84 research outputs found

    Mixed-level identification of fault redundancy in microprocessors

    Full text link
    A new high-level implementation independent functional fault model for control faults in microprocessors is introduced. The fault model is based on the instruction set, and is specified as a set of data constraints to be satisfied by test data generation. We show that the high-level test, which satisfies these data constraints, will be sufficient to guarantee the detection of all non-redundant low level faults. The paper proposes a simple and fast simulation based method of generating test data, which satisfy the constraints prescribed by the proposed fault model, and a method of evaluating the high-level control fault coverage for the proposed fault model and for the given test. A method is presented for identification of the high-level redundant faults, and it is shown that a test, which provides 100% coverage of non-redundant high-level faults, will also guarantee 100% non-redundant SAF coverage, whereas all gate-level SAF not covered by the test are identified as redundant. Experimental results of test generation for the execution part of a microprocessor support the results presented in the paper.Comment: 2019 IEEE Latin American Test Symposium (LATS

    Clock gene expression patterns in brain and eyestalk tissue of freshly caught Antarctic krill, Euphausia superba, during winter.

    Get PDF
    The high-latitude Antarctic krill, Euphausia superba, is a key species in the Southern Ocean, a region with extreme seasonal and daily changes in photoperiod (day length), light intensity, sea-ice extent, and food availability. In particular, changes in environmental light regimes have been shown to strongly influence krill circadian clock mechanisms and, by extension, synchronized metabolic or physiological output functions. However, knowledge of clock gene functions and regulations in Antarctic krill is still limited, especially with regard to clock gene products, their distribution, and their impact on oscillatory rhythmicity and chronobiological functions. In particular, it is still unclear whether or not the circadian clock might be functioning in krill during summer and winter, when due to the high latitude krill are exposed to near constant light and near constant darkness respectively. This study aims to provide a first basic insight into clock gene expression in wild Antarctic krill during winter conditions. Besides, methodological optimization was attempted to identify putative tissue-specific rhythmic gene expression patterns in brain and eyestalks. In summary, significant 24 h and 16 h oscillatory rhythms could be identified in the relative gene expression of three important clock genes, Cyc, Sgg, and Tim, as well as in the metabolic gene Atpg in both krill brain and eyestalks. Additionally, nine of ten tested clock genes displayed a general tendency for upregulation in the early night in both tissues during low to even absent light regime. The results of the present study suggest that krill brain and eyestalks are equally important for clock gene expression due to similar detected amplitudes and therefore the analysis of whole krill heads is recommended for further studies. Furthermore, the results suggest that the circadian clock might be still active in wild krill during winter, despite the extremely low levels of day light to which the animals might be exposed. Future investigations concerning the regulation of endogenous timing systems and rhythmic functions in Antarctic krill might help to understand how circadian functions might be preserved during summer and winter at high latitudes and also how these might be affected by potential environmental alternations driven by climate change

    Doctor of Philosophy

    Get PDF
    dissertationThe design of integrated circuit (IC) requires an exhaustive verification and a thorough test mechanism to ensure the functionality and robustness of the circuit. This dissertation employs the theory of relative timing that has the advantage of enabling designers to create designs that have significant power and performance over traditional clocked designs. Research has been carried out to enable the relative timing approach to be supported by commercial electronic design automation (EDA) tools. This allows asynchronous and sequential designs to be designed using commercial cad tools. However, two very significant holes in the flow exist: the lack of support for timing verification and manufacturing test. Relative timing (RT) utilizes circuit delay to enforce and measure event sequencing on circuit design. Asynchronous circuits can optimize power-performance product by adjusting the circuit timing. A thorough analysis on the timing characteristic of each and every timing path is required to ensure the robustness and correctness of RT designs. All timing paths have to conform to the circuit timing constraints. This dissertation addresses back-end design robustness by validating full cyclical path timing verification with static timing analysis and implementing design for testability (DFT). Circuit reliability and correctness are necessary aspects for the technology to become commercially ready. In this study, scan-chain, a commercial DFT implementation, is applied to burst-mode RT designs. In addition, a novel testing approach is developed along with scan-chain to over achieve 90% fault coverage on two fault models: stuck-at fault model and delay fault model. This work evaluates the cost of DFT and its coverage trade-off then determines the best implementation. Designs such as a 64-point fast Fourier transform (FFT) design, an I2C design, and a mixed-signal design are built to demonstrate power, area, performance advantages of the relative timing methodology and are used as a platform for developing the backend robustness. Results are verified by performing post-silicon timing validation and test. This work strengthens overall relative timed circuit flow, reliability, and testability

    Cost modelling and concurrent engineering for testable design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As integrated circuits and printed circuit boards increase in complexity, testing becomes a major cost factor of the design and production of the complex devices. Testability has to be considered during the design of complex electronic systems, and automatic test systems have to be used in order to facilitate the test. This fact is now widely accepted in industry. Both design for testability and the usage of automatic test systems aim at reducing the cost of production testing or, sometimes, making it possible at all. Many design for testability methods and test systems are available which can be configured into a production test strategy, in order to achieve high quality of the final product. The designer has to select from the various options for creating a test strategy, by maximising the quality and minimising the total cost for the electronic system. This thesis presents a methodology for test strategy generation which is based on consideration of the economics during the life cycle of the electronic system. This methodology is a concurrent engineering approach which takes into account all effects of a test strategy on the electronic system during its life cycle by evaluating its related cost. This objective methodology is used in an original test strategy planning advisory system, which allows for test strategy planning for VLSI circuits as well as for digital electronic systems. The cost models which are used for evaluating the economics of test strategies are described in detail and the test strategy planning system is presented. A methodology for making decisions which are based on estimated costing data is presented. Results of using the cost models and the test strategy planning system for evaluating the economics of test strategies for selected industrial designs are presented

    Analyse de testabilité au niveau transfert de registres

    Get PDF
    Synthèse automatique et analyse de testabilité -- Les définitions de base -- Analyse de testabilité à haut niveau d'abstraction -- Analyse de testabilité et d'insertion de points de test au niveau transfert de registres -- Testability analysis and test-point insertion in RTL VHDL specifications for scan-based bist -- Implantation de l'algorithme et résultats expérimentaux

    Doctor of Philosophy

    Get PDF
    dissertationAsynchronous design has a very promising potential even though it has largely received a cold reception from industry. Part of this reluctance has been due to the necessity of custom design languages and computer aided design (CAD) flows to design, optimize, and validate asynchronous modules and systems. Next generation asynchronous flows should support modern programming languages (e.g., Verilog) and application specific integrated circuits (ASIC) CAD tools. They also have to support multifrequency designs with mixed synchronous (clocked) and asynchronous (unclocked) designs. This work presents a novel relative timing (RT) based methodology for generating multifrequency designs using synchronous CAD tools and flows. Synchronous CAD tools must be constrained for them to work with asynchronous circuits. Identification of these constraints and characterization flow to automatically derive the constraints is presented. The effect of the constraints on the designs and the way they are handled by the synchronous CAD tools are analyzed and reported in this work. The automation of the generation of asynchronous design templates and also the constraint generation is an important problem. Algorithms for automation of reset addition to asynchronous circuits and power and/or performance optimizations applied to the circuits using logical effort are explored thus filling an important hole in the automation flow. Constraints representing cyclic asynchronous circuits as directed acyclic graphs (DAGs) to the CAD tools is necessary for applying synchronous CAD optimizations like sizing, path delay optimizations and also using static timing analysis (STA) on these circuits. A thorough investigation for the requirements of cycle cutting while preserving timing paths is presented with an algorithm to automate the process of generating them. A large set of designs for 4 phase handshake protocol circuit implementations with early and late data validity are characterized for area, power and performance. Benchmark circuits with automated scripts to generate various configurations for better understanding of the designs are proposed and analyzed. Extension to the methodology like addition of scan insertion using automatic test pattern generation (ATPG) tools to add testability of datapath in bundled data asynchronous circuit implementations and timing closure approaches are also described. Energy, area, and performance of purely asynchronous circuits and circuits with mixed synchronous and asynchronous blocks are explored. Results indicate the benefits that can be derived by generating circuits with asynchronous components using this methodology

    New Techniques for On-line Testing and Fault Mitigation in GPUs

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Case Study: First-Time Success ASIC Design Methodology Applied to a Multi-Processor System-on-Chip

    Get PDF
    Achieving first-time success is crucial in the ASIC design league considering the soaring cost, tight time-to-market window, and competitive business environment. One key factor in ensuring first-time success is a well-defined ASIC design methodology. Here we propose a novel ASIC design methodology that has been proven for the RUMPS401 (Rahman University Multi-Processor System 401) Multiprocessor System-on-Chip (MPSoC) project. The MPSoC project is initiated by Universiti Tunku Abdul Rahman (UTAR) VLSI design center. The proposed methodology includes the use of Universal Verification Methodology (UVM). The use of electronic design automation (EDA) software during each step of the design methodology is also presented. The first-time success RUMPS401 demonstrates the use of the proposed ASIC design methodology and the good of using one. Especially this project is carried on in educational environment that is even more limited in budget, resources and know-how, compared to the business and industrial counterparts. Here a novel ASIC design methodology that is tailored to first-time success MPSoC is presented

    Power constrained test scheduling in system-on-chip design

    Get PDF
    With the development of VLSI technologies, especially with the coming of deep sub-micron semiconductor process technologies, power dissipation becomes a critical factor that cannot be ignored either in normal operation or in test mode of digital systems. Test scheduling has to take into consideration of both test concurrency and power dissipation constraints. For satisfying high fault coverage goals with minimum test application time under certain power dissipation constraints, the testing of all components on the system should be performed in parallel as much as possible. The main objective of this thesis is to address the test-scheduling problem faced by SOC designers at system level. Through the analysis of several existing scheduling approaches, we enlarge the basis that current approaches based on to minimize test application time and propose an efficient and integrated technique for the test scheduling of SOCs under power-constraint. The proposed merging approach is based on a tree growing technique and can be used to overlay the block-test sessions in order to reduce further test application time. A number of experiments, based on academic benchmarks and industrial designs, have been carried out to demonstrate the usefulness and efficiency of the proposed approaches
    corecore