BluetoothR© specification

specifies three power control classes and allows transmit power control between 0 dBm and 20

27

dBm [11]. Although power control schemes have been proposed, e.g [62], we only consider

approaches that use static transmission power. We further classify single-hop topologies

based on whether the formation uses a coordinator or it is completely distributed.

Coordinated Solutions

Coordinated single-hop topologies are formed by an centralized, and in many cases omnipo-

tent, device that has been elected to coordinate the formation.

Salonidis et al. present one of the first protocols for scatternet formation [66, 67]. The

idea behind their Bluetooth Topology Construction Protocol (BTCP) attemps to solve the

problem of asymmetric link formation. The authors emphasize that spontaneous link forma-

tion requires devices to automatically engage in device discovery. Whereas device discovery

in the specification is designed to manually select an inquiry state, Salonidis et al. sug-

gest that devices should voluntarily enter either the INQUIRY or INQUIRY SCAN state.

In their symmetric link formation protocol, devices alternate between INQUIRY and IN-

QUIRY SCAN after a random state residence time. If two devices meet in complementary

states for longer than the required formation delay a link is formed. Although the authors

claim that the protocol is distributed, since devices spontaneously engage in scatternet for-

mation, it does require a centralized leader with global knowledge and can therefore not

be considered a distributed solution. This formation protocol creates a 2-MSM connected

scatternet using single bridge links between exactly two piconets. Further, BTCP is divided

into three phases. During the first phase a coordinator is chosen using a leader election

process. Thereafter, the coordinator determines the master and bridge roles based on a for-

mula that imposes a 36 node upper bound on the scatternet. Finally the links are formed.

BTCP requires en masse node arrival and does not take mobility and node failures into

consideration.

Ramachandran et al. present both a deterministic and a randomized algorithm to form

ad hoc clusters in [2]. Both approaches involve a leader election of a super-master, which

subsequently forms the actual topology in a centralized manner. The deterministic approach

28

is similar to the symmetric link formation in BTCP, in which nodes alternate between

INQUIRY and INQUIRY SCAN states. Nodes that discovered each other form a virtual

inquiry response tree with the root node as a master. The master then forms a cluster, or a

piconet, from the devices in the virtual response tree. Thereafter, a super-master is elected

among the masters and the clusters are interconnected. In the randomized approach, devices

determine their inquiry role probabilistically using several rounds of Bernoulli trials. This

determines the master and slave designates and ultimately the makeup of the clusters. The

MSM scatternet topology is then formed by the super-master in the same manner as in the

deterministic approach. Both algorithms require en masse node arrival, but do not specify

how bridges are used to interconnectthe clusters.

Zaruba et al. present Bluetrees in [28]. The authors present two variations of their

algorithm: Blueroot Grown Bluetrees and Distributed Bluetrees. The Distributed Bluetrees

approach is a multi-hop solution and is described further in Section 3.3.2. A Blueroot Grown

Bluetree creates a TH topology and is formed from an arbitrarily selected coordinator node

called the blueroot. A rooted spanning tree is built from the blueroot using a neighborhood

topology graph. The root node is a master and every one-hop neighbor is a slave. The

children are then assigned an additional role as a master in another piconet and the tree is

recursively formed. Moreover, each internal tree node is a Master/Slave (MS) bridge node.

The authors limit the number of slaves to five to prevent exceeding the seven active slave

limitation in piconets and to introduce excessive overhead. Blueroot Grown Bluetrees require

radio vicinity for all nodes while its distributed counterpart does not.

Sun et al. present a self-routing Bluetree TH scatternet topology in [45]. Their approach

is directly based on Blueroot Grown Bluetrees and binary search trees. After the tree is

formed routing is trivial. The node insertion position in the Bluetree is determined by the

root based on the BD ADDR of the new node. QUERY messages are passed up the tree

to inform internal nodes and the root of the current range of BD ADDR’s of each node’s

children. Therefore, when the root node receives a JOIN request from a new node it can

29

easily determine in which of its children’s ranges the node should be placed. Once the

root finds the correct insertion position, the new node is inserted as a leaf node. If the

newly inserted node is the root of a subtree, some of its children might violate the Bluetree

range constraints. This is solved by the root(s) propagating allowable range messages down

the tree. Once a node detects a child that is outside the allowable range, that child is

disconnected and subsequently rejoined by the root at the correct position. The protocol

supports incremental node arrival and is self-healing, even when multiple nodes fail. It also

makes scatternet routing trivial with the tradeoff of continuous tree maintenance. As with

other TH topologies, nodes close to the root are bottlenecks and failure of bottleneck nodes

results in scatternet partitioning. It is also possible that unbalanced trees are formed, which

eradicates the benefit of the logarithmic average path length.

Lin et al. present the Bluerings protocol in [68]. Their approach forms a 2-SSR topology,

in which only Slave/Slave (SS) bridges are used. In contrast to the Bluerings approach

in [17] (described in Section 3.3.1), this protocol allows complete piconets to join the ring

structure. The protocol relies on a leader election process to form the piconets and assigns

bridge connections in accordance with the ring topology constraints. Packet routing is done

unidirectionally, except during maintenance operations when the ring is broken. In those

instances the packets can be routed in the reverse direction. Exactly two bridge nodes

are present in each piconet: one upstream and one downstream. Further, the bridges are

connected between exactly two piconets to ensure the ring structure. The protocol is self-

healing and reconstructs the ring upon node failures using Dedicated Inquiry Access Codes

(DIACs) to reconnect missing bridge links. The protocol simplifies routing with the tradeoff

of longer average path lengths.

Distributed Solutions

In contrast to the previous section, distributed single-hop approaches do not depend on a

single device to form a scatternet.

Law et al. present a randomized protocol that formed a Slave/Slave Mesh (SSM) in [16].

30

Devices are partitioned into components, which consist of a single device or a piconet in which

the master is the component leader. Similar to the randomized link formation approach in [2],

Law et al. also use asymmetric link formation. Devices probabilistically determine whether

to enter the INQUIRY or INQUIRY SCAN state. Each leader of a component, disjoint

device or master attempt either to add additional slaves to its piconet or, if it currently has

no slaves, to join another piconet. Each leader of a component tries to find other leaders and

relinquish leadership. Finally, only one component leader is still active to connect additional

slaves. To optimize the scatternet topology, the protocol allows merging of piconets and

migration of slaves between them. The protocol incrementally forms a 2-SSM with bridge

nodes participating in exactly two piconets. It is optimized to minimize time and message

complexity while allowing incremental joins. However it does not handle device failures.

Chun-Choong et al. propose Bluerings to form ring structured scatternets in [17]. The

Bluerings approach produces a 2-MSR topology in which all bridge nodes are MS bridges

and each bridge is connected to exactly two piconets. For a complete Bluering to be formed,

en masse node arrival and radio vicinity is assumed. The algorithm is categorized as a

distributed solution since each node is assumed to be engaged in formation independently,

although simultaneously. There are two variations of the algorithm. In the first, the head

of the semi-connected ring performs INQUIRY while the tail performs INQUIRY SCAN.

Disjoint nodes probabilistically choose between the two inquiry states. The head of the

semi-connected ring has to have the largest identifier of the connected nodes to prevent

loops from forming, before all nodes are included. Loops are avoided by allowing inquiry-

scanning nodes to connect only to nodes with smaller identifiers. In the second variation,

loops are prevented by disallowing the tail from engaging in inquiry and inquiry scanning

all together. Further, only disjoint nodes and the head are allowed to probabilistically select

an inquiry state. Both variations terminate the topology formation after a timeout period

during which no additional nodes are connected. A ring topology has the advantage of every

node having two paths to any other node (as long as the ring is maintained) and constant

31

path length. As another advantage the path is determined trivially. The disadvantages of

this specific approach include excessive packet latency and much longer average path length

(N/2) than, for instance, in TH topologies. In addition, neither of the two algorithms provide

any methods for maintaining the ring topology, which takes care of incremental arrivals and

node failures.

Tan et al. present a Tree Hierarchy (TH) scatternet formation protocol in [27] and [26].

The Tree Scatternet Formation Protocol (TSF) forms a distributed TH scatternet, which

allows incremental arrivals and handles node failures. As in [16] TSF partitions devices into

components. Each component in TSF is either a single free node or a subtree that seek to

join another tree in the forest. Similar to BTCP, TSF use symmetric state transitions to

establish links. After a links is formed, the master becomes the root and the slave becomes

a leaf node. TSF restrict free nodes to connect only to other non-root nodes and other

free nodes, while root nodes can connect only to other root nodes. When two root nodes

are connected, one becomes the master while the other becomes a slave. These restrictions

prevent loops from forming. Self-healing of the tree is native to the protocol. Internal

nodes that lose connectivity to their parent become roots and attempt to connect to another

root node, while roots that lost all their child nodes becomes free nodes. TSF isolates

communication between root nodes using the Limited Inquiry Access Code (LIAC), which is

native to the specification. TSF is self-healing, distributed, produces a connected scatternet,

and simplifies scatternet routing. However, due to the nature of TH topologies, the root node

is a bottleneck in the network and node failures close to the root partitions large portions

of the scatternet. The authors note that TSF is not guaranteed to heal network partitions

when all devices are not within radio vicinity [27]. The protocol is therefore classified as

a single-hop topology. Based on its decentralized nature and the interconnection of rooted

subtrees it could, however, function in a multi-hop scenario. Although in a such case it would

not necessarily maintain its self-healing and connected properties. A multi-hop optimization

of TSF called SHAPER [24] is described further in Section 3.3.2.

32

3.3.2 Multi-hop Topologies

In this section we cover protocols that do not require all devices to be within radio vicinity

of each other.

In Section 3.3.1 we describe the coordinated single-hop Bluetrees approach by Zaruba

et al. [28]. The authors also propose a multi-hop version called Distributed Bluetrees that

works analogous to Blueroot Grown Bluetrees, except that multiple init nodes are used. The

node with the highest ID in the local neighborhood is selected, using an election process,

as an init node. The second phase of the protocol merges the subtrees into a single TH

scatternet topology. Whereas Blueroot Grown Bluetrees requires radio vicinity for all nodes,

Distributed Bluetrees does not. Distributed Bluetrees functions in a distributed manner

to form a multi-hop scatternet, but cannot always guarantee connectivity of all subtrees.

However, it does simplify scatternet routing since the formed topology has a tree structure.

Wang et al. present Bluenets in [74]. In their approach the resulting scatternet topology

is formed as a 2-SSM. They emphasize that average path length in Bluenets are shorter and

a Bluenet can sustain higher traffic flows than in Bluetrees. The authors also explain both

these observations by stating that, in the heavily connected mesh topology (2-SSM), paths

are not required to go along the congested and non-optimal path through the root node. The

trade-off is that routing in the Bluenet scatternet is much more complex than in Bluetrees.

Analogous to Bluetrees, Bluenets are not able to guarantee scatternet-wide connectivity.

Basagni et al. propose a multi-hop solution in [5]. In their three-phased approach, devices

first engage in discovery using a symmetric link formation protocol. In addition to the

traditional symmetric link formation behavior found in [67], devices also exchange a weight

parameter. After the discovery and information exchange, devices have knowledge of the

local neighborhood graph. Based on the exchanged weights, devices in the local neighborhood

with the highest weight, called init devices, become masters. These devices then initiate the

formation phase and start to form Bluestars, which essentially are just piconets. Disjoint

devices that receive a page from a device with a larger weight join as slaves. After the init

33

devices have successfully paged all its neighbors with smaller weight, the second phase is

done. Devices that have only neighbors with larger weight become masters and page other

devices with smaller weight. In the final phase, a BlueConstellation scatternet is formed.

The BlueStar masters determine the init masters by comparing weights with neighboring

masters that are either two or three hops away. The init masters then instruct their slaves to

page specific neighbors to form gateways to neighboring BlueStars. Thereafter, they engage

in a Master/Slave (MS) switch and the paging slave become a bridge node between the two

BlueStar piconets. However, only neighboring masters that are two hops away can receive

the page from the gateway slave. In the event that the neighboring master is three hops away,

a gateway piconet is created to join the two BlueStars. The protocol guarantees scatternet

connectivity in a multi-hop environment. However, it provides neither self-healing nor does

it allow incremental node arrival, because the protocol is divided into multiple phases.

In [24] Cuomo et al. present the SHAPER algorithm. It is based on TSF [27], but ensures

connectivity and self-healing in a multi-hop scenario. The main difference between TSF and

SHAPER is that while TSF uses a set of coordinators (that were roots of subtrees), SHAPER

allows both root and non-root nodes (of partitioned subtrees) to form links and initiate tree

reconfiguration. There is a trade-off from allowing all nodes to form links to other subtrees.

Namely the fact that they all have to periodically engage in either inquiry or inquiry scanning.

In TSF this is limited to coordinator nodes, which prioritize scatternet communication over

costly formation for non-root nodes. However, as the authors of SHAPER also state, this

potentially prevents healing of the TH topology when coordinators are not within radio

transmission range of each other. SHAPER avoids this and ensures connectivity. Initial tree

formation is conducted in the same fashion as in TSF. The important differences lay in the

way SHAPER handles link establishments between nodes in different tree partitions. There

are several cases. In the first case, in which both connected nodes are roots, the root of the

larger tree becomes the new root and the topology is reconfigured accordingly. If the slave

on the link has the larger tree, a Master/Slave (MS) switch has to be performed first. This

34

case is similar to TSF. In the second case, either the slave device is a root and the master a

non-root or the slave device is a free node. Either way the tree is simply attached and the

parameters are updated. The third case occurs when the master on the link is either a root

or a free node and the slave is already part of a tree. This is analogous to the first case,

except that tree sizes does not have to be compared. A Master/Slave (MS) switch has to

be performed first and the topology is then reconfigured. In the last case, both connected

nodes are non-root nodes. The smaller of the two trees is reconfigured and the parent-

child relationships are inverted so that all nodes in the reconfigured tree are descendants

of the connected node. To prevent the simultaneous initiation of multiple reconfigurations,

SHAPER implements a locking mechanism that forces non-root nodes to obtain permission

from the root before reconfiguring the tree. The authors claim that SHAPER have a lower

average formation delay than TSF. As previously mentioned, the trade-off is that non-root

nodes have less time to engage in communication, which reduces communication efficiency.

A radically different approach from the solutions described so far is proposed by Liu et al.

in [73]. The authors empasize that approaches that attempt to ensure scatternet connectivity

have to be periodically maintained regardless of whether there is any traffic across the links.

Instead they propose a solution that establishes a scatternet along multi-hop routing paths

on-demand. Their scatternet topology is built as part of the route discovery and includes

only devices along the route from the source to the destination. For intermediate nodes

along the scatternet route, master and slave roles also have to be assigned. Ideally every

other device on the route will be a master and the rest will be slaves. All bridge nodes

will then be Slave/Slave (SS) bridges. However, due to dynamic route changes and uneven

route lengths they also allow Master/Slave (MS) bridges when necessary. Similar to general

ad hoc on-demand routing protocols, a route request packet is flooded from the source

node [13, 21]. Once the destination receives a route request packet it sends a route reply

packet along the reverse path back to the source. The route flooding is somewhat more

difficult in BluetoothR© than in traditional Direct Sequence Spread Spectrum (DSSS) ad hoc

35

networks, since a link has to be explicitly established before information can be exchanged

between nodes. The authors note that establishing point-to-point links along all potential

paths to broadcast the route request imposes an excessive amount of overhead. Instead they

incorporate the route request packets in the pre-existing inquiry broadcast mechanism. Two

types of Extended ID (EID) packets, containing the additional route request information, are

needed since enough information cannot not be accommodated in a single EID packet. This

is accomplished by sending the type 2 packet during the response time slot (after the inquiry

broadcast), since the type 1 EID packet does not require instant acknowledgement. In fact,

the Random Backoff (RB) delay mechanism from the BluetoothR© specification discourages

immediate replies to thwart collisions. After the destination receives the first route request,

the scatternet is formed backward along the reverse route based on the transmission of the

route reply packet. Thereafter data packet routing is accomplished by next-hop entries at

each intermediate node, similar to [13]. To reduce the path latency due to bridge switching

overhead the authors propose to align the time slots along a route for efficient path traversal.

However, when multiple routes co-exist, this alignment becomes increasingly difficult.

3.3.3 Optimized Topologies

Scatternet formation approaches based on theoretical foundations offer important insight

into how optimized topologies can be constructed. This section covers some of the proposed

theoretical approaches.

Yun et al. present an approach that forms an MSM topology in [36]. Their Bluestars

approach models the discovery neighborhood as an inquiry graph I. From the inquiry graph

I, 2|I| topology subsets are available and one is selected. A combination of asymmetric

and symmetric link formation is also used. Symmetric link formation is used for en masse

arrival, while asymmetric link formation is used for incremental arrivals. After determin-

ing a topology graph T, neighboring nodes are grouped into Bluestars (piconets) and links

are established between each neighboring Bluestar. The Bluestars are further pruned into

36

Table 3.1: Protocol Comparison Chart

P
r
o
t
o
c
o
l
A

u
t
h
o
r
s

C
o
o
r
d
in

a
t
e
d

D
is

t
r
ib

u
t
e
d

M
u
lt

i-
h
o
p

I
n
c
r
e
m

e
n
t
a
l

A
r
r
iv

a
l

T
o
p
o
lo

g
y

M
o
d
e
l

L
in

k
F
o
r
-

m
a
t
io

n
S
e
lf
-h

e
a
li
n
g

E
n
s
u
r
e
s

C
o
n
-

n
e
c
t
iv

it
y

C
o
m

m
e
n
t
s

S
a
lo

n
id

is
e
t

a
l.

[6
7
],

[6
6
]

Y
e
s

N
o

N
o

N
o

2
-M

S
M

S
y
m

m
e
tr

ic
N

o
Y
e
s

M
a
x

3
6

d
e
v
ic

e
s

R
a
m

a
c
h
a
n

d
ra

n
e
t

a
l.

[2
]

Y
e
s

N
o

N
o

N
o

M
S
M

A
sy

m
m

e
tr

ic
/

S
y
m

m
e
tr

ic
N

o
Y
e
s

B
r
id

g
e

co
n

n
ec

ti
o
n

s
a
re

n
o
t

d
e
fi

n
ed

Z
a
r
u

ba
e
t

a
l.

[2
8
]

Y
e
s

N
o

N
o

N
o

T
H

A
sy

m
m

e
tr

ic
N

o
Y
e
s

B
lu

e
ro

o
t

G
ro

w
n

B
lu

e
tr

ee
s

v
e
r
si

o
n

S
u

n
e
t

a
l.

[4
5
]

Y
e
s

N
o

N
o

Y
e
s

T
H

A
sy

m
m

e
tr

ic
Y
e
s

Y
e
s

S
e
lf

-r
o
u

ti
n

g
L

in
e
t

a
l.

[6
8
]

Y
e
s

N
o

N
o

Y
e
s

2
-S

S
R

A
sy

m
m

e
tr

ic
Y
e
s

Y
e
s

S
ta

te
le

ss
ro

u
ti

n
g

L
a
w

e
t

a
l.

[1
6
]

N
o

Y
e
s

N
o

Y
e
s

2
-S

S
M

A
sy

m
m

e
tr

ic
N

o
Y
e
s

O
p
ti

m
iz

ed
fo

r
ti

m
e

a
n

d
m

e
ss

a
g
e

co
m

p
le

x
it

y
C

h
u

n
-C

h
o
o
n

g
e
t

a
l.

[1
7
]

N
o

Y
e
s

N
o

N
o

2
-M

S
R

A
sy

m
m

e
tr

ic
N

o
Y
e
s

S
ta

te
le

ss
ro

u
ti

n
g

T
a
n

e
t

a
l.

[2
7
],

[2
6
]

N
o

Y
e
s

Y
e
s,

if
ro

o
t

n
o
d
e
s

a
re

w
it

h
in

v
ic

in
it
y

Y
e
s

T
H

S
y
m

m
e
tr

ic
Y
e
s

N
o

C
a
n

fu
n

c
ti

o
n

in
m

u
lt

i-
h
o
p

e
n

v
ir

o
n

m
e
n

t

Z
a
r
u

ba
e
t

a
l.

[2
8
]

N
o

Y
e
s

Y
e
s,

if
in

it
n
o
d
e
s

a
re

w
it

h
in

v
ic

in
ty

N
o

T
H

A
sy

m
m

e
tr

ic
N

o
N

o
D

is
tr

ib
u

te
d

B
lu

e
tr

ee
s

v
e
r
si

o
n

W
a
n

g
e
t

a
l.

[7
4
]

N
o

Y
e
s

Y
e
s

N
o

2
-S

S
M

A
sy

m
m

e
tr

ic
N

o
N

o
B

a
sa

g
n

i
e
t

a
l.

[5
],

[6
1
]

N
o

Y
e
s

Y
e
s

N
o

D
e
g
re

e
c
o
n
-

st
ra

in
e
d

S
S
M

S
y
m

m
e
tr

ic
N

o
Y
e
s

E
n

su
re

s
co

n
n

ec
ti

v
it

y
in

m
u

lt
-h

o
p

e
n

v
ir

o
n

m
e
n

t
C

u
o
m

o
e
t

a
l.

[2
4
]

N
o

Y
e
s

Y
e
s

Y
e
s

T
H

S
y
m

m
e
tr

ic
Y
e
s

Y
e
s

M
u

lt
i-

h
o
p

v
e
r
si

o
n

o
f

T
S

F
L

iu
e
t

a
l.

[7
3
]

N
o

Y
e
s

Y
e
s

Y
e
s

M
S
M

A
sy

m
m

e
tr

ic
Y
e
s

N
o

S
ca

tt
e
r
n

e
t

is
fo

r
m

ed
a
lo

n
g

o
n

-d
e
m

a
n

d
ro

u
te

37

Bluestars* by removing redundant links. This solution is similar to [5], but requires a costly

determination of the optimal topology subset before the scatternet can be formed.

Cuomo et al. define a methodology for scatternet formation based on graph theory [19].

They describe the scatternet as a bipartite graph and model it using an adjacency matrix.

After evaluating all possible matrices with respect to the chosen optimization metrics, an

optimized topology is determined. This SSM topology can then be formed using a centralized

strategy. The evaluation metrics used are classified as either traffic dependent or traffic

independent. The traffic dependent metrics include residual scatternet capacity and average

node load, while the traffic independent metrics include maximized overall capacity and

average path capacity.

Chiasserini et al. present an optimized approach for scatternet formation that attempts

to minimize the traffic load [14]. The authors assume that traffic patterns and routes are

known a priori and formalize the topology formation as a min-max problem. First, they

locate the bottleneck node in the network and then determine the topology to minimize the

traffic load at that node. Although the approach is not applicable in practice, the authors

note that it does provide insight into how topologies that fulfill the capacity constraints in

BluetoothR© scatternets should be formed. They also discuss a distributed approach that

incrementally forms a scatternet and utilizes Dedicated Inquiry Access Codes (DIACs) to

classify nodes, based on individual characteristics such as load, battery power, and compu-

tational capacity.

Baatz et al. present an approach to optimize scatternet capacity in [64]. They note

that due to the FH structure and communications scheduling employed in Bluetooth, only

a subset of nodes can communicate on disjoint links at any time. Therefore, they model the

scatternet as a directed graph and determined matchings between nodes so that no two links

(edges) communicate with the same node (vertex) at the same time. Thereafter, they define

a set of these matchings as a scatternet schedule. Based on the schedule, a feasible rate

vector is defined that conforms to the scatternet capacity constraint. A max-min fair rate

38

vector that equally distributes the scheduling across all the maximal matchings is obtained

to maximize capacity, while ensuring that all links are served in a fair way. A scatternet

topology is then determined by partitioning the links into disjoint sets so that (near) perfect

matchings, called (near) 1-factors, are obtained. The resulting topology will differ depending

on how these 1-factor matchings are chosen. The authors also state that the actual topology

formation can be done using a centralized single-hop approach such as BTCP [67].

Scatternet formation based on dominating sets is of interest due to the similarity between

the Connected Dominating Set (CDS) and the subsets of masters and bridges in scatternets.

Wan et al. present a distributed approximation algorithm to construct a Connected Dom-

inating Set (CDS) in ad hoc networks [57]. Their algorithm consists of two phases, during

which a Minimum Independent Set (MIS) and a dominating tree are formed respectively.

The MIS consist of a subset of nodes that are separated by exactly two hops. The dominating

tree T* is constructed during the second phase and its internal nodes form a CDS. The algo-

rithm is not directly applicable to scatternets, but present a constant factor approximation

to the NP-hard Minimum Connected Dominating Set (CDS) problem.

Stojmenovic present an algorithm for scatternet formation that is based on the concept

of dominating sets in [65]. This approach is based on the CDS algorithm from [72], in which

a CDS is constructed by including all nodes and then removing locally redundant nodes.

Stojmenovic eliminates redundant neighbors by applying a Yao subgraph construct on the

Relative Neighborhood Graph (RNG) or the Gabriel Graph (GG) to produce the dominating

set. Thereafter, device roles are determined so that the scatternet can be connected.

Zussman et al. study capacity assignment in scatternets in [78]. They develop some

algorithms to minimize the average delay in a scatternet. They observe that scatternets us-

ing only Slave/Slave (SS) bridges are necessarily bipartite and state the problem of optimal

capacity assignment for both bipartite and non-bipartite graphs. By assuming an exist-

ing topology and traffic flow information, they develop an optimized algorithm that finds

the optimal capacity vector for the capacity assignment problem. They also develop some

39

heuristic algorithms that find approximate solutions to the same problem. They conclude

that bipartite scatternet topologies (using only SS bridges) provide the best performance.

3.4 Summary

In this chapter we discussed different criteria for scatternet formation and presented topol-

ogy models that conform to varying constraints. We reviewed the state-of-the-art approaches

with respect to scatternet formation and categorized these approaches into single-hop, multi-

hop, and optimized solutions. We further classified the resulting topologies by the general

topology models. Single-hop solutions required that all devices were within radio vicinity

of each other, whereas multi-hop protocols did not impose such a constraint. We also sub-

divided the single-hop solutions into coordinated and distributed approaches. Coordinated

algorithms required a leader to control the formation, while distributed solutions did not.

The reviewed scatternet formation approaches were compared and contrasted in Table 3.1.

As previously mentioned, depending on the criteria for the scatternet and the constraints

imposed any of the solutions from Table 3.1 could be suitable. We also reviewed some opti-

mized solutions that for the most part were not directly usable in practice. For that reason

we chose not to include the solutions from Section 3.3.3 in Table 3.1.

Copyright c© Karl E. Persson 2009

40

Chapter 4

A Fault-Tolerant Distributed
Formation Protocol for Bluetooth
Scatternets

4.1 Introduction

The BluetoothR© specification [11] and the IEEE 802.15.1 [33] standard define properties of a

scatternet but do not explicitly provide a protocol for scatternet formation. A scatternet can

be formed by inter-connecting piconets in a way that does not violate the existing constraints

imposed on the participating piconets. It must be formed by explicitly inter-linking disjoint

piconets. Due to the unique structure of a scatternet, traditional wireless ad hoc topology

formation protocols cannot be directly applied. In this chapter we present our Bluetooth

Distributed Scatternet Formation Protocol (BTDSP).

Our scatternet formation approach is designed to operate in a multi-hop environment,

which means that nodes are not required to be within transmission range of each and every

other node. The approach does not rely on a single coordinator and the algorithm is not

subdivided into multiple phases. A scatternet is formed in a distributed fashion by allowing

each node that is not already part of the scatternet to make a probabilistic decision whether

it should attempt to form links as a master or as a slave. Since each piconet can only contain

a single master and as many as seven active slaves, we aim to optimize the proportions of

designated master and slave roles.

41

For fault-tolerance it is also extremely important that incrementally arriving nodes and

previously disconnected nodes are quickly either incorporated into an existing piconet or are

allowed to form their own piconet. Our approach handles this requirement by using a local

threshold value at each node. For disjoint nodes that are not a part of any piconet, the

threshold is set low so that slave roles are chosen by them more often than master roles.

Once a node becomes a slave, it relinquishes its pursuit to form new links (unless specifically

directed by the master to form a bridge inter-connection). For piconet masters, the threshold

is increased proportional to the number of connected slaves. Instead of pursuing inclusion into

another piconet, the master makes a probabilistic decision between attempting to incorporate

an additional slave or assigning an existing slave as a new bridge designate. The concept of

bridge designates will be described in detail later in this chapter. This strategy effectively

makes the master of a larger piconet able to incorporate additional slaves and increase its

own piconet size, with higher probability.

We assume that only pure slaves (i.e., slaves that are connected to only a single master)

are considered as potential bridge designates. This assumption further ensures the formation

of a flat scatternet topology that is free from the bottlenecks found in tree-based algorithms

(e.g., [28], [27]). We make this assumption since a Master/Slave (MS) bridge node wastes

time slots when it is away from a piconet (in which it is a master) and participates as a

slave in a different piconet. Kalia et al. suggest in [44] that the use of Master/Slave (MS)

bridges negatively affect piconet performance since all intra piconet communication must

be put on hold while the master is participating in another piconet. Misic et al. present

similar results in [48] and conclude that inter-piconet delay is also significantly increased

when Master/Slave (MS) bridges are used.

In our protocol nodes are allowed to arrive incrementally and join the existing scatternet.

The protocol is also self-healing, meaning that nodes that have been disconnected can easily

be re-incorporated into the scatternet. Depending on whether a link was broken due to

wireless interference or node failure, links are either re-established or the node is incorporated

42

elsewhere in the scatternet. We explain this further in detail in Section 4.3.

The rest of this chapter is organized as follows. We summarize previous approaches for

device discovery and scatternet formation in Section 4.2 before presenting the algorithm

in Section 4.3. Section 4.3.1 established some preliminaries. In Section 4.3.2 we discuss

the issues involved in device discovery and scatternet formation. We outline the basic idea

behind our algorithm in Section 4.3.3. In Section 4.3.4 the complete scatternet formation

algorithm is presented. In Section 4.4 we present the performance evaluation and discuss

our results. The chapter is concluded in Section 4.5.

4.2 Related Work

Scatternet formation can be accomplished in several different ways. Depending on what

constraints are placed on the algorithm, the resulting topology can have very different char-

acteristics. Scatternet formation approaches are classified as single-hop or multi-hop solu-

tions [60]. Single-hop solutions require that all nodes are within transmission range of each

other, while multi-hop solutions do not impose such a restriction.

Single-hop solutions, such as [2, 67, 16, 17], require that all devices are within proximity

of each other. The solutions proposed in [2] and [67] also require an election process that

first locates a coordinator, which assigns roles to devices and forms the topology.

On the contrary, multi-hop solutions are distributed by nature. They do not require all

devices to be within proximity of each other and form a variety of different topology models.

For example, in [28] and [27] scatternets are formed as rooted trees while in [74] and [5] mesh

and star topologies are formed respectively. In [73] the authors take a different approach

and form scatternets on-demand for the duration of a route.

We briefly summarize previous solutions that influenced our algorithmic design decisions.

A comprehensive review and classification of these scatternet formation approaches can be

found in Section 3.3.

The Bluetooth Topology Construction Protocol (BTCP) protocol by Salonidis et al. is a

43

single-hop solution that utilizes asymmetric link formation and a leader election mechanism

across multiple phases to form a 2-MSM scatternet topology [67, 66]. The protocol also

imposes a 36 node upper bound, requires en masse node arrival, uses inefficient Master/Slave

(MS) bridges, and does not take into consideration mobility and node failures.

The deterministic and randomized clustering algorithms by Ramachandran et al. use a

leader election of a super-master and form the MSM scatternet topology in a centralized

manner [2]. Both algorithms require en masse node arrival and do not specify how bridge

nodes interconnect the clusters into a scatternet.

Using probabilistic asymmetric link formation, the single-hop algorithm by Law et al.

forms a mesh topology by merging disjoint components [16]. Component leaders try to find

other leaders to whom they can relinquish leadership until a single component leader remains

active to connect additional slaves. Although the algorithm does not require centralized

coordination and allows incremental joins, it does not handle device failure and scatternet

healing.

The Bluetrees protocol by Zaruba et al. is presented in two variations: Blueroot Grown

Bluetrees and Distributed Bluetrees [28]. The Blueroot Grown Bluetrees algorithm form a

single-hop TH topology from an arbitrarily selected coordinator node called the blueroot.

The distributed version merely adds multiple blueroot nodes and later merges the parti-

tions. Blueroot Grown Bluetrees requires that every node is within radio vicinity of every

other node, while its distributed counterpart does not. The main drawback of the approach

is that the hierarchical topology makes higher level nodes bottlenecks and susceptible to

partitioning.

The BlueRing protocol by Lin et al. forms a 2-SSR scatternet topology by interconnecting

piconets into a ring [17]. It relies on a leader election process to form the piconets and assigns

bridge connections in accordance with the ring topology constraints. Packet routing is simple

and done unidirectionally with the trade-off of longer average path lengths. However, it is still

based on a leader election process and suffers from expensive ring maintenance operations.

44

The distributed Bluerings approach by Chun-Choong et al. produces a 2-MSR topology,

in which all bridge nodes are Master/Slave (MS) bridges and each bridge connects to exactly

two piconets [17]. Their algorithm requires en masse node arrival and radio vicinity; however,

it does not depend on a leader election process. The ring topology has the advantage of

trivial routing, two paths to any node, and constant path length. However, the approach

produces excessive packet latency and much longer average path length (N/2) than in Tree

Hierarchy (TH) topologies (log N). Further, Bluerings neither provides ring maintenance for

incremental arrivals nor handles node failures.

The distributed Tree Scatternet Formation Protocol (TSF) approach by Tan et al. forms

a TH scatternet topology while allowing incremental arrivals and handling node failures [27,

26]. TSF partitions nodes into components that are either a single free node or a subtree

that seeks to join another tree in the forest. Although TSF is distributed, self-healing, and

produces a connected scatternet, it does not guarantee to heal network partitions when

all devices are not within radio vicinity of each other. Furthermore, it uses inefficient

Master/Slave (MS) bridges and the tree topology introduces bottlenecks in the scatternet.

The Bluenets approach by Wang et al., an extension of Bluetrees, attempts to minimize

inter-piconet connections and forms an MSM scatternet topology [74]. In contrast to Blue-

trees, they emphasize a shorter average path length and the fact that a Bluenet can sustain

higher traffic flows since, in their heavily connected Bluenet mesh topology, paths are not

required to go along the congested and non-optimal path through the root node. Analogous

to Bluetrees, the Bluenet is not able to guarantee scatternet-wide connectivity. It also suffers

from the use of inefficient Master/Slave (MS) bridges and a phase-divided algorithm.

In the three-phased multi-hop solution by Basagni et al., BlueStar piconets are connected

into a BlueConstellation scatternet [5]. Using symmetric link formation with a weight pa-

rameter to form a local neighborhood graph, Bluestars (piconets) are formed by devices in

the local neighborhood with the highest weight, called init devices. The BlueConstellation

scatternet is formed when init masters instruct their slaves to page specific neighbors to

45

form gateways to neighboring BlueStars. The protocol guarantees scatternet connectivity in

a multi-hop environment. However, it neither provides self-healing nor allows incremental

node arrivals because the protocol is divided into multiple phases.

The SHAPER algorithm by Cuomo et al. is directly based on TSF with the modification

that it ensures connectivity and self-healing in a multi-hop scenario. The main difference

between TSF and SHAPER is that TSF uses a set of coordinators, roots of subtrees, to form

links and initiate tree reconfiguration, while SHAPER allows both root and non-root nodes

of partitioned subtrees to perform these operations. The authors claim that SHAPER has

a lower average formation delay than TSF. The trade-off is that non-root nodes have less

time to engage in communication, which reduces efficiency.

The radically different approach by Liu et al. builds a scatternet on-demand along multi-

hop routing paths as part of route discovery. The approach has the advantage that it does

not require a network-wide scatternet. However, it requires complex IPS coordination and

significant modification to the BluetoothR© specification to function.

The following three key points summarize the main disadvantages of the previously de-

scribed approaches:

• Reliance on a leader/coordinator to initiate and control the formation is not scalable

and requires that all nodes are within transmission range of each other.

• Approaches that are phase divided do not allow incremental node arrival and require

complex coordination.

• The use of Master/Slave (MS) bridges negatively impacts performance and also incurs

bottlenecks and severe partitioning problems for hierarchical (tree-based) solutions.

In the next section we describe our distributed and self-healing scatternet formation

approach. It is designed to remedy some of the drawbacks found in previous approaches.

46

4.3 A Fault-Tolerant Distributed Scatternet Formation

Algorithm

4.3.1 Preliminaries

Before we get into the details of our scatternet formation algorithm, we first establish some

preliminaries based on the observations from the previous section. It is important to take into

consideration the manner in which devices are distributed to piconets, as well as how many

piconets each bridge node must switch between. The bridge degree, or piconet connectivity

degree, reflects the number of piconets in which a bridge node participates. Limiting the

bridge degree reduces routing latency since inter-piconet switching is very expensive and

a high bridge degree results in less frequent piconet visits from the bridge node [31]. In

addition to reducing bridge degree, our algorithm assigns bridge roles to only pure slaves

and forms a 2-SSM flat mesh topology. Pure slaves are piconet members that participate in

only one piconet as a slave, i.e., they do not participate in multiple piconets as bridge nodes.

This restriction prevents scatternet performance degradation, found in Tree Hierarchy (TH)

topologies, since the use of Master/Slave (MS) bridges significantly increases inter-piconet

latency [44, 48]. Performance degrades when using MS bridges because all intra-piconet

communication is put on hold while an MS bridge is away participating in another piconet.

Next we describe how device discovery is performed.

4.3.2 Device Discovery

To form a scatternet neighboring devices must first discover each other. This is done by

initiating inquiry procedures. Devices discover other nodes by forming a brief peering in

the complementary INQUIRY and INQUIRY SCAN states. When a device enters the IN-

QUIRY state, it starts transmitting INQUIRY packets across a predetermined set of inquiry

frequencies. Peers that simultaneously reside in the complementary INQUIRY SCAN state

can thereafter respond to the inquiry. Consequently, an inquiring node must briefly connect

to each one of the inquiry scanning nodes in order to discover and subsequently incorporate

47

them into a piconet.

Traditionally, as outlined in the BluetoothR© specification [11], device discovery is accom-

plished by explicitly assigning a role to each device: either master or slave. However, in a

scatternet topology this should be done in an ad hoc manner without the need for specific

role assignments. In both [27] and [67] the authors propose self-configuring schemes based

on symmetric device discovery. Devices alternate between INQUIRY and INQUIRY SCAN

states until pairs of devices meet in complementary states and form a connection. Although

these methods produce a scatternet, piconet master and slaves roles are assigned randomly.

These approaches frequently produce piconets of uneven size.

In a piconet, slaves are clustered around the master and share the bandwidth of the pi-

conet. It is therefore important to distribute nodes evenly in piconets to maximize through-

put. Uneven node distributions result in some bandwidth saturated piconets while other

piconets have a lot of available capacity. An abundance of small-sized piconets also increases

the scatternet diameter, leading to an added number of bridge traversals along a route. As

previously mentioned, inter-piconet switching is an expensive operation and hence is not a

desirable scatternet characteristic. Thus, in our approach we take piconet density into special

consideration and attempt to incorporate willing scatternet participants into fewer piconets,

but without relying on merging procedures or other artificial mechanisms to increase piconet

density.

As we emphasized in the previous section, nodes with master roles cannot be efficiently

used as bridge nodes since they control the intra-piconet communication. We therefore

designed our algorithm to form a flat topology that does not suffer from the drawback of

using Master/Slave (MS) bridge nodes. Our algorithm is also capable of operating in a

multi-hop environment, i.e., it does not require all devices to be within radio transmission

range of each other.

48

4.3.3 Basic Idea And Motivation

In this section we describe the basic idea and the motivation behind our Bluetooth Dis-

tributed Scatternet Formation Protocol (BTDSP). It is desirable that an ad hoc topology

formation algorithm does not to rely on any centralized processes or a specific set of nodes.

Our scatternet formation algorithm is therefore completely distributed in nature. Further,

we do not want the resulting topology to have any specific congestion points or bottlenecks.

Tree Hierarchy (TH) topologies that are formed using MS bridges exhibit this undesirable

behavior [60]. Additionally, to prevent excessive inter-piconet switching we limit the number

of piconets in which a bridge can participate to exactly two. This decreases the bridge node’s

piconet visit intervals with the trade-off of a sparser mesh topology. Thus, our algorithm

forms a 2-SSM flat mesh topology.

We initially assume that all BluetoothR© devices are disjoint. However, the algorithm

is capable of accommodating existing piconets and late arriving devices without modifi-

cation. Before a scatternet can be created, individual piconets must first be formed and

populated. This is accomplished by extending the device discovery mechanism provided in

the BluetoothR© specification [11]. The first step is to determine the master and slave roles of

participating devices. Our probabilistic approach assigns a small number of devices the mas-

ter role and the rest slave roles. As more and more slaves join a piconet, a local probabilistic

threshold value at each master is increased. As the threshold is increased, the probability

that the master device scans for additional slaves increases. On the other hand, disjoint

devices with a low threshold are more likely to join one of the existing piconets than trying

to form their own new piconet. Thereby, our algorithm favors compactness and alleviates

formation of large number of small piconets, which could lead to longer routing paths.

As the piconet reaches full capacity, the master stops attempting to incorporate more

slaves into its piconet. However, the master continues to attempt to increase scatternet con-

nectivity by forming bridge connections. To form a bridge connection the master randomly

picks a pure slave, if one exists, as a new bridge designate. This procedure is also performed

49

by existing piconet masters, with less than full piconet capacity, that are not probabilistically

designated by our algorithm to incorporate more slaves into their piconets. A bridge desig-

nate is defined as a connected slave, in an existing piconet, that responds to inquiries (from

another master) in order to form a bridge connection between the two piconets. Note that

a bridge designate is merely a piconet node that has been chosen by the master. Whether

it will become a new bridge node or not depends on the aptitude of surrounding masters to

establish a new connection.

The BluetoothR© master-driven slotted Time Division Duplex (TDD) allocation scheme

restricts slave devices to sending packets only after being addressed by the master. Therefore,

bridge designate slaves have unused slots during which they can scan for inquiries. Each slave

is informed of the next slot during which it will be polled by the master through the IRPS

and IPS schemes. In between these times the bridge designate can engage in inquiry scanning

and respond to inquiries from neighboring masters. If a new bridge connection is formed, the

bridge node informs each piconet master of the identity of the other master. As previously

mentioned, we restrict bridge nodes to participate in exactly two piconets, since inter-piconet

switching is an expensive operation. Each master also updates its Bridge Table to indicate

the LT ADDR of the bridge and the BD ADDR of the connected piconet’s master. The

Bridge Table is also used for scatternet routing, which is addressed in Chapter 5.

4.3.4 Algorithm

Our Bluetooth Distributed Scatternet Formation Protocol (BTDSP) is based on periodic

execution of the initialization procedure BT-Init (illustrated in Figure 4.1) by every partic-

ipating device. Within this procedure only masters and nodes that are not part of a piconet

are able to choose whether to initiate a device discovery, as a master or slave, or scan for

bridge designates. This restriction is enforced by checking that a device does not have an

LT ADDR. Every active slave device is assigned a 3-bit LT ADDR by its master, so this

check effectively excludes all connected slaves. By forcing all nodes to revisit the BT-Init

50

procedure continually regardless of whether they will actually execute the procedure or not,

we provide fault-tolerance in the event of disconnections and failures.

To proportionally distribute the master and slave role assignments, each node locally

maintains a threshold value called pthres. This value is adaptively adjusted as more slaves

are connected to the piconet to increase the probability that the piconet master revisits BT-

Init and again initiates device discovery as a master. Meanwhile, disjoint nodes or masters

of smaller piconets are probabilistically less likely to enter BT-Init based on their local

threshold value. The reasoning behind this is that we initially want a low Master/Slave (MS)

ratio to favor the natural generation of larger piconets, as opposed to artifically moving nodes

or merging piconets as done in [16]. Another threshold value bthres is also used to control

the number of bridge connections that are formed. However, unlike the adaptive nature of

pthres, the bthres is set statically to η1, where η1 = (0, 1]. As described in Section 4.4, we

initially set pthres = 0.08 and bthres = 1. pthres is thereafter adaptively adjusted using a

linear function while bthres remains static.

BT-Init()
1 if !LT ADDR
2 then pthresInit ← η
3 pthres ← fp(pthresInit, scount)
4 bthres ← η
5 p← rand(0, 1)
6 b← rand(0, 1)
7 if p < pthres
8 then BT Master()
9 else if scount = 0

10 then BT Slave()
11 else if b < bthres
12 then BT Bridge()
13 return

Figure 4.1: BTDSP initialization procedure BT-Init

As mentioned earlier, the BT-Init procedure is executed only by masters and disjoint

devices. It utilizes a random variable p to determine the probabilistic outcome and con-

sequently which sub-procedure a device will execute. The BT-Master inquiry procedure

51

(Figure 4.2) is executed by inquiring masters. Depending on its status, a device whose prob-

abilistic outcome falls below the pthres threshold, executes one of the inquiry scanning device

procedures. A disjoint device enters the INQUIRY SCAN state and scans for inquiries, while

a piconet master instead may or may not, depending on the random variable b and the bthres

threshold value, execute the BT-Bridge (Figure 4.3) procedure and assigns a pure slave

as a bridge designate to form a new bridge link. The BT-Slave procedure is simply the

inquiry scan operation from the BluetoothR© specification [11].

Piconet Formation

The BT-Master procedure in Figure 4.2 is the core procedure for piconet formation.

Devices that fail to enter BT-Master (and lack their own slaves) will enter the IN-

QUIRY SCAN state, indicated by BT-Slave, and attempt to connect to another master

that is executing the BT-Master procedure. The BT-Master procedure operates in two

rounds: the inquiry round followed by the paging round.

The inquiry round lasts for the duration of the inquiryTO interval or until a predeter-

mined number of responses have been reached. Assuming that no SCO links are present,

the inquiryTO is set to the scan interval of both the inquiry scan trains. Each inquiry scan

train of 16 frequencies is covered in 2.56s [11]. We therefore set the inquiryTO to 5.12s.

For each response the inquiry scanning peer sends a Frequency Hopping Sequence (FHS)

response packet. The packet contains the FHS (based on the slave’s BD ADDR) that the

master should use for paging the device, as well as clock synchronization and device address

information. When the master receives an FHS response packet it enqueues it and waits for

additional responses for the remainder of the timeout interval.

The paging round follows the inquiry round if any responses are received. It lasts for

the duration of the pageTO interval or until full piconet capacity has been reached. The

pageTO is set to the default page timeout 5.12s, similar to inquiryTO. The response at the

front of the queue is then dequeued and the device is paged. For each successful connection

the Slavecount is also incremented.

52

BT-Master()
1 Num Inq ← 0
2 Q← empty()
3 while !inquiryTO and Num Inq < MAX INQUIRIES
4 do INQUIRY()
5 if INQ RESP FHS
6 then Q.enqueue(INQ RESP FHS)
7 Num Inq ← Num Inq + 1
8 while !pageTO and Num Inq > 0 and scount < 7
9 do PageDev ← Q.dequeue()

10 PAGE(PageDev)
11 if CONNECTED(PageDev)
12 then BD ADDRpcnt ← lmp scat rep
13 if BD ADDRpcnt
14 then /* Connected a bridge node */
15 if !Piconet Lookup(Bridge Table, BD ADDRpcnt)
16 then Add(Bridge Table, LT ADDR,BD ADDRpcnt)
17 scount ← scount + 1
18 else /* Node is already a bridge */
19 DISCONNECT(PageDev)
20 else /* Pure slave connected */
21 scount ← scount + 1
22 Num Inq ← Num Inq − 1
23 return

Figure 4.2: BTDSP master procedure BT-Master

If a bridge connection is successfully formed, the bridge node sends a link manager PDU

lmp scat rep that contains the BD ADDR of the other inter-connected piconet master to each

connected master. In this manner the masters can update their neighborhood information.

In particular, the masters update their Bridge Table to indicate bridge nodes and to which

piconets those are connected.

Piconet Interconnection

Piconet masters that do not perform inquiries may or may not execute the BT-Bridge

procedure (illustrated in Figure 4.3) based on the probabilistic outcome of the random value

b and the threshold value bthres. This procedure is the core of the actual interconnection of

piconets. Each master uses a lookup table, called Bridge Table (Table 4.1), that contains

53

BT-Bridge()
1 if Size(Bridge Table) < scount
2 then /* Randomly pick a pure slave */
3 Bridge Designate← Rand Pure Slave
4 if Bridge Designate
5 then lmp scat inq scan(Bridge Designate)
6 while !pageTO
7 do BD ADDRpcnt ← lmp scat rep
8 if BD ADDRpcnt
9 then Add(Bridge Table,Bridge Designate,BD ADDRpcnt)

10 return

Figure 4.3: BTDSP bridge scan procedure BT-Bridge

the LT ADDR of the bridge node and the BD ADDR of the connected piconet’s master.

This table is used to track bridge connections between piconets, but also for our routing and

security algorithms in Chapters 5 and 6 respectively.

The master first performs a lookup from the Bridge Table and then randomly selects a

slave that is not already in the table (a pure slave) as a bridge designate. If every slave is

already in the Bridge Table, then there are no pure slaves and the master will simply exit

the procedure.

Table 4.1: Bridge Table for scatternet formation

LT ADDR Piconet
001 <BD ADDRpiconetA>
010 <BD ADDRpiconetB>
011 <BD ADDRpiconetC>
100 <BD ADDRpiconetD>
101 <BD ADDRpiconetE>
110 <BD ADDRpiconetF>
111 <BD ADDRpiconetG>

We propose the addition of the following two new Link Manager (LM) PDUs for scatternet

formation:

• The lmp scat inq scan PDU is sent from a master executing the BT-Bridge procedure

to a bridge designate. It forces the slave to enter the inquiry scan state in between

54

polling slots. It does not require explicit acknowledgment; however, if a bridge connec-

tion is formed within the pageTO interval, an lmp scat rep PDU must be returned to

both piconet masters.

• The lmp scat rep PDU is sent by the new bridge slave to each master and contains the

BD ADDR of the other connected piconet’s master. Thereby, each piconet master can

identify the neighboring piconets by their masters’ addresses.

If the master finds a suitable candidate for a new bridge designate, it sends a link manager

PDU lmp scat inq scan to the node in the next master to slave polling slot. If an lmp scat rep

PDU is returned within the timeout period, the slave’s LT ADDR and corresponding master’s

BD ADDR are added to the Bridge Table.

The BT-Bridge procedure is periodically executed whenever the piconet is either at

full capacity or when the probabilistic outcome at the master falls below the threshold

and consequently does not enter the BT-Master inquiry procedure. This ensures that

the best possible scatternet connectivity is maintained, since an unexpectedly disconnected

bridge node would put the piconet below capacity and the master would again, with high

probability, enter the BT-Master inquiry procedure.

B

S

S

S

S

S

S

S

M1 M2

S

S

S

S

S

S

S

(a)

(b)

M2M1 B

Figure 4.4: Example of a bridge node connection to form a scatternet

55

An example of a bridge connection is illustrated in Figure 4.4. Node M1 is the master

of piconet 1 and node M2 is the master of piconet 2. Suppose initially that the node

B is a pure slave of piconet 1, as illustrated in Figure 4.4(a). For illustration purposes

we assume that M2 enters BT-Master again to connect more slaves. Meanwhile, let us

assume that M1 enters the BT Bridge procedure and selects node B as its bridge designate.

M1 thereafter sends a link manager command to B in the next polling slot. Upon receipt

of the lmp scat inq scan PDU, B enters the INQUIRY SCAN state. If the inquiry from M2

reaches B, it immediately responds to M2. If a connection is successfully formed, the bridge

node B returns an lmp scat rep PDU, containing the BD ADDR of the other piconet, to each

of the two connected masters. Both masters then update their Bridge Table accordingly. The

completed bridge inter-connection is illustrated in Fig. 4.4(b).

4.3.5 Fault Tolerance and Scatternet Maintenance

Through execution of BT-Init periodically, our algorithm provides fault-tolerance in a dis-

tributed fashion. The scatternet formed is self-healing; nodes that are unexpectedly discon-

nected are automatically re-incorporated into the scatternet. Slaves that are disconnected

lose their logical transport address, LT ADDR, and can subsequently re-enter BT-Init and

either form or join a piconet. Similarly, masters that lose all their children will again have a

low threshold value and with high probability join an existing piconet instead of forming a

new one. Due to the simplicity of the approach, inter-piconet fault-tolerance is also provided

by the same mechanism. Bridge nodes that lose one of their links can again become bridge

designates and form bridge connections.

As an optimization to the basic fault-tolerance properties of the algorithm, we propose

a rapid link re-establishment mechanism as a way to explicitly reconnect broken links. More

specifically, when a link is lost due to wireless interference or temporary mobility, it is desir-

able to re-establish that particular link and not just incorporate the disconnected node else-

where. Therefore, we propose a mechanism that attempts to explicitly re-establish previously

56

BT-Init-Repair()
1 if !empty(Repair Table)
2 then /* Existing links detected */
3 clk ← currentLocalClock()
4 for each Repair Table as entry
5 do if |clk − entry.ts| > repairTO
6 then PURGE(entry)
7 else if |clk − entry.ts| > POLL PERIOD
8 then if !entry.BD ADDR
9 then BT-PageScan()

10 else BT-Page(entry.BD ADDR)
11 if !LT ADDR
12 then pthresInit ← η
13 pthres ← fp(pthresInit, scount)
14 bthres ← η
15 p← rand(0, 1)
16 b← rand(0, 1)
17 if p < pthres
18 then BT Master()
19 else if scount = 0
20 then BT Slave()
21 else if b < bthres
22 then BT Bridge()
23 return

Figure 4.5: Pseudo code for BTDSP modified initialization procedure BT-Init-Repair

existing links. This requires that each node keeps a soft state, Repair Table, of recent links.

Each table entry consists of a BD ADDR, LT ADDR, and a timestamp based on the local

clock. We set the POLL PERIOD parameter equal to one polling period, or 625µs∗Tpoll

slots, where Tpoll is the current polling interval set by the link manager. Consequently,

we also add a timeout value, repairTO, and set it conservatively to 2 ∗ POLL PERIOD.

The repairTO parameter is used to purge expired entries from the Repair Table, while the

POLL PERIOD parameter is used to detect missing links.

In each master device we populate the table with the BD ADDR, LT ADDR of the link

and current local clock value for each connected slave. Slaves and bridge nodes populate only

the BD ADDR and current clock value for one or two entries respectively, since only one

master link exists for pure slaves and two for bridge nodes. The entries are updated at every

57

packet exchange with a new timestamp. In this manner entries older than the repairTO

period can easily be purged. The reason for including LT ADDR is to determine whether a

device was a master or a slave along the broken link.

In order to provide rapid link re-establishment we must also modify the BT-Init pro-

cedure to purge expired entries from the Repair Table and directly enter the PAGE or

PAGE SCAN states, depending on whether the device is a master or a slave respectively.

This is determined by checking if an LT ADDR value was set for the specific entry. The new

and modified procedure, BT-Init-Repair, is shown in Figure 4.5.

In the modified initialization procedure, a maintenance operation has been included

to purge entries older than repairTO from the Repair Table. Entries that are between

POLL PERIOD and repairTO are detected as broken links. Slaves that encounter a broken

link directly enter the BT PageScan procedure, which is merely the PAGE SCAN sub state.

On the other hand, masters enter the BT Page procedure and generate a device specific

page hopping sequence before entering the PAGE sub state. In this manner broken links can

explicitly be re-established.

4.4 Performance Evaluation

To evaluate the performance of our algorithm we conduct a performance evaluation study

using the ns-2[1] network simulator and a customized version of the University of Cincinnati

- BlueTooth (UCBT) extension module[69]. The UCBT module is based on [32] and [49],

but includes a fully operational Bluetooth stack. We extend the UCBT module by including

functionality for our BTDSP algorithm. In the first part we determine the best possible

settings for the threshold parameters used in the BT-Init procedure. In the second part we

simulate the BTDSP algorithm using the settings chosen in part one and compare it with

two existing approaches.

58

4.4.1 Parameter Optimization

Before evaluating network parameters and topology structure for BTDSP and reference al-

gorithms, we study the threshold parameters pthres and bthres used in the BT-Init procedure

and heuristically determine the best possible settings.

The factors pthresInit and scount, the piconet slave count, are the arguments used in func-

tion fp to compute the value pthres, as described in Equation 4.1.

pthres = fp(pthresInit, scount) (4.1)

Evaluation of pthres candidate functions

We independently evaluate three different functions for computing pthres as follows:

• fpLinear(pthresInit, scount) : Original linear function [59]

• fpBetaα=2,β=0.5
(pthresInit, scount) : Randomized incomplete beta function with α = 2 and

β = 0.5

• fpBetaα=50,β=4.5
(pthresInit, scount) : Randomized incomplete beta function with α = 50 and

β = 4.5

In addition to the original linear function fpLinear [59], we also use two other functions,

fpBetaα=2,β=0.5
and fpBetaα=50,β=4.5

, based on the regularized incomplete beta function [58]. The

reason for using the regularized incomplete beta function is that the parameters α and β

can be altered to easily adjust the behavior of the function. Therefore, we can produce

behaviors that allow us to evaluate how the growth of fp affects the distribution of masters

and slaves and the configuration of the resulting topologies. Other functions with similar

behavior could have also been used in place of the regularized incomplete beta functions.

The three candidate functions for fp are depicted in Figure 4.6. For clarity we do not

display every level for pthresInit in Figure 4.6. The range of levels used for factor pthresInit are

chosen to maintain the range of fp = (0, 1) for the regularized incomplete beta function, but

59

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
count

p th
re

sI
ni

t

f
P Linear

p

thresInit
=0.01

p
thresInit

=0.05

p
thresInit

=0.10

p
thresInit

=0.14

(a) fpLinear

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
count

p th
re

s

f
P Beta α=2 β=0.5

p

thresInit
=0.01

p
thresInit

=0.05

p
thresInit

=0.10

p
thresInit

=0.14

(b) fpBetaα=2,β=0.5

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
count

p th
re

s

f
P Beta α=50 β=4.5

p

thresInit
=0.01

p
thresInit

=0.05

p
thresInit

=0.10

p
thresInit

=0.14

(c) fpBetaα=50,β=4.5

Figure 4.6: pthres=fp candidate functions

also to avoid excessive initial master role assignments. The value η0 denotes the initial value

assigned to the threshold pthresInit on line 3 of BT-Init, where η0 = (0, 0.15). Also, the

value η1 denotes the initial value assigned to the threshold value bthres, line 4 of BT-Init,

and is set to a constant value for each factor treatment, where η1 = (0, 1].

We first evaluate the original linear function, called fpLinear , for fp. To validate the most

appropriate setting for pthresInit we evaluate several levels where η0 = [0.01, 0.14]1.

This function is illustrated in Equation 4.2.

1In [59] the pthresInit was set to 0.10.

60

pthres = fpLinear(pthresInit, scount) = pthresInit +


-pthresInit if scount = 7
scount / 8 if 0 < scount < 7
0 else

(4.2)

We simulate the original algorithm from [59] with different levels for η0, where η0 =

[0.01, 0.14] and scount = [0, 7], to determine the value of pthresInit that results in a connected

scatternet topology using only natural generation of piconets and inter-piconet bridge connec-

tions, as opposed to artifical piconet merging or node migration as seen in other algorithms.

The distribution of the number of masters versus slave roles assigned during discovery

in the BT-Init procedure is correlated to the function value of pthres. To assess the impact

on the scatternet topology due to the behavior of the fp function used to calculate pthres,

we also evaluate fp using the regularized incomplete beta function [58] as an alternative to

fpLinear .

The general form of the regularized incomplete beta function is illustrated in Equation

4.3 [58].

Ix(α, β) =
Bx(α, β)

B(α, β)
=

1

B(α, β)

∫ x

0

tα−1(1− t)β−1dt (4.3)

Equation 4.4 [58] defines fp in terms of the regularized incomplete beta function as fpBeta .

By varying the parameters α and β in fpBeta the behavior of fpBeta can be adjusted.

pthres = fpBeta(pthresInit, scount) =


B(α, β)

∫ pthresInit+(− 
scount

)



tα−(− t)β−dt (4.4)

As shown in Figure 4.6 we choose two different pairs of α and β values for fpBeta ,

α = 2, β = 0.5 and α = 50, β = 4.5, since these produce behaviors that control the growth

of fp in a manner that is suitable for comparison with fpLinear .

Simulation of pthres candidate functions

We simulate our Bluetooth Distributed Scatternet Formation Protocol (BTDSP) algorithm

with the BT-Init values for pthresInit in the domain η0 = [0.01, 0.14]. For the initial simula-

61

tion round the value of bthres is set constant to 1.

The simulation replications are performed in a limited area of 10 by 10 meters2 with 32

nodes, randomly distributed within the region, for a duration of 300 seconds. It should also be

noted that extra care has been taken to ensure that the Random Number Generator (RNG)

used by the ns-2 network simulator is properly seeded, as described in [47], so that a non-

deterministic behavior of the simulation is achieved for each replication.

Figure 4.7 summarizes the results of simulating each of the three candidate functions to

determine the most suitable value for pthresInit. We measure the scatternet connectivity by

evaluating the percentage of nodes that are reachable by every other node. In other words,

a fully connected scatternet is made up of a single connected component and contains no

partitions. Due to the fact that node placements and resulting topologies are randomly

generated in a non-deterministic fashion for each replication, the results are presented as

mean and median values. From Figure 4.7 we conclude that each of the three candidate

functions are characteristically different and produce higher degrees of scatternet connectivity

when the level of the pthresInit parameter is set individually for each candidate function.

For fpLinear we identify pthresInit = 0.5 and pthresInit = 0.08 as levels that produce signifi-

cantly better scatternet connectivity. We choose a single level for each of the three functions

to conduct the next round of simulations. For fpLinear pthresInit = 0.08 is selected due to a

higher mean value. For fpBetaα=2,β=0.5
we note that pthresInit = 0.13 distinctly results in better

scatternet connectivity than any other levels. For fpBetaα=50,β=4.5
we emphasize that there is

a trend of increased scatternet connectivity as the pthresInit level increases, and therefore we

select pthresInit = 0.14.

After determining a pthresInit value for each candidate function, we perform another round

of simulation replications for which we fix the level for pthresInit at {0.08, 0.13, 0.14}, for

fpLinear , fpBetaα=2,β=0.5
, and fpBetaα=50,β=4.5

respectively, and study the effect of changing the

level of the constant bthres value as η1, where η1 = (0, 1]. The purpose of this round is

2We experiment with multi-hop topology formation in larger areas during the comparative simulation
study in Section 4.4.2.

62

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
20

30

40

50

60

70

80

90

100

p
thresInit

A
ve

ra
ge

 s
ca

tte
rn

et
 c

on
ne

ct
iv

ity
 \%

Average scatternet connectivity comparison for variable p
thresInit

 and fixed b
thres

b
thres

=1, f
P Beta α=2 β=0.5

b
thres

=1, f
P Beta α=50,β=4.5

b
thres

=1, f
P Linear

(a) Mean

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
10

20

30

40

50

60

70

80

90

100

p
thresInit

M
ed

ia
n

sc
at

te
rn

et
 c

on
ne

ct
iv

ity
 \%

Median scatternet connectivity comparison for variable p
thresInit

 and fixed b
thres

b
thres

=1, f
P Beta α=2 β=0.5

b
thres

=1, f
P Beta α=50,β=4.5

b
thres

=1, f
P Linear

(b) Median

Figure 4.7: Scatternet Connectivity for pthres candidate functions with variable pthresInit

to determine if we can maintain acceptable scatternet connectivity, for each function and

corresponding optimal pthresInit settings, with a lower level for the bthres threshold value.

The reasoning behind this experiment is to evaluate whether bridge designate assignments

can also be done probabilistically, while maintaining scatternet connectivity without using

artificial migration. The results from the simulation replications are summarized in Figure

4.8.

It should be noted from Figure 4.8 that fpLinear produces relatively high scatternet con-

nectivity, even at lower levels of bthres, while the two regularized incomplete beta functions,

fpBetaα=2,β=0.5
, and fpBetaα=50,β=4.5

, produce scatternets with extremely low connectivity for

levels of bthres in the bottom half of the range. We observe that bthres is useful to prevent

63

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

90

100

b
thres

A
ve

ra
ge

 s
ca

tte
rn

et
 c

on
ne

ct
iv

ity
 \%

Average scatternet connectivity comparison for fixed p
thresInit

 and variable b
thres

p
thresInit

=0.13, f
P Beta α=2 β=0.5

p
thresInit

=0.14, f
P Beta α=50,β=4.5

p
thresInit

=0.08, f
P Linear

(a) Mean

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

90

100

b
thres

M
ed

ia
n

sc
at

te
rn

et
 c

on
ne

ct
iv

ity
 \%

Median scatternet connectivity comparison for fixed p
thresInit

 and variable b
thres

p
thresInit

=0.13, f
P Beta α=2 β=0.5

p
thresInit

=0.14, f
P Beta α=50,β=4.5

p
thresInit

=0.08, f
P Linear

(b) Median

Figure 4.8: Scatternet Connectivity for pthres candidate functions with variable bthres

excessive bridge formation and can be useable as a performance tuning parameter. Hence,

we conclude that fpLinear with pthresInit = 0.08 should be utilized over fpBetaα=2,β=0.5
and

fpBetaα=50,β=4.5
. Further, from Figure 4.8 we also note that specifically bthres = (0.2, 1] does

produce scatternets with high connectivity. However, unless excessive bridge formation and

Inter Piconet Scheduling (IPS) delays are predominant, bthres = 1 should be used for the

highest connectivity.

4.4.2 Comparative Simulation Study

To validate the performance of Bluetooth Distributed Scatternet Formation Protocol (BTDSP),

we conduct a comparative simulation study of BTDSP, the Tree Scatternet Formation

Protocol (TSF) by Tan et al. [27], and the algorithm by Law et al. [16] using the ns-2[1] sim-

64

ulator together with an extended version of the University of Cincinnati - BlueTooth (UCBT)

extension module [69] and functionality from BlueHoc [32] and Blueware [49].

Single-hop Connectivity

To illustrate how these algorithms produce a scatternet in a single-hop environment, we

simulate each algorithm with 32 disjoint devices in a limited operational area of 10 by 10

meters. To avoid the border effect, described in [6], we only use an effective simulation area of

7 by 7 meters to ensure single-hop connectivity. Each algorithm is simulated independently

and each simulation run is replicated 500 times. The focus of this experiment is to evaluate

how well each algorithm forms a scatternet topology from a set of disjoint, discoverable

devices and compare the resulting scatternet connectivity. The connectivity of a scatternet

is defined as the percentage of nodes that are reachable from every other node. The results

are shown in Figure 4.9.

Figure 4.9: Comparison of Singlehop Scatternet Connectivity

We simulate BTDSP using the fpLinear function with pthresInit = 0.08, as determined in

the previous section. In addition to bthres = 1 we also include bthres = [0.7, 0.9] for comparison

with the other algorithms. For completeness we also vary the threshold parameter p, where

p ∈ 0.33, 0.5, 0.66, for the algorithm by Law et al., as described in [16]. From Figure 4.9 it can

65

be seen that all instances of BTDSP provide as good or better mean scatternet connectivity

as the algorithm by Law et al.. The main difference between these two algorithms is that

BTDSP does not utilize centralized artificial migration to re-organize the topology. Although

this can be beneficial in certain smaller and relatively static environments, as discussed in

Chapter 3, this adds overhead and the algorithm is not capable of handling node failures.

The algorithm by Law et al. performed the best with p = 0.33. Both BTDSP and TSF [27]

are capable of providing complete scatternet connectivity, but the mean connectivity of the

Tree Scatternet Formation Protocol (TSF) algorithm is better. We believe this is due to

the probabilistic nature of BTDSP where a single role is selected, as opposed to alternating

between master and slave states as done in TSF. However, the approach taken by TSF

requires topology re-organization, which leads to higher formation delay and is described in

more detail later.

Multi-hop Connectivity

To further illustrate the fundamental differences between the algorithms we also simulate all

three in a multi-hop environment using a larger operational area of 20 by 20 meters. Similar

to above, the effective operational area is somewhat smaller, 15 by 15 meters, to avoid the

border effect. The results of the multi-hop comparison are displayed in Figure 4.10.

From Figure 4.10 it can been seen that BTDSP maintains high scatternet connectivity,

while neither the algorithm by Law et al. nor TSF are capable of consistently producing a

connected scatternet as the operational area increases beyond the single-hop range. This

is expected behavior for the algorithm by Law et al. due to its centralized structure and

reliance on leader election. Although TSF is capable of operating in a multi-hop environment

it necessitates that the root nodes are within single-hop range of each other to be able to

merge the subtrees. As indicated by the results from Figure 4.10 this is not always the case

as TSF does not consistently produce a connected scatternet.

66

Figure 4.10: Comparison of Multihop Scatternet Connectivity

Formation Delay

We also compare the formation delay for BTDSP, TSF, and the algorithm by Law et al.. To

provide a fair comparison we simulate each algorithm in a single-hop environment, due to the

multi-hop connectivity discrepancies displayed in Figure 4.10. We simulate each algorithm

with 4, 8, 16, 32, and 64 nodes; each replicated 100 times. The scatternet formation delay

is defined as the time from when the formation is initiated until every node is incorporated

into the scatternet and all phases are completed, including leader election, merging, and

migration. The results of the comparison are displayed in Figure 4.11.

From Figure 4.11 it can be seen that BTDSP has consistently lower formation delay than

both TSF and the algorithm by Law et al.. For both TSF and the algorithm by Law et al.

this delay increases as the number of nodes increase, while the formation delay for BTDSP

remains relatively constant. The reason for this is that as the number of nodes increases both

TSF and the algorithm by Law et al. suffer additional overhead from coordination between

sub-tree root nodes for tree merging and piconet merge and migrate procedures respectively,

while BTDSP is completely distributed and does not employ any artifical migration.

67

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

Nodes

F
or

m
at

io
n

D
el

ay
 (

se
co

nd
s)

Scatternet formation delay

b
thres

=1, f
P Linear

p=0.33 Law
TSF

Figure 4.11: Comparison of Formation Delay

4.5 Summary

In this chapter we proposed a new algorithm for scatternet formation. Based on thorough

analysis of previous approaches, our algorithm remedied some of their drawbacks. These

drawbacks included the use of inefficient MS bridges, phase-divided algorithms, and ineffi-

cient grouping of nodes in piconets. Our BTDSP algorithm formed a scatternet in a single

phase and accommodates late arriving nodes. The algorithm displayed two important self-

healing properties: it allowed disconnected nodes to be quickly re-incorporated and healed

scatternet partitions. The algorithm minimized the bridge switching delay by allowing bridge

nodes to participate in only two piconets. Only pure slaves were used as bridge designates,

which resulted in a flat 2-SSM scatternet topology that was free of bottleneck links associ-

ated with tree-based algorithms. It was completely distributed and worked in a multi-hop

environment, meaning that it did not require that all devices were within transmission range

of each other. We used heuristics to determine optimal settings for BTDSP and compared

the topology formation to other existing solutions. BTDSP showed better or equivalent

performance for single-hop scenarios but demonstrated a distinct advantage in multi-hop

68

scenarios.

Copyright c© Karl E. Persson 2009

69

Chapter 5

Hybrid Bluetooth Scatternet Routing

5.1 Introduction

Due to lack of a standard and differences between proposed scatternet formation methods,

communication between nodes in a scatternet requires a routing protocol that is compatible

with the underlying scatternet formation approach. In addition, it is common that devices

are not aware of the identities of their peers and hence are not able to perform traditional,

destination-address based route discovery. Devices often need just a route to some peer

device that offers the requested service rather than a specific peer. Furthermore, as part

of a scatternet the star shaped master-centric piconets with inter-connecting bridge nodes

between them provide an inherent neighborhood substructure, which we believe should be

taken advantage of for more efficient routing.

As a basis for our approach we have identified the following important criteria for an

efficient scatternet routing protocol:

• Minimizing topology induced bottlenecks and switching overhead.

• Route resilience by avoiding dependency on specific bridge nodes.

• Efficient topology utilization between neighboring piconet clusters and the direct bridge

links between them.

• Hybrid route discovery: both destination- and service-based.

70

• Reducing reactive overhead due to inefficient route request flooding.

• Caching of routes during route discovery and periodic route invalidation to prevent

cache poisoning.

• Logical placement of scatternet routing functionality in the BluetoothR© protocol stack.

A novel feature of our scatternet routing protocol is hybrid route discovery: the ability

to either discover a scatternet peer directly based on its destination address or based on a

service that it offers. The service-based route discovery can be viewed as an extension of the

Service Discovery Protocol [11], which by itself is used only within a piconet.

We base our approach on a 2-SSM flat scatternet topology to minimize bottlenecks and

switching overhead. We use only Slave/Slave (SS) bridge nodes of degree two, meaning that

they participate in exactly two piconets. This is discussed in more detail in Section 3.2.2.

Route resilience is important for fault tolerance and to prevent unnecessary route dis-

covery operations due to the failure or unavailability of a specific bridge node. We observe

that the star-shaped and master-centric piconet structure necessitates that each scatternet

route must pass through the master of every intermediate piconet along a scatternet route.

We also believe that an efficient scatternet routing protocol should be bridge link agnos-

tic, meaning that any particular bridge node could be utilized to reach a next-hop piconet

master. We therefore propose using modified source routes that only contains intermediate

piconet masters, but not the specific Slave/Slave (SS) bridge nodes between them. This

allows any available bridge node to be utilized when establishing a path between adjacent

piconet masters. It should also be noted that this approach allows for potentially more than

one bridge node between two piconets, for multiple path routing.

We also observe that efficient topology utilization should take advantage of the bridge node

overlap between adjacent piconets. While a single piconet is limited to one master and up to

seven active slaves, adjacent piconets provide a natural extension, or an Extended Scatternet

Neighborhood (ESN), between piconets that share common bridge nodes. An example ESN

71

is illustrated in Figure 5.1. Using this zone routing approach, we take advantage of the

inherent topology to reduce the need for route discovery when devices communicate with

nodes close to each other, or within the ESN. A proactive table-driven approach is used

within the ESN and a reactive modified source routing approach is employed elsewhere. We

also avoid complex zone maintenance operations by keeping the ESN zone radius static.

B

S

S S

S

S

S S

M M

Figure 5.1: Extended Scatternet Neighborhood (ESN)

Route discovery must be performed for destinations or services that are not available

within the ESN. However, to reduce routing load we do not utilize flooding to propagate

route requests. Instead we employ a two-tiered probabilistic gossiping strategy to determine

whether a route request should be forwarded to a neighbor. Instead of always forwarding

a route request, route requests are forwarded with some probability p, where p is a thresh-

old value. A higher probabilistic threshold value is used for sparser topologies to ensure

sufficient scatternet coverage while a lower threshold value prevents excessive route request

propagation for denser piconets with a higher degree of scatternet connectivity.

We also utilize route caching at piconet masters and periodically invalidate stale routes

to prevent cache poisoning. Intermediate piconet masters that have lost connectivity to

the next hop master can also attempt to repair the route locally if a different path to the

destination or another, downstream, intermediate master along the route is available.

Perhaps the most important aspect of a functional scatternet routing protocol is logical

placement in the protocol stack. None of the scatternet routing approaches presented in

[7, 63, 15] have taken this into consideration and they merely discussed routing as a function

of the Link Manager (LM). We believe that a scatternet routing protocol should be placed

on top of the Logical Link Control and Adaptation Protocol (L2CAP) layer and thereby

72

allow application layer protocols to more easily incorporate scatternet routing.

By using our modified source routing approach we also eliminate routing loops, avoid

having to use sequence numbers to determine route freshness at intermediate nodes, and

reduce routing load. The tradeoff is larger overhead due to the inclusion of the modified

source route in the routing header.

This chapter is organized as follows. In Section 5.2 we describe previous work related to

scatternet routing. Section 5.3 establishes some necessary preliminaries and concepts before

we present our routing algorithm in Section 5.4. The basic idea behind our algorithm is

discussed in Section 5.4.1. Thereafter, we present the complete algorithm in Section 5.4.2.

In Section 5.5 we evaluate our approach and present simulation results. Finally, we conclude

the chapter in Section 5.6.

5.2 Related Work

In this section we describe previous work on routing in Bluetooth scatternets.

Bhagwat et al. [7] present the Routing Vector Method (RVM) for scatternet routing.

They base their protocol on a hypothetical scatternet topology that uses only single-role

slave bridges. A route vector is used to source route packets throughout the scatternet. It is

made up of a series of alternating local piconet identifiers, and piconet LT ADDR’s. Packets

are routed through a bridge node to the next locally identified piconet and from there to the

piconet member with a corresponding LT ADDR, and so on. Routes are found by flooding

route discovery messages, to which replies are unicasted back along the reverse source route.

The RVM approach does not consider many issues such as mobility and route resilience.

To the best of our knowledge, this is one of the first attempts to address scatternet-specific

routing issues and it does provide valuable insight.

Prabhu et al. [62] extend the RVM approach by also considering energy efficiency when

determining routes. Their approach also uses a route vector, similar to RVM, and finds

routes by way of route discovery. However, they incorporate two energy saving techniques:

73

power control and master-slave switch. The former allows for variable transmitting power,

while the latter attempts to allieviate energy drainage of the master by sharing the master

role among piconet members. They show that by considering energy efficiency, scatternet

lifetime can be significantly extended.

To illustrate the complexity of the scatternet routing problem due to the topology con-

straints we also discuss two scatternet formation solutions that incorporate routing mech-

anisms. Sun et al. [45] present a tree-based scatternet topology, while Lin et al. [68] take

a different approach and their solution forms a ring topology. In both these approaches

routing is an intrinsic feature of the scatternet formation protocol. The ring-based topology

allows for a simple routing mechanism using a token-based approach. However, it requires

mechanisms to prevent orphan packets, token regeneration, and ring maintenance. In the

tree-based topology, routing is simplified by making tree nodes aware of the identities of

other nodes in their respective subtrees. Unanswered queries are directed toward the root.

As with the ring-topology, the tree-based scatternets requires a strict topology and contin-

uous maintenance in order to provide routes. Although routing is simple and part of the

scatternet formation protocol, the approach used for formation is inefficient.

Liu et al. [73] builds scatternets on-demand along requested routes instead of first forming

a single monolithic scatternet. Their approach incorporates the route discovery mechanism

in the BluetoothR© inquiry process prior to link establishment. Thus, route discovery packets

can be flooded without a pre-existing scatternet. A scatternet is thereafter formed in reverse

along the route on which the route request has propagated, but merely for the duration of

the traffic flow. This approach is suitable for sporadic communication, but requires complex

scatternet scheduling when multiple scatternet-routes intersect.

Kapoor et al. [63] take advantage of the clustered structure of piconets and apply the

Zone Routing Protocol (ZRP) [76] to BluetoothR© scatternets. The ZRP approach uses

a proactive, table-driven part to reach destinations within the neighborhood zone and a

reactive part, which floods route requests and is based on AODV route discovery, for all

74

other destinations. The authors note that the piconet structure automatically provides a

one-hop neighborhood zone, but also allow the use of a varying routing zone radius. They

also place their routing mechanism right above the Link Manager (LM) in the BluetoothR©

stack. The protocol does not take mobility or topology formation into account, but present

convincing arguments for hybrid solutions in BluetoothR© scatternets. This approach is also

discussed in [71].

Huang et al. [15] propose a self-adaptive zone routing approach that adjusts the reactive

routing zone using fuzzy logic. This approach adjusts the zone size to control the need for

proactive route discovery, and reduces some of the control packet traffic due to flooding by

preventing discovery packets from being forwarded to piconets that have no forward routes.

This approach is well suited for scatternet routing, but does not have the combined hybrid

features and robust inter-piconet traversal that our solution provides.

5.3 Routing Preliminaries

In this section we describe some preliminaries and concepts that we use in our algorithm.

First, we describe some basic scatternet concepts. Thereafter, we define and describe the

Extended Scatternet Neighborhood (ESN) and finally the idea behind probabilistic gossiping.

We base our routing approach on a 2-SSM flat scatternet topology, where bridge nodes are

allowed to participate only as slaves in exactly two piconets and inefficient Master/Slave (MS)

bridges are never used [59]. This is also described further in Chapter 3. From here on we

assume that such an underlying topology exists. We also assume that scatternet scheduling

functionality exists, similar to [38, 56].

5.3.1 Scatternets

For routing in BluetoothR© scatternets it is assumed that a scatternet has been formed.

The BluetoothR© specification[11] merely defines the concept of a scatternet but does not

specify a protocol for forming scatternets. In contrast to ad hoc networks based on Direct

75

Sequence Spread Spectrum (DSSS), in which neighbors overhear any transmission within

their range, BluetoothR© devices need to first discover each other, explicitly establish links,

form piconets, and for the purpose of larger WPANs, subsequently inter-connect these into

a scatternet before engaging in communication.

Numerous scatternet formation approaches have been proposed in literature [67, 16, 59,

24, 27, 74, 64]. In one way or other they all describe the formation of a scatternet topology;

however, the approaches and resulting topologies vary significantly. Varying criteria are used

to determine the number of bridge nodes, the bridge degrees, and other design decisions.

The Master/Slave (MS) cluster-head structure imposed on piconets further differentiates

the proposed solutions, as some let only slaves function as bridge nodes while others allow

masters to have dual roles and participate as slaves in other piconets1.

More details regarding scatternet formation can be found in Chapters 3 and 4.

5.3.2 Extended Scatternet Neighborhood (ESN)

In this section we first clarify how a network hop is defined in the context of piconets and

scatternets, and then define the Extended Scatternet Neighborhood (ESN):

Definition 1. Piconet Hop

A physical link between any two BluetoothR© devices

Definition 2. 1-Scatternet Hop

A virtual hop (path) between any two piconet masters, which goes through a bridge node

Definition 3. Extended Scatternet Neighborhood (ESN) of a piconet

The 1-scatternet hop region formed by the union of all neighboring piconets that are connected

through a common bridge node

1Nodes that participate as a master in one piconet and as a slave in others are referred to as Master/Slave
(MS) bridges, while nodes with only slave roles are referred to as Slave/Slave (SS) bridges. The bridge degree
further describes the number of piconets in which the bridge node participates.

76

An Extended Scatternet Neighborhood (ESN) of a piconet is the union of all neighbor-

ing piconets that are directly connected through a common bridge node, as illustrated in

Figure 5.1. As we shall see later the ESN makes up our proactive routing zone. Within the

ESN a local routing table at each piconet master is periodically updated with routes from

adjacent masters. As is illustrated in Figure 5.2, this allows two slaves in adjacent piconets,

four piconet-hops apart, to establish a route without using the reactive part of the routing

protocol. For example, a route can be established between slaves SA and SB, along the route

SA↔M1↔B↔M2↔SB, using only proactive ESN routing information.

B

B

S

S S

S
S

M1 M2

S SA

Figure 5.2: A 4-piconet hop route within the ESN

5.3.3 Probabilistic Gossiping

For the reactive part of our scatternet routing approach, instead of flooding route requests

throughout the scatternet we employ an alternative strategy called probabilistic gossiping [40,

41]. As we describe in Section 5.4, our scatternet routing approach uses a hybrid zone routing

strategy with a proactive component inside the ESN and a reactive component outside the

ESN.

The idea behind gossiping is to limit propagation of routing control messages throughout

the network. For some threshold value p, where p < 1, a node forwards the route request

with probability p and discards it with probability (1 - p). However, a potential problem

with this approach is that in a sparse network, where a piconet master has few neighbors (low

out-degree), the master might not propagate the route request to any of its neighbors and

therefore the request may never reach its intended destination. To remedy this situation we

employ a 2-tier gossiping scheme similar to [40]. However, unlike [40], we make a gossiping

77

decision for each forwarding node rather than either forwarding the route request to all

forwarding nodes or none at all. In sparse topologies a threshold p2, where p1 < p2, is

used to increase the probability of route propagation. On the contrary, for denser topologies

the value p1 is used to prevent unnecessary propagation. Note that sparseness is a local

decision made by each piconet master by determining whether its out-degree, or the number

of connected bridges to other piconets, is less than a threshold value degreethres.

In the next section we first describe the basic idea behind our scatternet routing approach

and then present the algorithm in detail.

5.4 A Hybrid Bluetooth Scatternet Routing Algorithm

5.4.1 Basic Idea

The word hybrid in our Hybrid Bluetooth Scatternet Routing (HBSR) algorithm has dual

meaning. It signifies both destination versus service-based discovery as well as zone routing

with a proactive approach within the Extended Scatternet Neighborhood (ESN) zone and

reactive gossiping-based route discovery outside the zone. In this section we describe the

basic idea behind HBSR and summarize the main points of the algorithm.

In contrast to previous approaches, we do not incorporate scatternet routing as a function

of the Link Manager (LM) but rather place routing functionality on top of the L2CAP layer

in the BluetoothR© stack. HBSR is thereby capable of providing limited compatibility with

existing application layer protocols, e.g. by intercepting requests from the Service Discovery

Protocol (SDP) or inquiries directed to a former piconet member that has since moved and is

now located elsewhere within the scatternet. Although scatternet formation procedures must

be available in the LM, HBSR does not require the addition of any functionality to the lower

layers of the Bluetooth stack, unless cross-layer scheduling and formation optimizations are

needed. To take full advantage of scatternet communication, the application layer protocols

should, however, be HBSR aware. By placing the HBSR routing header, which includes the

modified source route, inside the L2CAP header, the overhead is significantly lower than

78

for a similar approach at the link layer where the packet sizes are much smaller. However,

L2CAP channels must be established on each master to bridge link.

We observe that BluetoothR© scatternets are mainly designed for Wireless Personal Area

Networks (WPANs) in which devices are not always aware of the identities of one another.

Therefore, the traditional methodology of destination-based route discovery is often not

as effective in scatternets as in other networks, particularly one-to-all broadcast networks

where devices can use promiscuous listening to overhear communication between peers. On

the other hand, devices often require services that could be provided by any scatternet peer if

a route was available. In piconets the Service Discovery Protocol (SDP) is designed to allow

devices to discover what services its piconet peers can provide. We extend this functionality

to scatternets and incorporate it into our hybrid destination and service-based scatternet

routing protocol. In our approach the target of a route discovery can either be an individual

destination address or an SDP-style Universal Unique IDentifier (UUID), corresponding to

a service [10].

In addition to providing destination and service-based route discovery, our hybrid strat-

egy also uses zone routing to divide the routing protocol into proactive and reactive regions.

We call the proactive region the Extended Scatternet Neighborhood (ESN). From Defini-

tion 3 we have: an ESN is the 1-scatternet hop region formed naturally by the union of all

neighboring piconets that are connected through a common bridge node. The simplest exam-

ple of an ESN contains two piconets and is illustrated in Figure 5.1. Within an ESN adjacent

piconet masters periodically exchange local piconet membership information through their

common bridge nodes using the Hbsr-Esn procedure, illustrated in Figure 5.3. Using this

procedure piconet masters populate their local ESN routing tables with reachability and

bridge connectivity information from adjacent piconets. An ESN routing table located at

each piconet master contains a list of all devices in adjacent piconets, their BD ADDR’s, as

well as which of them have bridge connections to other piconets. In this manner a piconet

master has reachability information for every node within its ESN, which is also accessible

79

to its slaves as the master functions as the gateway router to nodes outside the piconet.

The reactive part of the protocol utilizes a route discovery mechanism to disseminate

both destination- and service-based route requests for destinations outside the ESN zone.

We employ a probabilistic gossiping strategy, when necessary, to control propagation of route

requests throughout the scatternet, similar to [40, 41].

When an intermediate piconet master receives a route request packet it first checks

whether it can provide a valid reply to the request. We assume that there are not any

non-cooperative or malicious nodes in the scatternet. In terms of when an intermediate

master is allowed to reply, the main difference between destination and service-based route

requests is that the UUID information is not shared between adjacent piconet masters due

to the overhead involved. Thus, an intermediate master does not have UUID service infor-

mation for ESN members unless a cache entry exists.

If an intermediate master is unable to reply to a route request, it determines whether to

forward the route request packet based on gossiping probability pi, where {i : 1 ≤ i ≤ 2}. By

using two different gossiping probability values, p1 and p2 where p1 < p2, we assign a higher

forwarding probability (p2) to sparsely connected piconets to provide better propagation and

a lower value (p1) to dense piconets with more forwarding bridge candidates. The threshold

parameter degreethres determines if a piconet is sparsely or densely connected. Suitable

values for degreethres is discussed further in Section 5.5.3.

Even though our approach is based on source routing, each node along a scatternet route

does not need to be included in the source route. Due to the specific scatternet topology

constraints, we observe that it is not necessary to maintain hop-by-hop routes that include

both master and bridge nodes. Instead we utilize the inherent hierarchical structure in

BluetoothR© scatternets to differentiate between intra- and inter-piconet connections. In

other words, routes between two adjacent piconets are not dependent on which bridge node

is used when multiple common bridges are present. Therefore it is only necessary to use a

modified source route consisting of the piconet masters along a scatternet route. This bridge

80

link agnostic approach increases route resilience and reliability and also simplifies scheduling

since there is no need to wait for a specific bridge node to become available if more than one

exists to the next-hop piconet.

Intermediate nodes aggressively store routes in their own route caches as they process

route requests and route replies, similar to the Dynamic Source Routing (DSR) protocol [21].

However, for the purposes of storing only recently verified routes, intermediate nodes do not

cache the entire modified source route. Instead, for routes in route reply packets, only the

portion of the route between the destination piconet and the intermediate piconet master,

along with a timestamp, is stored in the path cache. Similarly, for routes in route request

packets, intermediate masters only cache the portion of the route between the source piconet

master and itself. The local route cache consists of node-centric path cache entries and also

includes local timestamps and the BD ADDR of the initiator of the route request/reply.

This information is used to invalidate old routes and prevent duplicate route replies.

In order to prevent cache pollution, routes in the cache are periodically invalidated by

setting a stale flag. However, these entries are not immediately removed. Instead, the stale

flag indicates that the route is old and requires that a gratuitous route request is sent along

the existing source route toward the destination the next time it is needed. This pessimistic

form of route maintenance minimizes cache pollution. If a route reply is successfully returned

to the intermediate node, the route is made fresh again and the buffered packet is sent along

the source route. If an invalidated route is not updated and is still marked stale during the

next iteration of the periodic route cache maintenance, it is removed from the cache and a

route error is returned.

For route replies due to service-based route requests, intermediate nodes also cache a

mapping between the service UUID and the destination address for the provider of the

service in a table called ServiceUUID Table. This allows the node to reply to future service-

based requests if a valid route to a destination node with a mapping for the requested UUID

exists in the ESN or in the route cache.

81

5.4.2 Algorithm

In this section we describe the details of the Hybrid Bluetooth Scatternet Routing (HBSR)

algorithm. We first describe the behavior of the proactive portion of the algorithm using

periodic exchanges of topology information. Thereafter we describe the reactive portion of

the algorithm that performs route discovery.

Proactive ESN Maintenance

As mentioned in Section 5.3, we assume that a scatternet has been formed with protocols such

as Bluetooth Distributed Scatternet Formation Protocol (BTDSP) from Chapter 4 and that

efficient Inter Piconet Scheduling (IPS) functionality exists, such as the Maximum Distance

Rendezvous Point (MDRP) algorithm [56] or the Dichotomized Rendezvous Point (DRP)

algorithm [70]. Further, a local parameter tesn is used to determine the frequency of the

periodic ESN membership exchanges between neighboring masters.

Hbsr-Esn(slaves, esn masters, seq)
1 if tesn expired and !LT ADDR
2 then seq ← seq + 1
3 for each mi in esn masters
4 do for each sk in slaves
5 do if slaves[sk].bridge = 1 and
6 slaves[sk].piconet 6= mi

7 then bit mask[k]← 1
8 else bit mask[k]← 0
9 bit mask[0]← 0

10 hbsr-esn-update(src = Mlocal, dst = mi, slaves, bit mask, seq)
11 return

Figure 5.3: HBSR ESN update procedure Hbsr-Esn

Every tesn seconds piconet masters periodically exchange connectivity information with

adjacent piconet masters using the Hbsr-Esn procedure (Figure 5.3). Each update includes

the list of slaves within the piconet, as well as connectivity information for the slaves and

identification of which of them are bridge nodes to other piconets. The bridge connectivity

information is conveyed using an 8-digit bit mask. Each entry in the esn master list corre-

82

sponds to an adjacent piconet master and the slaves list contains the list of all slaves in the

piconet.

The Hbsr-Esn procedure works as follows. Upon expiration of the tesn timer piconet

masters execute the Hbsr-Esn procedure (the LT ADDR check prevents non-piconet mas-

ters from entering the procedure). For each adjacent piconet master in the esn masters list,

a different bit mask is created to indicate bridge connections to piconets other than the

destination piconet master. The bit mask is also used to determine bridge out-degree for the

gossiping threshold values in the Hbsr-Discovery procedure (Figure 5.5). Thereafter, the

list of slaves and the bit mask are then scheduled for transmission to the adjacent piconet

master across the next available bridge link on line 10 of the Hbsr-Esn procedure.

The Hbsr-Esn update procedure is executed proactively by all piconet masters. Upon

disconnect, restart, or other node failure resulting in loss of ESN information, a piconet mas-

ter will simply re-advertise its membership information to neighbors with 0 as the sequence

number. That requires neighboring masters to flush its current membership information for

the failed peer master and prevents neighbors from discarding updated membership infor-

mation from a peer when a failure results in loss of previous sequence number.

M

M

Piconet C

Piconet D

Piconet A Piconet B

M
A B

D C

B
BC

B
AB

B
AD

S

S

S

S

S

S

S

M

S

S

A2

A3

B1

B2

C2

C1

A1

A4

D1

Figure 5.4: Example ESN Routing Zone

After each update the piconet master updates its ESN routing table with the new infor-

mation. An example of an ESN routing table for a piconet master MA is given in Table 5.1.

83

For the purpose of illustration, let us consider the ESN routing table based on the topology

in Figure 5.4.

Table 5.1: Piconet master MA’s ESN Routing Table

PicoID BD ADDR SEQ B M F
B <BD ADDRMB

> seqMB
0 1 0

B <BD ADDRSB1
> seqMB

0 0 0

B <BD ADDRBAB> seqMB
1 0 0

B <BD ADDRSB2
> seqMB

0 0 0

B <BD ADDRBBC> seqMB
0 0 1

D <BD ADDRMD
> seqMD

0 1 0
D <BD ADDRSD1

> seqMD
0 0 0

D <BD ADDRBAD> seqMD
1 0 0

Note that an ESN routing zone extends only 1-scatternet hop from any given piconet, so

that nodes in piconet C (Figure 5.4) are excluded from piconet master MA’s ESN.

Table 5.1 contains six columns: PicoID, BD ADDR, SEQ, B, M, and F. PicoID is a local

identifier given to each adjacent piconet, which is is uniquely assigned to each entry in a

piconet master’s ESN routing table that has the M flag set. The M flag is set to indicate

that the entry corresponds to an adjacent piconet master.

In addition, the B flag is set for table entries corresponding to nodes BAB and BAD to

indicate that they have a bridge connection to the masters of the piconets with PicoID B

and D respectively. The node BBC also has the F flag set, which indicates that it is a bridge

to a foreign piconet. This is a useful feature to prune the list of potential next-hop nodes

for route discovery requests. An adjacent piconet without foreign (meaning other piconets

outside the ESN) bridge connections would not be able to propagate the request further

anyway.

Every new ESN update from an adjacent piconet master also includes an increasing

sequence number, which invalidates previous entries for that PicoID. Note that due to our

bridge link agnostic approach, specifically for the purposes of providing multiple inter-piconet

routes, multiple entries with the same PicoID can have the bridge flag B set to indicate a

bridge connection.

84

ESN Optimization

As a further optimization to the ESN update process, three different types of ESN messages

are used to reduce the amount of data that needs to be exchanged:

• ESNFull: Complete update initially and every esncount updates

• ESNUpdate: Refresh sequence number and, if any, add new entries

• ESNFlush: Flush all existing entries

The ESNFull type is the basic message that is used to initially populate the ESN neigh-

bor’s ESN routing table, as well as every esncount updates to ensure up-to-date information.

A value of esncount=10 has been used for simulation, but can be modified as necessary de-

pending on whether the topology is relatively static or not. It should be noted that when a

piconet master node is first incorporated into a scatternet, briefly disconnected, or otherwise

lose its state, the initial ESN exchange must be of type ESNFull and have the sequence

number set to 0, so that the peer piconet master recognizes that the peer lost its previous

state since sequences numbers are otherwise non-zero.

The ESNUpdate type can simply contain an updated sequence number to refresh existing

entries or it can also contain new entries, in which case existing entries are implicitly updated

with the new sequence number. Since all ESN information is unique to a piconet and

proatively pushed by the piconet master (and identified in the neighboring master’s ESN

table by the PicoID parameter), there is no risk of introducing inconsistent data as long as

no malicious nodes exist in the scatternet.

The ESNFlush type is used when a piconet master is experiencing significant topology

changes, excessive routing or processing load, in preparation for mobility, depleted energy

supply, or otherwise wants to inform its peer piconet master that existing information should

be removed from the ESN table.

85

Route Discovery

Whenever a route request is initiated, or received from a neighboring piconet master, to either

a destination or for a service, the Hbsr-Discovery procedure (illustrated in Figure 5.5)

is executed by the piconet master. This procedure handles all route discovery operations,

except route errors, and encompasses both destination and service-based route requests, as

well as route reply generation.

We describe the Hbsr-Discovery procedure by refering to the line numbers shown in

Figure 5.5. First, a check to determine that only piconet masters execute the procedure is

performed on line 1. Then, lines 2-22 of Hbsr-Discovery determine whether a valid route

is already available locally, either by way of the local master being the destination piconet

master itself, the destination being a neighboring piconet master in the ESN, or a route

being available in local route cache.

More specifically, on lines 5 or 6 the partial route from the source is set. When the

master itself is the source of the discovery, the rte to src is empty (line 5). Otherwise,

when the current master is an intermediate node the partial route from the source is set

to routepartial (line 6), which is the existing partial route gossiped in the Hbsr-Discovery

procedure from the previous 1-scatternet hop piconet master nodes on lines 56-57. Next, if

the target of the route discovery is a service (which is the case when a UUID is specified

but a destination address is not), lines 7-10 determine whether there is already an existing

mapping between the service UUID and a BD ADDR in the local ServiceUUID Table. This

table caches UUID and BD ADDR pairs from route request and reply packets. If a match

is found, the BD ADDR of a node that provides the service corresponding to the requested

UUID is assigned to BD ADDRDST on line 8. If a match is not located, then the local SDP

server is queried on line 9 for an intra-piconet service provider node. The reason that these

calls are not reversed is that table lookups are a lot faster than the SDP queries and entries

from previous SDP queries are cached in the ServiceUUID Table for future use anyway.

Whether a BD ADDRDST is passed to the procedure (destination-based) or assigned

86

Hbsr-Discovery(p1, p2, degreethres, BD ADDRlocal, BD ADDRSRC , BD ADDRDST , UUID ← nil, routepartial ← NIL)
1 if !LT ADDR
2 then if BD ADDRDST = nil and UUID = nil
3 then return ”No Destination BD ADDR or Service UUID for Route Requests”
4 if BD ADDRSRC = BD ADDRlocal or BD ADDRSRC ∈ LocalPiconet
5 then rte to src← nil
6 else rte to src← reverse(routepartial)
7 if BD ADDRDST = nil and UUID in ServiceUUID Table
8 then BD ADDRDST ← lookup-service-dest(ServiceUUID Table[UUID].list)
9 else if BD ADDRDST = nil and Local SDP Query(UUID)

10 then BD ADDRDST = BD ADDRlocal
11 if BD ADDRDST 6= nil and BD ADDRDST not in rte to src and BD ADDRlocal not in rte to src
12 then if BD ADDRDST = BD ADDRlocal or BD ADDRDST ∈ LocalPiconet
13 then route← reverse(rte to src) +BD ADDRlocal
14 else if BD ADDRDST in ESN Table
15 then rte to dest← ESN Table[BD ADDRDST].route
16 else if BD ADDRDST in Route Cache and Route Cache[BD ADDRDST].fresh = 1
17 then rte to dest← Route Cache[BD ADDRDST].route
18 if rte to dest
19 then if BD ADDRlocal not in rte to dest and (each hopi in rte to src) not in rte to dest
20 then route← reverse(rte to src) +BD ADDRlocal + rte to dest
21 else invalid← true
22 else invalid← true
23 if invalid 6= true and (route or UUID 6= nil)
24 then if rte to src = nil and route
25 then return route
26 else if UUID 6= nil and route
27 then send SRep(BD ADDRlocal, rte to src[0].BD ADDR, route, UUID)
28 return ”Service Reply Sent”
29 else send RRep(BD ADDRlocal, rte to src[0].BD ADDR, route,BD ADDRDST)
30 return ”Route Reply Sent”
31 else if invalid 6= true
32 then non sink ← 〈〉
33 next hops← 〈〉
34 for each e in ESN Table
35 do if e.F = 1
36 then non sink[e.P icoID] = true
37 for each e in ESN Table
38 do if e.M = 1 and non sink[e.P icoID] = true
39 then next hops[e.P icoID] = e.BD ADDR
40 if BD ADDRSRC 6= BD ADDRlocal
41 then for each hopi in rte to src
42 do if hopi.BD ADDR in next hops
43 then next hops← next hops− 〈hopi〉
44 degree← length[next hops]
45 if degree = 0
46 then return ”No Valid Next Hops for Route Requests”
47 else if degree < degreethres
48 then p← p2
49 else p← p1
50 num sent← 0
51 for each ni.BD ADDR in next hops
52 do rn ← rand(0, 1)
53 if rn ≤ p and BD ADDRlocal not in rte to src
54 then routepartial ← reverse(rte to src) +BD ADDRlocal
55 if BD ADDRDST 6= nil
56 then send RReq(BD ADDRlocal, ni, routepartial, BD ADDRDST)
57 else send SReq(BD ADDRlocal, ni, routepartial, UUID)
58 num sent← num sent+ 1
59 if num sent > 0
60 then return ”num sent Route Requests Sent”

Figure 5.5: HBSR discovery procedure Hbsr-Discovery

87

on lines 7-10 (service-based request and cached mapping), line 11 performs a loop detection

to ensure that BD ADDRDST and BD ADDRlocal do not appear in the partial route from

the source node already, in which case the route discovery is marked invalid on line 22

to prevent propagation of routing loops. Unless the route discovery is invalid, lines 12-17

attempt to locate an existing route to the destination node’s piconet master from either the

local node, an ESN entry, or a route cache entry if available. First, the destination address

is checked for a match against the local master, which does not add any 1-scatternet hops

to the modified source route other than the current piconet master itself as the destination.

Then, the ESN table and the route cache are both checked for a route to BD ADDRDST on

lines 14 and 16 respectively. If either of them contain a route to BD ADDRDST , denoted

(rte to dest), lines 18-21 perform additional loop detection to ensure that neither the existing

node, BD ADDRlocal, nor any of the nodes already in the partial route from the source are

in the route to the destination, which would cause a routing loop.

If no routing loops are detected, a complete modified source route, denoted route, is

constructed by appending the reverse of the route to the source from the current node,

denoted Reverse(rte to src); the current node’s BD ADDR, denoted BD ADDRlocal; and

the route to the destination from the current node, denoted rte to dest, on line 20. It should

be noted that by convention all routes are stored with the source as the first entry and the

destination, or intermediate node if partial, as the last entry.

If a valid route to the destination is available on line 23, then lines 24-30 determine where

the reply is sent. If the current piconet master or a node in the local piconet is the source

of the route discovery, then the route is directly returned to the current piconet master on

line 25. Otherwise, a reply packet must be sent toward the source of the discovery. Line 26

determines if the discovery is for a service UUID, in which case a reply, including the UUID

and the modified source route to the destination piconet offering the service, is unicasted

to the previous-hop piconet master and on along the modified source route back toward the

source on line 27. Similarly, if the route discovery was initiated for a specific destination, a

88

reply is unicasted back to the source on line 29. Note that the two procedures send RRep

and send SRep, on lines 27 and 29 respectively, merely symbolize the generation of a route

reply packet, for destination- and service-based requests respectively, and transmission to

the previous hop ESN piconet master.

If a route reply can not be returned directly and the loop detection mechanism did not

mark the discovery invalid, then additional route discovery operations are performed on

lines 31-60 of Hbsr-Discovery to propagate the route request further. The first step in

this process is to enumerate the piconets within the local ESN routing table that have at least

one member with the F (foreign) flag set. This means that those neighboring ESN masters

have at least one bridge connection to a piconet master that is not within the ESN; hence

the connotation foreign piconet. This is done on lines 34-36 where each adjacent master

entry is set to true in the non sink list when the F flag is set. Thereafter, on lines 37-39 the

BD ADDR for each entry found in the previous step is added to the next hop list. Piconets

that are in the next hop list are next-hop candidates for finding a route to the destination,

since line 14 established that the destination node is not within the ESN (in which case a

route reply would have already been returned on lines 27 or 29).

If the route request packet was received from a neighbor (and not initiated), the master

must also prune the previous hop neighbor as well as every other neighbor along the partial

modified source route from consideration, so that the route request is not propagated back

to the neighbor it was received from. This step is performed on lines 40-43.

The piconet master sets the degree on line 44. The degree is the number of forwarding

nodes that are available after piconets with no foreign connections and nodes already in

the modified source route have been pruned. It is used to determines the gossiping value,

on lines 47-49, using the degreethres parameter as a threshold. The value of the parameter

degreethres for determining sparse or dense connectivity is discussed further in Section 5.5.

We utilize a technique called gossiping to propagate the route request packets throughout

the scatternet. By using gossiping instead of flooding, we can reduce the routing overhead

89

while still ensuring with high probability that the scatternet is covered and the destination

can be found. On lines 51-58, each of the remaining forwarding nodes are gossiped based on

either p1 or p2 as the probabistic threshold, depending on the number (degree) of forwarding

nodes and the degreethres threshold value. For successful gossips, determined on line 53,

either a service or a destination-based route request is propagated through the common

bridge node to the next hop ESN piconet master. A loop detection is also performed on

line 53 to ensure that is current piconet master is not already in the partial route from the

source. Note that the two procedures send RReq and send SReq, on lines 56 and 57

respectively, merely illustrate the generation of a route request packet and transmission to

the next hop ESN piconet master.

Route Reply

Route replies are generated by both destination nodes and intermediate nodes, on lines 27 or

29 of Hbsr-Discovery, depending on whether the request was for a service or destination

respectively, and unicasted back along the reverse modified source route to the initiator.

Due to the master-centric design of the algorithm, piconet masters reply to route requests

on behalf of their piconet members. A piconet master is allowed to reply to a destination-

based route request if:

• It is itself the target of the route request

• A node within its piconet is the target of the route request

• A node within its ESN is the target of the route request

• It has a valid route in its route cache to the target of the route request

For service-based route requests a piconet master is allowed to reply if:

• It provides the service sought in the route request itself

• Based on local SDP information, a node within its piconet provides the service sought

in the route request

90

• An entry from the Service UUID cache matches the service sought in the route request

and a valid route exists in its ESN table or in the route cache

Mappings between UUIDs and destination addresses allow intermediate masters to reply

to service-based requests that otherwise would have been re-forwarded.

Route Maintenance

Aggressive route caching is used to reduce the need for route discovery outside the ESN

zone. Each piconet master maintains a local route cache in which it stores routes that it

receives from route request and route reply packets. The route cache is implemented as a

node-centric path cache, and includes local timestamps and the BD ADDR of the initiator

of the route request/reply. This information is used to invalidate old routes and prevent

duplicate route replies.

When an intermediate node receives a route request the partial modified source route

from the source piconet master to the current piconet master is added to the route cache.

When route reply packets reach intermediate nodes on the reverse modified source route, the

complete modified source route is split and added to the route cache relative to the current

node.

Each entry in the route cache consists of a route, a timestamp, and a source BD ADDR.

The route is always added relative to the master itself with the originator of the packet

as the last hop. For example, if intermediate node C receives a route reply containing the

modified source route E↔D↔C↔B↔A from a node E, in response to a route request from

node A, it adds the route C↔D↔E to its route cache along with the current timestamp

and the BD ADDR of node E as well as the partial modified source route C↔B↔A along

with the timestamp and the BD ADDR of node A. Periodic route cache maintenance is also

performed to ensure that cached routes are fresh. To prevent cache pollution, a stale flag is

set for routes older than tcache seconds. After another tcache seconds, stale entries are removed

from the cache.

91

Route Error

When sending data packets along the modified source routes, the loss of an intermediate

node along the route can cause abruption of the data flow, unless the intermediate node, at

the point of next hop failure, has another route, either as its ESN neighbor or as another

fresh route cache entry in which the destination is an intermediate node. When this occurs

the intermediate piconet master, at the point of next hop failure, sends a route error reply

packet back to the source node to trigger a new route discovery, similar to AODV [13]. As

the route error passes through intermediate nodes it invalidates route cache entries for the

destination.

Route errors are not used as part of the discovery process, but merely as a response to

a broken modified source route during data packet transmissions. It operates similar to a

route reply, in that it is source routed along the reverse of the modified source route back to

the source, but instead of providing a route it triggers a new HBSR-Discovery from the

source node.

Loop Freedom Correctness Proof

HBSR provides routing loop-freedom by preventing the introduction of routing loops due to

multiple instances of the same node in the modified source route. The following illustrates

the proof of routing loop-freedom in HBSR.

Proof. The proof is by contradiction. Suppose that there exists a modified source route

with multiple instances of an intermediate piconet master forming a routing loop, which is

returned as valid from HBSR-Discovery. Any intermediate piconet master, the source,

or destination node, splits the modified source route in two parts: the partial route from

the source from the current node, rte to src, and the partial route to the destination from

the current node, rte to dest, with zero or more entries in each part. The routing loop must

therefore be contained in either rte to src or rte to dest. For the first part of the proof, we

assume that the routing loop is in rte to src. However, that is a contradiction since lines 11

92

and 53 ensure that any intermediate node that is added to the partial route from the source

is not already in rte to src. For the second part of the proof, we assume that the routing loop

is in rte to dest returned from either an ESN tables entry or a route cache entry. However,

that is a contradiction since line 19 ensures that neither the current intermediate node nor

any entry in rte to src are already in rte to dest.

5.5 Performance Evaluation

To evaluate the performance of the Hybrid Bluetooth Scatternet Routing (HBSR) algorithm

we developed custom functionality for HBSR using the UCBT extension module [69] and the

ns-2 [1] network simulator. We specifically evaluate the usefulness of the ESN zone routing

approach, the appropriate selection of an Inter Piconet Scheduling (IPS) algorithm, route

acquisition delay, and performance tuning of gossiping parameters.

5.5.1 Extended Scatternet Neighborhood (ESN)

Due to the topology constraints imposed by the scatternet formation approach (specifically

the BTDSP formation algorithm in our case) and the piconet structure, BluetoothR© scatter-

net topologies are much different than traditional DSSS ad hoc networks in how they related

to hybrid (proactive versus reactive) zone routing, as only bridge nodes form connections to

next-hop piconet masters. We evaluate the topology coverage of the ESN zone to determine

the effectiveness of the proactive HBSR-Esn procedure in terms of how many destination

nodes within the scatternet are reachable from any given source node by an ESN routing

table lookup rather than invoking the reactive HBSR-Discovery procedure.

We utilize BTDSP and the ns-2 [1] network simulator to form random 2-Slave/Slave

Mesh (SSM) scatternet topologies with 8, 16, 32, and 64 nodes respectively; each replicated

100 times. Thereafter we compute the all-pairs shortest paths (in terms of 1-scatternet

hops) between any two nodes in the scatternet topology. As illustrated in Figure 5.2,

any destination within one 1-scatternet hop is reachable within the Extended Scatternet

93

Neighborhood (ESN) of the source node’s piconet master. Therefore, any node within one 1-

scatternet hop2 of the source node can be reached without invoking the HBSR-Discovery

procedure. The results are illustrated in Figure 5.6.

Figure 5.6: Extended Scatternet Neighborhood (ESN) Node Reachability

From Figure 5.6 it should be noted that for scatternet topologies of 16 nodes or less,

on average, about 50% of nodes within the scatternet are reachable without need for route

discovery. For scatternet topologies with 32 nodes or less, on average, about 30% of nodes

are directly accessible by way of ESN routing table lookups. As Bluetooth scatternets are

most suitable for WPAN applications with around 30 nodes or less, as opposed to large-scale

WLANs where IEEE 802.11 is more suitable, the hybrid HBSR approach eliminates the need

for a third or more of the route discovery operations for such topologies.

2As illustrated in Figure 5.4, if both the source and the destination nodes are either pure slaves or bridges
to piconets other than between the source and destination piconets, a 1-scatternet hop could be 4 hops at
the link level.

94

5.5.2 Route Acquisition Delay

To evaluate the performance of the HBSR route discovery process and determine the most

suitable Inter Piconet Scheduling (IPS) algorithm to use, we study the route acquisition

delay, or in other words the amount of time before a route reply is returned to the HBSR-

Discovery initiator. We compare the performance of the HBSR-Discovery process in

conjunction with the Maximum Distance Rendezvous Point (MDRP) algorithm by Johans-

son et al. [56] as well as the Dichotomized Rendezvous Point (DRP) algorithm by Wang

et al. [70]. These algorithms are also described further in Section 3.2.6. It should also be

noted that, as suggested in [3] and [22], that the Exhaustive Round-Robin (ERR) Intra

Piconet Scheduling (IRPS) algorithm performs significantly better than any other polling

scheme in terms of both delay and fairness, so ERR is used for local piconet polling.

To evaluate route acquisition delay and scheduling delay we run the HBSR-Discovery

procedure from a fixed source node to random destination on connected 32-node 2-SSM

topologies with between two and six bridge nodes. Each iteration is ran using both the Max-

imum Distance Rendezvous Point (MDRP) and Dichotomized Rendezvous Point (DRP) IPS

algorithms. It should be noted that although gossiping is available in the HBSR algorithm,

this particular simulation study is constructed to evaluate delay and differences between the

Inter Piconet Scheduling (IPS) algorithms without confounding with the gossiping parame-

ter(s) and therefore p = 1 is used.

Figure 5.7 illustrates the route acquisition delay for the reactive HBSR-Discovery

mechanism used for route discovery. It should be noted that caching of modified source

routes are not considered, which would reduce the acquisition delay as intermediate nodes

could respond when past HBSR-Discovery invocations have already produced a valid

route from the intermediate node to the destination. The mean route acquisition delay is

illustrated by solid lines, while the minimum and maximum outliers for HBSR with either

Maximum Distance Rendezvous Point (MDRP) or Dichotomized Rendezvous Point (DRP)

are also illustrated.

95

1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

1000

1100

1−scatternet hops

D
el

ay
 (

m
s)

HBSR Route Acquisition Delay

HBSR + DRP
HBSR + MDRP

Figure 5.7: HBSR Route Acquisition Delay

From Figure 5.7 it can be seen that there is a significant delay incurred for destinations

outside the ESN zone that require route discovery. The reason for this is two-fold: the

need for buffering of packets at intermediate nodes due to specific rendezvous points where

peer nodes have to be synchronized and the need to fragment L2CAP frames and transmit

multiple packets as the modified source routes grow longer. However, it should be noted

that using the modified source route approach instead of hop-by-hop source routes requires

only n entries, where n is the number of piconet masters along the route, as opposed to

n + (n − 1) for complete source routes including bridge nodes. We plan to address the

modified source route overhead for data packets by adding flow IDs in our future work. It

does show, however, that HBSR is more suitable for denser and more compact topologies

than for long scatternet paths, in which case a specialized on-demand approach such as [73]

might be more suitable.

It can also be seen from Figure 5.7 that the mean route acquisition delay for nodes within

1-scatternet hop is larger than it would be if only ESN table lookups were performed. The

reason for this is that in some dense topologies that contain piconet with high bridge degrees,

complete ESN updates had not been propagated yet when the HBSR-Discovery procedure

96

was initiated in the simulation. This does illustrate the resilient behavior of HBSR as routes

can be found using the reactive approach even within the ESN zone, if incomplete or no

information is available.

It should be noted that significantly fewer iterations of results were available for routes

longer than five 1-scatternet hops, since the BTDSP algorithm is not designed to form

scatternet topologies with long chains of small size piconets.

Also, as shown in Figure 5.7 there were no significant differences noted between the

performance of HBSR using either the Maximum Distance Rendezvous Point (MDRP) or

Dichotomized Rendezvous Point (DRP) IPS algorithms.

5.5.3 Parameter Optimization

In general MANETs, as investigated in [40], when gossiping of route discovery messages

is employed a node either “gossips” and re-broadcasts the message to all its neighbors or

does not propagate the message to anyone. We employ a different approach for HBSR in

which each piconet master determines individually, for each bridge node that is a forwarding

candidate (meaning that it has a another foreign bridge connection), whether to “gossip”

or not. This approach takes into consideration that BluetoothR© scatternets are relatively

sparse and small in size, compared to the extremely large and much denser general ad hoc

networks discussed in [40] and [41].

To allow for gossiping to be used by HBSR we must determine the gossiping probability

threshold values, p1 and p2, as well as the outgoing degree of connectivity degreethres pa-

rameter; all used in the HBSR-Discovery procedure, illustrated in Figure 5.5. In piconets

with a bridge out-degree less than degreethres, the larger threshold parameter p2 is used,

while in piconets with degreethres or higher bridge out-degree p1 is used.

For each experiment in this section we simulate reachability from a random single-source

to all other nodes in 73 actual BTDSP generated 32 node topologies, with a 2.16 mean

bridge degree, using a modified breadth-first search approach that incorporates gossiping.

97

For each topology each treatment of factors is replicated 100 times. To avoid unnecessary

confounding in the results of the experiments we assume that there is no radio interference

and no link failures.

Unlike the simulation study in [40], which examines extremely large and dense traditional

omni-directional MANETs3, our experiments focus on more realistic BluetoothR© WPAN

topologies. This allows us to investigate the effectiveness of gossiping for actual BTDSP

scatternet topologies. As discussed in [40], the bimodal behavior of gossiping is only evident

in extremely large topologies, which are not applicable to BluetoothR© scatternets, so that is

not discussed in this simulation study.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

pt threshold

%
 r

ep
lic

at
io

ns

All reachable
90% reachable
80% reachable
70% reachable

(a) Piconet-wide p: Nodes reachable for % of
replications

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

pt threshold

%
 r

ep
lic

at
io

ns

All reachable
90% reachable
80% reachable
70% reachable

(b) Individual p: Nodes reachable for % of repli-
cations

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

pt threshold

%
 r

ea
ch

ab
le

Individual p
Piconet-wide p

(c) Piconet-wide p vs. Individual p: Mean reach-
ability comparison

Figure 5.8: HBSR gossiping node reachability with single threshold

To investigate the effects of the individual probability forwarding method (gossiping de-

3Theoretical MANETs with 1000 or more nodes and connectivity degrees as large as 10 or higher [40].

98

termined for each forwarding candidate separately) compared to the piconet-wide probability

forwarding method, we conduct an experient based on actual BTDSP topologies, as previ-

ously discussed herein. The results are illustrated in Figure 5.8.

Figure 5.8(a) and Figure 5.8(b) illustrate the percentage of replications, using a single

probability threshold value pt, in which: all nodes were reached, 90% of nodes were reached,

80% of nodes were reached, and 70% of nodes were reached. Figure 5.8(c) illustrates the

mean reachability percentage across all replications and compares using individual p and

piconet-wide p forwarding methods, where p refers to a pseudo-random probability value

generated either for each forwarding candidate or piconet-wide respectively. It should be

noted that, although the mean reachability is only marginally higher using the individual

p method, a higher percentage of replications provide better reachability using individual p

forwarding methods for pt > 0.90. For the scatternet topologies investigated, reachability

using both methods was poor for pt < 0.90 and marginal for pt < 0.95. Therefore, for the

purpose of HBSR, we focus on gossiping threshold values where pt > 0.95.

As described in Section 5.4.1, HBSR utilizes a two-threshold scheme, where p1 < p2.

The larger threshold, p2, is utilized for sparse topologies, where the number of forwarding

candidate bridge nodes, in an individual piconet, is less than degreethres, and p1 is used when

there are at least degreethres forwarding candidate in a piconet.

We investigate suitable values for p1, p2, and degreethres that provide high reachability

while reducing the number of route request forwarding messages. Figures 5.9(a), (c), and (e)

illustrate the reachability percentage across replications for (p1, p2) pairs, while maintaining

the invariants p1 < p2 and pi > 0.95, where {i : 1 ≤ i ≤ 2}, for degreethres 2, 3, and 4 re-

spectively. Figures 5.9(b), (d), and (f) simply illustrate the mean reachability for degreethres

2, 3, and 4 respectively.

It should be noted from Figure 5.9 that for reachability in the 70th percentile, there are

not significant differences between degreethres 2, 3, and 4. However, for the 90th percentile

and above, it can be seen from Figures 5.9(a), (c), and (e) that the choice of degreethres

99

0

10

20

30

40

50

60

70

80

90

100

0.95
0.96

0.95
0.97

0.95
0.98

0.95
0.99

0.95
1.00

0.96
0.97

0.96
0.98

0.96
0.99

0.96
1.00

0.97
0.98

0.97
0.99

0.97
1.00

0.98
0.99

0.98
1.00

0.99
1.00

p1/p2 thresholds

%
 r

ep
lic

at
io

ns

All reachable
90% reachable
80% reachable
70% reachable

(a) degreethres = 2: Nodes reachable for % of
replications

0

10

20

30

40

50

60

70

80

90

100

0.95
0.96

0.95
0.97

0.95
0.98

0.95
0.99

0.95
1.00

0.96
0.97

0.96
0.98

0.96
0.99

0.96
1.00

0.97
0.98

0.97
0.99

0.97
1.00

0.98
0.99

0.98
1.00

0.99
1.00

p1/p2 thresholds

%
 r

ea
ch

ab
le

Mean reachable

(b) degreethres = 2: Mean reachable

0

10

20

30

40

50

60

70

80

90

100

0.95
0.96

0.95
0.97

0.95
0.98

0.95
0.99

0.95
1.00

0.96
0.97

0.96
0.98

0.96
0.99

0.96
1.00

0.97
0.98

0.97
0.99

0.97
1.00

0.98
0.99

0.98
1.00

0.99
1.00

p1/p2 thresholds

%
 r

ep
lic

at
io

ns

All reachable
90% reachable
80% reachable
70% reachable

(c) degreethres = 3: Nodes reachable for % of
replications

0

10

20

30

40

50

60

70

80

90

100

0.95
0.96

0.95
0.97

0.95
0.98

0.95
0.99

0.95
1.00

0.96
0.97

0.96
0.98

0.96
0.99

0.96
1.00

0.97
0.98

0.97
0.99

0.97
1.00

0.98
0.99

0.98
1.00

0.99
1.00

p1/p2 thresholds

%
 r

ea
ch

ab
le

Mean reachable

(d) degreethres = 3: Mean reachable

0

10

20

30

40

50

60

70

80

90

100

0.95
0.96

0.95
0.97

0.95
0.98

0.95
0.99

0.95
1.00

0.96
0.97

0.96
0.98

0.96
0.99

0.96
1.00

0.97
0.98

0.97
0.99

0.97
1.00

0.98
0.99

0.98
1.00

0.99
1.00

p1/p2 thresholds

%
 r

ep
lic

at
io

ns

All reachable
90% reachable
80% reachable
70% reachable

(e) degreethres = 4: Nodes reachable for % of
replications

0

10

20

30

40

50

60

70

80

90

100

0.95
0.96

0.95
0.97

0.95
0.98

0.95
0.99

0.95
1.00

0.96
0.97

0.96
0.98

0.96
0.99

0.96
1.00

0.97
0.98

0.97
0.99

0.97
1.00

0.98
0.99

0.98
1.00

0.99
1.00

p1/p2 thresholds

%
 r

ea
ch

ab
le

Mean reachable

(f) degreethres = 4: Mean reachable

Figure 5.9: HBSR gossiping node reachability with two thresholds, p1 and p2

value does affect reachability.

Since BTDSP forms topologies with mean bridge degree between 2 and 3, we exclude

degreethres=4 from consideration due to the fact that p1 would rarely be used. Based on

comparison between Figures 5.9(a) and 5.9(c) there is a significant difference in reachability

100

between degreethres=2 and degreethres=3. Therefore, we heuristically choose degreethres=3.

We identify p1=0.96 and p2=1.00 as parameter choices that provide reachability in the 90th

percentile for most replications and complete reachability for 85% of replications.

It should be noted that setting p2=1.00 equates to using simple flooding of route requests

for piconets with less than three forwarding candidates. However, as illustrated by the results

in Figure 5.8 and Figure 5.9 it is deemed a necessary compromise in order to ensure sufficient

topology coverage for route discovery operations in BluetoothR© scatternets.

5.6 Summary

In this chapter we presented the Hybrid Bluetooth Scatternet Routing (HBSR) algorithm,

which allowed scatternet nodes to discover peers by either destination address or by a service

Universal Unique IDentifier (UUID). We also considered the underlying topology constraints

and defined the Extended Scatternet Neighborhood (ESN) as the 1-scatternet-hop region

formed by the union of adjacent piconets. Furthermore, our hybrid approach utilized a

proactive approach within the ESN and used a reactive modified source-routing approach

outside the ESN. The modified source-routes were bridge link agnostic and made up of only

intermediate piconet masters, so that changes in individual bridge links did not affect the

entire scatternet route. The routing protocol was placed above the L2CAP layer to allow

easier access to routing functionality for application layer protocols. However, the inclusion

of source routes and need for fragmentation of L2CAP segments due to larger HBSR packets

also incurred a significant route acquisition delay for destinations outside the ESN zone. As

more than 50% of nodes are within the ESN zone for scatternet topologies of 30 nodes or

less formed by BTDSP, the proactive component of the hybrid approach is very beneficial

as route discovery operations are inhibited by difficult scheduling coordination in general

purpose scatternet topologies. The addition of gossiping for route discovery outside the ESN

zone was used to reduce routing overhead, but provided marginal benefit except for in dense

101

topologies where piconets had many bridge connections.

Copyright c© Karl E. Persson 2009

102

Chapter 6

Security in Bluetooth Scatternets

6.1 Introduction

BluetoothR© security features are described in the specification[11] at several layers of the

protocol stack as well as in the Generic Access Profile (GAP)[8]. However, only security

for direct links within a piconet is covered. We describe the current security features from

the specification in detail in Section 6.2.2. The specification outlines both authentication

and encryption procedures for BluetoothR©. For increased security each master-slave link can

use a distinct link key or a piconet-wide, broadcast-friendly link key. Either way, the scope

of authenticity and confidentiality for BluetoothR© communication remains within a single

piconet.

By extending BluetoothR© functionality to scatternets we also introduce some security

implications. Increasing the connectivity between nodes offers intruders more ways to com-

promise devices. Therefore, we specifically address scatternet security in this chapter. We

present an algorithm for secure communication between adjacent piconets within an Ex-

tended Scatternet Neighborhood (ESN) and for securing a piconet in Section 6.3. Before

describing the algorithms we first analyze current security measures from the BluetoothR©

specification and related work, and discuss problems and potential threats. Thereafter, we

extend the current BluetoothR© security model to include scatternet communication.

The remainder of this chapter is organized as follows. In Section 6.2 we overview general

security issues in wireless ad hoc networks and describe the details of existing security features

103

in the BluetoothR© specification. We also discuss other proposed solutions and how they

apply to BluetoothR© security. In Section 6.3 we describe two scenarios to provide link level

security in scatternets. Section 6.3.1 presents the two scenarios and how they extend the

piconet security model to secure scatternets. Each of the two scenarios are presented in

Sections 6.3.2 and 6.3.3 respectively. Thereafter, we conclude the chapter in Section 6.4.

6.2 Security Preliminaries

6.2.1 Concepts

Network security is a crucial topic that is often overlooked and never sufficiently addressed.

The problem of maintaining a secure system, or protecting confidentiality and integrity while

ensuring availability, is difficult in both Wireless Personal Area Networks (WPANs) and gen-

eral wireless ad hoc networks. Wireless devices are generally resource poor, which makes it

difficult to implement strong security mechanisms. Most BluetoothR© devices have limited

processing power and battery capacity. Therefore, a general purpose security mechanism

must adhere to strict resource constraints. For instance, public key cryptography is much

more computationally intensive than symmetric solutions and is therefore not always suit-

able for wireless devices. On the other hand, private key cryptography uses the same key

for both encryption and decryption, so secret keys must be exchanged securely a priori. Al-

though security is an important issue in any system, there are specific security concerns for

BluetoothR© WPANs. In Section 6.2.2 we describe the methods currently used for security

within the scope of the BluetoothR© specification [11]. Section 6.2.3 further describes security

threats and attacks that are specific to BluetoothR© WPANs.

6.2.2 Overview

Key generation

The BluetoothR© specification defines the SAFER+ block cipher algorithm for encryption

and link key generation [20]. Encryption of packet payloads is performed in hardware by the

104

Table 6.1: Keys used for BluetoothR© security

Key name Key type Algorithm Description
Kinit Initialization key E22 Single session temp key
KA Unit key E21 Semi permanent unit key

Kmaster Master key E22 Non contributory key (point-
to-multipoint)

KAB Combination key E21 Contributory key (point-to-
point)

Kc Encryption key E3 Derived from current link
key

128

Mode 2

22E
8L’

128

PIN’

RAND

128

KeyKey

L’

128

48
BD_ADDR

RAND

Mode 1

21E

Figure 6.1: E21 and E22 key generation

E0 stream cipher encryption engine using four Linear Feedback Shift Registers (LFSRs) [11].

BluetoothR© authentication keys are 128-bits in length but can be shortened to comply with

cryptographic export restrictions. Before discussing the details of the authentication and

encryption procedures, we discuss the necessary components for BluetoothR© security.

Keys are generated for encryption and authentication procedures using several different

algorithms. The algorithms and the corresponding generated keys are illustrated in Table

6.1. A key can either be temporary, valid only during a session, or semi-permanent. A

semi-permanent key is stored in non-volatile memory and is seldom changed.

To initiate authentication and generation of subsequent link keys, an initialization key

Kinit is generated first. The E22 algorithm generates this key from a random value IN RAND,

the BD ADDR of the initiator, and a Personal Identificant Number (PIN)[11]. Figure 6.11

illustrates the E21 and E22 algorithms for key generation. Since there is no trusted third

party to authenticate devices, the BluetoothR© specification assumes that there is a short

1Illustration derived from BluetoothR© Core v1.2 specification [11] page 783. Copyright 2003 c© Bluetooth
SIG [30].

105

shared secret (PIN) available. Another possibility is to pre-program units with a shared

link key instead of the initialization key Kinit. This is called bonding or pre-pairing. Once

a shared initialization link key has been derived, the units can generate a new link key

and authenticate each other. Each pair of communicating peers (a master and a slave) can

generate a contributory combination key KAB. This is done using the E21 algorithm from

an old key and random numbers from both devices as follows. Each of the peers generates

random numbers, LK RANDA and LK RANDB. Thereafter, each of them generates a key

share from their BD ADDR and the random number:

LK KA = E21(LK RANDA, BD ADDRA)

LK KB = E21(LK RANDB, BD ADDRB)

Each device transfers the exclusive-or (XOR) of the old key and its key share. The

peer can then derive the LK K random value of the other device from the exclusive-OR

of the received value and the old key. Thus, the new combination key is calculated as

KAB = LK KA ⊕ LK KB.

Alternatively, if a master wants to broadcast data packets to all slaves it can temporarily

switch to a common Kmaster key. This is done by the master using the E22 algorithm from

two random numbers. The Kmaster key is non-contributory, so it has to be distributed to the

slaves. This is performed securely using the E22 algorithm as well. The master computes a

128-bit overlay from the current link key and a random value. It then sends the random value,

the exclusive-OR of the overlay, and the new Kmaster key, call it C, to the peer. Thereafter,

the slaves can compute the same overlay from the received random number RAND and the

old key. The slaves then derive Kmaster from the exclusive-OR of the received value C and

the overlay. If the Kmaster is used to generate the encryption key Kc, then all slaves are

capable of decrypting the contents of a data packet regardless of whether the data packet is

broadcasted or addressed to a specific slave.

Each device also has a semi-permanent unit key KA that is generated when the device is

manufactured. Although it is semi-permanent, the KA unit key almost never changes. The

106

�
�
�
�
�
�
�

AU_RAND

SRES

A

Claimant (Unit B)

ACO

SRES

E1
BBD_ADDR

AU_RAND

Link key

A A

1E

AU_RAND

BD_ADDR B

Link key

ACO

SRES’
?=

SRES

Verifier (Unit A)

Figure 6.2: Challenge-response authentication

unit key is unique to each device and together with the BD ADDR identifies the device. In

earlier versions of the specification the unit key is described as a potential link key. However,

as mentioned in [46], exchanging the unit key compromises the identity of a device and makes

it vulnerable to impersonation attacks. Therefore, from here on we assume that the unit key

KA is never shared with another device.

Authentication

After the peers have generated a shared secret link key they must mutually authenticate

each other before generating the encryption key. The authentication procedure is based on

a challenge-response scheme between a verifier and a claimant. This is illustrated in Figure

6.22. The verifier first generates a random value AU RANDA and sends it to the claimant.

The claimant produces a signed response value SRES’ from AU RANDA, the link key, and its

BD ADDR, using the E1 Message Authentication Code (MAC) algorithm and sends it back

to the verifier. The verifier performs the same calculation and compares its signed response

SRES to the received SRES’ value. After the devices switch roles and successfully perform

the same procedure the mutual authentication is complete. In BluetoothR©, authentication

and the generation of a link key is called pairing[12]. Paired devices have authenticated each

other and share a secret key. When this shared key is stored it is called bonding[8].

2Illustration derived from BluetoothR© Core v1.2 specification [11] page 773. Copyright 2003 c© Bluetooth
SIG [30].

107

3E

EN_RAND
128

128

96

Link key

COF

K

128

c

Figure 6.3: E3 Encryption key generation algorithm

Encryption

After the participants have been properly authenticated, a cipher key Kc is generated. The

generation of the encryption key Kc is shown in Figure 6.33. The key length of Kc is

128-bit, but a shortened key K ′c can be derived if necessary to comply with cryptographic

export regulations. To ensure a high level of security the link key should be temporarily re-

generated. A combination link key KAB is only valid for communication during the lifetime

of a session, so it is not vital that combination keys are re-generated as frequently. On the

other hand, if a master key is used as the link key then re-generation is important to ensure

Perfect Forward Secrecy (PFS). That means that that the shared secret is used only to

derive a single key, so that new participants are not able to decrypt old transmissions and

old participants are not able to determine new keys. Anytime a new slave joins or an old

slave is disconnected, the master key should be re-generated and distributed only to current

piconet members.

Once an encryption key Kc has been generated, the payload of data packets can be

encrypted. BluetoothR© uses an cipher stream encryption engine E0 that takes as inputs the

encryption key Kc, the BD ADDR, a 128-bit random number, and the 26 Least Significant

Bits (LSBs) of the master’s clock. The input values are shifted into four Linear Feedback Shift

Registers (LFSRs) and then combined in the Summation Combiner Finite State Machine

(FSM) to produce the cipher stream Kcipher[11]. This generates a different cipher stream for

3Illustration derived from BluetoothR© Core v1.2 specification [11] page 783. Copyright 2003 c© Bluetooth
SIG [30].

108

Kc

address

clock

RAND

payload key

generator

payload key

zkey stream
generator

plain text/cipher text

cipher text/plain text

Figure 6.4: E0 Cipher stream encryption engine

each packet since the clock value is incremented in every time slot. The generation of the

stream cipher is illustrated in Figure 6.44. It is then exclusive-OR’d with the packet payload

to produce the ciphertext or plaintext.

There are three security modes defined for BluetoothR© in the Generic Access Profile

(GAP)[8]. Mode 1 is inherently insecure and does not allow authentication or encryption

at all. Security mode 2 requires that devices are authenticated and encryption is used once

channels that require security have been established. Thus, the initial connection establish-

ment is not secure in mode 2 either. In the third security mode, security is enforced down

to the link layer and the authentication is performed during the connection establishment.

Therefore, connection between devices in security mode 3 can be restricted to devices that

have previously been paired with each other. During pairing, devices exchange link keys and

are said to be bonding[8]. Bonding in BluetoothR© means that devices exchange and store

a link key for that particular peer. The bonding peer is identified by the Device Access

Code (DAC) received during the paging procedure. Hence, for pre-paired devices we can

restrict connections from forming with any other devices. We will discuss this further in

Section 6.3.

6.2.3 Security Threats

It is extremely difficult to ensure security in a wireless ad hoc network. The characteristics

of wireless communication make such a system much more susceptible to eavesdropping and

4Illustration derived from BluetoothR© Core v1.2 specification [11] page 763. Copyright 2003 c© Bluetooth
SIG [30].

109

communication interference such as signal jamming [42, 46, 37]. Although the Frequency

Hopping Spread Spectrum (FHSS) scheme used in BluetoothR© WPANs inhibits such attacks,

it is still not without risk. An intruder that is able to obtain the Frequency Hopping Sequence

(FHS) of a piconet can certainly engage in such an attack since all communication still takes

place over the air.

The decentralized and ever changing topology of an ad hoc network makes it even more

difficult for a device to authenticate the identity of a peer. Stajano and Anderson propose

a form of imprinting that they call the resurrecting duckling security policy [25]. The idea

behind their policy is similar to a duckling that recognize its mother when it is first born.

A device imprints the identity of the first peer that sent it a secret key. Their approach

provides additional authentication, but it is not applicable to our scenario.

Devices in WPANs are generally also resource poor. Battery exhaustion attacks[25] are

possible when an adversary prevents the device from going to sleep or into a battery saving

mode.

Jakobsson and Wetzel describe attacks on the Personal Identificant Number (PIN) val-

ues used for authentication in [46]. The BluetoothR© specification [11] states that the PIN

length can be between 1 and 16 octets. If it is too short then an adversary can exhaustively

search all PIN combinations and obtain the initialization key, since the random value in E22

is sent in clear text. To alleviate this problem an exponential backoff algorithm is described

in the BluetoothR© specification and used to prevent an adversary from repeatedly guessing

PIN. However, this could actually be counter productive if an adversary launches a man-in-

the-middle attack, as discovered by Jacobsson and Wetzel [46]. If the adversary obtains a

transcript of a challenge-response session, it could repeately compute initialization keys of-

fline from PIN guesses. The verification could thereafter be compared to the transcript. The

backoff would therefore be beneficial to the adversary, since more time would be available to

guess the PIN. Although these attacks are only feasible for short PIN values, it corroborates

that a reasonably long PIN is necessary.

110

We assume that all participants that require authentication and subsequent data encryp-

tion share at least a common password, i.e. a BluetoothR© PIN value, for key generation.

6.3 Inter-Piconet Security

In this section we describe security models and approaches to provide security associations

between adjacent piconets in a scatternet using inherent BluetoothR© security features.

6.3.1 Secure Scatternet Models

The lack of fixed infrastructure makes proper authentication difficult in BluetoothR© WPANs.

We assume that any devices that require strong authentication have already been bonded

and pre-paired.

We envision that the following two scenarios would be suitable for scatternet communi-

cation and benefit from efficient security solutions:

• Conference room scenario: A large group of participants (more than 8 connected

devices) need to form a secure scatternet based on a predetermined shared secret.

• Personal Area Network scenario: An individual requires that his or her personal

devices form secure connections, while still maintaining connectivity to a non-secure

public scatternet.

In the first scenario we assume that the entire scatternet shares a common secret. For

example, at a medical center a group of surgeons meet in a conference room. Each surgeon

keeps all his or her patient journals in a BluetoothR© enabled Personal Digital Assistant

(PDA). If participants want to share confidential medical information, they have to ensure

that no adversary outside the room is eavesdropping and can intercept the data. It would

not be practical for each surgeon to walk around and securely transfer the journal to each

one of his or her colleagues. Therefore, the solution is to form a scatternet that connects

all PDAs in the room. In this type of environment they could simply write a password on

111

the white board and use it as the PIN. Regardless of how the PIN is communicated, the

underlying assumption is that the shared secret exists. Note that if an adversary discovers

the PIN then the security of the system is compromised. In both proposed security scenarios

we show that even though an adversary successfully obtains the PIN and authenticates him-

or herself, no old keys are ever disclosed. We maintain PFS even though an adversary could

have compromised the scatternet.

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� �
� �
	 	
	 	

� �
� �

B

SM S

SS

M

B

S

S

M

S

BM

S
S

Private PAN

B

Private PAN
Public Scatternet

M

Figure 6.5: Private PAN piconets connected to the scatternet

The second scenario is somewhat different, but also important for BluetoothR© scatternets.

As BluetoothR© devices become more and more prevalent, we envision that an individual will

carry several BluetoothR© enabled devices. Thus, each individual assumes that his or her

devices can communicate securely amongst each other while maintaining connectivity to the

rest of the (insecure) scatternet. For example, suppose that our networked person wanted to

add funds to his or her digital wallet. In this case the notebook computer, which is equipped

with a custom authentication hardware module and has sufficient processing power, connects

to an Internet bank though a nearby BluetoothR© access point. Although this part of the

transaction is insecure at the BluetoothR© link layer, it should be protected by application

level strong authentication and encryption. After successfully completing the transaction,

the user wants to transfer the funds to his or her digital wallet, which requires a secure

112

link layer BluetoothR© connection. The basic idea is that the individual’s own devices are

connected in a secure piconet, which we call a Private PAN. These Private PANs are then

connected to the rest of the scatternet through a regular bridge node. We define the Private

PAN as a secure piconet connected to an insecure scatternet. A picture of a Private PAN as

part of a scatternet is shown in Figure 6.5.

Each of the two scenarios described above has different security requirements. In the

conference scenario our main objective is to establish secure links between adjacent piconets

in secure Extended Scatternet Neighborhoods (ESNs). We assume that knowledge of the

fixed PIN is sufficient for membership. Analogous to intra-piconet link key generation, the

objective in this case is to establish secure inter-piconet links. In the next section we further

describe the rationale behind this idea. On the other hand, in the second case we wish to

ensure that an adversary that potentially already belongs to the scatternet is not able to

compromise a single secure Private PAN piconet. The Private PAN consists of devices by

a single owner or entity. These devices are assumed to have been previously pre-paired and

bonded in a non-hostile environment. We further enforce strict point-to-point link keys with

the tradeoff that the master is unable to broadcast in the Private PAN piconet. Periodic

re-generation of the bondings (meaning combination link keys) is also advisable to curtail

cipher attacks.

6.3.2 General Password-based Secure Scatternet

The basic idea behind the creation of secure scatternet links is to first form an ordinary

scatternet from devices that share a common secret. Before describing the algorithm in

detail we first establish some initial assumptions; each device that participates in the secure

scatternet must be discoverable and pairable[8].

As defined in the Generic Access Profile (GAP)[8] there are three security modes in

BluetoothR©. Notably, since security mode 1 lacks both authentication and encryption sup-

port, a device in security mode 1 will not be able to authenticate itself and participate in

113

secure communication. Our security requirements for the conference scenario fit well into

security mode 2. In security mode 2 authentication and encryption procedures are handled

by the link manager after the link has been established but prior to channel establishment.

The main difference between security mode 2 and 3 is that in security mode 3 the authentica-

tion and encryption procedures are conducted during the connection establishment. For the

purpose of the general password-based secure scatternet, the security modes are functionally

equivalent, so either mode 2 or 3 can be used.

Phase one: Scatternet formation

The initial phase of the secure scatternet creation utilizes our BTDSP scatternet formation

algorithm from Chapter 4. We assume that every participating device possesses the Personal

Identificant Number (PIN) a priori to formation. Each device then executes the initialization

procedure to probabilistically determine whether to perform device discovery as a master

and attempt to form a piconet or as a slave and scan for connections. The initialization

procedure utilizes a threshold value, local to each device, that is increased proportionally to

the number of slaves in a piconet. Thereby, the probability distribution between master and

slave discovery, for disjoint devices, is heavily weighted to slaves. As masters connect more

slaves, the threshold is proportionally increased and they attempt to either connect additional

slaves or form bridge connections. Our Bluetooth Distributed Scatternet Formation Protocol

(BTDSP) forms a flat scatternet topology that is fault-tolerant and does not require that all

devices are within transmission range of each other. Fault-tolerance is achieved by ensuring

that every device periodically executes the initialization procedure. Slaves do not continue

execution, but periodically retry in case they are disconnected. In the same way, new bridge

connections are formed to heal potential scatternet partitions as pure slaves become available

to the piconet master. More details about scatternet formation are available in Chapters 3

and 4.

After the master has successfully paged a slave and formed a link, the Link Manager (LM)

sends an LMP host connection req Packet Data Unit (PDU). This initiates the connection

114

unit
Paged

unit
Paging

LMP_setup_complete
LMP_setup_complete

LMP_procedures for pairing,
authentication and encryption.

LMP_host_connection_req
LMP_accepted or LMP_not_accepted

Baseband page procedure

LMP procedures for clock offset
request, LMP version, supported
features, name request and detach.

Figure 6.6: Secure connection establishment

setup as well as authentication and encryption procedures. The link establishment proce-

dure is shown in Figure 6.65. Based on our underlying assumption from section 6.2.3, each

participating node has a preset PIN. Therefore, devices will fail to form connections if the

LMP-authentication and pairing are not successful. The direct consequence from this is that

only devices that possess the correct PIN are able to join the scatternet. Therefore, we

effectively form a scatternet consisting of only devices with knowledge of the PIN.

Phase two: Inter-piconet link key establishment

After phase one we have formed a scatternet from devices that shared the PIN. Each point-

to-point link in the piconets has an associated combination link key. As described in Section

4.3.4, each piconet master in the scatternet stores a table, Bridge Table, that contains the

LT ADDR of each bridge node and the BD ADDR of the corresponding piconet master.

We based the key establishment on a password-based key exchange similar to [52]. Our

modified algorithm uses the pre-existing E2 key generation algorithms and the E1 Message

Authentication Code (MAC) algorithm. The generated keys are shown in Figure 6.7 and

the algorithm is illustrated in Figure 6.8.

The algorithm works as follows. The initiator A computes its key share SC KA from

5Illustration derived from BluetoothR© Core v1.2 specification [11] page 209. Copyright 2003 c© Bluetooth
SIG [30].

115

The initiator A computes the following quantities:

SC KA = E21(SC RANDA, BD ADDRA)
KA tmp = E22(RANDA, BD ADDRA + PIN)
KA auth = SC KA ⊕KA tmp

SRESA = E1(SC KA, BD ADDRB, RANDA)

K ′B tmp = E22(RANDB, BD ADDRB + PIN)
SC KB = KB auth ⊕K ′B tmp

SRES ′B = E1(SC KB, BD ADDRA, RANDB)

The respondent B computes the following quantities:

SC KB = E21(SC RANDB, BD ADDRB)
KB tmp = E22(RANDB, BD ADDRB + PIN)
KB auth = SC KB ⊕KB tmp

SRESB = E1(SC KB, BD ADDRA, RANDB)

K ′A tmp = E22(RANDA, BD ADDRA + PIN)
SC KA = KA auth ⊕K ′A tmp

SRES ′A = E1(SC KA, BD ADDRB, RANDA)

Figure 6.7: Inter-piconet key exchange values

Inter-Piconet-Key-Exchange()
1 A→ B : RANDA,KA auth

2 B → A : RANDB,KB auth, SRES
′
A

3 A→ B : SRES′B

Figure 6.8: Inter-piconet authenticated key exchange procedure

a random value SC RANDA and the BD ADDRA. A first generates a temporary key

KA tmp from another random value RANDA and the augmentation of its BD ADDRA and

the PIN. Thereafter, A produces the authentication key: KA auth = SC KA ⊕KA tmp. The

authentication key is generated so that B can derive A’s key share securely. A also produces a

signed response value SRESA that will be compared to B’s challenge-response value SRES ′A

for authentication.

In the first step of the algorithm, in Figure 6.8, A sends B the random value RANDA

and the authentication key KA auth. If B has possession of the correct PIN it can compute

116

K ′A tmp, since it received RANDA and knows the BD ADDR of A. B then computes A’s key

share: SC KA = KA auth ⊕ K ′A tmp. B also calculates the signed response SRES ′A to send

back to A, for the challenge-response authentication. B then generates its own RANDB

and authentication key KB auth in the same manner as A. After B sends RANDB, KB auth

and SRES ′A in step 2, A can authenticate B based on SRES ′A and compute B’s key share

SC KB. In the last step A computes B’s signed response SRES ′B and sends it back to B.

The inter-piconet shared key can now be computed by both parties as follows:

SC KAB = SC KA ⊕ SC KB.

Each piconet master performs the key exchange procedure for each piconet master in its

Extended Scatternet Neighborhood (ESN). Thereby all ESN connections can be encrypted.

As we describe in Section 4.3.4, each piconet master stores a table Bridge Table that contains

the LT ADDR of each bridge node and the BD ADDR of the corresponding piconet master.

For the purposes of link level security within ESNs, we redefine the table to include an extra

column to hold the inter-piconet link key. The new Bridge Table is illustrated in Table 6.2.

The master can now encapsulate a packet destined for a neighboring piconet in the payload

of an encrypted packet to the bridge node of the corresponding piconet. After decrypting

the payload, the bridge node re-encrypts it with the combination link key between itself and

the corresponding piconet master. In this manner we can securely exchange data between

adjacent piconets.

Table 6.2: Redefined Bridge Table for link-level scatternet security

LT ADDR Piconet Key
000 <BD ADDRmasterA> < SC KAX >
001 <BD ADDRmasterB> < SC KBX >
010 <BD ADDRmasterC> < SC KCX >
011 <BD ADDRmasterD> < SC KDX >
100 <BD ADDRmasterE> < SC KEX >
101 <BD ADDRmasterF> < SC KFX >
110 <BD ADDRmasterG> < SC KGX >
111 <BD ADDRmasterH> < SC KHX >

117

6.3.3 Private PAN Security

As described in section 6.3.1 the second scenario is fundamentally different from the one

described in the previous section. A Private PAN is a secure piconet connected to an insecure

scatternet. We first define the requirements for a Private PAN. We have assumed previously

that devices in a Private PAN have bonded and exchanged semi-permanent link keys a

priori. It is also necessary that each device is in security mode 3 to authenticate the

pre-pairing before the connection is established. In contrast to the secure scatternet model,

Private PAN are initially disjoint piconets that form exclusive connections between pre-paired

entities. Thus, Private PAN devices are not required to be discoverable. However they are

required to be pairable in order to create the bonding. Further, these devices do not engage

in normal device discovery but are immediately paged by the Private PAN master device.

This is possible since the bonding provides the master with the Device Access Code (DAC)

of each peer device. Private PAN device connections and channel establishment are therefore

similar to that of a normal piconet, although authenticated and encrypted at the link level

and restricted to pre-paired devices.

The incorporation of Private PANs into the insecure scatternet requires a new link man-

ager command. In 4.3.4 we defined the LMP PDU lmp scat inq scan. It is used exclusively

in the master to slave direction to initiate bridge scanning. We can utilize this for Private

PANs as well. The Private PAN master designates a bridge designate to reply to inquiries

from other piconet masters. Once the bridge node has been connected to a piconet, it returns

a lmp scat rep PDU to the Private PAN master. This PDU contains the BD ADDR of the

corresponding master so that the master can update its Bridge Table. The bridge node is

also required to send a reply PDU to the other master as well. For this purpose we define a

new PDU lmp restrict rep that notifies the corresponding piconet master of the BD ADDR

of the Private PAN master. In contrast to the regular response, this PDU notifies the other

master’s LM that it is connected to a Private PAN and should not attempt to exchange

Extended Scatternet Neighborhood (ESN) information or route traffic through this bridge

118

link.

6.4 Summary

In this chapter we extended BluetoothR© security to scatternets. We also defined two scenar-

ios: the conference room secure scatternet and the Private Personal Area Network (PAN)

scenario. The former creates secure links within an ESN, while the latter allows devices to

communicate securely within a Private PAN piconet that is connected to an insecure scat-

ternet. We proposed an algorithm for establishing shared link keys between piconet masters

and also introduced the concept of Private PAN secure piconets.

Copyright c© Karl E. Persson 2009

119

Chapter 7

Conclusions and Future Work

7.1 Problems Addressed and Solutions Proposed

In this dissertation we address the problem of scatternet communication. We emphasize that

although scatternets are conceptually defined in the BluetoothR© specification there are no

algorithms presented within the specification for the four main components of a scatternet

communication protocol; namely formation, routing, Inter Piconet Scheduling (IPS), and

security.

More specifically, a scatternet must be explicitly formed for a BluetoothR© device to com-

municate with more than 7 peer devices. A scatternet is essentially made up of piconets, each

with a single master and up to 7 slaves, in which some devices, called inter-piconet bridge

nodes, interleave their participation in multiple piconets on a time-sharing basis. Coordi-

nation between piconet masters (of when and for how long the inter-piconet bridge devices

participate in each member piconet) is also necessary and can be done through an Inter Pi-

conet Scheduling (IPS) algorithm. Further, a routing algorithm that is specifically designed

to be compatible with both the formation and the IPS algorithms is needed for devices to

communicate in the scatternet. As the inter-piconet bridge nodes perform the function of

gateways between member piconets, data packets must be routed through the bridges nodes

in a store-and-forward manner. Another important problem for scatternet communication is

that of protecting data confidentiality and providing security in BluetoothR© scatternets, as

wireless ad hoc networks, including BluetoothR© Wireless Personal Area Networks (WPANs),

120

susceptible to attacks such as eavesdropping, resource exhaustion, and communication in-

terference.

As there are many existing approaches in literature that describe formation of BluetoothR©

scatternets, part of our contribution include presenting six scatternet topology models, es-

tablishing criteria for efficient formation of scatternets within these topology models, and

classifying scatternet formation approaches into single-hop, multi-hop, and optimized topolo-

gies.

We present a fault-tolerant scatternet formation algorithm, called Bluetooth Distributed

Scatternet Formation Protocol (BTDSP), that forms a 2-Slave/Slave Mesh (SSM) scatter-

net topology. The main characteristics of BTDSP include: distributed operation, with-

out reliance on a leader or coordinator; use of Slave/Slave (SS) bridge nodes, without any

Master/Slave (MS) bridges; bridge degree limited to two participating piconets; support for

incremental arrivals and re-incorporation of disconnected nodes, by avoiding protocol phase

divisions; and no reliance on artificial merging or migration of piconet nodes. We emphasize

that BTDSP operates in both single-hop and multi-hop (where all devices are not within

radio vicinity) scenarios, and that due to the distributed nature of the protocol (and without

artificial merging and migration of piconet nodes) the scatternet formation delay remains

relatively constant as the scatternet size increases.

We also present a hybrid scatternet routing algorithm, called Hybrid Bluetooth Scatternet

Routing (HBSR), with a dual meaning of hybrid. HBSR is a hybrid zone routing algorithm

with a proactive zone, called the Extended Scatternet Neighborhood (ESN). In the reac-

tive region outside the ESN on-demand route discovery is performed using a probabilistic

gossiping approach. We utilize a source routing approach in which modified source routes,

consisting of merely the intermediate piconet masters along the route, are used with bridge

connections between piconet masters retrieved from the local ESN routing table. The second

meaning of hybrid in HBSR corresponds to the ability to discover a route to either a desti-

nation, by its BD ADDR, or to a device that offers a service, by a service Universal Unique

121

IDentifier (UUID). Hybrid Bluetooth Scatternet Routing (HBSR) is also, unlike previous

scatternet routing approaches, layered on top of the Logical Link Control and Adaptation

Protocol (L2CAP), which simplifies future incorporation of scatternet communication sup-

port for higher layer protocols. We emphasize that, due to the topology constraints placed on

BluetoothR© scatternets, it is essential that the routing algorithm is directly compatible with

both the formation approach and the Inter Piconet Scheduling (IPS) approach. Hybrid Blue-

tooth Scatternet Routing (HBSR) is designed for scatternet topologies formed by BTDSP

and is compatible with both the Maximum Distance Rendezvous Point (MDRP) [56] and

the Dichotomized Rendezvous Point (DRP) [70] Rendezvous Point (RP)-based Inter Piconet

Scheduling (IPS) algorithms. We note that although probabilistic gossiping, used to reduce

the routing load for the reactive part of Hybrid Bluetooth Scatternet Routing (HBSR), can

be effective is dense topologies, most scatternet topologies for which Hybrid Bluetooth Scat-

ternet Routing (HBSR) is designed are relatively small and, in most instances, too sparse

to take full advantage of the benefits of gossiping without adversely affecting route request

propagation coverage.

To extend BluetoothR© security to scatternets we present two scenarios for secure scatter-

net communication: the conference room scenario, in which all participating inter-piconet

links are secured, and the Private PAN piconet, which allows a secure piconet to connect to an

insecure scatternet. We specifically extend existing security procedures from the BluetoothR©

specification to allow secure exchange and establishment of inter-piconet shared symmetric

keys between peer Extended Scatternet Neighborhood (ESN) piconet masters.

7.2 Future Work

As part of our future work we plan to focus on integration of the formation, scheduling, rout-

ing, and security components into a single protocol. We also plan to add optimization for

newer versions of the BluetoothR© specification. Specifically we aim to further optimize scat-

ternet functionality for use in high-speed BluetoothR© topologies. In addition, we also would

122

like to incorporate the proposed algorithms into an existing protocol stack, such as BlueZ[18],

and utilize a testbed of Bluetooth devices to further improve scatternet functionality.

Specifically for scatternet formation we would like to further improve the topology for-

mation by device classification using the Extended Inquiry Response, so that devices with

more processing power and less energy constraints are prioritized for master roles. Further,

we strive to provide even tighter integration with the scheduling and routing components

to identify and reduce some inefficient topology constructions. In order to improve fault-

tolerance, we plan to investigate methods to share stateful information from the piconet

master with slaves so that a slaves can easily replace the failed master in the event of node

disconnection.

We would like to improve the coordination between the routing and the Inter Piconet

Scheduling (IPS) components as to reduce the routing propagation delay for destinations

outside the Extended Scatternet Neighborhood (ESN). We also plan to investigate whether

different approaches to Inter Piconet Scheduling (IPS) can be used to further reduce propa-

gation delay. In order to lower the overhead from the inclusion of the modified source routes,

we strive to investigate implementation of flow IDs that are cached at intermediate nodes.

Adding multiple bridge nodes between any two piconets provides multiple routing paths, but

it adds also additional switching overhead. We therefore plan to add specific mechanisms for

controlling under which circumstances multiple bridge nodes between any two piconets are

added. Segmentation of service-based route discovery by service UUID classes is also part

of our future work. We also plan to investigate ways, such as the incorporation of a third

gossiping threshold value, for further reducing routing overhead while maintaining sufficient

topology coverage for route discovery.

To further improve security in BluetoothR© scatternets, we plan to add support for Security

Mode 4, for Service Discovery Protocol (SDP) security, as well as investigate incorporation

of additional security procedures. We are specifically interested in the ability to authenticate

any scatternet peer without reliance on fixed infrastructure or key shares from a large number

123

of peers, as well as providing end-to-end encryption of data packets using existing BluetoothR©

hardware.

Copyright c© Karl E. Persson 2009

124

Bibliography

[1] ns2 - Network Simulator. http://www.isi.edu/nsnam/ns/.

[2] A. Aggarwal, M. Kapoor, L. Ramachandran, and A. Sarkar. Clustering algorithms
for wireless ad hoc networks. In Proceedings of the 4th International Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communications, pages
54–63, Boston, Massachusetts, USA, August 2000.

[3] A. Capone, M. Gerla, R. Kapoor. Efficient polling schemes for bluetooth picocells. In
IEEE ICC 01, Helsinki, Finland, volume 7, pages 1990–1994, June 2001.

[4] A. Racz, G. Miklos, F. Kubinszky, and A. Valko. A pseudo random coordinated schedul-
ing algorithm for bluetooth scatternets. In Proceedings of the ACM Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc), pages 193–203, Long Beach,
California, USA, 2001.

[5] S. Basagni and C.Petrioli. Multiphop scatternet formation for bluetooth networks. In
Proceedings of the IEEE 55th Vehicular Technology Conference, volume 1, pages 424–
428, May 2002.

[6] Christian Bettstetter. On the minimum node degree and connectivity of a wireless mul-
tihop network. In MobiHoc ’02: Proceedings of the 3rd ACM international symposium
on mobile ad hoc networking & computing, New York, NY, USA, pages 80–91, June
2002.

[7] P. Bhagwat and A. Segall. A routing vector method (RVM) for routing in bluetooth
scatternets. In IEEE International Workshop on Mobile Multimedia Communications
(MoMuC ’99), pages 375–379, 1999.

[8] Bluetooth SIG, http://www.bluetooth.org/docs/. Bluetooth generic access profile,
February 2001.

[9] Bluetooth SIG, http://www.bluetooth.org/docs/. Bluetooth personal area network-
ing profile, revision 0.95a edition, June 2001.

[10] Bluetooth Special Interest Group, http://www.bluetooth.org/assigned-numbers/.
Bluetooth standard assigned numbers.

[11] Bluetooth Special Interest Group, http://www.bluetooth.com. Bluetooth specification,
February 2001.

125

http://www.isi.edu/nsnam/ns/
http://www.bluetooth.org/docs/
http://www.bluetooth.org/docs/
http://www.bluetooth.org/assigned-numbers/
http://www.bluetooth.com

[12] J. Bray and C. F. Sturman. Bluetooth: connect without cables. Prentice Hall, 2001.

[13] C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc on demand distance vector
(AODV) routing. IETF Internet Draft, http://www.cs.ucsb.edu/~ebelding/txt/

aodvid.txt, November 2002.

[14] C. F. Chiasserini, M. A. Marsan, E. Baralis, and P. Garza. Towards feasible topol-
ogy formation algorithms for bluetooth-based WPANs. In 36th Hawaii International
Conference on System Science (HICSS-36), Big Island, Hawaii, January 2003.

[15] C-J. Huang and W-K. Lai and S-Y Hsiao and H-Y Liu. A self-adaptive zone routing
protocol for bluetooth scatternets. Computer Communications, 28(1):37–50, January
2005.

[16] C. Law, A. K. Mehta, and K. Siu. Performance of a new bluetooth scatternet formation
protocol. In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc2001), Long Beach, California, USA, October 2001.

[17] F. Chun-Choong and C. Kee-Chaing. BlueRings - bluetooth scatternets with ring struc-
tures. In IASTED International Conference on Wireless and Optical Communication
(WOC 2002), Banff, Canada, July 2002.

[18] Open Source Community. BlueZ - official linux bluetooth protocol stack. http://www.
bluez.org.

[19] F. Cuomo and T.Melodia. A general methodology and key metrics for scatternet forma-
tion in bluetooth. In Proceedings of IEEE GLOBECOM 2002, Taipei, Taiwan, volume 1,
pages 941–945, November 2002.

[20] Cylink Corporation. “SAFER+ encryption algorithm”. http://www.cylink.com/

library2/downloadbody.htm.

[21] D. B. Johnson, D. A. Maltz, Y. Hu, and J. G. Jetcheva. The dynamic source routing
protocol for mobile ad hoc networks (DSR). IETF Internet Draft, http://www.monarch.
cs.rice.edu/internet-drafts/draft-ietf-manet-dsr-07.txt, February 2002.

[22] D. Miorandi, A. Zanella, and G. Pierobon. Performance evaluation of bluetooth
polling schemes: an analytical approach. Mobile Networks and Applications (MONET),
9(1):63–72, 2004.

[23] C. de Morais Cordeiro and D. P. Agrawal. Ad hoc and sensor networks: theory and
applications. World Scientific, 2006.

[24] F. Cuomo, G. Di Bacco, T. Melodia. SHAPER: a self-healing algorithm producing multi-
hop bluetooth scatternets. In Proceedings of the IEEE Globecom 2003, San Francisco
USA, December 2003.

[25] Frank Stajano and Ross Anderson. “The resurrecting duckling: security issues for ad-
hoc wireless networks”. In Security Protocols, 7th International Workshop Proceedings,
1999.

126

http://www.cs.ucsb.edu/~ebelding/txt/aodvid.txt
http://www.cs.ucsb.edu/~ebelding/txt/aodvid.txt
http://www.bluez.org
http://www.bluez.org
http://www.cylink.com/library2/downloadbody.htm
http://www.cylink.com/library2/downloadbody.htm
http://www.monarch.cs.rice.edu/internet-drafts/draft-ietf-manet-dsr-07.txt
http://www.monarch.cs.rice.edu/internet-drafts/draft-ietf-manet-dsr-07.txt

[26] G. Tan, A. Miu, J. Guttag, and H. Balakrishnan. Forming scatternets from bluetooth
personal area networks. Technical Report MIT-LCS-TR-826, Massachusetts Institute
of Techonology, http://lcs.mit.edu/, October 2001.

[27] G. Tan, A. Miu, J. Guttag, and H. Balakrishnan. An efficient scatternet formation
algorithm for dynamic environments. In IASTED International Conference on Com-
munications and Computer Networks, Boston, MA, November 2002.

[28] G. V. Zaruba, S. Basagni, and I. Chlamtac. Bluetrees - scatternet formation to enable
bluetooth-based ad hoc networks. In IEEE International Conference on Communica-
tions (ICC2001), pages 273–277, 2001.

[29] H. Garcia-Molina. Elections in a distributed computing system. IEEE Transactions on
Computers, 31(1):48–59, January 1982.

[30] Bluetooth Special Interest Group. Bluetooth SIG member web site. http://www.

bluetooth.org.

[31] Gy. Miklos, A. Racz, A. Valko, and P. Johansson. Performance aspects of bluetooth
scatternet formation. In Proceedings of the First Annual Workshop on Mobile Ad Hoc
Networking and Computing, pages 147–148, MobiHoc, 2000.

[32] IBM developer Works, IBM Research India, http://oss.software.ibm.com/

bluehoc/. Bluehoc: bluetooth network simulator.

[33] IEEE, http://grouper.ieee.org/groups/802/15/. IEEE 802.15 working group for
WPANs.

[34] IEEE, http://www.ietf.org/html.charters/manet-charter.html. IEEE mobile ad
hoc networking (MANet) working group.

[35] IEEE, http://standards.ieee.org/getieee802/. IEEE 802.11 Standard, 1999.

[36] J. Yun, J. Kim, Y. Kim, and J. S. Ma. A three-phased hoc network formation protocol
for bluetooth systems. In Proceedings of the 5th International Symposium on Wireless
Personal Multimedia Communications (WPMC ’2002), December 2002.

[37] Jean-Pierre Hubaux, L. Buttyan and S. Capkun. “The quest for security in mobile ad
hoc networks”. In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc 2001), 2001.

[38] R. Kapoor, A. Zanella, and M. Gerla. A fair and traffic dependent scheduling algorithm
for bluetooth scatternets. Mobile Networks and Applications, 9(1):9–20, February 2004.

[39] L. Har-Shai, R. Kofman, G. Zussman, and A. Segall. Inter-piconet scheduling in blue-
tooth scatternets. In Proceedings of the OPNETWORK 2002 Conference, August 2002.

[40] L. Li, J. Halpern, and Z. Haas. Gossip-based ad hoc routing. In Proceedings of the
21st Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2002), June 2002.

127

http://lcs.mit.edu/
http://www.bluetooth.org
http://www.bluetooth.org
http://oss.software.ibm.com/bluehoc/
http://oss.software.ibm.com/bluehoc/
http://grouper.ieee.org/groups/802/15/
http://www.ietf.org/html.charters/manet-charter.html
http://standards.ieee.org/getieee802/

[41] X-Y. Li, K. Moaveninejad, and O. Frieder. Regional gossip routing for wireless ad hoc
networks. Mobile Networks and Applications, 10(1-2):61–77, February 2005.

[42] Lidong Zhou and Zygmunt J. Haas. “Securing ad hoc networks”. IEEE Network Mag-
azine, 16(6):24–30, November/December 1999.

[43] M. Kalia, D. Bansal, R. Shorey. Data scheduling and SAR for bluetooth MAC. In
Proceedings of the IEEE 51st Vehicular Technology Conference Proceedings (VTC 2000-
Spring) Tokyo, Japan, volume 2, pages 716–720, May 2000.

[44] M. Kalia, S. Garg, and R. Shorey. Scatternet structure and inter-piconet communication
in the bluetooth system. In IEEE National Conference on Communications New Dehli,
India, 2000, 2000.

[45] M. Sun, C. Chang and T. Lai. A self-routing topology for bluetooth scatternets. In
Proceedings of I-SPAN 2002, Manila, Philippines, May 2002.

[46] Markus Jakobsson and Susanne Wetzel. “Security weaknesses in bluetooth”. In Pro-
ceedings of the RSA Conference, 2001.

[47] Martina Umlauft and Peter Reichl. “Experiences with the ns-2 network simulator -
explicitly setting seeds considered harmful”. In 5th IEEE International Conference on
Industrial Informatics, Pomona, California, April 2007. ACM.

[48] J. Misic and V. B. Misic. Bridges of bluetooth county: topologies, scheduling and
performance. In IEEE Journal of Selected Areas in Communications, volume 21 of
Wireless Series, Special issue on Wireless LANs and Home Networks, pages 240–258,
February 2003.

[49] MIT Laboratory for Computer Science : Networks and Mobile Systems, http://nms.
lcs.mit.edu/projects/blueware. Blueware: bluetooth simulator for ns.

[50] Robert Morrow. Bluetooth operation and use. McGraw-Hill, 2002.

[51] C. Siva Ram Murthy and B.S. Manoj. Ad hoc wireless networks: architecture and
protocols. Prentice Hall, 2004.

[52] N. Asokan and P. Ginzboorg. “Key agreement in ad-hoc networks”. In Proceedings of
Nordsec’99, November 1999.

[53] N. Golmie, N. Chevrollier, and I. ElBakkouri. Interference aware bluetooth packet
scheduling. In Proceedings of IEEE GLOBECOM, pages 2857–2863, November 2001.

[54] N. Johansson, F. Alriksson, and U. Jonsson. JUMP mode - a dynamic window-based
scheduling framework for bluetooth scatternets. In Proceedings of the ACM Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), Long Beach, California, USA,
October 2001.

[55] P. Johansson, M. Kazantzidis and M. Gerla. Bluetooth: an enabler for personal area
networking. IEEE Network, 15(5):28–37, September/October 2001.

128

http://nms.lcs.mit.edu/projects/blueware
http://nms.lcs.mit.edu/projects/blueware

[56] P. Johansson, R. Kapoor, M. Kazantzidis, M. Gerla. Rendezvous scheduling in bluetooth
scatternets. In Proceedings of ICC 2002, New York City, New York, pages 318–324, April
2002.

[57] P. Wang, K. M. Alzoubi, and O. Frieder. Distributed construction of connected domi-
nating set in wireless ad hoc networks. In Proceedings of IEEE INFOCOM 2002, New
York, NY, pages 1597–1604, July 2002.

[58] K. Pearson. Tables of incomplete beta functions. Cambridge University Press, 2nd
edition, 1968.

[59] K. Persson and D. Manivannan. A fault-tolerant distributed formation protocol for blue-
tooth scatternets. International Journal of Pervasive Computing and Communications
(JPCC), 2(2):165–176, June 2006.

[60] K. E. Persson, D. Manivannan, and M. Singhal. Bluetooth scatternets: criteria, models
and classification. Ad Hoc Networks, 3(6):777–794, November 2005.

[61] C. Petrioli and S. Basagni. Degree-constrained multihop scatternet formation for blue-
tooth networks. In Proceedings of the IEEE Globecom 2002, Taipei, Taiwan, November
2002.

[62] B. J. Prabhu and A. Chockalingam. A routing protocol and energy efficient techniques in
bluetooth scatternets. In IEEE ICC’2002, New York, NY, pages 3336–3340, April-May
2002.

[63] R. Kapoor and M. Gerla. A zone routing protocol for bluetooth scatternets. In IEEE
Wireless Communications and Networking (WCNC’03), pages 1459–1464, March 2003.

[64] S. Baatz, C. Bieschke, M. Frank, C. Kuhl, P. Martini, and C. Scholz. Building ef-
ficient bluetooth scatternet topologies from 1-factors. In Proceedings of the IASTED
International Conference on Wireless and Optical Communications, WOC 2002, Banff,
Alberta, Canada, July 2002.

[65] I. Stojmenovic. Dominating set based bluetooth scatternet formation with localized
maintenance. In Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS ’02), pages 148–155. IEEE Computer Society, April 2002.

[66] T. Salonidis, P. Bhagwat and L. Tassiulas. Proximity awareness and fast connection es-
tablishment in bluetooth. In First Annual Workshop on Mobile and Ad Hoc Networking
and Computing, 2000. MobiHOC 2000, pages 141–142, 2000.

[67] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire. Distributed topology construc-
tion of bluetooth personal area networks. In Proceedings of Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM
2001), volume 3, pages 1577–1586, April 2001.

[68] T. Y. Lin, Y. Tseng, K. Chang, and C. Tu. Formation, routing, and maintenance
protocols for the BlueRing scatternet of bluetooths. In Proceedings of the 36th Hawaii
International Conference of System Sciences, Big Island, Hawaii, January 2003.

129

[69] University of Cincinnati, http://www.ececs.uc.edu/~cdmc/ucbt/. UCBT - bluetooth
extension for ns2.

[70] Q. Wang and D. P. Agrawal. A dichotomized rendezvous algorithm for mesh bluetooth
scatternets. Ad Hoc Sensor Wireless Networks, 1(1):65–88, March 2005.

[71] J. P. F. Willekens. Ad hoc routing in bluetooth. In Proceedings of the 6th International
Conference on Protocols for Multimedia Systems, pages 130–144. Springer-Verlag, 2001.

[72] J. Wu and H.L Li. On calculating connected dominating set for efficient routing in ad hoc
wireless networks. In Proceedings of the 3rd ACM international workshop on Discrete
algorithms and methods for mobile computing and communications, pages 7–14, August
1999.

[73] Y. Liu, M. J. Lee, T. N. Saadawi. A bluetooth scatternet-route structure for multihop
ad hoc networks. IEEE Journal on Selected Areas in Communications, 21(2):229–239,
February 2003.

[74] Z. Wang, R. J. Thomas, and Z. Haas. Bluenet - a new scatternet formation scheme.
In 35th Hawaii International Conference on System Science (HICSS-35), Big Island,
Hawaii, January 2002.

[75] W. Zhang and G. Cao. A flexible scatternet-wide scheduling algorithm for bluetooth
networks. In IEEE International Performance, Computing, and Communications Con-
ference (IPCCC), 2002.

[76] Z.J. Haas and M. R. Pearlman. The zone routing protocol (ZRP) for ad hoc
networks. IETF Internet Draft, http://wnl.ece.cornell.edu/Publications/

draft-ietf-manet-zone-zrp-02.txt, June 1999.

[77] S. Zurbes. Considerations on link and system throughput of bluetooth networks. In 11th
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC 2000), volume 2, pages 1315–1319, 2000.

[78] G. Zussman and A. Segall. Capacity assignment in bluetooth scatternets - optimal
and heuristic algorithms. ACM/Kluwer Mobile Networks and Applications (MONET),
Special Issue on Advances in Research of WPAN and Bluetooth Enabled Networks,
2003.

130

http://www.ececs.uc.edu/~cdmc/ucbt/
http://wnl.ece.cornell.edu/Publications/draft-ietf-manet-zone-zrp-02.txt
http://wnl.ece.cornell.edu/Publications/draft-ietf-manet-zone-zrp-02.txt

Acronyms

ACL Asynchronous Connectionless

AFH Adaptive Frequency-Hopping Spread Spectrum

AODV Ad hoc On-demand Distance Vector

BIAS Bluetooth Interference Aware Scheduling

BNEP Bluetooth Network Encapsulation Protocol

BTCP Bluetooth Topology Construction Protocol

BTDSP Bluetooth Distributed Scatternet Formation Protocol

CDMA Code Division Multiple Access

CG Communicating Group

CDS Connected Dominating Set

CL Connection-less

CO Connection-oriented

DAC Device Access Code

DH Data - High Rate

DIAC Dedicated Inquiry Access Code

DM Data - Medium Rate

DRP Dichotomized Rendezvous Point

DRPB Dichotomized Rendezvous Point Broadcasting

DS Direct Sequence

DSSS Direct Sequence Spread Spectrum

DSR Dynamic Source Routing

DV Data/Voice Bluetooth packet type

131

DUN Dial-up Networking

EDR Enhanced Data Rate

EID Extended ID

ERR Exhaustive Round-Robin

ESN Extended Scatternet Neighborhood

FEC Forward Error Correction

FH Frequency Hopping

FHSS Frequency Hopping Spread Spectrum

FHS Frequency Hopping Sequence

FSM Finite State Machine

FSS Flexible Scatternet-wide Scheduling

GAP Generic Access Profile

GFSK Gaussian Frequency Shift Keying

GIAC General Inquiry Access Code

GN Group Ad Hoc Network

HBSR Hybrid Bluetooth Scatternet Routing

HCI Host Controller Interface

HV High-quality voice Bluetooth packet type

ISM Industrial, Scientific, Medical

IAC Inquiry Access Code

IPS Inter Piconet Scheduling

IEEE Institute of Electrical and Electronics Engineers

IRPS Intra Piconet Scheduling

IR Infrared

KFP K-Fairness Scheduling Policy

L2CAP Logical Link Control and Adaptation Protocol

LAA Load Adaptive Algorithm

132

LAN Local Area Network

LC Link Controller

LFSR Linear Feedback Shift Register

LM Link Manager

LMP Link Manager Protocol

LSB Least Significant Bit

LIAC Limited Inquiry Access Code

LM Link Manager

LMP Link Manager Protocol

LWRR Limited and Weighted Round Robin

MAC Message Authentication Code

MANET Mobile Ad Hoc Network

MB-OFDM Multi-Band Orthogonal Frequency Division Multiplexing

MBps Megabytes Per Second

Mbps Megabits Per Second

MDRP Maximum Distance Rendezvous Point

MIS Minimum Independent Set

MS Master/Slave

MSM Master/Slave Mesh

MSR Master/Slave Ring

NAP Network Access Point

PAN Personal Area Network

PCSS Pseudo-Random Coordinated Scatternet Scheduling

PDA Personal Digital Assistant

PDU Packet Data Unit

PIN Personal Identificant Number

PFS Perfect Forward Secrecy

133

PP Priority Polling

PRR Pure Round Robin

PSK Phase Shift Keying

RNG Random Number Generator

RB Random Backoff

RF Radio Frequency

RP Rendezvous Point

RVM Routing Vector Method

RSSI Received Signal Strength Indicator

SCO Synchronous Connection-Oriented

eSCO Extended Synchronous Connection-Oriented

SDP Service Discovery Protocol

SPM Single Piconet Model

SS Slave/Slave

SSM Slave/Slave Mesh

SSR Slave/Slave Ring

SIG Special Interest Group

TDD Time Division Duplex

TDMA Time Division Multiple Access

TH Tree Hierarchy

TSF Tree Scatternet Formation Protocol

TTL Time To Live

UCBT University of Cincinnati - BlueTooth

UUID Universal Unique IDentifier

UWB Ultra-Wideband

QoS Quality of Service

WG Working Group

134

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

ZRP Zone Routing Protocol

135

Index

Asynchronous Connectionless (ACL), 8
Ad hoc On-demand Distance Vector (AODV),

27, 74
Bluetooth Distributed Scatternet Formation

Protocol (BTDSP), 49
Connected Dominating Set (CDS), 39
Device Access Code (DAC), 21
Dichotomized Rendezvous Point (DRP), 26
Dynamic Source Routing (DSR), 27
Enhanced Data Rate (EDR), 6
Extended Scatternet Neighborhood (ESN), 71,

72, 75, 77–84, 89–91, 93, 101, 103,
113, 117–119

Frequency Hopping Spread Spectrum (FHSS),
6, 110

Generic Access Profile (GAP), 5
Hybrid Bluetooth Scatternet Routing (HBSR),

78
Inter Piconet Scheduling (IPS), 24
Intra Piconet Scheduling (IRPS), 22
Infrared (IR), 4
Industrial, Scientific, Medical (ISM), 6
Logical Link Control and Adaptation Protocol

(L2CAP), 9
Link Controller (LC), 8
Linear Feedback Shift Register (LFSR), 108
Link Manager Protocol (LMP), 9
Minimum Independent Set (MIS), 39
Master/Slave Mesh (MSM), 19
Master/Slave Ring (MSR), 20
Personal Area Network (PAN), 4–6, 113
Perfect Forward Secrecy (PFS), 108
Phase Shift Keying (PSK), 7
Random Backoff (RB), 21
Random Number Generator (RNG), 62
Rendezvous Point (RP), 24, 25
Routing Vector Method (RVM), 73
Synchronous Connection-Oriented (SCO), 8

Service Discovery Protocol (SDP), 5, 86
Single Piconet Model (SPM), 19
Slave/Slave Mesh (SSM), 20
Slave/Slave Ring (SSR), 20
Time Division Duplex (TDD), 10
Tree Hierarchy (TH), 20
Universal Unique IDentifier (UUID), 86
Wireless Personal Area Network (WPAN), 4,

10, 76, 79, 104, 110, 111
Zone Routing Protocol (ZRP), 74
IEEE 802.11, 21
IEEE 802.15, 4

acknowledgment, iii

baseband transmission, 7, 14
Bernoulli trials, 29
beta function, 61
bipartite, 39
bit mask, 82
bluetooth, 2, 5

architecture, 6
baseband, 8
device discovery, 21, 47
origin, 5
PARK mode, 19
profiles, 5
protocol stack, 8
radio, 6
security

authentication, 107
link key, 105
modes, 109
unit key, 106

specification, 11
Bluetrees, 29, 44
border effect, 65, 66
bottleneck, 20, 30, 32
bridge, 15

136

constraints, 17
degree, 18, 47
designate, 42, 49, 50, 52, 54–56, 68, 118
M/S, 14, 18, 19, 24, 25, 29, 31, 35, 75, 76
S/S, 18–20, 24–26, 30, 35, 71, 76

broadcast, 8, 10
BTCP, 44

carriers, 6, 14, 21
centralized, 28, 38, 39, 44, 49, 66
confidentiality, 104
coordinator, 26–29, 34

deterministic, 28
device discovery, 10, 21, 47
directed graph, 38
distributed, 27, 28, 32, 33

Ericsson, 1, 5

fairness, 23
frequency hop, 8, 13, 14, 21

Gabriel Graph (GG), 39
gossiping, 77

Harald Bluetooth, 5

INQUIRY, 10, 21, 28, 31
INQUIRY SCAN, 10, 21, 28, 31
integrity, 104
interference, 6, 10, 15, 23, 42, 56

key exchange, 115

leader election, 27, 28, 44, 66
leaf node, 30, 32
link formation, 22, 28, 31, 36

Media Access Code (MAC), 7
multiplexing, 9

native clock, 7, 15, 21
non-deterministic, 62
NP-hard, 39

path cache, 81, 91
payload, 9
piconet, 5–10, 13–15, 42, 48, 49
piconet formation, 52

point-to-point, 8
poll, 9, 22, 25
Private PAN, 113, 118, 119
pure slave, 42, 47, 49, 52, 57, 68, 114

randomized, 28, 30
rate vector, 38
reassembly, 9
Relative Neighborhood Graph (RNG), 39
root node, 20, 30, 32, 35
round-robin, 15, 22
routing, 26

cache, 91
criteria, 70
HBSR-Discovery, 86
HBSR-ESN, 82
hybrid, 71, 78
loop prevention, 88, 92
loop-freedom proof, 92
modified source routes, 71
on-demand, 74
path cache, 81, 91
reply, 90

SAFER+, 104
scatternet, 10

connectivity, 16
multi-hop, 66
single-hop, 65

criteria, 16
formation, 49

algorithm, 50
Bridge Table, 54
BT-Bridge, 53
BT-Init, 51
BT-Init-Repair, 56
BT-Master, 52
fault-tolerance, 56
on-demand, 17

formation delay, 67
hop, 76
models, 19
routing, 26
single-hop

distributed, 30
topology, 27

multi-hop, 27

137

single-hop, 27
scheduling, 23, 25
security

availability, 104
seed, 62
segmentation, 9
self-healing, 17, 30, 32
signalling channel, 9
synchronization, 14, 15, 21

time slot, 7
time slots, 14, 24
topology

criteria, 13
mesh, 18
models, 13
multi-hop, 33
on-demand, 35
optimized, 36
partition, 21, 30, 34
ring, 18, 21, 30, 31
single-hop, 27, 32

coordinated, 28
tree, 18, 29, 32–34

unicast, 73, 90

vertex, 38

138

Vita

Karl E. Persson
Date of Birth: 05/03/1978

Place of Birth: Ludvika, Sweden

• EDUCATION

– M.S., Computer Science, August 2005. University of Kentucky

– B.S., Computer Science, May 2001. University of Kentucky

• CERTIFICATIONS

– Certified Six Sigma Black Belt #6878, March 2008. American Society for Quality
(ASQ)

– Certified Six Sigma Green Belt #1048, June 2007. American Society for Quality
(ASQ)

• PUBLICATIONS

– Journal publications:

∗ Persson, K., and D. Manivannan “A fault-tolerant distributed formation
protocol for bluetooth scatternets”, International Journal of Pervasive Com-
puting and Communications, Volume 2, Issue 2, June 2006, pp. 165-176

∗ Persson, K.E., D. Manivannan, and M. Singhal. “Bluetooth scatternet
formation: criteria, models and classification”, Ad Hoc Networks, Volume 3,
Issue 6, November 2005, pp. 777-794, Elsevier.

– Conference publications:

∗ Persson, K., and D. Manivannan. “Hybrid bluetooth scatternet routing”,
UIC ’09: Proceedings of the 6th International Conference on Ubiquitous In-
telligence and Computing. 7 -10 July, 2009, Brisbane, Australia.

∗ Persson, K., and D. Manivannan. “Distributed self-healing bluetooth scat-
ternet formation”, Proceedings of the 2004 International Conference on Wire-
less Networks. June 21-24, 2004, Las Vegas, NV, USA.

∗ Persson, K., D. Manivannan, and M. Singhal. “Bluetooth scatternet for-
mation: criteria, models, and classification”, Proceedings of the 1st Annual
IEEE Consumer Communications and Networking Conference, 2004, January
5-8, 2004, Las Vegas, NV, USA.

139

∗ Persson, K.E., and D. Manivannan. “Secure connections in bluetooth scat-
ternets”, Proceedings of the 36th Annual Hawaii International Conference on
System Sciences, 2003. January 6-9 2003, Big Island, HI, USA.

Karl E. Persson

140

	A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Files
	1 Introduction
	1.1 Problems Addressed And Solved In This Dissertation
	1.2 Organization of the Dissertation

	2 Preliminaries
	2.1 Wireless Personal Area Networks (WPANs)
	2.2 Bluetooth Technology
	2.2.1 Overview
	2.2.2 Technical Details
	2.2.3 Piconets
	2.2.4 Scatternets
	2.2.5 Evolution of the Bluetooth Specification

	3 Bluetooth Scatternets: Criteria, Models and Classification
	3.1 Introduction
	3.2 Bluetooth Topology Fundamentals
	3.2.1 Piconets
	3.2.2 Scatternet Formation Metrics and Constraints
	3.2.3 Scatternet Models
	3.2.4 Link Formation
	3.2.5 Intra Piconet Scheduling (IRPS)
	3.2.6 Inter Piconet Scheduling (IPS)
	3.2.7 Scatternet Routing

	3.3 Topologies Resulting from Scatternet Formation
	3.3.1 Single-hop Topologies
	3.3.2 Multi-hop Topologies
	3.3.3 Optimized Topologies

	3.4 Summary

	4 A Fault-Tolerant Distributed Formation Protocol for Bluetooth Scatternets
	4.1 Introduction
	4.2 Related Work
	4.3 A Fault-Tolerant Distributed Scatternet Formation Algorithm
	4.3.1 Preliminaries
	4.3.2 Device Discovery
	4.3.3 Basic Idea And Motivation
	4.3.4 Algorithm
	4.3.5 Fault Tolerance and Scatternet Maintenance

	4.4 Performance Evaluation
	4.4.1 Parameter Optimization
	4.4.2 Comparative Simulation Study

	4.5 Summary

	5 Hybrid Bluetooth Scatternet Routing
	5.1 Introduction
	5.2 Related Work
	5.3 Routing Preliminaries
	5.3.1 Scatternets
	5.3.2 Extended Scatternet Neighborhood (ESN)
	5.3.3 Probabilistic Gossiping

	5.4 A Hybrid Bluetooth Scatternet Routing Algorithm
	5.4.1 Basic Idea
	5.4.2 Algorithm

	5.5 Performance Evaluation
	5.5.1 Extended Scatternet Neighborhood (ESN)
	5.5.2 Route Acquisition Delay
	5.5.3 Parameter Optimization

	5.6 Summary

	6 Security in Bluetooth Scatternets
	6.1 Introduction
	6.2 Security Preliminaries
	6.2.1 Concepts
	6.2.2 Overview
	6.2.3 Security Threats

	6.3 Inter-Piconet Security
	6.3.1 Secure Scatternet Models
	6.3.2 General Password-based Secure Scatternet
	6.3.3 Private PAN Security

	6.4 Summary

	7 Conclusions and Future Work
	7.1 Problems Addressed and Solutions Proposed
	7.2 Future Work

	Bibliography
	Acronyms
	Index
	Vita

