106 research outputs found

    A novel robust reversible watermarking scheme for protecting authenticity and integrity of medical images

    Get PDF
    It is of great importance in telemedicine to protect authenticity and integrity of medical images. They are mainly addressed by two technologies, which are region of interest (ROI) lossless watermarking and reversible watermarking. However, the former causes biases on diagnosis by distorting region of none interest (RONI) and introduces security risks by segmenting image spatially for watermark embedding. The latter fails to provide reliable recovery function for the tampered areas when protecting image integrity. To address these issues, a novel robust reversible watermarking scheme is proposed in this paper. In our scheme, a reversible watermarking method is designed based on recursive dither modulation (RDM) to avoid biases on diagnosis. In addition, RDM is combined with Slantlet transform and singular value decomposition to provide a reliable solution for protecting image authenticity. Moreover, ROI and RONI are divided for watermark generation to design an effective recovery function under limited embedding capacity. Finally, watermarks are embedded into whole medical images to avoid the risks caused by segmenting image spatially. Experimental results demonstrate that our proposed lossless scheme not only has remarkable imperceptibility and sufficient robustness, but also provides reliable authentication, tamper detection, localization and recovery functions, which outperforms existing schemes for protecting medical image

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    ROI-based reversible watermarking scheme for ensuring the integrity and authenticity of DICOM MR images

    Get PDF
    Reversible and imperceptible watermarking is recognized as a robust approach to confirm the integrity and authenticity of medical images and to verify that alterations can be detected and tracked back. In this paper, a novel blind reversible watermarking approach is presented to detect intentional and unintentional changes within brain Magnetic Resonance (MR) images. The scheme segments images into two parts; the Region of Interest (ROI) and the Region of Non Interest (RONI). Watermark data is encoded into the ROI using reversible watermarking based on the Difference Expansion (DE) technique. Experimental results show that the proposed method, whilst fully reversible, can also realize a watermarked image with low degradation for reasonable and controllable embedding capacity. This is fulfilled by concealing the data into ‘smooth’ regions inside the ROI and through the elimination of the large location map required for extracting the watermark and retrieving the original image. Our scheme delivers highly imperceptible watermarked images, at 92.18-99.94dB Peak Signal to Noise Ratio (PSNR) evaluated through implementing a clinical trial based on relative Visual Grading Analysis (relative VGA). This trial defines the level of modification that can be applied to medical images without perceptual distortion. This compares favorably to outcomes reported under current state-of-art techniques. Integrity and authenticity of medical images are also ensured through detecting subsequent changes enacted on the watermarked images. This enhanced security measure, therefore, enables the detection of image manipulations, by an imperceptible approach, that may establish increased trust in the digital medical workflow

    Integration of digital watermarking technique into medical imaging systems

    Get PDF
    This paper presents the process of integrating digital watermarking technique into medical imaging workflow to evaluate, validate and verify its applicability and appropriateness to medical domains. This is significant to ensure the ability of the proposed approach to tackle security threats that may face medical images during routine medical practices. This work considers two key objectives within the aim of defining a secure and practical digital medical imaging system: current digital medical workflows are deeply analyzed to define security limitations in Picture Archiving and Communication Systems (PACS) of medical imaging; the proposed watermarking approach is then theoretically tested and validated in its ability to operate in a real-world scenario (e.g. PACS). These have been undertaken through identified case studies related to manipulations of medical images within PACS workflow during acquisition, viewing, exchanging and archiving. This work assures the achievement of the identified particular requirements of digital watermarking when applied to digital medical images and also provides robust controls within medical imaging pipelines to detect modifications that may be applied to medical images during viewing, storing and transmitting

    An Improved Reversible Data Hiding with Hierarchical Embedding for Encrypted Images and BBET

    Get PDF
    This research introduces an enhanced reversible data hiding (RDH) approach incorporating hierarchical embedding for encrypted images and employs a novel technique termed BBET (Best Bits Embedding Technique). RDH involves concealing information within a host sequence, enabling the restoration of both the host sequence and embedded data without loss from the marked sequence. While RDH has traditionally found applications in media annotation and integrity authentication, its utilisation has expanded into diverse fields. Given the rapid advancements in digital communication, computer technologies, and the Internet, ensuring information security poses a formidable challenge in safeguarding valuable data. Various reversible and stenographic techniques exist for covertly embedding or protecting data, spanning text, images, and protocols, and facilitating secure transmission to intended recipients. An influential approach in data security is reversible data hiding in encrypted images (RDHEI). This paper distinguishes between the conventional RDHEI technique, characterised by lower Peak Signal-to-Noise Ratio (PSNR) and higher Mean Squared Error (MSE), and proposes an improved RDHEI technique. As the prevalence of digital techniques for image transmission and storage rises, preserving image confidentiality, integrity, and authenticity becomes paramount. Text associated with an image, such as authentication or author information, can serve as embedded data. The recipient must adeptly recover both the concealed data and the original image. Reversible data-hiding techniques ensure the exact recovery of the original carrier after extracting the encrypted data. Classification of RDHEI techniques is based on the implemented method employed. This paper delves into a comprehensive exploration of techniques applicable to difference expansion, histogram shifting, and compression embedding for reversible data hiding. Emphasis is placed on the necessity for a reversible data-hiding technique that meticulously restores the host image. Furthermore, the study evaluates performance parameters associated with encryption processes, scrutinising their security aspects. The investigation utilises the MATLAB tool to develop the proposed BBET technique, comparing its efficacy in embedding and achieving enhanced security features. The BBET technique is characterised by reliability, high robustness, and secure data hiding, making it a valuable addition to the evolving landscape of reversible data hiding methodologies

    A Systematic Review on Image Data Protection Methods

    Get PDF
    Securing data is the main goal of any data security system (DSS). Valuable data must be protected all the time and stored in a very highly secure data storage device. This need has become more critical due to the continuous growth of data size.  Furthermore, non-text data in the form of images, audio, and videos can now be transferred and processed easily and thus become part of sensitive data that needs to be protected. Since there is a need to secure and protect data in any form in order to keep them private and valid, it is expected that there would be many attempts already that have been proposed in the literature for this purpose. This paper reviews a group of these proposed strategies and methods that have been applied to different kinds of DSSs. Challenges and future trends of DSSs are also discussed. A number of main findings are grouped and organized as follows: (1) there are many different kinds of security techniques, each of which offers varying degrees of performance in terms of the amount of data and information that can be managed securely, (2) depending on the architecture of the proposed method, the tactics or strategies of the security system, the kinds of DSSs, as well as a few other factors, some methods are more appropriate for the storage of certain categories of data than others

    Zero watermarking scheme for privacy protection in e-Health care

    Get PDF
    E-health care is an emerging field where health services and information are delivered and offered over the Internet. So the health information of the patients communicated over the Internet has to protect the privacy of the patients. The patient information is embedded into the health record and communicated online which also induces degradation to the original information. So, in this article, a zero watermarking scheme for privacy protection is proposed which protects the privacy and also eliminates the degradation done during embedding of patient information into the health record. This method is based on simple linear iterative clustering (SLIC) superpixels and partial pivoting lower triangular upper triangular (PPLU) factorization. The novelty of this article is that the use of SLIC superpixels and PPLU decomposition for the privacy protection of medical images (MI). The original image is subjected to SLIC segmentation and non-overlapping high entropy blocks are selected. On the selected blocks discrete wavelet transform (DWT) is applied and those blocks undergo PPLU factorization to get three matrices, L, U and P, which are lower triangular, upper triangular and permutation matrix respectively. The product matrix L×U is used to construct a zero-watermark. The technique has been experimented on the UCID, BOWS and SIPI databases. The test results demonstrate that this work shows high robustness which is measured using normalized correlation (NC) and bit error rate (BER) against the listed attacks

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    A Comprehensive Review on Medical Image Steganography Based on LSB Technique and Potential Challenges

    Get PDF
    The rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an investigation of information security techniques in medical imaging, focusing on security goals. Encrypting a message before hiding them gives an extra layer of security, and thus, will provide an excellent solution to protect the sensitive information of patients during the sharing of medical information. Medical image steganography is a special case of image steganography, while Digital Imaging and Communications in Medicine (DICOM) is the backbone of all medical imaging divisions, whereby it is most broadly used to store and transmit medical images. The main objective of this study is to provide a general idea of what Least Significant Bit-based (LSB) steganography techniques have achieved in medical images
    corecore