214 research outputs found

    Effective bootstrapping of Peer-to Peer networks over Mobile Ad-hoc networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) and Peer-to-Peer (P2P) networks are vigorous, revolutionary communication technologies in the 21st century. They lead the trend of decentralization. Decentralization will ultimately win clients over client/server model, because it gives ordinary network users more control, and stimulates their active participation. It is a determinant factor in shaping the future of networking. MANETs and P2P networks are very similar in nature. Both are dynamic, distributed. Both use multi-hop broadcast or multicast as major pattern of traffic. Both set up connection by self-organizing and maintain connection by self-healing. Embodying the slogan networking without networks, both abandoned traditional client/server model and disclaimed pre-existing infrastructure. However, their status quo levels of real world application are widely divergent. P2P networks are now accountable for about 50 ~ 70% internet traffic, while MANETs are still primarily in the laboratory. The interesting and confusing phenomenon has sparked considerable research effort to transplant successful approaches from P2P networks into MANETs. While most research in the synergy of P2P networks and MANETs focuses on routing, the network bootstrapping problem remains indispensable for any such transplantation to be realized. The most pivotal problems in bootstrapping are: (1) automatic configuration of nodes addresses and IDs, (2) topology discovery and transformation in different layers and name spaces. In this dissertation research, we have found novel solutions for these problems. The contributions of this dissertation are: (1) a non-IP, flat address automatic configuration scheme, which integrates lower layer addresses and P2P IDs in application layer and makes simple cryptographical assignment possible. A related paper entitled Pastry over Ad-Hoc Networks with Automatic Flat Address Configuration was submitted to Elsevier Journal of Ad Hoc Networks in May. (2) an effective ring topology construction algorithm which builds perfect ring in P2P ID space using only simplest multi-hop unicast or multicast. Upon this ring, popular structured P2P networks like Chord, Pastry could be built with great ease. A related paper entitled Chord Bootstrapping on MANETs - All Roads lead to Rome will be ready for submission after defense of the dissertation

    A novel DHT Routing Protocol for MANETs

    Get PDF
    The central challenge in Mobile Ad hoc Networks (MANETs) is to provide a stable routing strategy without depending on any central administration. This work presents and examines the working of Radio Ring Routing Protocol (RRRP), a DHT based routing protocol for MANETs inspired from structured overlays in the internet. This design joins effort in answering the fundamental question of efficiency of a DHT substrate compared to conventional routing in ad hoc networks

    Effects of Data Replication on Data Exfiltration in Mobile Ad hoc Networks Utilizing Reactive Protocols

    Get PDF
    A swarm of autonomous UAVs can provide a significant amount of ISR data where current UAV assets may not be feasible or practical. As such, the availability of the data the resides in the swarm is a topic that will benefit from further investigation. This thesis examines the impact of le replication and swarm characteristics such as node mobility, swarm size, and churn rate on data availability utilizing reactive protocols. This document examines the most prominent factors affecting the networking of nodes in a MANET. Factors include network routing protocols and peer-to-peer le protocols. It compares and contrasts several open source network simulator environments. Experiment implementation is documented, covering design considerations, assumptions, and software implementation, as well as detailing constant, response and variable factors. Collected data is presented and the results show that in swarms of sizes of 30, 45, and 60 nodes, le replication improves data availability until network saturation is reached, with the most significant benefit gained after only one copy is made. Mobility, churn rate, and swarm density all influence the replication impact

    TDMA Slot Reservation in Cluster-Based VANETs

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are a form of Mobile Ad Hoc Networks (MANETs) in which vehicles on the road form the nodes of the network. VANETs provide several services to enhance the safety and comfort of drivers and passengers. These services can be obtained by the wireless exchange of information among the vehicles driving on the road. In particular, the transmission of two different types of messages, safety/update and non-safety messages. The transmission of safety/update message aims to inform the nearby vehicles about the sender\u27s current status and/or a detected dangerous situation. This type of transmission is designed to help in accident and danger avoidance. Moreover, it requires high message generated rate and high reliability. On the other hand, the transmission of non-safety message aims to increase the comfort on vehicles by supporting several non-safety services, from notifications of traffic conditions to file sharing. Unfortunately, the transmission of non-safety message has less priority than safety messages, which may cause shutting down the comfort services. The goal of this dissertation is to design a MAC protocol in order to provide the ability of the transmission of non-safety message with little impact on the reliability of transmitting safety message even if the traffic and communication densities are high. VANET is a highly dynamic network. With lack of specialized hardware for infrastructure and the mobility to support network stability and channel utilization, acluster-based MAC protocol is needed to solve these overcomes. This dissertation makes the following contributions: 1. A multi-channel cluster-based TDMA MAC protocol to coordinate intracluster communications (TC-MAC) 2. A CH election and cluster formation algorithm based on the traffic flow and a cluster maintenance algorithm that benefits from our cluster formation algorithm 3. A multi-channel cluster-based CDNIA/TDMA hybrid MAC protocol to coordinate inter-cluster communications I will show that TC-MAC provides better performance than the current WAVE standard in terms of safety/update message reliability and non-safety message delivery. Additionally, I will show that my clustering and cluster maintenance protocol provides more stable clusters, which will reduce the overhead of clusterhead election and re-clustering and leads to an efficient hierarchical network topology

    Integrating Wireless Sensor Networks and Mobile Ad-hoc NETworks for enhanced value-added services

    Get PDF
    In some situations where the standard telecommunication infrastructure is not available, Mobile Ad hoc NETworks (MANETs) can be deployed to provide the required communication. These networks are established "on the fly" without a need for prior communication organization and are composed of autonomous mobile devices, such as cell phones, PDAs or laptops. In similar conditions, such as in emergency response operations, integrating MANETs and Wireless Sensor Networks (WSNs) can notably enhance the MANET participant's end-user experience. WSNs sense and aggregate ambient information, such as physiological, environmental or physical data related to a nearby phenomenon. The integration, which provides end-user availability to WSN required information, is feasible via gateways. However, when the ambient information collected by WSNs is intended for applications residing in MANETs, centralized and fixed gateways are not practicably feasible. This is mainly due to ad-hoc nature, lack of centralized control and constraints on the end-user devices that are used in MANETs. These devices are usually limited in power and capacity and cannot host centralized gateways. In this thesis we exploit the integration of WSN and MANET in order to provide novel value-added services which enhance the end-user experience of MANET participants. Motivating scenarios are introduced, background information is presented, requirements are derived and the state of the art regarding the integration of WSN with existing networks, including MANETs, is evaluated. Based on the evaluation, none of the existing solutions satisfies all of our derived requirements. Therefore, we propose an overall two-level overlay architecture to integrate WSNs (with mobile sinks) and MANETs. This architecture is based on the distributed gateway and applications which form the P2P overlays. Overlays are application-layer networks which are created on top of the exiting MANET. To interconnect gateway and application overlays we derive corresponding requirements and evaluate the existing approaches. Since none of these approaches fulfills all of our requirements, we propose protocols, mechanisms and design corresponding modules for the interconnection of overlays. Finally we refine our overall architecture based on the interconnection aspects. As a proof of concept, we implement a prototype for the inter-overlay information exchange. This implementation is based on SIP extensions and uses two existing P2P middlewares. We also simulate our prototype using Oversim simulation tool and collect experimental results. Based on these results, we can see that our architecture is a valid and promising approach for interconnecting different P2P overlays and can be deployed to provide the overall solution for WSN and MANET integrated system

    An Enhanced Double-layered P2P System for the Reliability in Dynamic Mobile Environments

    Get PDF
    The double-layered peer-to-peer (P2P) systems were introduced to reduce the network traffic in MANET. The peers in the systems are classified into super peers and sub-peers. Super peers manage their neighboring sub-peers. The network communications in the systems are done mostly among super peers. In case when a pair of neighboring super peers is too far to communicate, one or two of their sub-peers bridges the super peers. However, the double-layered systems need to improve the reliability that guarantees communications among peers. In this paper, we propose a new double-layered P2P system in which super peers are selected based on their mobility. We also propose two reliability improvement schemes, the avoidance scheme and the role changing scheme. They are applied to the proposed system to enhance the reliability of the system. The proposed system is implemented in the dynamic mobile P2P environment where peers may join and leave the network dynamically and the number of peers varies. The various experiments are done with the Network Simulator-2 v2.33. The experimental results show that the proposed system with the two schemes improved the reliability over other double-layered systems in terms of the failure rate by up to 25 %, while increasing the network traffic marginally

    Cross-layer Peer-to-Peer Computing in Mobile Ad Hoc Networks

    Get PDF
    The future information society is expected to rely heavily on wireless technology. Mobile access to the Internet is steadily gaining ground, and could easily end up exceeding the number of connections from the fixed infrastructure. Picking just one example, ad hoc networking is a new paradigm of wireless communication for mobile devices. Initially, ad hoc networking targeted at military applications as well as stretching the access to the Internet beyond one wireless hop. As a matter of fact, it is now expected to be employed in a variety of civilian applications. For this reason, the issue of how to make these systems working efficiently keeps the ad hoc research community active on topics ranging from wireless technologies to networking and application systems. In contrast to traditional wire-line and wireless networks, ad hoc networks are expected to operate in an environment in which some or all the nodes are mobile, and might suddenly disappear from, or show up in, the network. The lack of any centralized point, leads to the necessity of distributing application services and responsibilities to all available nodes in the network, making the task of developing and deploying application a hard task, and highlighting the necessity of suitable middleware platforms. This thesis studies the properties and performance of peer-to-peer overlay management algorithms, employing them as communication layers in data sharing oriented middleware platforms. The work primarily develops from the observation that efficient overlays have to be aware of the physical network topology, in order to reduce (or avoid) negative impacts of application layer traffic on the network functioning. We argue that cross-layer cooperation between overlay management algorithms and the underlying layer-3 status and protocols, represents a viable alternative to engineer effective decentralized communication layers, or eventually re-engineer existing ones to foster the interconnection of ad hoc networks with Internet infrastructures. The presented approach is twofold. Firstly, we present an innovative network stack component that supports, at an OS level, the realization of cross-layer protocol interactions. Secondly, we exploit cross-layering to optimize overlay management algorithms in unstructured, structured, and publish/subscribe platforms

    Integrated Architecture for Configuration and Service Management in MANET Environments

    Full text link
    Esta tesis nos ha permitido trasladar algunos conceptos teóricos de la computación ubicua a escenarios reales, identificando las necesidades específicas de diferentes tipos de aplicaciones. Con el fin de alcanzar este objetivo, proponemos dos prototipos que proporcionan servicios sensibles al contexto en diferentes entornos, tales como conferencias o salas de recuperación en hospitales. Estos prototipos experimentales explotan la tecnología Bluetooth para ofrecer información basada en las preferencias del usuario. En ambos casos, hemos llevado a cabo algunos experimentos con el fin de evaluar el comportamiento de los sistemas y su rendimento. También abordamos en esta tesis el problema de la autoconfiguración de redes MANET basadas en el estándar 802.11 a través de dos soluciones novedosas. La primera es una solución centralizada que se basa en la tecnología Bluetooth, mientras la segunda es una solución distribuida que no necesita recurrir a ninguna tecnología adicional, ya que se basa en el uso del parámetro SSID. Ambos métodos se han diseñado para permitir que usuarios no expertos puedan unirse a una red MANET de forma transparente, proporcionando una configuración automática, rápida, y fiable de los terminales. Los resultados experimentales en implementaciones reales nos han permitido evaluar el rendimiento de las soluciones propuestas y demostrar que las estaciones cercanas se pueden configurar en pocos segundos. Además, hemos comparado ambas soluciones entre sí para poner de manifiesto las diferentes ventajas y desventajas en cuanto a rendimento. La principal contribución de esta tesis es EasyMANET, una plataforma ampliable y configurable cuyo objetivo es automatizar lo máximo posible las tareas que afectan a la configuración y puesta en marcha de redes MANET, de modo que su uso sea más simple y accesible.Cano Reyes, J. (2012). Integrated Architecture for Configuration and Service Management in MANET Environments [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14675Palanci

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii
    corecore