9,987 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Resource Allocation of Federated Learning for the Metaverse with Mobile Augmented Reality

    Full text link
    The Metaverse has received much attention recently. Metaverse applications via mobile augmented reality (MAR) require rapid and accurate object detection to mix digital data with the real world. Federated learning (FL) is an intriguing distributed machine learning approach due to its privacy-preserving characteristics. Due to privacy concerns and the limited computation resources on mobile devices, we incorporate FL into MAR systems of the Metaverse to train a model cooperatively. Besides, to balance the trade-off between energy, execution latency and model accuracy, thereby accommodating different demands and application scenarios, we formulate an optimization problem to minimize a weighted combination of total energy consumption, completion time and model accuracy. Through decomposing the non-convex optimization problem into two subproblems, we devise a resource allocation algorithm to determine the bandwidth allocation, transmission power, CPU frequency and video frame resolution for each participating device. We further present the convergence analysis and computational complexity of the proposed algorithm. Numerical results show that our proposed algorithm has better performance (in terms of energy consumption, completion time and model accuracy) under different weight parameters compared to existing benchmarks.Comment: This paper appears in IEEE Transactions on Wireless Communications. DOI: https://doi.org/10.1109/TWC.2023.3326884 It is the journal version of 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS) paper: arXiv:2209.14900; i.e., https://doi.org/10.1109/ICDCS54860.2022.0010

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Metaverse for Wireless Systems: Architecture, Advances, Standardization, and Open Challenges

    Full text link
    The growing landscape of emerging wireless applications is a key driver toward the development of novel wireless system designs. Such a design can be based on the metaverse that uses a virtual model of the physical world systems along with other schemes/technologies (e.g., optimization theory, machine learning, and blockchain). A metaverse using a virtual model performs proactive intelligent analytics prior to a user request for efficient management of the wireless system resources. Additionally, a metaverse will enable self-sustainability to operate wireless systems with the least possible intervention from network operators. Although the metaverse can offer many benefits, it faces some challenges as well. Therefore, in this tutorial, we discuss the role of a metaverse in enabling wireless applications. We present an overview, key enablers, design aspects (i.e., metaverse for wireless and wireless for metaverse), and a novel high-level architecture of metaverse-based wireless systems. We discuss metaverse management, reliability, and security of the metaverse-based system. Furthermore, we discuss recent advances and standardization of metaverse-enabled wireless system. Finally, we outline open challenges and present possible solutions

    Play to Earn in the Metaverse with Mobile Edge Computing over Wireless Networks: A Deep Reinforcement Learning Approach

    Full text link
    The Metaverse play-to-earn games have been gaining popularity as they enable players to earn in-game tokens which can be translated to real-world profits. With the advancements in augmented reality (AR) technologies, users can play AR games in the Metaverse. However, these high-resolution games are compute-intensive, and in-game graphical scenes need to be offloaded from mobile devices to an edge server for computation. In this work, we consider an optimization problem where the Metaverse Service Provider (MSP)'s objective is to reduce downlink transmission latency of in-game graphics, the latency of uplink data transmission, and the worst-case (greatest) battery charge expenditure of user equipments (UEs), while maximizing the worst-case (lowest) UE resolution-influenced in-game earning potential through optimizing the downlink UE-Metaverse Base Station (UE-MBS) assignment and the uplink transmission power selection. The downlink and uplink transmissions are then executed asynchronously. We propose a multi-agent, loss-sharing (MALS) reinforcement learning model to tackle the asynchronous and asymmetric problem. We then compare the MALS model with other baseline models and show its superiority over other methods. Finally, we conduct multi-variable optimization weighting analyses and show the viability of using our proposed MALS algorithm to tackle joint optimization problems.Comment: This paper has been submitted to IEEE Transactions on Wireless Communications (TWC), 202
    • …
    corecore