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Abstract 

The high-latitude Antarctic krill, Euphausia superba, is a key species in the Southern 

Ocean, a region with extreme seasonal and daily changes in photoperiod (day 

length), light intensity, sea-ice extent, and food availability. In particular, changes in 

environmental light regimes have been shown to strongly influence krill circadian 

clock mechanisms and, by extension, synchronized metabolic or physiological 

output functions. However, knowledge of clock gene functions and regulations in 

Antarctic krill is still limited, especially with regard to clock gene products, their 

distribution, and their impact on oscillatory rhythmicity and chronobiological 

functions. In particular, it is still unclear whether or not the circadian clock might be 

functioning in krill during summer and winter, when due to the high latitude krill are 

exposed to near constant light and near constant darkness respectively. This study 

aims to provide a first basic insight into clock gene expression in wild Antarctic krill 

during winter conditions. Besides, methodological optimization was attempted to 

identify putative tissue-specific rhythmic gene expression patterns in brain and 

eyestalks. In summary, significant 24 h and 16 h oscillatory rhythms could be 

identified in the relative gene expression of three important clock genes, Cyc, Sgg, 

and Tim, as well as in the metabolic gene Atpg in both krill brain and eyestalks. 

Additionally, nine of ten tested clock genes displayed a general tendency for 

upregulation in the early night in both tissues during low to even absent light regime. 

The results of the present study suggest that krill brain and eyestalks are equally 

important for clock gene expression due to similar detected amplitudes and 

therefore the analysis of whole krill heads is recommended for further studies. 

Furthermore, the results suggest that the circadian clock might be still active in wild 

krill during winter, despite the extremely low levels of day light to which the animals 

might be exposed. Future investigations concerning the regulation of endogenous 

timing systems and rhythmic functions in Antarctic krill might help to understand 

how circadian functions might be preserved during summer and winter at high 

latitudes and also how these might be affected by potential environmental 

alternations driven by climate change. 
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Zusammenfassung 

Der in hohen Breiten vorkommende Antarktische Krill, Euphausia superba, ist eine 

Schlüsselart im Südpolarmeer, einer Region mit extremen saisonalen und täglichen 

Veränderungen der Photoperiode (Tageslänge), Lichtintensität, Meereisausdehnung 

und Nahrungsverfügbarkeit. Es wurde gezeigt, dass Änderungen des 

Umgebungslichtregimes die zirkadianen Uhr-Mechanismen von Krill und damit auch 

die synchronisierten metabolischen oder physiologischen Ausgangsfunktionen stark 

beeinflussen. Jedoch ist das Wissen über die Funktion und Regulation von Uhr-

Genen im antarktischen Krill nach wie vor begrenzt, besonders in Bezug auf Uhr-

Genprodukte, deren Verteilung und deren Auswirkung auf die oszillatorische 

Rhythmik und die chronobiologischen Funktionen. Noch ist unklar, ob die zirkadiane 

Uhr im Sommer und Winter im Krill funktioniert, wenn Krill aufgrund des hohen 

Breitengrades nahezu konstantem Licht bzw. nahezu konstanter Dunkelheit 

ausgesetzt ist. Diese Studie soll einen ersten grundlegenden Einblick in die Uhr-

Genexpression in wildem antarktischem Krill unter winterlichen Bedingungen geben. 

Außerdem wurde eine methodische Optimierung getestet, um mutmaßliche 

gewebespezifische, rhythmische Genexpressionsmuster in Gehirn und Augen zu 

identifizieren. Zusammenfassend konnten signifikante 24-h- und 16-h-

Oszillationsrhythmen in der relativen Genexpression von drei wichtigen Uhr-Genen 

Cyc, Sgg und Tim, sowie im metabolischen Gen Atpg im Gehirn und in Augenstielen 

des Krills identifiziert werden. Zusätzlich zeigten neun von zehn getesteten Uhr-

Genen eine allgemeine Tendenz zur Hochregulation in der frühen Nacht in beiden 

Geweben, bei schwachem bis sogar fehlendem Lichtregime. Die Ergebnisse der 

vorliegenden Studie legen nahe, dass das Gehirn und die Augenstiele von Krill 

aufgrund ähnlicher detektierter Amplituden für die Genexpression von Uhr-Genen 

gleichermaßen wichtig sind, weshalb die Analyse ganzer Krillköpfe für zukünftige 

Studien empfohlen wird. Weiterhin deuten die Ergebnisse darauf hin, dass die 

zirkadiane Uhr im Winter in wildem Krill möglicherweise noch aktiv ist, obwohl das 

Tageslicht, dem die Tiere ausgesetzt sein könnten, extrem niedrig ist. Zukünftige 

Untersuchungen zur Regulation endogener Zeitsteuerungssysteme und 

rhythmischer Funktionen im antarktischen Krill könnten Aufschluss darüber geben, 

wie zirkadiane Funktionen im Sommer und Winter in hohen Breiten erhalten bleiben 

und wie diese durch potentielle klimabedingte Umweltänderungen beeinflusst 

werden können. 

Schlüsselwörter: Antarktischer Krill Euphausia superba, innere Uhr, Uhr-Gene, 

Gehirn und Augenstiele, Feldproben, Bransfieldstraße, südlicher Winter,  relatives 

mRNA Level 
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in a light-dependent manner to reset the clock’s phase. CHRYPTOCHROME 

(CRY2) as an additional negative regulator is not present in Drosophila, but in 

other arthropods species including the monarch butterfly Danaus plexippus 

(Zhu et al., 2008; Merlin et al., 2009) and the Antarctic krill (Biscontin et al., 

2017). SHAGGY (SGG) and DOUBLETIME (DBT) regulate the timing of 

nuclear entry of TIM and PER by phosphorylating both proteins, respectively. In 

an additional loop, CLK is cyclically expressed by VRILLE (VRI) and PAR 

DOMAIN PROTEIN 1ɛ (PAR1ɛ), while expression of CYC is still unknown in 

Drosophila, but proposed to be expressed by HR3 and E75 in other insects. In 

a second additional loop, CLOCKWORK ORANGE (CWO) is rhythmically 

expressed. Solid lines indicate pathways known for Drosophila. Dashed lines 

and grayed out fields indicate hypothesized mechanism in other insects. 

[Adapted from Tomioka and Matsumoto, 2015 and Pitzschler, 2018. Modified.] 
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Figure 2: Schematic representation of the putative circadian clock in Antarctic krill – 
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Figure 3: Study area incl. stations where krill was sampled – A) Krill sampling 
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Peninsula. UTC-4 = Coordinated Universal Time minus 4 hours, indicates the 
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Figure 5: Schematic representation of circadian oscillators in crustacean head - 

Localization of the circadian oscillators in the head of a generic crustacean 

(modified after Strauss and Dircksen, 2010). Putative oscillators are indicated 
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microfluidic electrophoresis performed in the Agilent 2100 Bioanalyzer using the 
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smudgy peaks within the 200 to 1000 nt region usually do indicate degradation, 

while big bulked peaks within the 2000 to 4000 nt region do indicate genomic 

contamination. RNA degradation and genomic contamination were not obvious, 

neither in the electropherogram (A) nor in the progress of the gel (B). The 18S 

peak resulted from the presence of 18S rRNA which is a component of the 

small eukaryotic ribosomal subunit, while the 28S peak resulted from the 

presence of 28S rRNA which is the structural ribosomal RNA for the large 
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Figure 8: Electropherogram (A) and gel (B) of spike 1 (left panel) and 2 (right panel) 

for E. superba samples – Results of a microfluidic electrophoresis performed in 

the Agilent 2100 Bioanalyzer using the RNA 6000 Nano Kit System. Time of 

RNA peak appearance (size related; x-axis) is plotted against the fluorescence 

(concentration related; y-axis). The lower marker of the Kit System showed a 
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electropherograms revealed a similar peak pattern (750 nt, 1000 nt, 1800 nt). 

These peaks could be a result of non-completed DNA digestion, but they do not 

affect the analyses. For more accurate verification, sequencing would be 

required. .......................................................................................................... 22 

Figure 9: Amplification plots of the TaqManTM Real-Time PCR-Assay – A) 

Amplification plot of the spike controls 1 and 2 with different concentrations (5 

ng, 500 pg, 50 pg, 5 pg, 1.4 pg). B) Amplification plot of the genes 

Chryptochrome2 gene (Cry2) and Period (Per). Ct values of Cry2 reached the 

threshold baseline (0.1) after approx. 24 cycles, while Per Ct values reached 

the baseline after approx. 26 cycles. The spike concentration (A) which 

corresponded most likely to this was above 5 pg. For further analyses 7 pg of 

spike1 and 2 were used. ................................................................................. 23 

Figure 10: Custom TaqManTM Array Card format with 13 unique assays and 3 

custom controls used in this study – Instead of the mandatory control (CTL) slot  

3 custom controls (internal: Usp46 and external: spike 1 and 2) were loaded. 

The 8 unique samples were loaded using the ports on the right hand side. 

Modified. [Reference: https://assets.thermofisher.com/TFS-Assets/LSG/ 

Warranties/cms_040127.pdf]. .......................................................................... 25 

Figure 11: Primer efficiency using clock gene specific primer sets – Mean Ct-values 

of Clk and Tim primer sets were plotted against the logarithm of cDNA 

concentration used in a dilution series (100 ng, 200 ng, 400 ng, and 800 ng) in 

brain and eyestalks tissue, respectively. Primer efficiencies were calculated 

using the formula E= (10(-1/slope) -1) x 100. Efficiencies [%] for each primer pair 

within the respective tissues are indicated in bold. .......................................... 28 

Figure 12: Geometric mean of raw Ct-values of internal and external control - UTC-

4 = Coordinated Universal Time minus 4 hours, indicates the local time in 

Bransfield Strait, Antarctica at time of sampling. Raw mean Ct-values (y-axis) 

were plotted against the UTC-4 (x-axis). Left panel: Combination of Spike 1 + 

Usp46, respectively in brain. Right panel: Combination of Spike 1 + Usp46, 

respectively in eyestalks. Data are expressed as geometric mean ± SEM (brain: 

n= 10, 9, 10, 10, 10, 7; eyestalks: n= 10, 10, 10, 10, 10, 7). ............................ 30 

Figure 13: Heat maps of daily clock gene expression patterns in different tissues – 

A) Gene expression over time (24 h) in brain. B) Gene expression in eyestalks 

over time (24 h) (for more details concerning clock gene regulatory network see 

Figure 1). Heat maps and dendrograms show the expression levels of clock 

genes during the 24 h cycle and are represented with a color-coded scale; 

yellow and blue represent high and low expression levels, respectively. TP= 
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putative rhythmicity within a range of periods included between 12 h and 24 h in 

daily patterns of gene expression. We tested for this range of periods to ensure 

a detection of all rhythmic circadian behavior, including potential bimodal 

patterns with 12 h. ‘Hours’ indicates the distance towards the next repetition in 

hours (potential rhythmicity). TP = time point, displays the time point of 

sampling every 3.5 h in a time period of 24 h, except for TP06 (it was 53.5 h). 

Distances between TPs were idealized to 4 hours due to clarity. Blue squares 

with white ‘B’ illustrate highest NRQ levels in brain, red half round squares with 

white ‘ES’ illustrate maximum mean expression levels in eyestalks. Half 

blue/half red squares illustrate maximum expression levels for both tissues at 

the same time point. Values on y-axis cannot be equated with relative mRNA 

levels. Genes are grouped in core clock genes (green), associated clock genes 

(yellow), kinases (purple) and metabolic genes (black). Grey bar indicates dark 

phase at the sea surface, while yellow field indicates light phase at the sea 

surface. ........................................................................................................... 46 
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1 Introduction 

1.1 The Antarctic krill Euphausia superba 

The Antarctic krill, Euphausia superba (Dana, 1850), is an important marine key 

species of the high-latitudes and belongs to the order Euphausiacea, superorder 

Eucarida. The term ‘krill’ originates from the Norwegian word kril, describing the 

small crustaceans North Atlantic whalers found in baleen whales stomachs 

(Mauchline and Fisher, 1969; Nicol, 1994). Nowadays, the term krill encompasses 

approx. 85 pelagic shrimp-like crustacean species, also known as Euphausiids, 

which are widespread in all world oceans (Siegel, 2000). Within the Euphausiids, 

Euphausia superba, our species of interest, dominates the zooplankton communities 

in the Southern Ocean as an endemic species and is therefore of great importance 

in the Antarctic marine ecosystem.  

E. superba (hereafter krill) is circumpolar distributed in the Southern Ocean 

between latitudes of approx. 50°S to 70°S (Hill et al., 2013). However, over 70 % of 

its total population is located in the productive southwest Atlantic sector (Drake 

Passage) and in the region of the West Antarctic Peninsula, where they inhabit  

continental shelf areas and slopes as well as deep-ocean basin regions (Siegel, 

2000; Atkinson et al., 2004; Siegel, 2016). In the Antarctic food web, krill dominates 

the herbivorous zooplankton community due to their circumpolar distribution, high 

abundance, and high biomass (Knox, 1984). This species is of enormous ecological 

importance since it plays a key role in energy transfer from primary producers 

(phytoplankton) to higher trophic levels, including fish, squids and top predators 

such as birds (e.g. penguins, albatrosses, and petrels) and marine mammals (e.g. 

seals and whales), (Clarke and Harris, 2003).  

However, krill’s central position in the Antarctic food web might be 

endangered, to which man contributes directly and indirectly. In course of the 

anthropogenic climate change, the main feeding grounds of krill in the Southern 

Ocean, the southwest Atlantic sector and the region of the West Antarctic Peninsula, 

experienced a surface summer temperature increase of 1°C since the 1950s 

(Meredith and King, 2005). It is assumed that the decline in sea-ice extent due to 

warming has led to a change in primary productivity, phytoplankton composition, 

and sea-ice dynamics (Curran et al., 2003; Clarke and Harris, 2003), and that these 

changes have already significantly affected the distribution and abundance of 

Antarctic krill (Atkinson et al., 2004; Reiss et al., 2008; Hill et al., 2013). Besides, 

ocean acidification is also associated with changes in krill population density and 
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recruitment (Kawaguchi et al., 2013). Furthermore, Atkinson et al. (2004) found 

indications for a decline in krill stocks (~ 70%) over the past 30 years in association 

with a southward shift of the remaining stocks and an increase in salp densities in 

the affected regions of the Southern Ocean (Atkinson et al., 2008). Besides the 

changes in sea-ice extent, the southward shift has also been explained with 

changes in the anomalies of the Southern Annular Mode (Atkinson et al., 2019).  

In addition to the indirect threats of climate change, there is also a direct 

threat to Antarctic krill stocks in the form of a growing fishing industry (Nicol et al., 

2012; Reiss et al., 2017). The pressure on the species is increased by improved 

harvesting techniques and a growing interest in newly developed krill products in the 

aquaculture, pharmaceutical, or dietary supplements sectors due to its high 

nutritional value (Yoshitomi et al., 2007; Tou et al., 2007; Schiermeier, 2010). In 

view of the changing environmental conditions within its habitat and increasing 

commercial interests, a holistic and detailed understanding of Antarctic krill, its 

adaptability, and its (future) role in the southern polar ecosystem is of great 

importance.  

1.2 Rhythmic functions in the Antarctic krill, Euphausia superba 

The Southern Ocean is characterized by a wide range of strong seasonal and daily 

fluctuations, occurring in day length, food supply, and sea-ice extent (Quetin and 

Ross, 1991; Clarke and Harris, 2003). Antarctic krill show remarkable adaptions to 

its high-latitude habitat and have evolved rhythmic functions in behavior, 

metabolism, and transcription to cope with the extreme variations in their 

environment (Hays, 2003; Murphy et al., 2006; Meyer et al., 2010; Teschke et al., 

2011; Piccolin et al., 2018a).  

1.2.1 Daily rhythms in krill: diel vertical migration (DVM) 

In the water column, adult Antarctic krill usually occur within the upper 200 m in 

large assemblages or schools with average lengths of hundreds of meters to avoid 

predation by swarming (Siegel, 2016). A daily rhythm that appears in krill swarms is 

the diel vertical migration (DVM), (Cisewski et al., 2010; Siegel, 2005). The most 

common DVM pattern, called ‘nocturnal’, describes the zooplankton behavior of 

swimming upwards towards the surface layers (photic zone) around sunset feeding 

on phytoplankton, and migrating back downwards towards deeper layers around 

sunrise (Quetin and Ross, 1991; Hays, 2003). It is generally believed that this 

strategy has evolved to avoid predator pressure occurring in the light and thus 
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minimize predator risk (Brierley, 2014). The ‘twilight’ DVM pattern displays another 

behavior in zooplankton, where two following migrations are performed over a 24 h 

cycle, one around sunset and another around sunrise (Cohen and Forward, 2005). 

In an ongoing discussion, light cues are still considered as the main driver of DVM, 

especially due to the often observed close association between DVM 

ascent/descent and sunset/sunrise (Cohen and Forward, 2009). Nevertheless, other 

parameters such as food availability, predator presence/absence (Gliwicz, 1986; 

Bollens and Frost, 1991; Hays, 2003; Sourisseau et al., 2008) or social interactions 

(swarming behavior) (Gaten et al., 2008; Kawaguchi et al., 2010) are also taken into 

account as influencing factors in DVM. Besides, investigations in Arctic zooplankton 

species showed that DVM patterns correspond with rhythms in metabolic activity 

and clock gene expression (Häfke et al., 2017) and that DVM persists even during 

winter which suggests the evolvement of an endogenous circadian clock mechanism 

(Last et al., 2016).  

It has been suggested that Antarctic krill can flexibly adapt their DVM pattern 

to environmental factors such as predator or food conditions (Zhou and Dorland, 

2004; Cisewski et al., 2010). Moreover, as a high latitude species, it might be 

possible that krill DVM patterns vary between seasons (Piccolin et al., in prep). In 

spring and autumn the ‘nocturnal’ DVM in krill is more pronounced due to a clear 

day/night cycle and ranges between 50 and 150 m depth, compared to summer 

where krill DVM is restricted within surface layers possibly due to high food 

availability and weaker photoperiodic cues (Siegel, 2005; Quetin and Ross, 1991). 

In winter, krill may become more benthopelagic living in deeper layers around 350 to 

600 m and might perform extensive DVM, remaining below 100 m during the night, 

and sinking down to around 300 m during daytime (Siegel, 2005). The influence of 

photoperiodic cues and endogenous rhythms on krill DVM was investigated by 

Gaten et al. (2008), where different rates of activity were detected under constant 

light/dark conditions. Therefore, they assumed that the photoperiod might not be the 

major factor in regulating krill DVM, but rather that an endogenous timing system 

which is instead influenced by an interplay of local food conditions, social 

interactions, and the light-dark cycle might be involved. Daily rhythms in krill oxygen 

consumption and energy metabolism which were higher in the laboratory during the 

dark phase might represent a connection between nocturnal krill DVM patterns and 

daily rhythms of metabolic regulation (Teschke et al., 2011).  
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1.2.2 Seasonal cycles in krill 

The high-latitude habitat of krill in the Southern Ocean displays strong seasonal 

variabilities affecting the dynamics of abiotic and biotic factors over the year. In 

summer, the environment displays day length of up to 24 h combined with a lack of 

sea-ice cover, leading to high levels of irradiance at sea surface and increasing 

primary production. In winter, the situation differs, showing shortened day length (3-

4 h light) and extreme sea-ice extent which leads to a significantly reduced 

irradiance at sea surface and to the absence of primary production.  

To cope with these extreme high-latitude challenges, krill display seasonal 

cycles of metabolic activity, sexual maturity, and lipid utilization. Adjustments such 

as low metabolic rates (Teschke et al., 2011; Meyer, 2012; Piccolin et al., 2018b) 

sexual regression (Kawaguchi et al., 2007) and high lipid utilization (Meyer et al., 

2010) are observed in winter, whereas high metabolic rates (Teschke et al., 2007), 

sexual maturity (Kawaguchi et al., 2006), and low lipid utilization (Teschke et al., 

2008) are common during summer. These sequences of seasonal cycles of energy 

utilization and energy storage should benefit krill during low-food seasons and 

contribute to an over-wintering strategy (Meyer, 2012). Food availability is generally 

supposed to be a major driving force behind krill maturity and metabolism as they 

often correlate in the field, but it is also suggested that metabolic activities might be 

driven by another different regulatory mechanism (Torres et al., 1994).  

On the basis of several laboratory studies, it was concluded that the actual 

driving mechanism could be the prevailing photoperiod. Indeed, the reaction of krill 

to high food supply during artificial winter light conditions depended on the prevailing 

light regime and feeding activity increased with prolonged light period (Atkinson et 

al, 2002; Teschke et al., 2007; Meyer et al., 2010). In different studies, both sexual 

maturity and sexual regression in krill were also influenced by changes in artificial 

seasonal light periods (Teschke et al., 2008; Brown et al., 2010). In fact, under 

constant dark conditions in the laboratory over months or even years, seasonal 

changes in krill sexual maturity and metabolic activity were observed (Brown et al., 

2013, Kawaguchi et al., 2007, Piccolin et al., 2018b). In one of the latest studies, 

Piccolin et al. (2018b) ascertained that the annual light regime could possibly trigger 

the seasonal cycle of metabolic activity in Antarctic krill. In long-term laboratory 

experiments they simulated seasonal light regimes and detected photoperiodic 

effects on krill’s metabolic cycle which were also found on gene expression levels 

(Seear et al., 2009). Ultimately, this leads to the assumption that the seasonal 
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cycles in krill are regulated by an endogenous timing system synchronized to the 

seasonal light conditions in the Antarctic.  

1.3 Daily biological processes in organisms are regulated by endogenous 

clocks  

Life on land and in the oceans is determined by multiple rhythmic events, the best 

known being probably the day/night cycle, the tides, and the annual change of 

seasons. Because of these rhythmic changes, most organisms have synchronized 

their physiology and behavior to their environment and therefore evolved an 

endogenous timing system often referred to as endogenous biological clock 

(Dunlap, 1999; Strauss and Dircksen, 2010). An endogenous clock system 

represents a molecular oscillator that is synchronized by rhythmic environmental 

cues (Zeitgeber, German = time giver) and can respond to them through rhythmic 

output functions at the metabolic, physiological, or behavioral level. Ultimately, the 

three classic features of a biological clock are an entrainment to relevant 

environmental cues, a free-running period, and temperature compensation 

(Kuhlman et al., 2007; Zhang et al., 2013). Hence, biological clocks have the ability 

to maintain constant endogenous rhythmicity over a wide temperature range and in 

the absence of environmental time cues. 

1.3.1 The circadian clock regulating biological processes  

The circadian clock (from the Latin ‘circa dies’ = ‘about a day’) is the most studied 

endogenous timing system in all groups of organisms, including plants, animals, 

fungi, or photosynthesizing cyanobacteria. It is basically a series of circadian or 

endogenous rhythms that oscillate under constant conditions within 24 h and persist 

even in the absence of entraining environmental cues (Bell-Pedersen et al., 2005; 

Kuhlman et al., 2007). In this case, an internal pacemaker, or clock, controls the 

endogenous rhythmicity and provides autonomous control of cellular activity levels, 

thus regulating physiology, metabolism, and behavior in an oscillatory pattern 

(Strauss and Dircksen, 2010). The most reliable cue affecting the synchronization of 

the clock and therefore regulating daily rhythms is represented by the day/night 

cycle, thus light can be considered as the main ‘Zeitgeber’ for the circadian clock. 

Other kind of cues including food availability, temperature, and social behavior are 

also considered as additional Zeitgebers (Gaten et al., 2008; Bell-Pedersen et al., 

2005; Kronfeld-Schor et al., 2017).  



 
1 Introduction 

 

6 

1.3.2 The circadian clock on a molecular level using the example of Drosophila 

At the molecular level, the circadian clock is based on rhythmically expressed so 

called ‘clock genes’, which are so diverse and interact in such different ways that an 

independent evolution of the circadian clock in all organisms can be assumed 

(Dunlap, 1999). The best-studied model organism in terms of eukaryotic circadian 

clock systems is the fruit fly Drosophila melanogaster and is therefore used as an 

example in the following.  

Central to the circadian clock of Drosophila are negative and positive 

transcriptional and translational feedback loops controlled by a set of clock genes 

(Dunlap, 1999). Transcriptional feedback loops consist of sequence-specific DNA 

binding proteins which stimulate the transcription of their own repressors, thus 

causing a negative feedback loop (Hardin, 2009). At the beginning, the core clock 

genes Clock (Clk) and Cycle (Cyc) interact by forming the CLK/CYC heterodimer, 

and activating respective gene expression by binding to E-box sequences in target 

promoters (Fig. 1) (Tomioka and Matsumoto, 2015). Within the first feedback loop, 

the heterodimer CLK/CYC activates the transcription of the core clock genes Period 

(Per) and Timeless (Tim) around sunset. In a self-sustained negative feedback loop, 

the transcribed proteins PER and TIM accumulate in the cytoplasm forming the 

heterodimer PER/TIM at midnight, and translocate into the nucleus to suppress their 

own transcription by inhibiting the DNA-binding ability of CLK/CYC. The timing of the 

nuclear entry is regulated through phosphorylation of PER and TIM by the protein 

kinases SHAGGY (SGG) and DOUBLETIME (DBT). Following this, mRNA levels of 

Per and Tim decrease to a minimum around dawn and a new cycle of transcriptional 

activation is then started during the early day.  

Furthermore, two additional feedback loops with the associated clock genes 

Vrille (Vri) and Clockwork orange (Cwo) were identified in Drosophila involving the 

CLK/CYC heterodimer. Hence, CLK/CYC activates the transcription of the repressor 

Vri and Par domain protein 1ɛ (Pdp1ɛ), whereby VRI proteins accumulate 

suppressing the transcription of Clk through a V/P box in the Clk regulatory region. 

As PDP1ɛ is accumulating later than VRI, there is a period of time for Clk 

transcription and accumulation of CLK during the day. The mechanism underlying 

cyclic expression of Cyc gene remains to be understood. In other insects, this 

regulatory function is assumed to be fulfilled by nuclear hormone receptor 3 (HR3) 

and ecdysone induced protein 75 (E75) that are also involved in regulation of 

molting (Tomioka and Matsumoto, 2015). The general function of this process is still 

not clear. In the second additional feedback loop, CLK/CYC activates the 
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transcription of the repressor Cwo suppressing CLK/CYC-mediated transcription 

and thus regulates the amplitude of Per and Tim mRNA oscillation. A loss of Cwo 

results in altered molecular and behavioral rhythms, suggesting this feedback loop 

might promote robust rhythmicity.  

 

Most circadian clock processes on a molecular level happen in a similar way also in 

organisms such as mammals or other insects. However, the circadian clock of 

Drosophila differs by the presence of the clock gene Cryptochrome (d-Cry or Cry1), 

a blue light photoreceptor, which promotes the light-dependent degradation of TIM, 

hence entraining the endogenous clock system (Tomioka and Matsumoto, 2015). In 

addition to Cry1, the clock gene cryptochrome2 (m-Cry or Cry2) is present in 

Figure 1: Hypothetical molecular mechnisms of the insect circadian clock in the model organism 

Drosophila melanogaster – The principal auto regulative feedback loop consists of the transcription 

factors CLOCK (CLK) and CYCLE (CYC), and the regulators PERIOD (PER) and TIMELESS (TIM). In 

Drosophila, CHRYPTOCHROME (CRY1) displays a negative regulator and degrades TIM in a light-

dependent manner to reset the clock’s phase. CHRYPTOCHROME (CRY2) as an additional negative 

regulator is not present in Drosophila, but in other arthropods species including the monarch butterfly 

Danaus plexippus (Zhu et al., 2008; Merlin et al., 2009) and the Antarctic krill (Biscontin et al., 2017). 

SHAGGY (SGG) and DOUBLETIME (DBT) regulate the timing of nuclear entry of TIM and PER by 

phosphorylating both proteins, respectively. In an additional loop, CLK is cyclically expressed by VRILLE 

(VRI) and PAR DOMAIN PROTEIN 1ɛ (PAR1ɛ), while expression of CYC is still unknown in Drosophila, 

but proposed to be expressed by HR3 and E75 in other insects. In a second additional loop, 

CLOCKWORK ORANGE (CWO) is rhythmically expressed. Solid lines indicate pathways known for 

Drosophila. Dashed lines and grayed out fields indicate hypothesized mechanism in other insects. 

[Adapted from Tomioka and Matsumoto, 2015 and Pitzschler, 2018. Modified.] 



 
1 Introduction 

 

8 

mammals and other arthropods (Rubin et al., 2006; Merlin et al., 2009), where the 

mRNA expression level peaks at sunset (as levels of Tim and Per) and the 

transcribed protein CRY2 forms a complex with PER/TIM to inhibit CLK/CYC. In 

contrast to CRY1, CRY2 has lost the ability of photoreception (Tomioka and 

Matsumoto, 2015).  

1.3.3 The circadian clock in marine organisms 

In terrestrial animals, circadian clocks are well-studied using model organisms in 

arthropods or mammals (such as Drosophila and mouse). Far fewer studies have 

investigated the principles of the circadian clock in marine organisms. Terrestrial 

and marine organisms are exposed to different rhythmic environmental cues (e.g. 

tidal rhythm) due to their physical habitat, which may lead to different timekeeping 

functions (Tessmar-Raible et al., 2011). In the marine environment, some studies 

revealed an effect of temperature (Lahiri  et al., 2005) and food availability (Cavallari 

et al., 2011; Aguzzi et al., 2011) on circadian clocks and furthermore assume an 

influence on circadian clock functions by endogenous noncircadian clocks (Zantke 

et al., 2013). Rhythmic circadian behaviors can include rhythms of feeding/fasting, 

rhythms of sleep/wake or rhythms related to reproduction (e.g. mating and 

spawning) and are not restricted to periods of 24 h including also bimodal patterns 

with 12 h periods (e.g. to cope with tidal cycles) (Tessmar-Raible et al., 2011; Gaten 

et al., 2008). 

Among others, circadian rhythmicity activities incl. clock functions have also 

been investigated in crustaceans, for example in relation to locomotion, 

reproduction, metabolism, and developmental processes (Strauss and Dircksen 

2010). The pacemaker of circadian clocks in crustacea, as in many other animals, is 

located in the nervous system. For the intertidal isopod Eurydice pulchra tidal cycles 

of swimming in parallel to circadian 24 h rhythms in behavioral, physiological, and 

molecular phenotypes were demonstrated by Zhang et al. (2013), with the 

assumption that the circadian pacemakers are located in the brain. In the Norwegian 

lobster Nephrops norvegicus, candidate clock genes including a vertebrate-like Cry2 

were identified within the eyestalk tissues of the species (Sbragaglia et al., 2015). 

So far, no crustacean single central brain oscillator or master has been identified 

(Strauss and Dircksen 2010). Therefore, Strauss and Dircksen (2010) assumed that 

several neuronal tissues might act together in a complex system, which contains 

distinct oscillators located in the brain (supraoesophageal ganglion), the retina of the 

eye, the eyestalks, and the caudal photoreceptors.  
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1.4 The circadian clock in Euphausia superba, and mechanisms of regulation 

The level of knowledge of circadian regulation in non-model marine organisms is 

low, and even less is known about those regulations in high-latitude pelagic 

zooplankton species like the Antarctic krill. As a pelagic species, krill might not be 

affected by tidal rhythms but they still perform DVM and are therefore subjected to 

daily changes in light spectral composition and light intensity.  

As one of the first, Mazzotta et al. (2010) recorded circadian clock gene 

activity over 24 h in wild krill during Antarctic summer and identified the presence of 

Cryptochrome2 (EsCry2), a krill orthologue of the mammalian-like Cry2 (m-Cry2) 

gene. Although an ancestral form of circadian feedback loop was assumed in krill 

because of the presence of EsCry2, daily expression levels did not coincide with 

previous findings in the honeybee, Apis mellifera, and in the monarch butterfly, Dana 

plexippus (Rubin et al., 2006; Zhu et al., 2008). However, entrainment of clock 

functions may follow the rhythms of alternative Zeitgebers, since even in the 

absence of clear light/dark cues daily Cry2 expression levels showed daily 

oscillation. Mazzotta et al. (2010) supposed light spectral composition to be the 

major influence, since EsCry2 oscillation did not show any apparent link with the 

daily cycle of light intensity. Based on these field findings, Teschke et al. (2011) 

conducted laboratory analyses to determine if an endogenous rhythm could be 

detected in krill clock gene activity at the molecular level and whether the regulation 

of rhythmic output functions in physiology was influenced. During the experiments, 

daily gene expression of EsCry2 were determined under simulated long-day 

conditions (16 h light: 8 h darkness, LD 16:8) and constant darkness (DD). Under 

both conditions Cry2 displayed daily oscillation in mRNA levels, which also 

correlated with metabolic-related enzyme activity profiles underlying the 

endogenous nature of the circadian timing system in krill with a putative link to 

metabolic key processes (Teschke et al., 2011). Summer field samples of Mazzotta 

et al. (2010) were used in the laboratory analysis of De Pittà et al. (2013) 

investigating the krill transcriptome over daily cycles. Daily oscillations with periods 

of either 24 h or 12 h were detected for 8 % of the transcriptome reflecting a 

chronological progression of biochemical and physiological events throughout the 24 

h cycle. Thus an endogenous circadian clock seems to control the krill metabolism 

in the high-latitude environment during summer.  

The most important findings for the functional characterization of the 

circadian clock in krill came from Biscontin et al. (2017) and Hunt et al. (2017), who 

identified putative krill orthologues of the core clock components by screening online 
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databases containing the krill transcriptome (Hunt et al., 2017; Sales et al., 2017). 

Beyond that, Biscontin et al. (2017) proposed a circadian clock model for the 

Antarctic krill and defined the role of core clock components within the circadian 

feedback loop (Fig. 2). Within the core feedback loop, the krill clock proteins CLK 

(EsCLK) and CYC (EsCYC) displayed the positive regulators, like in Drosophila, 

whereas PER (EsPER), TIM (EsTIM), and CRY2 (EsCRY2) displayed putative 

negative regulators, like in the monarch butterfly, D. plexippus. In krill, EsPER and 

EsTIM interacted with various kinases among others EsSGG, EsDBT, or EsVRI. 

Significant daily rhythmic expression patterns in krill were observed for the core 

clock genes EsClock, EsCycle, EsPeriod, EsTimeless, and EsCryptochrome2 

(Biscontin et al., 2017). Despite the strong annual variability at high-latitude regions, 

light is still suggested as main Zeitgeber in krill with a light-entrainment occurring 

among others through the blue-light photoreceptor CRY1 (EsCRY) and krill opsins 

(Biscontin et al., 2016; Biscontin et al., 2017; Piccolin et al., 2018b).  

 

 

Figure 2: Schematic representation of the putative circadian clock in Antarctic krill – The two 

main feedback loops are indicated, containing CLK, CYC as positive elements and PER, TIM, and 

CRY2 as negative elements, whereas negative elemetns interact to suppress the activation of the 

positive elements. The blue-light photoreceptor CRY1, is activated by light and causes degradation of 

TIM, releasing PER/TIM suppression from CLK/CYC. Identified clock components in Antarctic krill are 

colored, while components with no functional characterization are greyed. Modified after Biscontin et 

al., 2017. 
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1.5 Challenges to circadian regulation in high-latitude species  

The control of biochemical and physiological processes by an endogenous circadian 

clock plays a central role in the adaptive success of the high-latitude key species 

Antarctic krill, especially in the regulation of DVM and the seasonal life cycles. One 

persisting question is if the circadian regulation incl. clock functions remains 

active during summer and winter due to the extreme kight conditions at those 

times of the year. Circadian timing mechanisms and potential regulation were 

studied both in wild krill during summer conditions (Mazzotta et al., 2010; de Pittà 

et al., 2013) and in the laboratory under different artificial seasonal light regimes 

(Piccolin et al., 2018; Teschke et al., 2011; Biscontin et al., 2017), but still 

information on clock gene activity and rhythmic activities promoted by alternative 

light cues is scarce. In addition, according to our knowledge, field studies 

concerning the circadian clock functions in krill during winter conditions are still 

missing. Moreover, the current increasing anthropogenic-driven warming 

accelerates changes in the Southern Ocean environment, which might affect the 

synchronization between endogenous and external factors, creating a ‘match-

mismatch’ scenario in circadian rhythmicity with potential negative effects for the 

occurring krill population. Hence, it is essential to investigate the capability of krill 

to regulate their endogenous circadian timing system under natural extreme 

environmental changes during seasons. 
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1.6 Aim of study 

The present study investigated clock gene expression in wild Antarctic krill during 

winter conditions to give a first basic impression about what happens in clock 

functions, since so far only field studies in summer have been conducted. Within this 

thesis, wild krill from the Bransfield Strait, Southern Ocean, were sampled every 3.5 

h over a 24 h cycle during a winter cruise in order to examine:  

i) putative rhythmic gene expression patterns of clock genes (Clock, Cycle, 

Period, Timeless, Cryptochrome2, Doubletime, Shaggy, Clockwork orange, Vrille, 

E75) and the metabolic gene Atpg.  

Additionally, previous findings regarding clock gene expression in krill under 

laboratory and field conditions often showed high variance among biological 

replicates together with low amplitude of different gene expression, leading to poor 

statistical power to detect significant rhythmicity. In order to optimize these sources 

of interference, a tissue-specific examination was tested in the present work with the 

following sub-targets:  

ii) tissue-specificity of clock gene expression in different tissues (brain and 

eyestalks) to identify potential interactions or co-regulations between clock genes 

and specific tissues 

iii) efficiency of different clock gene primer sets (Clock and Timeless) to draw 

conclusions on the accuracy of clock gene expression quantification in different 

tissues of krill 

bmeyer
Hervorheben
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2 Material & Methods 

2.1. Time-series sampling of E. superba in the field 

Field samples of E. superba from a 24 h time series were collected in austral winter 

in the Atlantic sector of the Southern Ocean. The RNA of brain and eyestalks 

tissues was extracted and converted to cDNA. Via TaqManTM qPCR and a modified 

2-ΔΔCt normalization method, daily gene expression profiles of clock genes were 

generated and tested for rhythmicity (between 12h and 24 h) or significant 

differences among tissues.  

Samples of E. superba were collected in West Antarctica in the Bransfield 

Strait (62°-64°S, 56°-62°W), between the South Shetland Islands and the Antarctic 

Peninsula. Different stations were sampled between 4th and 31st August 2016 in the 

framework of the Antarctic Marine Living Resources (AMLR) program, during the 

voyage NBP1606 with the research icebreaker RVIB Nathaniel B. Palmer from the 

National Oceanic and Atmospheric Administration (NOAA). Krill were caught using a 

1.8 m (2.54 m² mouth area) Isaacs-Kidd midwater trawl (IKMT) equipped with a 505 

µm mesh net. The volume of sea water filtered during trawlings, was quantified 

using a General Oceanic flow meter (model 2930R) attached on the depressor 

frame in front of the net. All tows were double-oblique to 170 meters (m) depth of the 

water column. Real-time tow depths were deduced from a pressure sensor mounted 

on the trawl bridle. Tow speeds were ~2 knots, with volumes filtered averaging 

~3621 m³. Krill abundance was standardized to no. m-2 based on volume of water 

filtered at each time point multiplied by the depth of the tow. To get a time series 

covering one entire 24 h cycle, E. superba was caught with a regular time interval of 

3.5 hours within Bransfield Strait starting on 22:00 on August 10th until 12:00 on 

August 11th for a total of 5 time points (TP). The last time point (TP06) of the time 

series was collected at 17:30 on 13th August (Fig. 3, Tab. 1). The longer interval of 

time occurring between TP05 and TP06 was due to unfavorable weather conditions 

together with operational issues regarding the sampling grid schedule of the AMLR 

expedition. The biomass of adult E. superba between time points and stations were 

highly variable, ranging from 0.57 no. m-2 on August 10th (22:00 UTC-4) over 651 no. 

m-2 (01:30 UTC-4), 13 no. m-2 (08:30 UTC-4), and 1064 no. m-2 (12:00 UTC-4) on 

August 11th to 21.4 no. m-2 on August 13th (Tab. 1).  
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2.2 Average integrated chlorophyll a determination and water temperatures  

Chlorophyll a (chl a) concentration is used as a proxy for the available food in the 

water column for Antarctic krill. At each station, conductivity, temperature, and depth 

(CTD) were measured with a SBE9/11 (SBE Inc.), equipped with 10 l bottles for 

water sampling. These bottles were closed during the upcast at 750, 200, 100, 75, 

50, 40, 30, 20, 15, and 5 m respectively. Chlorophyll a concentrations were detected 

fluorometrically following Holm-Hansen et al. (1965) and for each station the 

average integrated chl a (to 100 m depth; mg chl a m-2) was calculated (Reiss et al., 

2009). The average chl a concentration was generally higher during daytime with 

values of 6.38 and 7.28 mg chl a m-2 (August 11th, 12:00 and August 13th, 17:30) 

compared to nighttime where measured chl a concentrations varied between ~ 3.5 

Figure 3: Study area incl. stations where krill was sampled – A) Krill sampling stations during AMLR 

2016 NBP 1606 cruise. B) Stations W011 to W1513 were sampled every 3.5 hours for a time period of 

24 h, except for TP06. E. superba was caught between 56°- 62°W latitude and 62°- 64°S longitude in 

the Bransfield Strait between the South Shetlands Islands and the Antarctic Peninsula. UTC-4 = 

Coordinated Universal Time minus 4 hours, indicates the local time in Bransfield Strait, Antarctica at 

time of sampling. [Reference: Map Data © 2019 Google. Modified.] 

A 
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to 5.0 (August 11th 01:30 to 08:30) (Tab. 1). There are no chl a and temperatures 

data for August 10th. The water temperatures remained constant between -1.80°C 

during the day and -1.30°C during the night (Tab. 1). 

2.3 Irradiance at fishing depth and sea-ice concentration data 

Surface irradiance was measured with the Biospherical Instruments’ Quantum 

Scalar Reference Sensor (QSR-240) on mast the research vessel. The QSR-240 is 

a surface (non-submersible) instrument for monitoring total incident 

photosynthetically active radiation from the sun and sky. Photosynthetically available 

radiation (PAR) denotes the spectral range of solar radiation from 400 to 700 

nanometers utilized by photosynthetic organism to perform photosynthesis. 

Measured PAR at surface in the Bransfield Strait was indicated in units of 

µEinstein/m²/s² and was converted to W/m² to determine irradiance at sampling 

depth (1 W/m² ≈ 4.6 µEinstein/m²/s²). The actual solar irradiance at 170 m depth 

was calculated according to Mazzotta et al., (2010) using the following formula: 

𝐼𝑍 =  𝐼0𝑒− (𝐾𝑑𝑍) 

For all time points, the calculated irradiance at fishing depth was very low (Tab. 1). 

At the surface, we found a light/dark cycle with sunrise approx. at 08:00, sunset 

approx. at 16:00 and dusk at approx. 17:00 UTC-4 and irradiance at the sea surface 

of 2 to 8 W/m² during the day and of 34 W/m² at dusk. However, we must consider 

that: i) at fishing depth, the actual levels of irradiance might have been extremely 

low over the entire 24 h cycle (Tab. 1) and ii) due to DVM and/or twilight DVM before 

sampling, E. superba might have occurred at different depths with respect to the 

actual fishing depth. Therefore, it is impossible to predict the exact photoperiod to 

which krill was exposed, but we can assume that krill were exposed to a maximum 

of 8 daily hours of light (when occurring close to the surface at all times) and a 

minimum of almost zero daily hours of light (when occurring at fishing depth or 

deeper at all times).  

Sea-ice concentration data for August 10th, 11th and 13th, 2016 were 

extracted from the U.S. National Ice Center (https://www.natice.noaa.gov). The ice 

concentration is reported in tenths (0/10 to 10/10). For August 10th and 11th, the sea-

ice concentration showed consistent low values of 1-3 tenths with new and young 

ice, while on August 13th the ice concentration rose slightly to 4-6 tenths (Tab. 1). 
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2.4 Selecting and processing of E. superba 

Immediately after each IKMT trawl, all zooplankton were sorted and krill was 

separated first. Hence, a subsample of up to 100 adult krill was measured. Total 

body length (mm) was determined by measuring the distance from the tip of the 

rostrum (forward extension of the carapace) to the posterior tip of the uropods 

(appendages of the last body segment) (Standard 1 as described by Mauchline, 

1980). After measuring, krill was directly frozen in liquid nitrogen and stored at -80°C 

until further processing.  

From each subsample, we selected the experimental krill to use for 

molecular analysis based on the following parameters: (i) body lengths between 40 

and 50 mm to ensure same development stages and a sufficient amount of RNA; (ii) 

a balanced male/female ratio; (iii) damaged samples were neglected. Based on 

these parameters, it was possible to select 10 biological replicates per time point, 

with the exception of TP06 where only 7 samples were suitable for further 

chronobiologic analyses. In total, 57 frozen E. superba sampled during AMLR2016 

cruise were chosen for brain- and eyestalk-specific gene expression analysis. 

2.4.1 Tissue separation and processing 

In a first step, the head was separated from the rest of the body. Therefore each 

frozen krill sample was stored on dry ice and the head was cut off with a scalpel in a 

skewed angle directly behind the eyes without damaging the stomach (Fig. 4). 

Heads were stored in pre-chilled 1 ml RNAlaterTM-ICE Tissue Transition Solution 

Table 1: Environmental data from August 10
th

, 11
th

, and 13
th

, 2016 – Data were taken in West 

Antarctica in the Bransfield Strait stratum (62°-64°S, 56°-62°W), between the South Shetland Islands 

and the Antarctic Peninsula at different stations in August 2016. UTC-4 = Coordinated Universal Time 

minus 4 hours, indicates the local time in Bransfield Strait, Antarctica at time of sampling.   

*average chl a: in the upper 100 m 

*average temperature: in the upper mixed layer (200 to 300 m depth) 

*irradiance: calculated as in Mazzotta et al.,2010 
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(Thermo Fisher Scientific, InvitrogenTM Ambion Life technologies, USA) overnight (at 

least 16 h) at -20°C in 2 ml EppendorfTM Safe-Lock Tubes (Eppendorf AG, 

Germany) to allow thawing with minimized RNA degradation. After cleaning heads 

from antennae, endopods, and chitin the remaining brain-eyestalks-retinae 

complexes (Fig. 5a) were retransferred into the 1 ml RNAlaterTM-ICE solution and 

kept at -20°C for later dissections of tissues.   

 

2.4.2 Dissection of eyestalk and brain tissue 

Putative circadian oscillators are assumed to be found in the head of crustacean in 

particular within the retinae of the compound eye, the eyestalks, and the brain 

(Strauss and Dircksen 2010; Fig. 5). Based on this assumption, we decided to 

measure clock gene expression in the eyestalks and in the brain of E. superba. We 

excluded the retinae because clean RNA extraction was not possible due to 

contaminations by visual pigments.  

Figure 4: Separation of head from the rest of the body of E. superba – Head was cut off in a 

skewed angle behind the eyes without damaging the stomach. The dashed red line indicates the 

separation. Modified. [Reference: https://link.springer.com/chapter/10.5822/978-1-61091-854-1_1] 

Figure 5: Schematic representation of circadian oscillators in crustacean head - Localization 

of the circadian oscillators in the head of a generic crustacean (modified after Strauss and Dircksen, 

2010). Putative oscillators are indicated as small sinus waves within the retinae of the compound 

eye, the eyestalks, and the brain. 
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Dissection of eyestalk and brain tissues was performed under a binocular 

microscope (Leica MZ125) with cooling chambers for Petri dishes keeping the 

samples chilled (~2°C). The brain-eyestalks-retinae complexes (Fig. 6a,b) were 

dissected into brain (B), eyestalks (ES), and retinae (R) by using tweezers and fine 

scissors. First, the retinae were separated from the eyestalks. It was cut as close as 

possible to the transition zone between retinae and eyestalks (see rounded dashed 

line near retinae, Fig. 6a), avoiding contaminations of the eyestalks by visual 

pigments from the retinae. Any remnants of pigments on the eyestalks were 

carefully removed prior to RNA extraction to avoid possible interferences during 

RNA concentration measurements. Hereafter, eyestalks (ES) were severed near the 

brain (B) (Fig. 6b) and chitin leftovers as well as irrelevant tissues were removed 

from the brains (see straight dashed line Fig. 6a). The separated retinae of the krill 

samples were stored in 500 µl RNAlater™-ICE Tissue Transition Solution and were 

not further used for this study. Dissected brain and eyestalk tissues were stored 

individually in 300 μl RNAlater™-ICE solution at -20°C for later RNA extraction. 

 

2.5 RNA extraction  

RNA of eyestalks and brain tissues was extracted using the Direct-zolTM RNA 

MicroPrep kit (Zymo Research, USA). Before tissue homogenization, 300 µl chilled 

TRIzolTM Reagent (Thermo Fisher Scientific, USA) was pipetted into 0.5 ml 

PrecellysTM tubes (Bertin Technologies S.A.S, France) containing 1.4 mm ceramic 

Figure 6: Separation of E. superba head and dissection of tissues – a) Exemplary brain-eyestalks-

retinae complex. Dashed red lines indicate the cut surfaces used to separate retinae (R) from 

eyestalks without contamination and to remove the excess tissues at the base of the brain. b) 

Exemplary brain-eyestalks complex with dissected retinae. Dashed red lines indicate the cut surfaces 

used to cut off the eyestalks (ES) from the brain (B). Binocular microscope pictures with a dimensional 

scaling of 2 mm. 
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(zirconium oxide) beads. The tissues stored in RNAlaterTM-ICE were dried on 

KimWipesTM tissues (Kimberly-Clark ProfessionalTM Corporation, USA), weighed, 

and transferred into the prepared PrecellysTM tubes. The subsequent 

homogenization was performed by using the PrecellysTM 24 homogenizer (Bertin 

Technologies S.A.S, France) for 2x15 seconds (s) at 5000 rounds per minute (rpm) 

and 4°C. Homogenates were incubated at room temperature (RT, 20-25°C) for 5 

minutes (min). For phase separation, 60 µl chloroform (Sigma-Aldrich, USA) was 

added to the PrecellysTM tubes and tubes were thoroughly inverted and vortexed. 

After an incubation of 2-3 min at RT samples were centrifuged for 15 min at 12.000 

x g and 4°C (EppendorfTM Centrifuge 5804, Eppendorf, Germany). During phase 

separation, the mixture separated into a lower red phenol-chloroform phase, an 

interphase, and a colorless upper aqueous phase containing the RNA. Only the 

supernatant (colorless upper aqueous phase) was removed cautiously and 

transferred into a new 1.5 ml RNase-free EppendorfTM tube stored on ice. 50 µl 

nuclease-free water (Sigma-Aldrich, USA) was pipetted into the PrecellysTM tubes 

containing the remaining phases, carefully inverted and vortexed, and centrifuged 

for 15 min at 12.000 x g and 4°C. Again the aqueous phase was removed cautiously 

and added to the first part of the aqueous phase into the 1.5 ml RNase-free 

EppendorfTM tube. For precipitation, an equal volume of 100% molecular biology 

grade ethanol (AppliChem, Germany) was pipetted into the aqueous phase (1:1) 

and mixed accurately by inverting and vortexing. Afterwards, the precipitation 

product was transferred into a Zymo-SpinTM IC column with corresponding collection 

tube and centrifuged for 30 s at 12.000 x g (EppendorfTM Centrifuge 5430, 

Eppendorf, Germany). The IC column was transferred into a new collection tube and 

the flow-through was discarded. 400 µl RNA Wash Buffer was pipetted to the IC 

column and after centrifugation for 30 s at 12.000 x g the flow-through was 

discarded again. For a DNase I treatment a mastermix of 5 µl DNase I + 35 µl DNA 

Digestion Buffer was prepared and stored on ice until further use. 40 µl of the set up 

mastermix were added directly to the column and incubated for 15 min at RT. 

Subsequent the column was washed two times by adding 400 µl Direct-zolTM RNA 

PreWash and after each addition the column was centrifuged (30 s at 12.000 x g) 

and flow-through was discarded. As a final washing step 700 µl RNA Wash Buffer 

was added, the column was centrifuged for 3 min at 12.000 x g and the flush-

through was discarded. To achieve a complete clearance of RNA Wash Buffer a dry 

spin for 1 min at 13.000 x g was performed. Hereafter, the IC column was 

transferred into a 1.5 ml RNase-free EppendorfTM tube and 15 µl of nuclease-free 

water was directly added to the column to elute the RNA. The column with eluate 
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was centrifuged (30 s at 12.000 x g) to collect the RNA in the EppendorfTM tube 

underneath. Finally, the RNA was stored at -80°C for later analysis.  

RNA concentrations and purity of brain and eyestalk tissues were 

determined by using the NanoDropTM 2000 Spectrophotometer (Thermo Fisher 

Scientific, USA). In general, 260/280 ratios ~2.0 are accepted as ‘pure’ RNA, which 

means appreciably lower or higher values may indicate the presence of protein, 

phenol or other contaminants that absorb strongly at or near 280 nm. The 260/230 

ratios represents a secondary measure which normally displays higher values than 

the respective 260/280 ratios, laying in the range of 1.8-2.2 for ‘pure’ nucleic acid. 

Following mean values could be determined for the examined tissues: eyestalk 

samples showed a mean 260/280 ratio of 2.09 and a mean 260/230 ratio of 2.26, 

while brain samples displayed a mean 260/280 ratio of 2.07 and a mean 260/230 

ratio of 2.19. To test the integrity of extracted RNA and potential presence of leftover 

genomic contamination the Agilent Bioanalyzer 2100 (Agilent Technologies, Inc., 

USA) and the Agilent RNA 6000 Nano Kit were used (Fig. 7) according to 

manufacturer’s instructions. 

 

Figure 7: Electropherogram (A) and gel (B) of an exemplary eyestalk (left panel) and brain (right 

panel) sample of Antarctic krill (E. superba) - Results of a microfluidic electrophoresis performed in 

the Agilent 2100 Bioanalyzer using the RNA 6000 Nano Kit System. Time of RNA peak appearance 

(size related; x-axis) is plotted against the fluorescence (concentration related; y-axis). Small smudgy 

peaks within the 200 to 1000 nt region usually do indicate degradation, while big bulked peaks within 

the 2000 to 4000 nt region do indicate genomic contamination. RNA degradation and genomic 

contamination were not obvious, neither in the electropherogram (A) nor in the progress of the gel (B). 

The 18S peak resulted from the presence of 18S rRNA which is a component of the small eukaryotic 

ribosomal subunit, while the 28S peak resulted from the presence of 28S rRNA which is the structural 

ribosomal RNA for the large subunit of eukaryotic cytoplasmic ribosomes. These two characteristic 

peaks do suggest that the RNA which was analyzed came from a eukaryotic organism, in this case 

from the head section of Antarctic krill E. superba. 
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2.6 Preparation of spike controls 

In this study in order to ensure an accurate normalization of gene expression, a 

combination of internal (housekeeper genes or HK) and external (spike) controls 

was used. In general, HK are usually constitutive genes, required for the 

maintenance of basic cellular functions, and are expressed in a rather constant level 

in all cells of an organism under normal conditions. The expression of one or 

multiple HK can be used as a reference for the analysis of expression levels of other 

genes. A chosen HK should be uniformly expressed with low variance across 

experimental conditions. The inclusion of HK into a RT-qPCR assay allows to 

correct for sample to sample variations in qPCR efficiency and errors in sample 

quantification. The HK has the advantage that it is not affected by technical errors 

(for example during cDNA preparation), however some residual biological variability 

might have an impact on it. For example, HK may show small fluctuations in gene 

expression over the 24 h. In contrast, an external target sequence control (spike) 

might be biased by some technical errors (for example during pipetting in the 

different cDNA samples), but it might not be affected by biological variability (same 

amount is added to all samples). Therefore, a combination of internal and external 

control seems to be a most accurate solution for gene expression normalization. 

Six spikes were generated by cooperation partners at the Department of 

Biology at the University of Padua (Padua, Italy) and were selected from a human 

transcript plasmid library. Based on qPCR and efficiency results (Pitzschler, 2018), 

two spikes (hereafter denoted as spike 1 and spike 2) were chosen out of the six for 

further procedure.  

2.6.1 Transcription of the spikes, purification, and quality control 

For each spike, 3 µg dry pellet of linearized plasmids were re-suspended in 20 µl 

nuclease-free water by cautious vortexing. The spike suspensions were stored at 

4°C overnight. After that, around 0.4 µg spike DNA were transcribed into RNA using 

the MAXIscriptTM T3 Transcription Kit (Thermo Fisher Scientific, USA). For one 

transcription reaction 5 µl of MAXIscriptTM mastermix (1 µl 10 x transcription buffer, 

0.5 µl 10 mM ATP, 0.5 µl 10 mM CTP, 0.5 µl 10 mM GTP, 0.5 µl 10 mM UTP, 1 µl 

T3 enzyme mix, and 1 µl nuclease-free water) were pipetted together. 3 µl of re-

suspended spike was filled up with 2 µl nuclease-free water and added to the 5 µl 

mastermix to achieve a final reaction volume of 10 µl. The mixture was pipetted 

gently up and down to ensure better mixing. Afterwards it was briefly centrifuged 

and incubated for 1 hour (h) at 37°C. 0.5 µl TURBO DNaseTM was added, mixed 
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well, and incubated for further 15 min at 37°C. Subsequently, 40 µl nuclease-free 

water was added to reach a final volume of 50 µl. Transcripts were purified and 

cleaned with the RNA Clean & ConcentratorTM-5 kit (Zymo Research, USA). 

Therefore, 100 µl RNA Binding Buffer was added, mixed well and 150 µl 100% 

molecular biology grade ethanol (AppliChem, Germany) was enclosed and mixed 

well. Reaction mixture was transferred to a Zymo-SpinTM IC column and centrifuged 

for 30 s at 12.000 x g. 400 µl RNA Prep Buffer was added to the column, centrifuged 

for 30 s at 12.000 x g, and flow-through was discarded. The procedure was 

repeated with 700 µl RNA Wash Buffer. 400 µl RNA Wash Buffer was added, 

centrifuged for 3 min at 12.000 x g, and flow-through was discarded. After that, a 

‘dry spin’ for 1 min at 13.000 x g was performed to ensure the removal of RNA Wash 

Buffer. 8 µl nuclease-free water were directly added to the column and centrifuged 

for 30 s at 12.000 x g. Concentration and purity of the eluted RNA was measured by 

using the NanoDropTM 2000 Spectrophotometer, while integrity and presence of 

contaminants was checked with the Agilent Bioanalyzer 2100 (Fig. 8). After these 

analyses, the spike RNA was stored at -80°C.  

 

Figure 8: Electropherogram (A) and gel (B) of spike 1 (left panel) and 2 (right panel) for E. 

superba samples – Results of a microfluidic electrophoresis performed in the Agilent 2100 

Bioanalyzer using the RNA 6000 Nano Kit System. Time of RNA peak appearance (size related; x-

axis) is plotted against the fluorescence (concentration related; y-axis). The lower marker of the Kit 

System showed a peak at 25 [nt], while the spike displayed a peak around 220 [nt]. Both 

electropherograms revealed a similar peak pattern (750 nt, 1000 nt, 1800 nt). These peaks could be a 

result of non-completed DNA digestion, but they do not affect the analyses. For more accurate 

verification, sequencing would be required. 
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2.6.2 Determination of optimal spike concentration for further chronobiologic 

analyses 

In order to determine the optimal concentration of spikes for further chronobiological 

examinations, we performed qPCR using different concentrations of the spikes (5 

ng, 500 pg (0.5 ng), 50 pg, 5 pg, 1.4 pg and compared the resulting Ct values to 

those of the clock genes Period and Cry2 (Fig. 9, see Appendix for detailed 

technical description). The clock genes Period and Cry2 gave Ct values between 24 

and 26 (Fig. 9B). Among spike concentrations, the one which was closer to these Ct 

values and could therefore be considered as optimal was 5 pg (Fig. 9A). Following 

the procedure, the optimal spike concentration must be added to each RNA sample 

before cDNA synthesis in the same amount. In order to reduce technical errors 

which might occur when pipetting low volumes, we decided to use for the final cDNA 

synthesis not 1 µl of the 5 pg spike dilution, but 5 µl of the 1.4pg dilution instead, 

which gave us a final spike concentration of approx. 7 pg, which was still optimal for 

our scopes.  

 

 

 

 

Figure 9: Amplification plots of the TaqManTM Real-Time PCR-Assay – A) Amplification plot of the 

spike controls 1 and 2 with different concentrations (5 ng, 500 pg, 50 pg, 5 pg, 1.4 pg). B) Amplification 

plot of the genes Chryptochrome2 gene (Cry2) and Period (Per). Ct values of Cry2 reached the 

threshold baseline (0.1) after approx. 24 cycles, while Per Ct values reached the baseline after approx. 

26 cycles. The spike concentration (A) which corresponded most likely to this was above 5 pg. For 

further analyses 7 pg of spike1 and 2 were used. 
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2.7 cDNA synthesis of tissue-specific RNA extracts  

Extracted RNA of brain and eyestalk samples from E. superba must be converted to 

cDNA for polymerase chain reaction. For one cDNA synthesis reaction 5 µl of the 

spike 1 and spike 2 mastermix (1.4 pg/µl x 5 µl = total amount of 7 pg/µl), 23.25 µl of 

RNA (1 µg RNA was diluted with RNase-free water), and 21.75 µl of mastermix (10 

µl 5 x reaction buffer, 1 µl dNTPs (10 mM), 0.5 µl RNase Inhibitor (40 U/µl), 5 µl 

pentadecamere (500 µM), 0.25 µl Reverse Transcriptase and 5 µl RNase-free 

water; Thermo Fisher Scientific, USA) were pipetted together (total volume: 50 µl). 

NTCs and –RT controls were included on both cDNA synthesis plates. The two 

plates, one for the krill brain RNA and one for the krill eyestalk RNA were sealed, 

vortexed, and briefly centrifuged. RNA samples were reversely transcribed into 

cDNA using the T100TM Thermal Cycler (Bio-Rad, USA) under following conditions: 

25°C for 10 min, 37°C for 50 min, and 70°C for 15 min. After synthesis the cDNA 

was stored at -20°C for further analyses. One biological replicate of the brain sample 

pool (#B_2027 at TP02) was excluded before cDNA synthesis as RNA 

concentration was too low. As a result only the following replicates of eyestalks and 

brain were reverse transcribed into cDNA and further used for gene expression 

analyses (ES: TP01 n=10; TP02 n=10; TP03 n=10; TP04 n=10; TP05 n=10, TP06 

n=7 and for B: TP01 n=10; TP02 n=9; TP03 n=10; TP04 n=10; TP05 n=10, TP06 

n=7). 

2.8 Analysis of gene expression via TaqManTM qPCR 

2.8.1 Custom TaqManTM Array Card Design  

TaqMan quantitative reverse transcriptase-RT-PCR can be used to quantitate 

mRNA levels for selected genes and to increase the specificity of qPCR. The 

Custom TaqManTM Array Card is a 384-well microfluidic card designed to perform 

384 simultaneous real-time PCR (qPCR) reactions without using liquid-handling 

robots or multichannel pipettors to fill the card on the ports. This format allows for 1–

8 samples to be run in parallel against 12–384 TaqManTM Gene Expression Assay 

targets that are pre-loaded into each of the wells on the card. We chose the card 

format 16 (Fig. 10) with 16 gene expression assays (13 target genes + 1 internal 

control + 2 spike controls), 3 technical replicates per assay and 8 biological samples 

per card. 
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2.8.2 Gene selection for the Custom TaqManTM Array Card 

Based on published data (Hardin, 2009; Mazzotta et al., 2010; Teschke et al., 2011; 

De Pittà et al., 2013; Tomioka and Matsumoto, 2015; Hunt et al., 2017) the 

regulatory genes Clock (Clk), Clockwork orange (Cwo), Cryptochrome 2 (Cry2), 

Cycle (Cyc), Doubletime (Dbt), E75, Period (Per), Shaggy (Sgg), Timeless (Tim), 

and Vrille (Vri), all involved in the essential regulatory loops of the insect circadian 

clockwork (Fig. 1) were selected as target genes together with the metabolic key 

enzyme Adenosine triphosphate-ɣ (Atpg). Ubiquitin specific peptidase 46 (Usp46) 

was chosen as internal control (HK). This was based on previous studies (Biscontin 

et al., 2016, Piccolin et al., 2018a) which showed that the expression levels of 

Usp46 were constant over the 24 h in different light:dark (LD) conditions. In addition 

to the internal control Usp46, two external spike controls (spike 1 and spike 2) were 

chosen (GenBank: spike1; XM_017004857.1 and spike 2; XM_011537537.1) (Tab. 

2). Sequences of the named genes were acquired from the krill database available 

at http://krilldb.bio.unipd.it/ (Sales et al., 2017), except for Cry2 which can be 

accessed via GenBank (https://www.ncbi.nlm.nih.gov/genbank/). Moreover, since 

molecular investigations in krill clock genes are still at an early stage, we were 

interested in testing different primer sets. Hence, to determine the relative mRNA 

levels of the clock genes Clock, which is part of the positive heterodimer CLK-CYC, 

Figure 10: Custom TaqMan
TM

 Array Card format with 13 unique assays and 3 custom 

controls used in this study – Instead of the mandatory control (CTL) slot  3 custom controls 

(internal: Usp46 and external: spike 1 and 2) were loaded. The 8 unique samples were loaded using 

the ports on the right hand side. Modified. [Reference: https://assets.thermofisher.com/TFS-

Assets/LSG/Warranties/cms_040127.pdf]. 
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and Timeless, which is part of the negative feedback loop TIM-PER, we used two 

different set of primers. One was used by Piccolin et al. (2018a) to investigate the 

plasticity of the clock in different photoperiodic conditions (denoted hereafter as 

Clk_A and Tim_A), while the other was used by Biscontin et al. (2017) to 

characterize the molecular functioning of the clock in krill (denoted hereafter as 

Clk_B and Tim_B) (Tab. 2). 

 

 

Table 2: Primer sequences of target genes, housekeeping genes, and spike controls used for 

RT-qPCRs – Sequences of genes were obtained from the krill database (http://krilldb.bio.unipd.it/; 

Sales et al., 2017) except for spike 1, spike 2 and Cry2, which can be accessed via GenBank 

(https://www.ncbi.nlm.nih.gov/genbank/). 
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2.8.3 Primer design and sequence validation for Custom TaqManTM Array Card 

First, the selected target gene sequences (Tab. 2) for the Custom TaqManTM Array 

Card were validated by using the Basic Local Alignment Search Tool (BLAST) of the 

National Center for Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov) 

and the BLASTN and BLASTX search. Afterwards, chosen sequences were verified 

against the krill-specific sequences database (http://krilldb.bio.unipd.it/; Sales et al., 

2017). The reading frame of each target gene sequence was analyzed by using the 

web-based tool Reverse complement (https://www.bioinformatics.org/sms/rev_comp 

.html) and converted into its reverse counterpart in case of necessity.  

A good primer design is essential for a successful qPCR reaction and many 

factors have to be taken into account when designing the optimal primers for target 

genes. Therefore low-complexity regions and interspersed repeats within the 

sequences were masked with the web-tool RepeatMasker 

(http://www.repeatmasker.org) to avoid primer cross-reactivity (self-dimers or 

primer-dimers) and mispriming. Finally, a 150 nucleotide long part without low-

complexity regions and interspersed repeats which was located close to the 3’-end 

of each target sequence was selected and cut with the aid of EMBOSS seqret 

(http://www.ebi.ac.uk/Tools/sfc/emboss_seqret). For automatic primer design, the 

processed target sequences were then loaded into the Custom TaqManTM Assay 

Design Tool from Thermo Fisher Scientific (https://www.thermofisher.com/order/ 

custom-genomic-products/tools/cadt). In general, a length of 18-30 nucleotides (or 

base pairs) for primers was favoured for adequate specificity and for an easy bind to 

the template at the annealing temperature. Besides, a GC base content of 40-60% 

was established, with the 3’end of a primer ending in C or G to promote binding and 

to guarantee an optimal primer melting temperature (Tm) for successful annealing. 

Afterwards, assay IDs were compiled and pasted into the format of the Custom 

TaqManTM Array Cards (Fig. 10). For a detailed overview of primer sequences of 

chosen target genes, housekeeping genes, and spike controls used for the following 

TaqManTM RT-qPCRs, see Tab. 2. 

2.8.4 Primer efficiency for all primer sets (in particular for timeless and clock) 

qPCR dilution series with the following cDNA concentrations: 100 ng, 200 ng, 400 

ng, 800 ng were used to calculate primer efficiencies for all primer sets. Threshold 

cycle values (hereafter Ct-values) were plotted against the logarithm of the qPCR 

dilution series. For each dilution series a regression line with slope and intercept 

was calculated and mean Ct-values were plotted against the logarithmic 
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concentration. Values of the correlation coefficient (R2) were close to 1 (0.9089 to 

0.9993) for all primer pairs (Tab. 3 and Tab. 4, Appendix) indicating strong positive 

relationships between the variables. Moreover, efficiencies were calculated for each 

primer pair using the formula E = (10(-1/slope) -1) x 100. Based on empirical 

investigations, acceptable efficiencies in general should range between 90% and 

110% with corresponding slopes between -3.1 and -3.6, (e.g. Ramakers et al., 2003; 

Rutledge and Côté, 2003; Hellemans et al., 2007). As efficiencies for Sgg in both 

tissues were below an acceptable range, we recommend utilizing different primers in 

the future.  

Efficiencies for Clk_B and Tim_B primers were below the tolerable range in 

both tissues (brain: Clk_B = 69.1%, Tim_B =82.0%; eyestalks: Clk_B = 71.14%), as 

were the slopes (brain: Clk_B = -4.38, Tim_B = -3.84; eyestalks: Clk_B = -4.28) (see 

Fig. 11). In comparison, Clk_A and Tim_A primer pairs indicated better and in-range 

efficiencies in both tissues. In addition, the investigation of rhythmic gene expression 

gave better statistical results using the Clk_A and Tim_A primer sets than Clk_B and 

Tim_B (data not shown). Hence, Clk_A and Tim_A were used. 

Figure 11: Primer efficiency using clock gene specific primer sets – Mean Ct-values of Clk and 

Tim primer sets were plotted against the logarithm of cDNA concentration used in a dilution series 

(100 ng, 200 ng, 400 ng, and 800 ng) in brain and eyestalks tissue, respectively. Primer efficiencies 

were calculated using the formula E= (10
(-1/slope)

 -1) x 100. Efficiencies [%] for each primer pair within 

the respective tissues are indicated in bold.  
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2.8.5 qPCR with Custom TaqManTM Array Cards 

For the run of TaqManTM Gene Expression Assays, 100 µl of total volume per 

reaction (20 µl of the respective cDNA (20ng/µl), 30 µl RNase-free water, and 50 µl 

TaqManTM mastermix) was pipetted in a 1.5 ml EppendorfTM tube. Tubes were briefly 

centrifuged and for each reaction, 98 µl were slowly added into the corresponding 

sample-loading port. Loaded TaqManTM cards were centrifuged two times for 1 min 

at 1.200 rpm. Afterwards cards were inserted into the sealer, closed, and loaded-

ports were removed using a scissor. The TaqManTM cards were loaded into the 

ViiATM 7 Real-Time PCR-System (Thermo Fisher Scientific, USA). Reaction 

conditions were as follows: one cycle of stage 1 which included 50°C for 2 min and 

95°C for 10 min, followed by 40 cycles of stage 2 which included 95°C for 15 s and 

60°C for 1 min.  

2.8.6 Data quality control of TaqManTM qPCR results 

Following the TaqManTM qPCR, amplification plots were checked via the ViiATM 7 

software to ensure that every reaction was done properly. All raw Ct-values above 

32 were excluded, due to the general assumption that there might have been 

unspecific amplification. For each assay, we checked the technical replicates 

(triplicates) looking for consistency within Ct values. If calculated standard deviation 

among replicates was above 0.2, the replicate showing the Ct value most distant 

from the average was manually removed and the mean and the standard deviation 

were recalculated. In this way, it was possible to get the mean Ct values of at least 2 

technical replicates per assay.   

2.9 Normalization of raw Ct values and relative quantification of mRNAs 

In this study, expression levels of target genes were normalized and quantified using 

the modified 2-ΔΔCt method after Hellemans et al, (2007). This method takes the 

gene-specific amplification efficiency of the primers used into account and also 

allows for the combination of multiple reference genes during the normalization 

process. To determine the most stable combination of an internal and external HK to 

use for normalization procedure, raw Ct-values from all genes were evaluated with 

the software NormFinder (Andersen et al., 2004) in Microsoft Excel (2010). For both 

brain and eyestalks, the most stable combination was Usp46 (internal HK) together 

with spike 1 (external HK), which was therefore used as reference in the 

normalization procedure (Fig. 12). The scaling of raw Ct-values (calculation of 

relative quantities; RQs) was accomplished for each tissue separately (brain and 
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eyestalks) as well as across the tissues. Normalized relative quantities (NRQs) were 

calculated by selecting as a baseline the sample showing the lowest Ct-value 

among both tissues 

 

 

2.10 Statistics 

After normalization, NRQ values from all clock genes were examined for outliers 

using the Rosner Extreme Studentized Deviate test (EDS) for multiple outliers (two 

sided test) (Rosner, 1983). Rosner's outlier test requires a sample size of at least 25 

(our study n=57) or greater and that data are normally distributed. The null 

hypothesis (H0) for Rosner's outlier test was: There are no outliers in the data set. 

The significance level (p-value probability) was set low at α=0.01 to ensure not to 

exclude realistic data with individual biological variability. Additionally, TaqManTM 

amplification plots of detected outliers were examined and outliers were kept if no 

abnormities spotted. In the end, no Ct values were excluded.  

All statistical analyses were performed with the software RStudio (RStudio 

Team (2019) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA). To 

illustrate hierarchical relationships among daily gene expression patterns of tested 

clock genes in the different tissues, the R package gplots (Warnes et al., 2019) was 

used to generate heat maps and dendrograms. First, in order to make the range of 

Figure 12: Geometric mean of raw Ct-values of internal and external control - UTC-4 = 

Coordinated Universal Time minus 4 hours, indicates the local time in Bransfield Strait, Antarctica at 

time of sampling. Raw mean Ct-values (y-axis) were plotted against the UTC-4 (x-axis). Left panel: 

Combination of Spike 1 + Usp46, respectively in brain. Right panel: Combination of Spike 1 + Usp46, 

respectively in eyestalks. Data are expressed as geometric mean ± SEM (brain: n= 10, 9, 10, 10, 10, 7; 

eyestalks: n= 10, 10, 10, 10, 10, 7). 
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gene expression variation comparable for all genes, NRQ values were transformed 

to Z-values with the formula:  

function (x)(x − min(x))/(max(x) − min (x) 

Then data were clustered using Euclidean distance and Ward’s linkage, as this often 

provides strong clustering results in practice. The package RColorBrewer (Neuwirth, 

2014) was used to implement a color-coded scale, where blue represents high and 

yellow low expression levels, respectively. To test the statistical significance of the 

clusters put in evidence by the dendrograms, a hierarchical cluster analysis was 

conducted using the R package sigclust2 (Kimes, 2018).  

The RStudio package RAIN (Rhythmicity Analysis Incorporating Non-

parametric Methods, Thaben and Westermark, 2014) was used to identify putative 

rhythmicity within a range of periods included between 12 h and 24 h in daily 

patterns of gene expression. We tested for this range of periods to ensure a 

detection of all rhythmic circadian behavior, including potential bimodal patterns with 

12 h. For brain and eyestalk tissues, data were fit to sinusoidal curves with the 

required period. Within this curve the probability of consistency was expressed as p-

values indicating the likelihood of the fit and the phase of the fitted curve, 

corresponding to the time point where the amplitude of the oscillation is maximal. 

Subsequently, p-values were corrected for multiple comparisons using the false 

discovery method (fdr) of Benjamini, Hochberg, and Yekutieli (Benjamini and 

Hochberg, 1995; Benjamini and Yekutieli, 2001) implemented within the package. 

To compare gene expression levels between eyestalk and brain tissues for each 

time point (TP01-TP06), the non-parametric Wilcoxon Rank Sum test implemented 

by the wilcox.test function in R was applied. 
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3 Results 

3.1 Regulatory network of clock gene expression patterns 

To visualize potential relationships among daily patterns of clock gene expression in 

brain and eyestalks tissue of E. superba, we used hierarchical clustering. By means 

of hierarchical cluster analysis the statistical significance of the groupings was 

verified. In brain, daily mRNA expression patterns were clustered within two 

separated groups consisting of (i) Cyc, Cry2, Cwo, Clk, and Per, as well as (ii) Dbt, 

Tim, Vri, and Sgg (Fig. 13A). Hence, the dendrogram (i) comprises core clock genes 

(Cyc, Clk) plus core clock gene regulators (Cry2, Per) and the associated clock 

gene Cwo, while the dendrogram (ii) contains the core clock gene regulator Tim plus 

kinases (Sgg, Dbt) and the associated clock gene Vri. The gene expression patterns 

of the associated clock gene E75 and the metabolic gene Atpg did not align with the 

other groupings and form separate branches. A cluster analysis revealed no 

significant differences between the mentioned groups. In addition to a putative gene 

expression similarity, the heat map visualized the highest expression levels for Cwo 

at TP03 and TP06, for Per at TP01 and TP06, for E75 at TP02, and for Atpg at 

TP04 and TP05, while the remaining eight clock genes showed highest expression 

levels at TP06, which representing the first time point after dusk at 17:30 local time 

(UTC-4), (Fig. 13A).  

The clustering of the daily gene expression patterns recorded in eyestalks 

differs in some aspects from those in the brain. Here, the clustering revealed the 

following separated groupings: (i) Cyc, Clk, and Tim, (ii) Cwo, Vri, and Sgg, (iii) 

Cry2, Per, and Dbt, (Fig. 13B). Thus, the dendrogram (i) includes the core clock 

genes Cyc and Clk, plus the core clock gene regulator Tim, while dendrogram (ii) 

contains the associated clock genes Cwo and Vri plus the kinase Sgg. Dendrogram 

(iii), on the other hand, comprises the core clock gene regulators Cry2 and Per plus 

the kinase Dbt. Furthermore, a cluster analysis revealed that the differences 

between the dendrogram (iii) and the dendrograms (i) and (ii) are significant (p-

values < 0.05). The associated clock gene E75 and the metabolic gene Atpg form 

separate branches just like in brain, however, the differences to the other 

dendrograms (i, ii, iii) are significant (p-values < 0.05). Similar to brain, most clock 

genes in eyestalk tissues had their highest expression peaks at TP06 after dusk. 

However, Atpg and E75 showed highest expression peaks during night-time and 

sunrise (Atpg: TP03 and TP04, E75: TP02 and TP03), (Fig. 13B). Additionally, 

slightly elevated expression levels for all genes were noted at TP02 during night-

time.  
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3.2 Daily profiles of clock gene expression in brain and eyestalks 

The normalized clock gene expression levels (mean NRQ) in the two different 

tissues were plotted against local time in Bransfield Strait (UTC-4) and time points to 

illustrate the daily patterns in the 24 h cycle (Fig. 14 and 15). In addition, any 

statistical significant rhythmicity in brain or eyestalk tissues is presented for the 

respective genes. Moreover, any statistical significant differences between brain and 

eyestalk tissues per time point are described for the respective genes.  

3.2.1 Analyzed differences within brain and eyestalks tissues  

Brain 

The daily gene expression levels in brain tissue for the core clock genes Clk and 

Cyc showed a similar pattern (Fig. 14). Clk and Cyc displayed a first expression 

maximum at night-time (TP03, 1.10 and 1.17, respectively). During the day (TP04-

TP05), only expression levels in Clk decreased to 0.96. After mid-day (TP05), both 

core clock genes peaked after dusk (TP06, Clk: 1.20, Cyc: 1.23).  

Figure 13: Heat maps of daily clock gene expression patterns in different tissues – A) Gene 

expression over time (24 h) in brain. B) Gene expression in eyestalks over time (24 h) (for more 

details concerning clock gene regulatory network see Figure 1). Heat maps and dendrograms show 

the expression levels of clock genes during the 24 h cycle and are represented with a color-coded 

scale; yellow and blue represent high and low expression levels, respectively. TP= time point, 

indicates the time point of sampling every 3.5 h in a time period of 24 h (except for TP06, it was 53.5 

h). Genes clustered together based on similarity of daily gene expression patterns. Light bar 

beneath the graphs shows the respective photoperiod at the sea surface (grey = dark phase; yellow 

= light phase).   
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Similar expression patterns to that of core clock genes were found for the core clock 

gene regulators Per, Tim, and Cry2 (Fig. 14). For the gene Per, the mean 

expression levels were relatively constant over the 24 h cycle ranging from 1.02 to 

1.16, with a slight rise after mid-day (TP05) as already detected in the core clock 

gene Cyc. The expression patterns observed for Tim and Cry2 were very similar to 

those of the core clock gene Clk. At night-time (TP01-TP03), all three expression 

patterns peaked before sunrise (TP03), followed by a slight decrease afterwards 

(TP04-TP05), and an overall increase during the day to highest expression levels 

after dusk (TP06, Tim: 1.30, Cry2: 1.10, Cyc: 1.23). In all core clock genes and their 

regulators, no significant rhythmicity was detected.  

The associated clock gene kinases Dbt and Sgg showed no expression level 

patterns according to the ones observed in the core clock genes and their regulator 

genes (Fig. 15a). However, during night-time, expression levels of Dbt and Sgg, 

were constant, started to increase with sunrise (TP04) and peaked after dusk (TP06, 

Dbt: 1.08, Sgg: 1.47). A significant daily oscillation with a period of 24h was detected 

for Sgg (p=0.0007, Tab. 5; appendix).  

For the associated clock genes Cwo and Vri, similar expression patterns to 

that of core clock genes (Clk) and regulators (Cry2) could be demonstrated. Mean 

expression levels of Cwo decreased at night (TP02, 0.88), increased before dawn to 

a first maximum (TP03, 1.18) and rose with sunrise (TP04) to the highest peak after 

dusk (TP06, 1.15). Cwo displayed similar expression levels like Cry2 but with 

greater amplitude (Fig. 14 and 15b). The expression pattern of the associated clock 

gene Vri showed the same tendency as the pattern of the core clock gene Clk (Fig. 

14 and 15b). Both exhibited constant expression levels during night-time, followed 

by an increase during dawn (TP03-TP04) and throughout the day to the highest 

peak after dusk (TP06, 0.92).  

Mean expression levels of the associated clock gene E75 remained constant 

and exhibiting their highest peak during night-time at TP02 (0.59) and not after dusk, 

showing no similarities to the other tested clock genes (Fig. 15b). 

For the metabolic gene Atpg mean expression levels ranged from 0.65 to 

0.80, whereby the lowest peak was detected during night-time (TP02, 0.65) followed 

by a slight increase (Fig. 15c). Afterwards, expression levels decreased at dawn 

(TP04) to 0.72 after dusk at TP06. The expression pattern was also not similar to 

other tested clock genes in this study.  
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Eyestalks 

Daily gene expression levels in eyestalk tissues of the core clock genes Clk and Cyc 

showed a similar pattern, with a first peak at TP02 (Clk: 0.96, Cyc: 1.09), (Fig. 14). 

They re-increased throughout daytime (TP04 to TP05) to a maximum level after 

dusk (TP06, Clk: 1.08, Cyc: 1.18). A significant daily rhythmicity with a period of 16 h 

was detected in Cyc (p=0.048, Tab. 6, Appendix). 

Similar gene expression patterns to those of core clock genes (Clk, Cyc) 

could be shown for the core clock gene regulators Per, Tim, and Cry2 (Fig. 14), 

where Tim displayed the greatest amplitude and a significant daily oscillation with a 

period of 24 h (p=0.034, Tab. 6; appendix). 

For the associated clock gene kinases Dbt, similar gene expression patterns 

to that of the core clock gene regulators were detected (Fig. 14 and 15a). Dbt 

showed the same expression pattern as Per with an increase during dawn and a 

peak after dusk (TP06, 0.89), whereby the amplitude was smaller. The mean 

expression levels of the associated clock gene kinase Sgg increased during night-

time (TP02-TP03), decreased at sunrise (TP04, 1.04) and increased again after 

sunrise to peak after dusk (TP06, 1.56). Besides, Sgg exhibited a significant daily 

rhythmicity with a period of 16 h (p=0.008, Tab. 6, Appendix).  

The expression patterns for the associated clock genes Cwo and Vri showed 

a similar tendency, but no similarities to expression patterns of core clock genes or 

regulators (Fig. 14 and 15b). However, a similar pattern as in the kinase Sgg could 

be observed for Cwo (Fig. 15a,b). Vri showed constant expression levels during 

night-time (TP01-TP03), followed by a decrease at sunrise (TP04, 0.70), and an 

increase after dusk to 1.11 at TP06, (Fig. 15b). 

For the associated clock gene E75 the mean expression levels increased 

from TP01 to highest peaks at TP02 and TP03 (1.06 or 0.99), followed by an abrupt 

decrease during sunrise (TP04, 0.69), and a slight constant increase afterwards until 

dusk (0.78, TP06), (Fig. 15b). There were no similarities to other tested clock genes. 

The mean expression levels observed for the metabolic gene Atpg displayed 

a constant pattern during the night (TP01-TP03) followed by a decrease from 0.99 

during dawn (TP04) to 0.76 after dusk at TP06 (Fig. 15c). Moreover, Atpg showed a 

significant daily oscillation with a period of 24 h (p=0.008, Tab. 6; appendix).  
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3.2.2 Analyzed differences between brain and eyestalks tissue 

For all genes analyzed, mean expression levels at each time point (TP) were 

compared between brain and eyestalks to analyze significant differences (see Fig. 

14 and 15 and Tab. 7, Appendix). In general, mean expression levels in Clk, Tim, 

Dbt, Cwo, and Vri displayed no significant differences between tissues. However, for 

Cyc, Per, Cry2, Sgg, E75, and Atpg significant variations could be demonstrated 

between brain and eyestalks (Fig. 14 and 15).  

When compared to eyestalk tissues, the mean expression levels in brain 

were significantly higher over the first half of the time series during the night in the 

core clock gene Cyc (TP03, p=0.005) and in the regulators Per and Cry2 (TP01: Per 

p=0.012, Cry2 p=0.023; TP02: Per p=0.013, Cry2 p=0.022; TP03: Per p=0.001, 

Cry2 p=0.005), but also at dawn in the kinase Sgg (TP04 p=0.009), (Fig, 14 and 

15a).  

 When compared to brain, mean expression levels in eyestalk tissues were 

significantly higher during night-time and dawn in the kinase Sgg, in the associated 

clock gene E75, and in the metabolic gene Atpg (Sgg: TP02 p=0.008, E75: TP01 

p=0.012, TP02 p=0.030, TP03 p=0.025, TP04 p=0.015, Atpg: TP02 p=0.004, TP03 

p=0.002, TP04 p=0.021), (Fig. 15a,b,c).  
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Figure 14: Core clock gene expression patterns in brain and eyestalks – Ten clock genes (Clk, Cry2, 

Cwo, Cyc, Dbt, E75, Per, Sgg, Tim, and Vri) and the metabolic key enzyme Atpg were analyzed over 24 h. 

Relative mRNA levels (NRQ) were plotted against local time (UTC-4). UTC-4 = Coordinated Universal Time 

minus 4 hours, indicates the local time in Bransfield Strait, Antarctica at time of sampling. Data are 

expressed as mean ± SEM (brain: n= 10,9,10,10,10,7; eyestalks: n= 10,10,10,10,10,7). TP= time point, 

indicates the time point of sampling every 3.5 h in a time period of 24 h ( except for TP06, it was 53.5 h). 

Light bar beneath the graph shows the respective photoperiod (grey = dark phase; yellow = light phase) at 

the sea surface. Schematic sinus curves indicate significant daily oscillation for Cyc and Tim with a period 

of 16 h and 24 h in eyestalks determined by RAIN analysis (for p-values see appendix) in brain and 

eyestalks. Hash keys indicate significant differences between both tissues tested for each ZT (Whitney-

Wilcoxon test). 
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Figure 15: Associated clock genes and metabolic gene expression patterns in brain and 

eyestalks – Ten clock genes (Clk, Cry2, Cwo, Cyc, Dbt, E75, Per, Sgg, Tim, and Vri) and the 

metabolic key enzyme Atpg were analyzed over 24 h. Relative mRNA levels (mean NRQ) were plotted 

against local time (UTC-4). UTC-4 = Coordinated Universal Time minus 4 hours, indicates the local 

time in Bransfield Strait, Antarctica at time of sampling. Data are expressed as mean ± SEM (brain: n= 

10,9,10,10,10,7; eyestalks: n= 10,10,10,10,10,7). TP= time point, indicates the time point of sampling 

every 3.5 h in a time period of 24 h (except for TP06, it was 53.5 h). Light bar beneath the graph shows 

the respective photoperiod (grey = dark phase; yellow = light phase) at the sea surface. Schematic 

sinus curves indicate significant daily oscillation with a period of 24 h for Sgg and Atpg in brain and 

eyestalks, respectively and a daily oscillation with a period of 16 h for Sgg in eyestalks. Hash keys 

indicate significant differences between both tissues tested for each ZT (Whitney-Wilcoxon test). 
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4 Discussion 

The knowledge about an endogenous timing system in the Antarctic krill, E. 

superba, which controls metabolic and physiological output functions, has been 

augmented by findings of recent studies (Mazzotta et al., 2010; Teschke et al., 

2011; de Pittà et al., 2013; Biscontin et al., 2017; Piccolin et al., 2018a; Höring et al., 

2018; Pitzschler, 2018). In the present study, an attempt was made to identify 

potential circadian clock gene expression patterns (Clock, Cycle, Period, Timeless, 

Cryptochrome2, Doubletime, Shaggy, Clockwork orange, Vrille, E75, and the 

metabolic gene Atpg) in field samples from winter, thus adding important information 

to the rare winter data. Besides, methodological modifications were applied to 

reduce gene expression variability and to improve the detection of potential 

oscillation patterns in krill.  

4.1 Environmental conditions in the field 

In the Southern Ocean ecosystem, environmental factors such as food availability, 

sea ice extent, day length, and light intensity show extreme seasonal changes, 

which can affect the biological clock system in krill (Mazzotta et al., 2010). 

Moreover, abiotic and biotic environmental parameters of krill habitat in the Southern 

Ocean might be profoundly altered by global warming related to climate change 

(Smetacek and Nicol, 2005; Clarke and Harris, 2003). In this context, it is important 

to know the environmental conditions under which field krill were sampled for this 

study.  

Light conditions at fishing depth 

Perhaps the most important environmental cue for the entrainment of the circadian 

clock in krill and therefore for the regulation of metabolic and physiological output 

functions (e.g. DVM) is the occurring light regime, whereas recent studies also 

suggested a major influence of the light spectral composition (Mazzotta et al., 2010). 

For this study wild krill were sampled at 170 m depth, where irradiance was very low 

and maybe absent (Tab. 1). In contrast to the late-winter light regime at the surface, 

exhibiting 8 hours of light and 16 hours of darkness (LD 8:16) with irradiance of 

approx. 2 W/m² during night-time and approx. 20 W/m² during day-time, the 

calculated irradiance in 170 m depth was around 0 W/m². Studies on the visual 

capabilities of Antarctic krill are lacking (Frank and Widder, 1999), despite evidence 

that these species perform visually-mediated behaviors, such as DVM (Gaten et al., 

2008; Sourisseau et al., 2008). Hence, due to the putative vertical movements of krill 
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during the 24 h cycle, it is difficult to say at which depth krill were located before 

sampling. It can only be concluded, that all sampled animals were in the darkness at 

least from sunset to sunrise. The actual light exposure during the day might have 

been different for each individual sampled krill, and might vary between near-

constant darkness (if the krill remained at or moved below the fishing depth at all 

times) and the photoperiod measured at the surface (if the krill spend most of the 

time close to the surface). 

Krill abundance and chl a concentration 

In general, krill concentrations and chl a concentration within the sampling area of 

Bransfield Strait (Tab. 1) were similar to the patterns observed for late-winter in 

previous years (Cleary et al, 2016; Reiss et al., 2017). The observed major 

differences in krill abundance between time points and therefore between sampling 

locations (Tab. 1) could be explained by DVM in krill or by a potential winter twilight 

DVM pattern between 100 to 350 m depths. Twilight DVM involves emerging 

towards the surface at sunset, a submerging to deeper water layers around midnight 

(‘midnight sink’), followed by a second emerging towards the surface and then 

submerging again to deeper water layers at sunrise (Cohen and Forward, 2005). 

The abundance of sampled krill in a depth of 170 m might have been so different, 

due to the occurring migratory patterns of the crustaceans. In the sampling week 

August 7-13th, krill biomass formed a nearly continuous band (more than 64 

kilometers) with distinctly different patterns of aggregation between daytime 

(compact dense swarms, 40 to 400 meters) and night time (broader patches 

between 0 and 200 meters) on several transects across Bransfield Strait (content 

block NBP1606 cruise, data not shown). Within Bransfield Strait, the lack of ice 

shield (Tab. 1) has kept crabeater seal abundance very low, while Antarctic fur seals 

are hauling out on the ice and snow free beaches rather than staying in the water, 

which potentially minimized the risk of predation (content block NBP1606 cruise, 

data not shown).  

4.2 Regulation of clock genes in E. superba during winter conditions 

In the regulatory network of clock genes within this study, some of them showed 

similarities in their expression patterns (Fig. 13, 14, and 15) and significant daily 

oscillation (Fig. 14 and 15) during a 24 h cycle. 

The daily mRNA levels for the core clock genes Clk and Cyc showed synchronized 

expression in brain and eyestalks of E. superba within this study, with a first peak at 



4 Discussion 

41 

night-time and an upregulation during the light phase to maximum expression levels 

after dusk (Fig. 13 and 14). For Clk, no rhythmicity or significant differences were 

observed. This was also not the case in previous studies under controlled laboratory 

late-winter light conditions (Piccolin et al., 2018a). In addition, studies of thoracic 

ganglia and eyestalk nervous tissues in crustaceans also assumed a lack of a 

circadian rhythmicity within Clk mRNA expression (Strauss and Dircksen, 2010). 

Hence, our data also suggest that Clk might not display endogenous oscillatory 

rhythmicity in krill. However, for wild krill in summer a rhythmic 24 hour-oscillation of 

Clk was demonstrated, which could be a special adaption to the conditions during 

midnight sun in Antarctic summer (Biscontin et al., 2017). A significant rhythmic 16 

hour-oscillation of Cyc mRNA expression could be identified in krill eyestalks (Fig. 

14). Rhythmic oscillations in mRNA levels of Cyc have already been shown in krill 

eyestalks, but with a period of 24 h under LD 12:12 (Biscontin et al., 2017; 

Pitzschler, 2018; Piccolin et al., in prep.). An explanation for the shift in the rhythmic 

of field samples could be the different light regime (approx. LD 8:16) together with 

environmental cues. Alternatively, this could be a hint for a putative 4 hour shifted 

bimodal pattern (Tessmar-Raible et al., 2011) which was also found in enzyme 

activity (Teschke et al., 2011) and in transcription patterns (de Pittà et al., 2013). 

Both, the core clock gene regulator Per and the core clock gene Cyc 

displayed similar expression patterns in the brain with small amplitudes. However, 

the expression patterns observed for the other core clock gene regulators, Tim and 

Cry2, were very similar to those of the core clock gene Clk, with a peak at night-time 

and highest expression levels after dusk (Fig. 14). In contrast to previous studies of 

insects and crustaceans (Tomioka and Matsumoto, 2015; Sbragaglia et al., 2015; 

Zhu et al., 2008), synchronized expression of Per and Tim could not be detected in 

the brain of krill. This is in line with the results of former laboratory krill studies 

(Pitzschler, 2018). A synchronized expression of Cyc, Clk, Cry2, and Per was 

identified in brain, whereas for eyestalks, a synchronized expression of Cyc, Clk, 

and Tim as well as Per and Cry2 was found (Fig. 13). Negative (Per, Tim, Cry2) and 

positive (Clk, Cyc) clock components showed similar daily patterns in both tissues 

but an antiphase relationship between positive and negative clock components as in 

the Drosophila circadian feedback loop was not present in winter field krill (Dunlap, 

1999; Hardin, 2005). Interestingly, the expression levels of Cry2 in brain and 

eyestalks expressed no circadian rhythmicity as detected for krill in the laboratory 

(Teschke et al., 2011) and also for krill in the field during summer (Mazzotta et al., 

2010; de Pittà et al., 2013). One explanation might be the different light regimes krill 

were exposed to, and beyond that other investigations did also not found circadian 
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rhythms in cry2 expression levels (Pitzschler, 2018; Höring et al., 2018). Besides, 

Tim displayed a significant rhythmic 24 hour-oscillation in eyestalks, which was also 

observed in the Norwegian lobster Nephrops norvegicus (Sbragaglia et al., 2005) 

and in field krill during summer (Biscontin et al., 2017). 

The associated clock gene kinases Dbt and Sgg showed no expression 

patterns comparable to the ones observed for the core clock genes in krill brain and 

eyestalks (Fig. 14 and 15a). However, a significant rhythmic 24 hour-oscillation was 

ascertained for Sgg in brain together with a significant rhythmic 16 hour-oscillation in 

eyestalks (Fig. 15a). In the circadian clocks of Drosophila (Allada and Chung, 2010) 

and krill (Biscontin et al., 2017), Sgg is responsible for the phosphorylation of Tim on 

the protein level to regulate the nuclear entry of TIM and PER. Based on this 

assumption, it could be presumed that the significant oscillation of Sgg and Tim 

might be related to each other. The kinase Dbt and the negative regulators Per and 

Cry2 showed synchronized expression patterns in krill eyestalks (Fig. 13A), with an 

increase during dawn and a peak after dusk (Fig. 14 and 15a). In krill and 

Drosophila, DBT is identified to control nuclear entry of PER through 

phosphorylation while CRY2 is associated with PER as an additional negative 

regulator (Biscontin et al., 2017; Tomioka and Matsumoto, 2015; Mackey, 2007). 

The metabolic gene Atpg showed expression pattern which were not similar 

to other tested clock genes in this study (Fig. 15c). In addition, Atpg showed a 

significant circadian 24 hour-oscillation in eyestalks. These significant oscillation 

patterns have already been investigated in wild krill (de Pittà et al., 2013) and under 

laboratory late-winter conditions (Piccolin et al., 2018b; Höring et al., 2018). Overall, 

no agreement in mRNA expression patterns could be detected in this study.  

The associated clock genes Cwo and Vri showed synchronized expression 

(Fig. 13) with similar patterns to those of core clock genes (Clk) and regulators 

(Cry2) in krill eyestalks, but were not expressed in a circadian rhythm (Fig. 14 and 

15b). In contrast, the associated clock gene E75 displayed no similarities to other 

tested clock genes (Fig. 15b). However, circadian rhythmicity for Cwo and E75 was 

identified in Drosophila (Matsumoto et al., 2007; Kumar et al., 2014) but not in krill 

(Pitzschler, 2018), while a 24 hour-oscillation for Vri was observed in krill (Pitzschler, 

2018). Possible explanations for the differences in the results could be: i) gene 

regulation in the fruit fly might occur in a different manner compared to krill, ii) an 

identification of clear oscillation patterns was not possible, although they were 

present, iii) functional participation of E75 in the circadian clock of krill is still 

arguable iv) this study examined winter field samples and thus a direct comparison 

to a laboratory set up is not possible (Pitzschler, 2018).  

WIE waren denn bei 
diesen Studien die 
Lichtverhältnisse
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In summary it can be stated that the relative mRNA levels of the clock genes from 

winter field krill samples analyzed within this study showed less pronounced or 

different patterns compared to findings for arthropods and in other krill studies. 

Additionally, correlations are more pronounced between clock genes in eyestalks 

compared to clock genes in brain. Similar findings in the literature lead to the 

assumption that krill eyestalks are good candidates for the search of genes involved 

in circadian regulation (clock genes) and for clearer results regarding temporal 

pattern of expression. However, it must be noted that the amplitudes of the clock 

genes were quite low and it is therefore difficult to draw conclusions about circadian 

rhythms of clock genes in wild krill used in this study. Those clock genes may have 

been subject to different regulatory mechanisms, forasmuch an identification of 

putative circadian rhythmicity was not possible. In addition, comparison of the 

present field results to data resulting from laboratory findings (even with late-winter 

regimes) or to data resulted from summer field findings must be considered with 

caution.  

Despite all differences with previous studies and low amplitudes, significant 

rhythmicity for three clock genes (Cyc, Tim, Sgg) under very poor light conditions in 

sampling depths could be detected in krill sampled during late-winter. This suggests 

the assumption that krill clock functions might not be turned off at that time of the 

year. In addition, the difficulties related to the detection of rhythmicity might be partly 

due to the varying light conditions, which might have been experienced during the 

day by the individual krill while moving up and down in the water column.  

4.3 Comparison of clock gene expression levels in brain and eyestalk tissue 

Circadian rhythmicity in crustaceans is controlled by multiple sites of independent 

circadian pacemakers, including the retinae of the eye, the eyestalks, the 

supraoesophageal ganglion (brain) and the caudal photoreceptor which have 

already been verified as important parts in circadian regulation (Strauss and 

Dircksen, 2010; Aréchiga and Rodríguez-Sosa, 2002). Moreover, it has been shown 

that the presence of brain photoreceptors for light entrainment is both necessary 

and sufficient, but the important endogenous rhythm generator likely resides in the 

eyestalks (Strauss and Dircksen, 2010). To date, studies of transcriptional-level 

interactions between these tissues in krill and other crustaceans are scarce, 

possibly due to the need for complex dissection of both tissues (Pitzschler, 2018). 

Comparisons of relative mRNA levels for krill brain and eyestalk tissues at the same 

time point within the same biological replicates revealed no significant differences 

for Clk, Tim, Cwo, Vri, and Dbt (Fig. 14 and 15). Pitzschler (2018) had similar 

Warum  denn 
empfehlen den 
ganzen Kopf zu 
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findings for Clk, Tim, Cwo, and Vri but also for E75, Per and Cry2 in krill held under 

laboratory controlled LD 12:12. The results of the present study suggest that in wild 

winter krill both tissues are equally important for the gene expression of detected 

genes and additionally for the expression of Dbt. However, for Cyc, Sgg, Per, Cry2, 

E75, and Atpg significant variations could be demonstrated between brain and 

eyestalks (Fig. 14 and 15), which is in contrast to Pitzschler (2018) who only found 

differences for Cyc and Sgg. For Cyc, one of six investigated time points, and for 

Sgg, two of six investigated time points indicated significant higher mRNA levels in 

brain and eyestalks. For Per, Cry2, and Atpg, three of six investigated time points, 

and for E75 four of six investigated time points indicated significant higher mRNA 

expression levels in brain and eyestalks. Due to the fact that not all examined time 

points showed significant differences between the tissues, it is impossible to 

conclude in which of the investigated tissues gene expression is actually higher. 

Ultimately, the similar patterns of gene expression observed in both tissues supports 

the conclusion to use the whole head of krill in future investigations, also in order to 

prevent contaminations and to minimize other potential sources of error caused by 

tissues separation.  

Putative co-regulation of clock genes between tissues 

In this study, the relative mRNA maxima in the respective tissues were compared 

over time to identify putative co-regulation between brain and eyestalks in krill (Fig. 

16). Mean expression levels of the core clock genes Clk and Cyc and the associated 

clock genes Cwo and Sgg showed two maxima at TP02 and TP06 shifted by 16 

hours (Fig. 16, green). For Clk, maxima mean expression levels in brain were 

exhibited afterwards, shifted by 4 hours (TP03), while for the other clock genes 

maxima expression levels in brain were shifted by 16 hours (TP06). Maxima mean 

expression levels of core clock gene regulators Per and Cry2 showed two maxima in 

brain at TP01 and TP06 shifted by 20 hours (Fig.16, green) and a maximum 

expression level in eyestalks shifted by 20 hours (TP06). The maxima mean 

expression levels of the regulator Tim and the associated clock gene Dbt in both 

tissues exhibited a shift of 24 hour (TP06) (Fig. 16, green, violet). 

In general, nine out of ten clock genes displayed a general tendency for 

upregulation in the early night (TP06) in both tissues. This tendency for clock genes 

in krill was also observed in previous laboratory studies (Piccolin et al., 2018a). This 

is remarkable and suggests that the daily patterns of expression might indeed have 

been synchronized to the photoperiod in the investigated krill, despite all difficulties 

related to the different light exposure which the krill may have experienced by 
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vertically moving in the water column. One hypothesis could be that an endogenous 

rhythm is present at the molecular level which might only require brief light pulses at 

specific times during the day in order to be entrained as already shown in other 

marine zooplankton (van Haren and Compton, 2013; Cohen et al., 2015; Cisewski 

and Strass, 2016; Häfker et al., 2017). In the context of DVM, these light pulses 

might influence the krill as they are ascending towards the surface around sunset. 

Those impulses might be sufficient to entrain the clock for the following 24 h, 

contributing to the regulation of the descent towards deeper layers before sunrise, 

and triggering the next ascent on the following day. Of course, it must be also noted 

that the TP06 has been collected with a time difference of 53.5 h compared to the 

previous time points and therefore it might be questionable whether the data for 

TP06 are representative. 
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4.4 Improvements and indications for future studies 

In general, field studies of wild high-latitude species are always characterized by 

potential influences of environmental parameters (such as food availability, 

temperature, sea-ice cover, light regime), which, on the one hand makes it difficult to 

sample the animals and on the other incorporates very individual or special adaption 

regulations of the animals into the results. Thus, it may be advantageous to sample 

Figure 16: Schematic representation of potential co-regulation of clock genes over idealized 24 h 

cycle – Mean expression levels of Clk, Cyc, Per, Tim, Cry2, Cwo, Vri, E75, Sgg, Dbt, and Atpg were 

analyzed over 18 h +/- 6 hours to identify putative rhythmicity within a range of periods included between 

12 h and 24 h in daily patterns of gene expression. We tested for this range of periods to ensure a 

detection of all rhythmic circadian behavior, including potential bimodal patterns with 12 h. ‘Hours’ 

indicates the distance towards the next repetition in hours (potential rhythmicity). TP = time point, displays 

the time point of sampling every 3.5 h in a time period of 24 h, except for TP06 (it was 53.5 h). Distances 

between TPs were idealized to 4 hours due to clarity. Blue squares with white ‘B’ illustrate highest NRQ 

levels in brain, red half round squares with white ‘ES’ illustrate maximum mean expression levels in 

eyestalks. Half blue/half red squares illustrate maximum expression levels for both tissues at the same 

time point. Values on y-axis cannot be equated with relative mRNA levels. Genes are grouped in core 

clock genes (green), associated clock genes (yellow), kinases (purple) and metabolic genes (black). Grey 

bar indicates dark phase at the sea surface, while yellow field indicates light phase at the sea surface.  
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wild krill in a 24 h cycle if possible and not to allow 53.5 h to elapse between TP05 

and TP06, as in our case due to unfavorable weather conditions. Then again, 

however, it should be noted that this procedure was also done in approved previous 

field studies, where time points sampled on different days and locations were 

combined (Mazzotta et al., 2010; de Pittà et al., 2013). Nevertheless, to exclude 

influences of abrupt and extreme daily changes in high-latitude environments on to 

sampled krill, prolonged disruptions in sampling 24 h cycles together with changes 

in sampling locations should be avoided.  

In general, studying gene expression of biologically diverse individuals 

requires the consideration of certain methodological limitations: i) gene expression 

underlies biological variation leading to differences in expression levels. The 

exclusion of presumed outliers should be carefully assessed to ensure not to 

exclude realistic data with individual biological variability (see also 2.10 Statistics). ii) 

potential specific differences in sexes. In this study, samples were not divided by 

sexes hence inter-sex differences in gene expression levels cannot be excluded. 

Beyond others, this study contained the attempt to determine the optimal 

sampling tissue for future investigations in krill clock gene expression. Brain and 

eyestalks are known to contain circadian clock elements in crustacean (Strauss and 

Dircksen, 2010; Zhang et al., 2013) and therefore the potential differences in 

expression levels between krill brain and eyestalks were examined. The mRNA 

expression results of this study and the oscillation amplitudes which are comparable 

with other studies suggest that both tissues are suitable for an accurate 

determination of clock gene expression in krill. Taking into account the laborious 

dissection of the head into the individual tissue parts and the potential risk of 

contamination or damage to it, we recommend the use of the whole head for future 

clock gene expression studies. Furthermore, the knowledge about brain structures 

in krill should be expanded by examinations of different krill head tissues, because 

so far most studies are focused mostly on whole heads and eyestalks (Pittà et al., 

2008; Mazotta et al., 2010; Teschke et al., 2011; Seear et al., 2012; de; Biscontin et 

al., 2017; Kilada et al., 2017 (eyestalks); Piccolin et al., 2018a, Höring et al., in prep 

publication I) and also by establishing more accurate ways (for example using FISH) 

where the peacemaker cells are located within the krill neural system (Zhao et al., 

2003; Zhang et al., 2013; Kumar et al., 2014).  
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5 Conclusion 

Overall, knowledge of clock gene functions and regulations in high-latitude marine 

crustaceans, particularly in Antarctic krill, is very limited especially with regard to 

clock gene products, their distribution and their impact on oscillatory rhythmicity and 

chronobiological functions. Furthermore, studies of krill clock gene expression under 

natural winter conditions in the field are absent, thus this study provides initial 

insights into the regulatory clock work.   

In the methodological part of the present study, the aim was to enhance the 

detection of potential oscillation patterns and to reduce gene expression variability 

by tissue-specific analyses of krill brain and eyestalks. Tissue-specific gene 

expressions showed 24 h rhythmic oscillation patterns in eyestalks for the clock 

gene Tim and for the metabolic gene Atpg as well as 16 h rhythmic oscillation for the 

clock genes Cyc. In addition, for the clock gene Sgg the tissue-specific gene 

expression displayed 24 h and 16 h rhythmic oscillation in both brain and eyestalks, 

respectively. It should be noted, that no significant differences between the tissue-

specific amplitudes of oscillation were detected and moreover, tissue-specific results 

were comparable to previous gene expression findings from whole heads. Thus, for 

future studies using the entire head is recommended due to the indifferent 

amplitudes of oscillation between the examined brain and eyestalk tissues, but also 

regarding potential sources of error during the laborious separation of tissues.  

In final conclusion, it can be stated that this study identified significant 24 h 

and 16 h oscillatory rhythms in the relative gene expression of three important clock 

genes, Cyc, Sgg, and Tim, as well as in the metabolic gene Atpg in brain and 

eyestalks of Antarctic krill in winter. Furthermore, nine of ten clock genes displayed 

a general tendency for upregulation in the early night in both tissues during low to 

even absent light regime. This leads to the assumption that an endogenous rhythm 

might be also active during winter controlling clock gene expression and output 

functions.   

bmeyer
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6 Outlook 

With the identification of the transcriptome for the Antarctic key species E. superba 

(Hunt et al., 2017; Sales et al., 2017) a first molecular basis was established to 

enable more insights into chronobiological behavior and associated endogenous 

timing systems including contributions by certain clock genes at the 

transcriptional/translational level and at the neuroanatomical signal perception and 

transmission. Still, further detailed analyses of individual clock genes are required in 

order to characterize possible trigger mechanisms (Zeitgeber) on gene expression 

level as well as on protein level in order to determine a functional relationship within 

the krill endogenous clock system. One possibility might be to investigate disruptive 

effects on the circadian system by knock-out experiments of respective clock genes 

as already applied in insects (Bloch et al., 2003) or in marine crustaceans (Zhang et 

al., 2013). Knock-out cell lines do already exist for the terrestrial model organism 

Drosophila, but it is doubtful whether this will ever be possible for high-latitude krill. 

Future scientists must therefore be able to master challenges such as keeping krill 

in captivity, achieving focused reproduction of the animals, and promoting molecular 

genetic work on these small individuals. However, sampling wild krill in the field and 

working with them should be also pursued, as this might give a more realistic insight 

into the actual life circumstances of krill, which can be hardly reproduced in the 

laboratory (swarm behavior, DVM, food variability/intake behavior). In addition, 

techniques such as acoustic data or net catches for estimations concerning krill 

behavior, abundance or food availability, should be better linked in the future, using 

statistical analysis and ecological modelling (Tarling et al., 2017; Meyer et al., 2017; 

Reiss et al., 2017; Bernard et al., 2018). 

Furthermore, the exact localization of clock neurons in krill should be 

detected which requires an integrative approach linking neuroanatomy, molecular 

physiology, and chronobiology. In Drosophila, antibodies against certain circadian 

clock proteins indicated the position of neurons containing respective genes and the 

gene expression within was important to generate circadian activity (Siwicki et al., 

1988; Zerr et al., 1990; Kaneko et al., 2000; Helfrich-Förster et al., 2001). For a 

more holistic view of interaction, synchronization, and entrainment of clock genes in 

krill within and between tissues, the cellular distribution has to be defined. Therefore, 

it would be interesting to test already existing antibodies from Drosophila concerning 

suitability in Antarctic krill, as so far availability of krill specific antibodies is limited.   

In summary, scientific work on the circadian clock system in krill, especially 

in wild Antarctic krill, will be an interesting challenge in the future. The connection of 

already existing and future data might allow a more holistic understanding of the 
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relationships between ecological and physiological processes, and how they are 

regulated by endogenous timing systems. The data collection of this study provides 

a first basic insight into clock gene expression patterns in late-winter wild krill, which 

can be used for further predictions regarding internal processes regulated by 

circadian mechanisms. Moreover, information about clock functioning in krill and 

their variable adaptive nature to high-latitude environments, should be further 

focused and investigated to predict the impact of environmental changes driven 

by climate change on the regulation of krill’s life-cycle. 
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8 Appendix 

Determination of the optimal spike concentration for cDNA synthesis 

Real-time quantitative PCR (qPCR) titration curves were applied to determine the 

optimal concentrations of the spikes for final chronobiologic analyses. A dilution 

series of the spike transcripts was prepared with different concentrations (5 ng, 500 

pg (0.5 ng), 50 pg, 5 pg, 1.4 pg). The 4th dilution step (5 pg/µl) was diluted 1:3.5 

instead of 1:10 to reduce the degree of dilution and therefore preserve the integrity 

of the spike RNA. The cDNA synthesis was accomplished by adding 1 µl of the 

different spike dilution steps (for cDNA synthesis protocol see 2.5 cDNA synthesis of 

eyestalks and brain samples). For each qPCR reaction, 5 µl of 1:5 diluted cDNA (4 

ng/µl) were pipetted to 4 µl nuclease-free water, 1 µl primer mix (forward and 

reverse (360 µl, 20 x mix) of spike 1 and 2 or clock-gene), and 10 µl 2x TaqManTM 

Gene Expression Master Mix (Thermo Fisher Scientific, USA) to achieve a final 

reaction volume of 20 µl. Three technical replicates for each cDNA sample, no 

template controls (NTCs), and no reverse transcription controls (-RTs) were added 

on a 96-well reaction plate. In NTCs, the RNA template was replaced by nuclease-

free water during cDNA synthesis to identify putative contaminations of the RT-

qPCR master mix. Likewise, the enzyme reverse transcriptase was excluded in –RT 

controls during synthesis to inhibit the synthesis of cDNA in samples. qPCR 96-well 

plates were sealed, carefully vortexed, and briefly centrifuged. Thereafter, relative 

abundance of target RNAs was measured by the ViiATM 7 Real-Time PCR System 

(Thermo Fisher Scientific, USA). Reaction conditions were as follows: one cycle of 

stage 1 which included 50°C for 2 min and 95°C for 10 min, followed by 40 cycles of 

stage 2 which included 95°C for 15 s and 60°C for 1 min. After each qPCR run, 

results of NTCs and –RTs per plate were checked. Reliable results for NTCs should 

solely exhibit background noises or high Ct (cycle threshold) values as a result of 

primer-dimer formation. –RT controls allow the identification of DNA contamination, 

where genomic DNA gets amplified during qPCR runs and Ct values similar to those 

of samples may be detected. To analyze the samples as well as to compare 

between data obtained from different genes and qPCR runs, the baseline threshold 

for each qPCR run was set to 0.1. Due to the RT-qPCR results, 7.0 pg of spike 1 

and spike 2 were utilized for further molecular biological analyses (Fig. 9A). This 

concentration displayed similar Ct values compared to test runs with known clock-

genes (Fig. 9B) and consequently seemed appropriate.   
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Table 3: Primer efficiencies in tested brain tissues – 

Reaction efficiencies were calculated using the following 

formula: E = (10(-1/slope) -1) x 100. 

Table 4: Primer efficiencies in tested eyestalk tissues – 

Reaction efficiencies were calculated using the following 

formula: E = (10(-1/slope) -1) x 100. 
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Table 5: Results of statistical RAIN analysis in brain implemented by R - Data 

were fit to a sinusoidal curve with the required period. P-values and the phases of 

the sinusoidal curve (amplitude of the oscillation is maximal) are shown in the table 

for each gene. P-values were corrected for multiple comparisons using the false 

discovery method (fdr) of Benjamini, Hochberg, and Yekutieli (Benjamini and 

Hochberg, 1995; Benjamini and Yekutieli, 2001) implemented within the RAIN 

package. Significant p-values are indicated in bold. 

Table 6: Results of statistical RAIN Results of statistical RAIN analysis in brain 

implemented by R - Data were fit to a sinusoidal curve with the required period. P-

values and the phases of the sinusoidal curve (amplitude of the oscillation is 

maximal) are shown in the table for each gene. P-values were corrected for multiple 

comparisons using the false discovery method (fdr) of Benjamini, Hochberg, and 

Yekutieli (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001) 

implemented within the RAIN package. Significant p-values are indicated in bold. 

 



 
8 Appendix 

 

55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7: P-values of Mann-Whitney-Wilcoxon test - To compare the level of gene 

expression for each time point (TP) between eyestalk and brain tissues the Mann-

Whitney-Wilcoxon test were used. Bold p-values were still significant after fdr 

adjustment. 
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