5,914 research outputs found

    State-of-the-Art Sensor Technology in Spain: Invasive and Non-Invasive Techniques for Monitoring Respiratory Variables

    Get PDF
    The interest in measuring physiological parameters (especially arterial blood gases) has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables

    Architecture for Smart Buildings Based on Fuzzy Logic and the OpenFog Standard

    Get PDF
    The combination of Artificial Intelligence and IoT technologies, the so-called AIoT, is expected to contribute to the sustainability of public and private buildings, particularly in terms of energy management, indoor comfort, as well as in safety and security for the occupants. However, IoT systems deployed on modern buildings may generate big amounts of data that cannot be efficiently analyzed and stored in the Cloud. Fog computing has proven to be a suitable paradigm for distributing computing, storage control, and networking functions closer to the edge of the network along the Cloud-to-Things continuum, improving the efficiency of the IoT applications. Unfortunately, it can be complex to integrate all components to create interoperable AIoT applications. For this reason, it is necessary to introduce interoperable architectures, based on standard and universal frameworks, to distribute consistently the resources and the services of AIoT applications for smart buildings. Thus, the rationale for this study stems from the pressing need to introduce complex computing algorithms aimed at improving indoor comfort, safety, and environmental conditions while optimizing energy consumption in public and private buildings. This article proposes an open multi-layer architecture aimed at smart buildings based on a standard framework, the OpenFog Reference Architecture (IEEE 1934–2018 standard). The proposed architecture was validated experimentally at the Faculty of Engineering of Vitoria-Gasteiz to improve indoor environmental quality using Fuzzy logic. Experimental results proved the viability and scalability of the proposed architecture.The authors wish to express their gratitude to the Basque Government, through the project EKOHEGAZ II; to the Diputación Foral de Álava (DFA), through the project CONAVANTER; to the UPV/EHU, through the projects GIU20/063 and CBL 22APIN; and to the MobilityLab Foundation (CONV23/12), for supporting this work

    Electrical Impedance Tomography: From the Traditional Design to the Novel Frontier of Wearables

    Get PDF
    Electrical impedance tomography (EIT) is a medical imaging technique based on the injection of a current or voltage pattern through electrodes on the skin of the patient, and on the reconstruction of the internal conductivity distribution from the voltages collected by the electrodes. Compared to other imaging techniques, EIT shows significant advantages: it does not use ionizing radiation, is non-invasive and is characterized by high temporal resolution. Moreover, its low cost and high portability make it suitable for real-time, bedside monitoring. However, EIT is also characterized by some technical limitations that cause poor spatial resolution. The possibility to design wearable devices based on EIT has recently given a boost to this technology. In this paper we reviewed EIT physical principles, hardware design and major clinical applications, from the classical to a wearable setup. A wireless and wearable EIT system seems a promising frontier of this technology, as it can both facilitate making clinical measurements and open novel scenarios to EIT systems, such as home monitoring

    Guidelines for data collection on energy performance of higher-education buildings in Egypt: a case study

    Get PDF
    Reliable energy analysis of buildings relies heavily on high-quality data leading to proper indicators. Previous studies have highlighted the importance of data quality in analyzing energy usage in residential and non-residential buildings in order to transform declarations to actions, optimise energy efficiency policies and monitor progress and failures in countries. Collected data must adhere to national and international standards for energy performance in buildings. This study aims to provide practical guidelines for effectively collecting and preparing data suitable for evaluating energy performance in Egyptian higher-education (HE) buildings. The guidelines are developed based on a comprehensive case study, considering data availability in typical educational facilities. Architectural and civil engineering drawings, construction specifications, and occupancy details are accessible. However, actual monthly electrical and natural gas consumption data for individual buildings are lacking. To address this, the study proposes the creation of detailed datasheets for each building, encompassing all energy sources and their electrical and power specifications, such as equipment, machinery, and HVAC systems. These datasheets were utilized to calculate energy consumption and energy usage indicators (EUI). The findings demonstrate that the datasheets enable adequate assessment of energy usage in various spaces within educational buildings, including staff rooms, lecture halls, and laboratories. This facilitates the identification of areas in need of targeted energy efficiency improvements. Notably, the study reveals that electricity consumption in the Faculty of Engineering building is significantly influenced by PCs, laboratories, lighting, and air conditioning

    AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives

    Get PDF
    In theory, building automation and management systems (BAMSs) can provide all the components and functionalities required for analyzing and operating buildings. However, in reality, these systems can only ensure the control of heating ventilation and air conditioning system systems. Therefore, many other tasks are left to the operator, e.g. evaluating buildings’ performance, detecting abnormal energy consumption, identifying the changes needed to improve efficiency, ensuring the security and privacy of end-users, etc. To that end, there has been a movement for developing artificial intelligence (AI) big data analytic tools as they offer various new and tailor-made solutions that are incredibly appropriate for practical buildings’ management. Typically, they can help the operator in (i) analyzing the tons of connected equipment data; and; (ii) making intelligent, efficient, and on-time decisions to improve the buildings’ performance. This paper presents a comprehensive systematic survey on using AI-big data analytics in BAMSs. It covers various AI-based tasks, e.g. load forecasting, water management, indoor environmental quality monitoring, occupancy detection, etc. The first part of this paper adopts a well-designed taxonomy to overview existing frameworks. A comprehensive review is conducted about different aspects, including the learning process, building environment, computing platforms, and application scenario. Moving on, a critical discussion is performed to identify current challenges. The second part aims at providing the reader with insights into the real-world application of AI-big data analytics. Thus, three case studies that demonstrate the use of AI-big data analytics in BAMSs are presented, focusing on energy anomaly detection in residential and office buildings and energy and performance optimization in sports facilities. Lastly, future directions and valuable recommendations are identified to improve the performance and reliability of BAMSs in intelligent buildings

    Through Engineering 4.0 the Safe Operating Block for Patients and Medical Staff

    Get PDF
    The Paper deals with the management of the operating block in its many activities. By a new approach and with innovative machinery specific several problems were thus studied and overcome, such as the control of hospital infections, the operations of washing and sterilization of surgical instruments, the planning of interventions, the tracking of drugs and medical devices entering the operating block, the management of stocks, the bed management, the monitoring of environmental parameters for patient comfort and safety, the monitoring of machines and the interlocking of doors, etc. Furthermore, it is proposed a wide use of the analytical tools to support decision making, extended to the most modern Cyber-Physical Systems and Digital Twin, alongside Machine Learning and Artificial Intelligence algorithms. Concluding with the new services that can be offered following the digital transformation 4.0 process of the operating block. Using the tools made available by the most advanced Engineering, an operating block was redesigned, safer for patients and medical staff and more efficient from a conduction point of view. This is done using an administration model that was first conceptualized, designed and then implemented adopting what is made available by Industry 4.0, as well as a series of Management Engineering methodologies aimed at an optimized government of complex systems. Through the data collected by appropriate sensors and translated by the software into usable information, there is an optimal use of the available resources, furthermore, the activities for which improvements can be made with the benefit of patients and structures are identified
    corecore