
Department of Information Engineering, University of Pisa, Italy

Ph.D. Thesis - XVIII Cycle

Design, Implementation and Experimental evaluation
of CrossROAD:

a novel P2P platform for MANETs

Ph.D. Candidate

Franca Delmastro

Advisors

Prof. Giuseppe Anastasi

Ing. Enrico Gregori

February 2006

Contents

1. Introduction 3

2. Thesis Contribution 5

3. Thesis Layout 7

4. MANET: Multi-hop Ad hoc NETworks 9
4.1. Introduction . 9

4.2. Multi hop Ad hoc Networks . 10

4.3. Architecture and Protocols . 11

4.3.1. Enabling Technologies . 11

4.3.2. Networking Protocols . 12

4.3.3. Middleware and Applications . 12

5. Routing Protocols for Ad Hoc Networks 15
5.1. AODV: Ad hoc On demand Distance Vector routing 16

5.2. OLSR: Optimized Link-state routing protocol . 18

6. P2P platforms in wired networks 21
6.1. Structured overlay networks . 22

6.1.1. Content-Addressable Network . 23

6.1.2. Chord . 24

6.1.3. Pastry . 25

7. Small-scale Ad Hoc network test-bed: Routing and Middleware performance 29
7.1. Test-bed reference architecture . 30

7.2. Experiments Environment . 32

7.3. Experiments warm-up: a qualitative analysis . 34

7.3.1. Unik-OLSR Testing . 34

7.3.2. UU-AODV Testing . 35

7.3.3. FreePastry Testing . 36

7.4. Quantitative analysis . 37

7.4.1. AODV and OLSR Performance . 37

7.4.1.1. Experiment 1 . 38

7.4.1.2. Experiment 2 . 39

ii

7.4.2. Performance of FreePastry on Ad Hoc Networks 40

7.5. Lessons learned and further work . 46

8. The Cross-Layer Architecture 49
8.1. The Network Status . 50

8.2. Examples of Cross-Layer interactions . 52

9. From Pastry to CrossROAD:
Cross-layer Ring Overlay for AD hoc networks 55
9.1. Node Identifiers and Service Discovery protocol . 55

9.2. Managing overlay data structures . 57

9.3. CrossROAD Subject-based routing . 58

10. Software Architecture 61
10.1.XL-plugin: the NeSt implementation . 61

10.2.The P2P CommonAPI and its cross-layer enhancements 66

10.3.CrossROAD Software Architecture . 72

11. CrossROAD on a small-scale ad hoc network testbed 77
11.1.Testbed architecture and experiments environment 77

11.2.Experiments and performance evaluation . 78

11.2.1. Routing performance . 78

11.2.2. Overlay network performance . 81

11.3.Conclusions . 84

12. CrossROAD on a medium-large scale ad hoc network testbed 87
12.1.The network topology . 88

12.2.Middleware Experiments . 89

12.3.Network load analysis . 91

12.4.Delays Analysis . 97

12.5.Data Distribution in case of delayed joining of the overlay 98

12.6.Conclusions . 99

13. Distributed Applications on CrossROAD 101
13.1.A Group-Communication application: the Whiteboard 101

13.1.1. Scribe Overview . 102

13.1.2. Experimental Environment . 103

13.1.3. Performance with Pastry . 105

13.1.4. Multicast Tree Quality . 108

13.1.5. CrossROAD Improvements . 109

13.1.6. Overlay management overhead . 111

13.2.Content Sharing: The UDDI approach . 113

14. Conclusions 117

c© Franca Delmastro, February 2006

Contents iii

A. XL-CommonAPI: the complete speci�cation 121

c© Franca Delmastro, February 2006

List of Figures

4.1. MANET Layered Architecture . 11

5.1. AODV Route Discovery . 17

5.2. AODV unidirectional links . 17

5.3. MPRs selection . 18

6.1. Pastry Overlay Data Structures . 26

6.2. Example of Pastry routing . 27

7.1. Reference Architecture . 30

7.2. Experiments Area . 32

7.3. Experiments Scenario . 33

7.4. Routing Network Topology . 38

7.5. OLSR overhead . 39

7.6. AODV overhead . 40

7.7. OLSR overhead in case of disconnection event . 41

7.8. AODV overhead in case of disconnection event . 41

7.9. Network Topology for FreePastry Experiments . 42

7.10.Traffic Load on each node running Pastry on top of OLSR 43

7.11.Traffic Load on each node running Pastry on top of AODV 43

7.12.Node F traffic on an OLSR network . 44

7.13.Node F traffic on an AODV network . 45

7.14.Node A traffic profile (AODV case) . 45

8.1. Cross-Layer Architecture . 50

9.1. Cross-layer interactions for the service discovery . 56

9.2. Sending of an application message . 57

9.3. Overlays subject-basd routing . 59

10.1.Overview of the software architecture . 62

10.2.UNIK-olsr software architecture . 62

10.3.CrossROAD and routing protocol interaction through the plug-in definition. 64

10.4.Nodes communication example. 64

10.5.XL-plugin as cross-layer interaction between CrossROAD and OLSR. 65

vi

10.6.XL-plugin internal data structures. 65

10.7.Sequence Diagram . 66

10.8.XL-Common API class diagram. 68

10.9.CrossROAD package diagram . 72

10.10.CrossROAD activity diagram . 76

11.1.String topology . 79

11.2.Experimental network topology . 81

11.3.CrossROAD: Throughput related to main nodes. 82

11.4.Pastry: Throughput related to main nodes. 83

11.5.CrossROAD mobility experiment . 84

11.6.CrossROAD reaction to network partitioning . 84

12.1.Testbed area . 87

12.2.Physical position of nodes . 88

12.3.Network topology . 89

12.4.Topology graph . 89

12.5.Network topology for delayed joining experiment 92

12.6.Average aggregate network load . 93

12.7.Average aggregate network load, the first phase . 94

12.8.Average network load . 94

12.9.Routing traffic load . 95

12.10.CrossROAD overlay . 96

12.11.Pastry on OLSR overlays . 97

12.12.Pastry on AODV overlays . 97

12.13.Delay Distribution . 98

12.14.CrossROAD data Distribution . 99

13.1.Two nodes running WB . 102

13.2.Scribe building the tree (a), and disseminating messages (b). 103

13.3.Network Topology . 104

13.4.Network Load with Pastry . 112

13.5.Network Load with CrossROAD . 112

13.6.UDDI4m nodes on CrossROAD overlay . 114

14.1.Integration of mobile and fixed p2p systems. 118

A.1. Packages Diagram: XL-CommonAPI and its interactions with p2p systems and ap-

plications. 121

A.2. Class Diagram: Id interface . 122

A.3. Class Diagram: IdFactory interface . 122

A.4. Class Diagram: NodeHandle interface . 123

A.5. Class Diagram: Message interface . 123

A.6. Class Diagram: RouteMessage interface . 123

A.7. Class Diagram: Endpoint interface . 124

c© Franca Delmastro, February 2006

List of Figures vii

A.8. Class Diagram: OverlayRoutingTable interface . 126

A.9. Class Diagram: NetworkRoutingTable interface . 127

A.10.Class Diagram: Node interface . 127

A.11.Class Diagram: Application interface . 127

A.12.Class Diagram: InitCommonAPI class . 128

c© Franca Delmastro, February 2006

List of Tables

11.1.Overall Packet Delivery Ratio. 81

11.2.CrossROAD delays for the overlay construction. 82

12.1.CrossROAD delays for the overlay construction. 95

12.2.Delays distribution . 96

Acknoledgments

During these years I had the pleasure to work with several people who helped me with their

experience and gave me their invaluable support addressing my research.

First of all, I would like to express my gratitude to my advisors, Prof. Giuseppe Anastasi of the

Information Engineering Department (University of Pisa), Dr. Enrico Gregori and Dr. Marco Conti

of the Institute of Informatics and Telematics of CNR in Pisa. Their guidelines, suggestions, and

encouragements supported me in all this time.

Then, I would like to thank all my colleagues and friends with which I shared this important

experience, especially Eleonora, Andrea, Luciana, Raffaele, Patrizia, Giovanni e Gaia. Working

with them I learned that the collaboration is the best help you can give.

Finally, I would like to give my special thanks to my husband Giacomo and all my family for their

loving support.

1. Introduction

Mobile ad hoc networks (MANETs) represent complex distributed systems composed of wireless

mobile nodes, which can freely and dynamically self-organize themselves into arbitrary and tem-

porary "ad-hoc" network topologies. This spontaneous form of networking allows people and

devices to seamlessly exchange information in areas with no pre-existing communication infras-

tructure (e.g. disaster recovery environments). While the early MANET applications and deploy-

ments have been military oriented, civilian applications have also grown substantially since then.

Especially in the past few years, with the rapid advances in mobile ad hoc networking research,

mobile ad hoc networks have attracted considerable attention and interests from commercial busi-

ness industry, as well as the standards community. The introduction of new technologies, such

as Bluetooth and IEEE 802.11, greatly facilitated the deployment of ad hoc technology outside

the military domain, generating a renewed and growing interest in research and development of

MANET.

While ad hoc networking applications appeared mainly in specialized fields such as emergency

services, disaster recovery and environment monitoring, MANET flexibility makes this technology

attractive for several applicative scenarios like, for example: personal area and home networking,

law enforcement operation, search-and-rescue operations, commercial and educational applica-

tions, and sensor networks. Currently developed mobile ad hoc systems adopt the approach of not

having a middleware, but rather rely on each application to handle all the services they need. This

constitutes a major complexity/inefficiency in the development of MANET applications. Indeed,

most of the MANET research is concentrated on the Enabling Technologies, and on Networking

protocols (mainly routing), see [CCL03], while research on middleware platforms for mobile ad

hoc networks is still in its infancy. Recently, in research circles, some middleware proposals for

mobile ad hoc environments appeared in [MC02] [Her03] [MPR01] [MCZE02b] [BCM05].

Their emphasis is on supporting transient data sharing [MPR01] between nodes in communication

range, data replication for disconnected operations [BCM05] [MCZE02a], or both [Her03]. To

achieve this, classical middleware technologies have been adopted. These include tuple spaces,

mobile agents, and reactive programming through the usage of events’ publishing/subscribing

[MCZE02a] [MPR01] [ADGS02]. In addition, in order to develop distributed applications aimed

at sharing resources between nodes, peer-to-peer (p2p) systems represent a reliable model also

for ad hoc networks. In fact, ad hoc networking shares many concepts, such as distribution and

cooperation, with the p2p computing model [SGF02], representing a natural paradigm for these

networks. However, while all these technologies provide service abstractions that highly simplify

application development in wired networks, their efficiency in ad hoc environments is still an open

issue.

4

Focusing on p2p systems, one of their main defining characteristic is their ability to provide effi-

cient, reliable, and resilient message routing between their constituent nodes by forming virtual ad

hoc topologies on top of a real network infrastructure. The difference with traditional distributed

computing systems is the lack of a central authority that controls the various components; instead,

nodes form a dynamic and self-organizing system. Best suited applications for p2p implementa-

tion are those where centralization is not possible, relations are transient, and resources are highly

distributed [PC02]. In particular, the range of applications covered by the p2p model includes file

sharing, distributed search and indexing, resource storage, collaborative work, etc. The key aspect

of p2p systems is the ability to provide inexpensive, but at the same time scalable, fault tolerant

and robust platforms. For example, file sharing systems, like Gnutella [KM02], are distributed

system where the contribution of many participants with small amounts of disk space results in a

very large database distributed among all participant nodes.

In this thesis we investigate the efficiency of p2p middleware platforms when implemented in

mobile ad hoc networks and their possible optimizations. This work started from the study of ex-

istent p2p systems developed for Internet with particular attention to structured overlay networks
[RFH+01] [SMK+01] [RD01]. The analysis led to the selection of a particular solution (Pastry

[RD01]) for its scalability with high numbers of nodes, and to an experimental evaluation of its

performance on small-medium scale MANETs [BCDP05] [CDT05] [d16]. Experimental results

highlithed limitations and drawbacks of this system on ad hoc networks, encouraging the defini-

tion of an optimized solution based on a cross-layer architecture [CMTG04]. Specifically, a new

p2p system for MANETs has been defined [Del05] and an exhaustive performance analysis on

small and medium scale ad hoc networks [BCDG05] [d16] highliths its advantages. In addition,

several applications already developed for Internet have been ported on this new system [DP05]

[d13] further optimizing their performance.

c© Franca Delmastro, February 2006

2. Thesis Contribution

The main contribution of this thesis is to provide a new optimized p2p system for ad hoc networks

based on a cross-layer architecture in order to exploit many distributed applications developed for

the Internet on top of legacy p2p systems even in MANET environments. Using known services

on MANETs can represent a good incentive for users to adopt this technology in the daily use

supporting mobility and cooperation between users and devices. However, simulations and ex-

perimental results [CDT05] show that existent solutions developed for wired networks cannot be

adopted in MANETs, since they introduce high network overhead not supporting nodes mobility

and intermittent connectivity. For this reason a new solution called CrossROAD has been designed

[Del05].

This system inherits the main charateristics of structured overlay networks, with particular refer-

ence to the Pastry model [RD01]. At the same time it drastically reduces the network overhead

needed by the original system to maintain the overlay data structures and it correctly manages net-

work partitioning and nodes mobility exploiting a cross-layer interaction with a proactive routing

protocol.

The main reason of low performance of legacy p2p systems on ad hoc networks is represented by

the complete lack of correspondence between physical and logical address spaces. In fact, struc-

tured p2p systems define a logical space where nodes and data are mapped through a Distributed

Hash Table (DHT). A logical identifier is associated to each node independently from their physi-

cal position, and data are distributed among nodes following a specific policy called subject-based
routing: a key value is associated to each message to be sent on the network and the destination

node is selected as that whose logical identifier is the closest one to the key value. Thus, nodes

that are physical neighbors are probably distant on the logical space and data are delivered to

their final destination following a proximity logic between nodes known by the sender. Since

these systems have been thought for Internet, where thousands of nodes can be involved in the

same service, every node does not know all the other participants. For this reason each message

could pass through several nodes physically distant before reaching the final destination, even if

it is a physical neighbor of the sender.

A cross-layer architecture as defined in [CMTG04] allows the interaction between protocols be-

longing to different layers of the legacy protocol stack. Each protocol can share its information

with the others supporting their optimization. In particular, using a proactive routing protocol

at the network level and exporting topology information to other protocols of the stack, allows

each node to have a complete knowledge of the network topology and to become aware of nodes

mobility and connection/disconnection events. In case of p2p systems, this guarantees the possi-

bility of maintaining a correspondence between logical and physical spaces and it is also exploited

6

to spread upper-layer information on the network through the proactive flooding of the routing

protocol.

CrossROAD exploits these two main features of the cross-layer interaction with a proactive routing

protocol. Therefore it drastically reduces the network overhead and guarantees a high responsive-

ness of the system to nodes mobility and network partitioning. In addition, since CrossROAD

implements a common interface for structured p2p systems already defined in [DZD+03], it sup-

ports all distributed applications developed on top of these systems and it can furtherly optimize

them through cross-layer extensions applied to the same interface [CDG].

During this thesis CrossROAD has been designed, developed and tested together with a prototype

of cross-layer architecture aimed at only middleware and routing interactions. An exhaustive

experimental analysis of the entire system performance has been conducted on small and medium

scale ad hoc networks, highlithing advantages of this new solution compared with Pastry system.

In addition several applications have been developed on top of it and further optimizations for ad

hoc networks are currently under development.

c© Franca Delmastro, February 2006

3. Thesis Layout

The thesis is organized as follows. First of all a description of multi hop ad hoc networks is given

in Chapter 4 with particular attention to architecture and protocols. Specifically, in Chapter5 we

focus on routing protocols for ad hoc networks, detailing main features of a reactive and a proac-

tive solution. Then an overview of existent p2p systems on wired networks is given in Chapter 6

with particular attention to structured overlay networks and the Pastry model. A preliminary ex-

perimental analysis of routing protocols and Pastry on a small-scale testbed is detailed in Chapter

7. Starting from this results, we describe main fetaures of a cross-layer architecture in Chapter 8

and the design of CrossROAD and the software architecture of the entire system are described in

Chapter 9 and 10 respectively. Then an extensive experimental evaluation of CrossROAD on small

and medium-large scale testbeds is given in Chapter 11 and 12. Finally, description and perfor-

mance evaluation of some distributed applications developed on top of CrossROAD are detailed

in Chapter 13 followed by conclusions and future work.

4. MANET: Multi-hop Ad hoc NETworks

4.1. Introduction

The hardware and software progress of the last ten years provided the basic elements (wearable

computers, several wireless-network technologies, devices for sensing and remote control, etc.) for

developing pervasive computing and communication systems [CD04]. We can envisage a physical

world with pervasive, sensor-rich, network-interconnected devices embedded in the environment

[ECPS02]. In these systems the environment is saturated with computing and communication ca-

pabilities, that interact among them, and with the users. In this environment, virtually everything

(from key chains to computers, and PDAs) is connected to the network, and can originate and re-

spond to appropriate communications. The nature of ubiquitous devices makes wireless networks

the easiest solution for their interconnection. Furthermore, in a pervasive computing environ-

ment, the infrastructure-based wireless communication model is often not adequate: it takes time

to set up the infrastructure network, while the costs associated with installing infrastructure can be

quite high. These costs and delays may not be acceptable for dynamic environments where people

and/or vehicles need to be temporarily interconnected in areas without a pre-existing communica-

tion infrastructure (e.g., inter-vehicular and disaster networks), or where the infrastructure cost is

not justified (e.g., in-building networks, specific residential communities networks, etc.). In these

cases, ad hoc networks provide a more efficient solution [CD04].

In the ad hoc networking paradigm, a group of mobile devices self-organizes to create a network

by exploiting their wireless network interfaces, without the need of any pre-deployed infrastruc-

ture. The simplest ad hoc network is a peer-to-peer network formed by a set of stations within

the range of each other that dynamically configure themselves to set up a temporary single-hop

ad hoc network. Bluetooth piconet is probably the most widespread example of single-hop ad

hoc network [Bid01]. 802.11 WLANs can also be implemented according to this paradigm, thus

enabling laptops communications without the need of an access point. Several emerging wireless-

network standards support the ad hoc networking paradigm. IEEE 802.15.4 for short-range low

data rate (< 250 kbps) networks (also known as Zigbee), Bluetooth (IEEE 802.15.1) for personal

area networks, and the 802.11 standards family for high-speed medium-range ad hoc networks

[CD04].

Single-hop ad hoc networks interconnect devices that are within the same transmission range. This

limitation can be overcome by exploiting the multi-hop ad hoc paradigm. In a multi-hop network,

often referred to as MANET, the network nodes (e.g., the users mobile devices) must coopera-

tively provide the features usually provided by the network infrastructure (e.g. routers, switches,

servers). Nearby nodes can communicate directly by exploiting a single-hop wireless technology

10

(e.g., Zigbee, Bluetooth, 802.11, etc.) while devices that are not directly connected communicate

by forwarding their traffic via a sequence of intermediate devices ([CCL03], [BCGS04]).

Multi-hop ad hoc networking is not a new concept having been around for over twenty years,

mainly as tactical networks. Recently, the emerging of wireless networking technologies for con-

sumer electronics are pushing multi-hop networks outside the military domain. Pure multi-hop

mobile ad hoc networks are attractive for specialized scenarios like disaster recovery, vehicle-to-

vehicle communications, and home networking but have a very limited mass-market deployment.

To turn mobile ad hoc networks into a commodity, we should move to a more pragmatic scenario

in which multi-hop ad hoc networks are used as a flexible and low cost extension of Internet.

Indeed, a new class of networks is emerging from this view: the mesh networks [BCG05]. Un-

like MANETs, where every routing node is mobile, routing nodes in mesh networks are stationary

and form the networks backbone, which has connections to Internet. Client nodes connect to

the mesh nodes and use the backbone to access the Internet. Mesh networks scenarios are mov-

ing multi-hop wireless networking from emergency-disaster-relief and battlefield scenarios to the

main networking market.

4.2. Multi hop Ad hoc Networks

Mobile ad hoc networks are formed dynamically by a set of mobile nodes that are connected

via wireless links without using any existing network infrastructure, such as a base station, for

their operation (hence they are also referred to as infrastructure-less). The nodes are free to

move randomly and organize themselves arbitrarily. Thus, the networks wireless topology may

change rapidly and unpredictably. Such networks may operate in a standalone fashion, or may be

connected to the Internet. The ad hoc networks flexibility and convenience do come at a price.

Indeed, in addition to the traditional problems of wireless networking, the multi-hop nature,

and the lack of fixed infrastructure add a number of characteristics, complexities, and design

constraints that are specific to these networks [CCL03]:

✧ Autonomous and infrastructure-less. MANET does not depend on any established infrastruc-

ture or centralized administration. Each node operates in distributed peer-to-peer mode,

acts as an independent router and generates independent data. This makes fault detection

and management very difficult.

✧ Multi-hop routing. Every node acts as a router and forwards each others packets to enable

information sharing between mobile hosts.

✧ Dynamically Changing Network Topologies. Nodes mobility causes changes in the network

topology frequently and unpredictably. This may produce route changes, network partitions,

and possibly packet losses.

✧ Variation in Link and Node Capabilities. Nodes might have different software/hardware re-

sources and configurations, thus generating a heterogeneous network which is complex to

manage. For example nodes may be equipped with heterogeneous wireless cards which

produces asymmetric links.

c© Franca Delmastro, February 2006

Architecture and Protocols 11

Figure 4.1.: MANET Layered Architecture

To cope with these issues, several functions and protocols need to be implemented in MANET pro-

tocol stack. This produced extensive research activities both in academy and in industry. The IETF

MANET working group has the main role in standardizing protocols for mobile multi-hop ad hoc

network [man]. IETF MANET WG proposes a view of mobile ad hoc networks as an evolution of

the Internet. This mainly implies an IP-centric view of the network, and the use of a layered archi-

tecture. This paradigm has greatly simplified network design and make easier the interconnection

to the Internet. However, as explained in Section 4.3, this approach limits the development of ef-

ficient solutions which are very important in a resource-constrained environment. For this reason,

new MANET organizations based on the cross-layering approach are emerging.

4.3. Architecture and Protocols

In this section, we briefly review the main protocols (see Fig.4.1) required to support distributed

applications in a mobile ad hoc environment. In the presentation we will follow a layered approach

starting from the enabling technologies up to the applications.

4.3.1. Enabling Technologies

Enabling Technologies are a fundamental building block of ad hoc networks by providing wireless

interfaces able to guarantee direct single-hop communications between users devices. Currently,

connectivity is provided by wireless LANs (e.g., 802.11 WLAN standard), or somewhat smaller and

less expensive Bluetooth devices. However, to provide the network connectivity to sensor nodes,

technologies cheaper, simpler, lighter, and with lower power than these are necessary. These

solutions should be able to support low bit rates (e.g., less than 100 Kbps), short ranges (few

meters), low power requirements, and above all, they must be extremely inexpensive. The IEEE

802.15.4 specification, also known as Zigbee, is one of the most promising solutions for short-

range, low data rate (< 250 kbps), personal area networking. Specifically, 802.15.4 is designed

c© Franca Delmastro, February 2006

12

to address wireless networking requirements for industrial control, home automation and control,

inventory management, as well as wireless sensor networks [CGH+02]. A detailed discussion of

enabling technologies for Ad hoc Wireless Networks can be found in [CD04].

4.3.2. Networking Protocols

The aim of the networking protocols is to use the one-hop transmission services provided by the

enabling technologies to construct end-to-end (reliable) delivery services, from a sender to one (or

more) receiver(s). This is the set of problems on which researchers mainly focused on [CCL03].

The primary objective of networking protocols is to deliver a message from a sender to a receiver

outside its transmission range by exploiting the services offered by intermediate nodes. The sim-

plest solution is based on flooding the messages through the network. Of course, flooding does

not scale, and hence this approach is only suitable for limited size networks. Controlling the flood-

ing area and/or the number of messages to flood can help to refine the technique. For example,

flooding can be used only when the first message have to be sent from the sender to the receiver

to discover the receiver location, then successive packets can be delivered along the path discov-

ered when delivering the first message. Identifying the path between the sender and the receiver

and then delivering the packets along this path is exactly the objective of routing and forwarding

algorithms, respectively. Numerous routing protocols and algorithms have been proposed, and

their performance under various network environments and traffic conditions have been studied

and compared. Several surveys and comparative analysis of MANET routing protocols have been

published, see e.g. [BR04].

The classification of routing protocols for MANETs is detailed in Chapter 5 with particular attention

to two specific solutions.

4.3.3. Middleware and Applications

Mobile ad hoc systems currently developed have the applications directly running on top of the

transport layer by exploiting via the legacy socket interface the services offered by the TCP and

UDP protocols. No middleware services are generally implemented, but each application has to

handle all the services it needs. This constitutes a major complexity/inefficiency in the applica-

tions development, which can be fixed with the development of middleware platforms tuned on

the unique MANET features. Currently, research on middleware for mobile ad hoc networks is still

in its infancy and only recently middleware proposals for mobile ad hoc environments appeared,

e.g., see [BCM05], and references herein. As ad hoc networks shares many concepts with the peer-

to-peer (p2p) computing system, exploiting the p2p paradigm for designing middleware platforms

for MANET is emerging as a very promising direction [CDT05]. In ([BCDG05], [CGT05]) the au-

thors investigate the efficiency of p2p middleware platforms when implemented on mobile ad hoc

networks. In spite of the massive research efforts, multi-hop ad hoc networks have still limited

usage scenarios. More precisely, currently multi-hop ad hoc networks are generally used either

for implementing tactical networks (e.g., military communications, automated battlefields) or for

c© Franca Delmastro, February 2006

Architecture and Protocols 13

supporting communications in specialized civilian scenarios (disaster recovery, planetary explo-

ration, vehicular networks, etc). On the other hand, general-purpose civilian applications able to

push a mass-market deployment of these networks have not yet been identified. A first step in

this direction is reported in [d10] where new applications (city cab, mobile games, and shopping

mall) have been identified that can leverage the ad hoc technology to provide valuable services to

the user.

In this thesis we investigate a complete MANET architecture involving all these protocols, from

the network layer up to the application layer, in order to understand how this new technology can

become part of the daily life of million of users and what kind of enhancements are necessary to

improve it.

c© Franca Delmastro, February 2006

5. Routing Protocols for Ad Hoc Networks

The highly dynamic nature of a mobile ad hoc network results in frequent and unpredictable

changes of network topology, adding difficulty and complexity to routing among mobile nodes.

Challenges and complexities, coupled with the critical importance of routing protocols in estab-

lishing communications among mobile nodes, make routing area the most active research area

within the MANET domain. They also represents the basis on which all upper layer protocols are

developed. for this reason a deep analysis of existent routing protocols and their performance is

necessary before studying the rest of the architecture.

Numerous routing protocols and algorithms have been proposed, and their performance has been

studied and compared under various network environments and traffic conditions. Several surveys

and comparative analysis of MANET routing protocols have been published [BRT99], [BR04].

[Per00] provides a comprehensive overview of routing solutions for ad hoc networks, while an

updated and in depth analysis of routing protocols for mobile ad hoc network is presented in

[BR04]. A preliminary classification of the routing protocols can be done via the type of cast

property, i.e. whether they use a Unicast, Geocast, Multicast, or Broadcast forwarding.

Broadcast is the basic mode of operation over a wireless channel. Each message transmitted on a

wireless channel is generally received by all neighbors at one-hop from the sender. The simplest

implementation of the broadcast operation to all network nodes is by classical flooding, but this

may cause the broadcast storm problem due to redundant re-broadcast [NTCS99]. Schemes have

been proposed to alleviate this problem by reducing redundant broadcasting. [SW03] surveys

existing methods for flooding a wireless network intelligently.

Unicast forwarding means a one-to-one communication, i.e., one source transmits data packets to

a single destination. This is the largest class of routing protocols found in ad hoc networks.

Multicast routing protocols come into play when a node needs to send the same message, or stream

of data, to multiple destinations.

Geocast forwarding is a special case of multicast that is used to deliver data packets to a group

of nodes situated inside a specified geographical area. Nodes may join or leave a multicast group

as desired, on the other hand, nodes can only join or leave a geocast group only by entering or

leaving the corresponding geographical region.

This work only focuses on unicast routing protocols whose primary goal is the correct and effi-

cient route establishment and maintenance between couples of nodes, so that messages may be

delivered reliably and in a timely manner.

They are typically divided into two main categories: proactive routing protocols and reactive on-
demand routing protocols [BRT99].

16

Proactive routing protocols derive from legacy Internet distance-vector and link-state protocols.

They attempt to maintain consistent and updated routing information for every pair of network

nodes by propagating, proactively, route updates at fixed time intervals. Since the routing infor-

mation is usually maintained in tables, these protocols are sometimes referred to as Table-Driven

protocols.

Reactive on demand routing protocols, on the other hand, establish the route to a destination only

when it is requested through the route discovery process. Once a route has been established, it is

maintained until either the destination becomes inaccessible, or until the route is no longer used,

or expired [BRT99] [BR04].

Actually, another category of routing protocols exists in literature: hybrid routing protocols. They

integrate characteristics of these two families and exhibit proactive or reactive behaviours de-

pending on the situation. ZRP (Zone Routing Protocol) [Haa97] belongs to this category, taking

advantage of proactive discovery within a node’s local neighborhood, and using a reactive protocol

for communicating with these neighbors.

Most work on routing protocols is being performed in the framework of the IETF MANET working

group [man], where four routing protocols are currently under active development. These include

two reactive routing protocols, AODV [PR99] and DSR [JM96], and two proactive routing proto-

cols, OLSR [rfc] and TBRPF [tbr]. There has been good progress in studying protocols behavior

(almost exclusively by simulation), as can be seen in the large conference literature. However,

today AODV and OLSR are the most mature from the implementation standpoint; for the others

either updated implementations are not available (DSR) or there are no freely available imple-

mentations (TBRPF). For this reason, reliable implementations of AODV [aod] and OLSR [Ton]

have been integrated in this test-bed, and their main characteristics are explained in following

sections.

5.1. AODV: Ad hoc On demand Distance Vector routing

As previously mentioned, reactive routing protocols depart from the legacy Internet approach

adding a particular optimization: to discover a route only when it is needed. AODV minimizes the

number of route broadcasts by creating routes on-demand via a route discovery procedure that

works as follows. Whenever a traffic source needs a route to a destination, it initiates a route

discovery by floodig a route request (RREQ) for the destination in the network, and then it waits

for a route reply (RREP). When an intermediate node receives the first copy of a RREQ packet, it

sets up a reverse path to the source using the previous hop of the RREQ as the next hop of the

reverse path. Specifically, if it has a valid route available for the destination, it unicasts a RREP

back to the source via the reverse path, otherwise, it re-broadcasts the RREQ packet. Duplicate

copies of the RREQ are immediately discarded upon reception at every node. Once the RREQ

reaches the destination, it unicasts the RREP back to the source and if it is correctly received by

the source, it establishes a forward path to the destination at each hop. A simple example is shown

in Fig.5.1.

c© Franca Delmastro, February 2006

AODV: Ad hoc On demand Distance Vector routing 17

Figure 5.1.: AODV Route Discovery

Figure 5.2.: AODV unidirectional links

To guarantee the use of only bidirectional links in route discovery procedures and the consequent

definition of a path towards a destination, AODV defines some techniques [MD02] and a selected

one, called BlackListing, has been adopted in the last specification of the protocol. Specifically,

when a node detects a RREP transmission failure (e.g. in case it does not receive a RREP or it

receives one with a different reverse path in respect to the RREQ path), it inserts the next hop of

the failed RREP into a “blacklist” set. Thus, the blacklist set of a node indicates the set of nodes

from which it has unidirectional links. Then, when a node receives a RREQ from one of the nodes

of its blacklist set, it discards it to avoid the creation of a reverse path with unidirectional links.

In addition, to have at least a partial view of the network topology even in absence of application

traffic, AODV allows nodes to learn about their neighbors through Hello messages. Periodically

each node checks if it has sent a broadcast packet (e.g. a RREQ) in the last time interval. If it has

not, it broadcasts a RREP message with TTL equals to one. Thus, even if there is no request to

establish a specific route, nodes become aware of their neighbors.

Even though AODV prevents unidirectional links in a route discovery through BlackListing, it does

not consider the possibility of having a unidirectional link caused by the failure of a Hello message.

In Fig.5.2 a simple example is shown. In particular, considering the unidirectional link between

nodes A and B. When these nodes send their broadcast Hello messages, node B correctly receives

the Hello message of node A, but node A cannot receive Hello message of node B. Thus, node B,

having received the RREP from A, it inserts a valid entry in its routing table as the 1-hop route to A,

not realizing that it is a unidirectional link. Therefore, when node B has to forward an application

message to A, it directly sends it through the 1-hop path completely failing. At this point it has to

c© Franca Delmastro, February 2006

18

Figure 5.3.: MPRs selection

execute a route discovery procedure to establish an alternative valid route to the destination. In

addition, since Hello messages are periodically sent by every node, valid routes obtained by the

reactive procedure are substituted by these unstable routes causing several connection failures.

For this reason, we affirm that using AODV also unidirectional links are considered as valid routes

in the forwarding protocol.

5.2. OLSR: Optimized Link-state routing protocol

OLSR [rfc] is an optimization of the classical link-state algorithm developed for mobile ad hoc

networks. It exchanges topology information with other nodes of the network regularly exploiting

the key concept of Multipoint Relays (MPRs). MPRs are selected nodes which forward broadcast

messages during the flooding process. No other nodes are responsible for forwarding control

traffic on the network.

A node selects its set of MPRs among its 1-hop neighbors with bidirectional links (validated by

Hello messages exchange), such that this set covers all its 2-hop neighbors. Consider a node S, the

MPR set of S, denoted as MPR(S), is a subset of 1-hop neighbors of S that satisfies the following

condition: every 2-hop neighbor of S has a symmetric link with at least one member of MPR(S).

On the other hand, each node has to maintain information about nodes that selected it as MPR,

since it must forward messages related only to those nodes. This list is called MPR Selector Set. A

simple example is shown in Fig.5.3 where A, B, and C represent the MPR set of S.

Compared to a classical broadcasting mechanism, where all nodes foward a message after having

received its first copy, this technique drastically reduces the message overhead, since link state

information is generated only by MPRs. In addition, the protocol can be further optimized if each

MPR chooses to report only links between itself and its MPR selectors. Thus, also partial link state

information is distributed on the network.

All information about the neighborhood of each node and the selection of its MPRs result from

Hello messages exchange. In fact, a Hello message contains the list of 1-hop neighbors from which

the sender has received a Hello specifying the link type (unidirectional or bidirectional in case the

received message already contains the sender in the neighbor list). Through this exchange each

c© Franca Delmastro, February 2006

OLSR: Optimized Link-state routing protocol 19

node knows all its neighbors in the 2-hop range. At this point it can select its MPRs and they will

be announced in the subsequent Hello messages that are generally sent every 2 seconds.

In addition, in order to build the rest of the network topology, each MPR periodically broadcasts

specific control messages called Topology Control (TC) messages. They contain the list of neighbors

who have selected the sender node as the MPR. The interval between the transmission of two TC

messages depends on whether the MPR Selector set is changed or not, since the last TC message

has been transmitted. If no changes occurs, the next TC message is sent after its normal interval,

instead it may be sent after a specified minimum interval, starting from the transmission of the

last TC. Based on information contained in TC messages, the network routing table is computed.

c© Franca Delmastro, February 2006

6. P2P platforms in wired networks

Since the distributed nature of ad hoc networks fits well the p2p model of computation and they

also share a lot of features, we start studying p2p system developed for wired networks, to under-

stand if their main characteristics can also be exploited in ad hoc networks.

Specifically, a key challenge to the usability of a data-sharing p2p system is implementing efficient

techniques for search and retrieval of shared data. The best search techniques for a system depend

on the need of the distributed application. For example, applications like group multicasting, web

caches or archival systems focus on availability, and they need guarantees on content location (if

it exists). However, these requirements are usually met at the expense of flexibility, for example

by having search indexes organized by data identifiers, which allow quick lookup procedures by

limiting the subject space, or imposing strict rules on their format, and by exactly controlling how

the search index should be organized in the distributed system. In contrast, other kinds of ap-

plications, like for example file sharing or publish/subscribe systems, require the ability to issue

rich queries such as regular expressions, meant for a wide range of users from autonomous orga-

nizations. Moreover, this second class of applications requires a greater respect to the autonomy

of individual peers, without requiring them to host parts of the distributed search index. These

requirements clearly relax assumptions and expectations on the performance of the p2p system.

The aforementioned differentiation on the requirements of distributed data sharing applications,

led to two p2p computational models: unstructured and structured platforms.

Unstructured platforms are such that peers establish network relationships in a pseudo-random

fashion starting from a given entry point (i.e., a boot peer), and look for shared data initiating

flood search procedures. They are not required to maintain relevant information about shared

content owned by other entities (e.g., a distributed search index). This approach does not match

availability guarantees, but it introduces content-based lookup procedures based on regular ex-

pressions, to retrieve shared data. Content-based lookups are directly applied on the published

content, and assume that a large number of peers get hit by search requests, for example through

query propagation schemes based on flooding. Platforms like Gnutella [KM02], KaZaa [kaz] and

the recently appeared BitTorrent [Coh03], witness the flexibility offered by the unstructured ap-

proach in supporting very large-scale file sharing applications on the Internet. Moreover, the

characteristic of being open platforms, with discussion and development forums, brought existing

systems to an established maturity, where available protocol specifications make it easy to adopt

and deploy them with new implementations, introducing innovative optimizations directly in real

test-beds.

Structured platforms are such that peers organize themselves in a distributed search index (also

called a structured overlay network), that usually contains information on the exact location of

22

each shared data. The key idea is to map both peers and data identifiers on the same logical space,

and assuming that a peer with a logical identifier P gets relevant information about data logically

close to P. This approach is the basis of subject-based lookup procedures, where a peer with the

identifier D of the wanted data item (e.g., a file name or a multicast group identifier), initiates

a distributed search algorithm that, hop by hop in the structured overlay, ends up on the peer

logically closest to D. There are various proposals in the area of structured data sharing. All these

platforms achieve optimal lookup performance.

In the following section main characteristics of structured p2p systems are described, and three

particular solutions are proposed.

6.1. Structured overlay networks

Peer-to-peer systems based on the creation of an overlay network essentially represent ways of

building distributed hash table over an Internet-like network technology, in order to distribute

information among nodes taking part in the same service. The fundamental problem of peer-to-

peer systems can be translated in a simple question: once I have some data D and some attributes

A describing it, how do I map them consistently over a zone (physical area, logical area or set of

nodes) of the distributed community in a scalable and resilient way? This problem finds several

solutions in peer-to-peer applications following different policies. For example, let’s say D is the

information describing a service functionality and parameters needed to bind it, while A contains

some service keywords. On the one hand the service provider has to have a way to publish D,

while on the other a client peer needs a way to discover where to find a service matching the

keywords specified in A. Policies based on flooding service descriptions or service queries on all

nodes are not scalable, while the usage of brokers (third-party nodes holding service descriptions

and answering service queries) is not resilient. Further, in case of ad hoc networks, nodes do not

know a priori the other nodes in the network and the link connectivity is highly dynamic, thus it

is not possible to elect specific nodes to assume the role of centralized servers, since they would

represent possible points of failure or attack. In addition, techniques based on flooding service

descriptions or service queries are not scalable with the number of nodes and they also generate a

big overhead on the network.

In literature there are several p2p systems based on a structured overlay network, mainly exploit-

ing a Distributed Hash Table (DHT): Pastry [RD01], CAN [RFH+01], Chord [SMK+01] are some

of them. All these systems are characterized by some common features:

✧ They define a logical address space where nodes and data are mapped through the use of

a distributed hash function. The structure and dimensions of this logical space is different

depending on the specific system: CAN uses a d-dimensional Cartesian coordinate space on

a d-torus; Pastry and Chord use a circular address space (called ring).

✧ All data to be stored in the overlay has to be represented as a pair (key,value), where the hash

function is applied to the value of the key and it is deterministically mapped on a node of

the overlay selected through different metrics. This particular policy is called subject- based

c© Franca Delmastro, February 2006

Structured overlay networks 23

routing since data is characterized by a unique identifier (key) representing the subject used

to choose the best destination where to be stored and from where it can be recovered.

✧ All nodes taking part in the overlay locally store the information related to a limited set of

other participants. For this reason, it is possible that the best destination for a specific data is

not known by the sender of the message, and it could be necessary to forward the message

through intermediate nodes establishing a multi-hop routing at the middleware level.

✧ In order to join the overlay and initialize its internal data structures, each node has to know

at least one node already connected to the overlay. For this reason these systems cannot be

considered completely self-organizing since they require a priori the knowledge of a boot-

strap node.

✧ Each overlay is associated to a single service or to a set of services provided by all participant

nodes.

Naturally all these systems are also characterized by several differences, with particular reference

to the policy defined to distribute and recover data, the structure of the information stored on the

local node to manage the overlay, and the complexity introduced by their lookup procedures. In

following sections a brief description of these single systems is given with particular attention to

the Pastry model that has been chosen as a reference for our solution on ad hoc networks.

6.1.1. Content-Addressable Network

A Content-Addressable Network (CAN)[RFH+01] is a virtual d-dimensional Cartesian coordinate

space on a d-torus. At any point in time, the entire coordinate space is dynamically partitioned

among all the nodes in the system such as every node owns its individual, distinct zone within the

overall space. This virtual coordinate space is used to store (key,value) pairs. specifically a key K

is deterministically mapped onto a point P in the coordinate space using a uniform hash function.

The corresponding (K,V) pair (where V is the associated value) is then stored at the node that

owns the zone within which the point P lies. To retrieve an entry corresponding to key K, any

node can apply the same deterministic hash function to map K onto point P and then retrieve the

corresponding value from the point P. If the point P is not owned by the requesting node or its

immediate neighbours, the request must be routed through the CAN infrastructure until it reaches

the node in whose zone P lies. Efficient routing is therefore a critical aspect of CAN.

A node learns and maintains the IP addresses of those nodes that hold coordinate zones adjoining

its own zone. This set of immediate neighbours in the coordinate space serves as a coordinate

routing table that enables routing between arbitrary points in this space. Intuitively, routing in a

CAN works by following the straight line path through the Cartesian space from source to desti-

nation coordinates. Each CAN node maintains a coordinate routing table holding the IP addresses

and the virtual coordinate zones of its immediate neighbours in the virtual space. The immediate

neighbours are nodes located in adjacent positions in the virtual space. In a d-dimensional space,

they are those nodes with d-1 coordinate ranges in common with the reference node, and border

on only one dimension. Each CAN message will be routed according to its destination coordinates,

c© Franca Delmastro, February 2006

24

calculated by the hash function and included within the message. At each routing step, the node

forwards the message to the immediate neighbor with coordinates closer to the one of the message

destination. In this mechanism, resilience is guaranteed by more than one possible path reaching

the destination, but the complete path can result much longer than the physical path to connect

the same nodes. This is mainly due to the lack of correspondence between the logical address

space and the physical network topology.

This algorithm provides that each node maintains O(d) state and the lookup cost is O(dn1/d) for d
dimensions and n nodes, that represents the number of hops at the application level to distribute

data among nodes.

In order to create and maintain the overlay, CAN is characterized also by a set of procedures to

manage its internal data structures consequently to selected events such as the boostrap of the

local node, the joining of another node, data distribution through the routing policy, and the

departure of some other nodes. All these procedures are extensively explained in [RFH+01].

6.1.2. Chord

Chord [SMK+01] provides a distributed lookup mechanism built on top of a consistent hash func-

tion. The consistent hash function assigns an m-bit identifier to each node and key using a SHA-1

algorithm as a base hash function. A node’s identifier is chosen by hashing the node’s IP address,

while a key identifier is produced by hashing the key value. The identifier length m must be large

enough to make the probability of two nodes or keys hashing to the same identifier negligible

(generally it is set to 128). Identifiers are ordered on an identifier circle modulo 2m. Key k is

assigned to the first node whose identifier is equal to or follows the identifier of k in the logical

space. This node is called the successor node of key k, denoted by successor(k). If identifiers are

represented as a circle of numbers from 0 to 2m − 1, then successor(k) is the first node clockwise

from k. The circle is also called a Chord ring. Consistent hashing is designed to let nodes enter and

leave the network with minimal disruption. To maintain the consistent hashing mapping when a

node n joins the network, certain keys previously assigned to n’s successor now become assigned

to n. When node n leaves the network, all of its assigned keys are reassigned to n’s successor. No

other changes in assignment of keys to nodes need occur. Over the described distribution scheme,

a simple but inefficient lookup procedure consists in having each node simply forwarding lookup

queries to the immediate successor in the ring, until they end up in the node maintaining the

correspondent (key, value) pair. The retrieval of the correct location using this approach, may

however require the linear traversal of the entire ring (linear cost). By maintaining more per node

routing information (not only the link to the successor in the Chord ring), the system implements

a more efficient (logaritmic cost) lookup procedure. Let m be the number of bits in the key/node

identifiers. Each node n maintains a routing table with up to m entries, called the finger table.

The ith entry in the table at node n contains the identity of the first node s that succeeds n by

at least 2i − 1 on the identifier circle, i.e., s = successor(n+2i−1), where 1 <= i <= m (and all

arithmetic is modulo 2m). We call node s the ith finger of node n. A finger table entry includes

both the Chord identifier and the IP address (and port number) of the relevant node. Note that

the first finger of n is its immediate successor on the circle. The lookup operation, extended to use

c© Franca Delmastro, February 2006

Structured overlay networks 25

finger tables, works as follows: at each node n, if the key k in the lookup query falls between n
and its successor, the procedure ends, returning the successor identifier. Otherwise, n searches its

finger table for the node whose ID most immediately precedes k, that will know more about the

identifier circle in the region of k than n does. By repeating this process , n learns about nodes

with IDs closer and closer to k.

This scheme has two important characteristics. First, each node stores information about only a

small number of other nodes, and knows more about nodes closely following it on the identifier

circle than about nodes farther away. Second, a node’s finger table generally does not contain

enough information to directly determine the successor of an arbitrary key k. Specifically, in

a system with N nodes, each node maintains information only about O(logN) other nodes and

resolves all lookup procedures via O(logN) messages to other nodes. In addition Chord maintains

information about joining and leaving events through no more than O(log2N) messages for each

event.

6.1.3. Pastry

Pastry [RD01] shares with Chord the ring abstraction, but implements a radically different routing

strategy. The overlay network defined by Pastry is represented by a circular address space of 128

bits. To each node in the Pastry network is assigned a 128-bit node identifier (nodeId) that is

used to indicate a node’s position in the logical address space, which ranges from 0 to 2128 − 1.

The nodeId is assigned randomly when a node joins the system simply hashing one of its physical

identifier (IP address, hostname, public key or others). Using a distributed hash function it is

assumed that nodeIds are generated such that the resulting set of nodeIds is uniformly distributed

in the 128-bit space. As a result of this random assignment of nodeIds, with high probability,

nodes with adjacent nodeIds are physically scattered. The same hash function is also used to map

data on the overlay. It is applied on the key value specified for each data to be sent on the overlay,

and it represents the subject of its routing at the middleware level.

In particular, the routing policy defined by Pastry is based on a numerical proximity metric between

the hash value of the message key and the nodeIds of all nodes of the overlay. From the algorithmic

standpoint, keys and nodeIds are represented as a sequence of digits with base 2b, where the

parameter b is defined a priori. In this way, Pastry routes messages to the node whose nodeId is

numerically closest to the given key. To this aim, in each routing step, a node normally forwards

the message to a node whose nodeId shares with the key a prefix that is at least one digit (b bits)

longer than the prefix that the key shares with the local nodeId. If no such node is known, the

message is forwarded to a node whose nodeId shares a prefix with the key as long as the current

node, but the following digit is numerically closer to the key than the local nodeId.

To support this routing procedure, each node maintains the information related to other nodes of

the overlay in the following data structures:

✧ Routing table. A node’s routing table is organized into log2bN rows with 2b − 1 entries each.

Each entry at row n of the routing table refers to a node whose nodeId shares with the local

nodeId the first n digits, but whose n + 1th digit differs (it has the same value of the column

c© Franca Delmastro, February 2006

26

Figure 6.1.: Pastry Overlay Data Structures

index). If there are no nodeIds with this characteristic, the entry is left empty. To each entry

is also associated the IP address of the selected node with the appropriate prefix to directly

connect to it. In practice, a destination node is chosen based on the proximity to the value

of the key and to the local node. This choice provides good locality properties, but only in

the logical space. In fact nodes that are logically neighbors, are probably physically distant.

It has been demonstrated in [RD01] that the maximum number of routing hops between a

source and a destination is equal to log2bN , in this way the systems scales with the number

of participating nodes, and the choice of the parameter b involves a trade-off between the

size of this data structure and the maximum number of hops.

✧ Neighborhood Set. The neighborhood set (M) contains the nodeIds and IP addresses of the

nodes that are physically closest to the local node. The neighborhood set is not normally

used in routing messages; it is useful in maintaining physical locality properties of nodes.

✧ Leaf set. The leaf set L is the set of nodes with identifiers numerically closest to the current

node. A half of the identifiers in L are larger than the one of the present node, while the

other half are smaller (it is an interval centered around the present identifier). The leaf set

represents the set of nodes that are logically closest to the local node, and for this reason it

is used as the first step in the routing policy.

In routing a given message, the node first checks whether the key falls within the range of nodeIds

covered by its Leaf Set. In this case, the message is forwarded directly to the destination node,

namely the node in the leaf set whose nodeId is logically closest to the message key. If the key is

not covered by the leaf set, then the routing table is used and the message is forwarded to a node

that shares a common prefix with the key by at least one more digit that the present identifier.

Sometimes, it is possible that the appropriate entry in the routing table is empty or the associated

node is not reachable. In this case the message is forwarded to a node whose id shares a prefix

with the key at least as long as that shared by the local node, and it is numerically closer to the

key than the local node’s id.

Fig.6.1 shows an example of Pastry data structures for a node with logical identifier 10233102 and

the logical positions of known identifiers on the circular address space. Considering the same local

node, in Fig.6.2 an example of the subject-based routing for a specific key is given. Specifically,

c© Franca Delmastro, February 2006

Structured overlay networks 27

Figure 6.2.: Example of Pastry routing

as previously said, if the local node wants to send a message, it has to compare its nodeId with

the key identifier. In this case the key value (22301203) has no common digit with the local id,

so Pastry checks the contents of the row 0 of the routing table and selects the nodeId closest to

the key value. At this point the message is sent and the receiver will forward the message in the

same way until it arrives at the node closest to the key. Due to the limited dimensions of the

Pastry routing table, each node maintains only a limited part of nodes of the overlay, providing

a multi-hop routing to reach the best destination of each message. However, in wired networks

where thousands of nodes can be involved in the same service, maintaining a complete view of

the overlay makes the system impractical to scale to large number of nodes, and with this policy

it scales better than the other systems. For this reason we chose Pastry as a reference model also

for ad hoc networks evaluating its performance in such environments.

To better understand Pastry behavior also on ad hoc networks, it is necessary to explain other

main procedures used to establish and maintain the overlay network. These procedures consist of

join and disjoin operations.

First of all, when a new node enters the system, it needs to initialize its internal data structures,

and then it has to inform other nodes of its presence. As the other p2p systems, Pastry assumes

that each node must know at least another node involved in the system, if possible one of its

physical neighbors. Such a node can be located automatically, for instance, using "expanding ring"

IP multicast, or it can be obtained by the system administrator through outside channels. Let us

assume the new node identifier is X and the known node is A. Node X asks A to route a special "join"
message with the key equal to X on the overlay. Like any message, Pastry routes the join message

to the existing node Z whose id is numerically closest to X passing through some intermediate

nodes. In response to receiving the "join" request, nodes A, Z, and all nodes encountered on the

path connecting them, send the content of their tables to X. At this point, the new node X processes

this information and then initializes its own tables in the following way:

✧ The Neighborhood set is initialized with the contents of that of node A, since it is a physical

neighbor of X.

✧ The Leaf set is initialized with that of node Z (new logical neighbor of X).

c© Franca Delmastro, February 2006

28

✧ The ith row of the routing table is initialized with the ith row of the routing table of the ith

node (Bi) encountered in the routing path from A to Z (it shares a prefix of length i with X).

Finally, X informs any nodes that need to be aware of its arrival, transmitting a copy of its resulting

state. This procedure ensures that X initializes its state with appropriate values, and that the state

in all other affected nodes is updated.

Another important feature of Pastry is the management of departure nodes. In [RD01] a node is

considered failed when logical neighbors can no longer communicate with it. To this aim, nodes

in the Leaf set are periodically probed with UDP ping messages. Leaf entries that do not reply to

probe pings are considered failed, and get replaced by entries of the leaf set relative to the live

node with the largest index on the side of the failed node. In this way each node can easily repair

its Leaf set, and the delay with which it becomes aware of logical neighbors failure depends on

the probing frequency. A similar probing mechanism is used to maintain a consistent neighbor set.

Instead, a node realizes that an entry in its routing table is failed only when it attempts to connect

to it to forward an application message. This event does not generally delay message routing,

since another destination node could be selected. Anyway, the failed routing table entry has to

be replaced. To this end, the peer contacts the entries belonging to the same row of the failed

one, asking for a nodeId that can replace it. If none of them has a pointer to a live node with

the appropriate prefix, the local node has to contact nodes belonging to the successive row of the

routing table. In this way, many remote connections could be required to manage single entries of

the routing table.

During this work the Pastry model has been chosen as a reference also for ad hoc networks because

it scales with the number of nodes better than the other systems and a free implementation [fre]

is available, together with a rich set of applications developed on top of it. The main purpose

of this work is to present a performance evaluation of this system on a real ad hoc networks of

small/medium scale, in order to understand advantages and limits on MANET environments and

to propose an innovative solution optimized for mobile ad hoc networks. The first phase of our

experimental evaluation is described in the next chapter.

c© Franca Delmastro, February 2006

7. Small-scale Ad Hoc network test-bed: Routing
and Middleware performance

Although MANET research has been ongoing for some time, there are relatively few experiences

with real ad hoc networks. Instead, a large portion of protocol development is done in simula-

tion settings only. In fact one of the main approaches in system performance evaluation is based

on a representation of the system behavior via a model [Lav83] [KM88], while measurement

techniques can be applied only when a real systems, or a prototype of it, is available. For this

reason, most results on the behavior of MANET protocols have been obtained by defining a system

model, and solving the model using analytical and/or simulative techniques. Analytical models

are often not detailed enough for the ad hoc networks evaluation. On the other hand, simula-

tion modeling is a more standardized, mature, and flexible tool for modeling various protocol

and network scenarios. By running the simulation model, it allows researchers to collect and

analyze data that fully characterizes protocol performance in most cases. However, as pointed

out in [GLNT], simulations have not been conclusive for selecting MANET protocols among the

several available solutions. Furthermore, simulation models often introduce simplifications and

assumptions that mask (in simulation experiments) important characteristics of the real protocols

behavior [ABCG04] [LNT02], see for example, the so-called communication gray zones problem

[LNT02].

Specifically, this problem was revealed by a group of researchers at the Uppsala University, while

measuring the performance of their own implementation of the AODV routing protocol in an IEEE

802.11b ad hoc network. Observing an unexpected large amount of packet losses, mainly during

route changes, it was found that the increase in packet loss occurred in some specific geographic

areas called "communication gray zones"1. It is important to point out that the communication-

gray-zone problem was not revealed by commonly used simulation tools (e.g., NS-2, Glomosim)

as in their 802.11 models both unicast and broadcast transmissions are performed at 2 Mbps, and

hence have the same transmission range.

To avoid these modeling approximations, simulations have to be complemented by experiments

on real prototypes. In addition, the availability of prototypes will also make possible to start

creating communities of MANET users that, by experimenting with this technology, will provide

feedback on its usefulness and stimulate the development of applications tailored for the ad hoc

environment. At the end, user interaction can drive to identify possible ad-hoc-network killer

applications making MANETs a success beyond the academic world.

1This phenomenon is due to the different transmission ranges between unicast (data) and broadcast frames (i.e., routing
information) in 802.11 networks. A station inside a gray zone is considered using the routing information reachable
by a neighboring station, while actual data communication between the stations is not possible.

30

Figure 7.1.: Reference Architecture

Currently, only a few measurements studies on real ad hoc testbeds can be found in literature,

see e.g., [BMJ00] [oCSaUS]. The Uppsala University APE testbed [oCSaUS] is one of the largest,

having run tests with more than thirty nodes. The results from this testbed are very important

[GLNT] and point out that more research in this direction is required to consolidate the ad hoc

networking research field.

In the framework of this research activity, in order to investigate potentialities and limits of the ad

hoc networking paradigm, we set up a MANET prototype on which we performed several sets of

measurement. In a previous work [ABCG04] an experimental analysis of single layers of an ad hoc

network (mainly studying 802.11 performance in ad hoc networks) has been done. In this chapter

measurement results obtained by implementing a full MANET protocol stack are presented, mainly

focusing on classical routing and middleware solutions. Specifically, a performance evaluation of

a fully functioning prototype implementing a p2p middleware (Pastry) on top of a multihop ad

hoc network is carried out.

7.1. Test-bed reference architecture

The novel aspect of this study is to investigate a full ad hoc network architecture, from the Wi-Fi ad

hoc network up to the peer-to-peer middleware platform (Pastry) on top of which a simple testing

application (distributed messaging) is running. For this experimentation we used the reference

architecture shown in Fig.7.1.

More precisely, we integrated solutions for the main building blocks that makes our testbed repre-

senting a realistic MANET:

✧ Wireless Technologies

✧ Networking

c© Franca Delmastro, February 2006

Test-bed reference architecture 31

✧ Middleware and Applications

In this work important issues like power management, and security and cooperation have not been

addressed. In this way, we implemented a first simplified MANET that enabled us to perform real-

istic experiments still maintaining the problem complexity at an acceptable level. We believe that

using an incremental approach is the best way to contribute to the consolidation of the MANET

world. As pointed out in [GLNT], having realistic prototypes increases the attractiveness of the

technology and provides a platform for applications development. These are key elements for the

success of this technology.

Specifically, at the networking layer we adopt one proactive and one reactive routing protocol.

They enable us to compare these two approaches in a realistic scenario. In literature, it is a com-

mon understanding to consider that on-demand reactive protocols are more efficient than proac-

tive ones. As previously explained in Chapter 5), on-demand protocols minimize control over-

head and power consumption since routes are only established when required. On the contrary,

proactive protocols require periodic route updates to keep information current and consistent. In

addition, maintaining multiple routes, which might never be needed, causes unnecessary routing

overheads. On the other hand, proactive routing protocols provide better quality of service than

on-demand protocols. As routing information is constantly updated in the proactive protocols,

routes to every destination are always available and up-to-date, and hence end-to-end delay can

be minimized. Instead, for on-demand protocols, the source node has to wait for the route to be

discovered before communication can happen. This latency in the route discovery might be intol-

erable for real-time communications. One of the aim of this testbed is to compare and contrast

AODV and OLSR as two implementations of these approaches, analysing their efficiency and QoS.

However, solving MANET routing and forwarding issues is only a first step towards deployable

MANETs. Integrating applications on top of an ad hoc network is fundamental to stimulate the

users interest in this technology, and hence to better understand its possible usage scenarios. In

fact, integrating p2p systems on top of ad hoc networks makes the variety of p2p applications

and services available to MANET users as well, and hence it would be an advantage for this

emerging technology. However, it is not clear how these overlays should be ported, and how they

will perform on ad hoc networks. To this aim, in this first part of our experimental analysis, we

focused on investigating the performance of Pastry on top of our ad hoc network. Results from this

investigation provide the basis for defining efficient ways to port Pastry on ad hoc environments.

Pastry differs from the other p2p routing substrates such as CAN and Chord due to the structure of

information on nodes and the way messages are passed between peers in order to distribute data

and workload. As previously said, we selected Pastry for our testbed because it scales with the

network size, and a free implementation (FreePastry [fre]) with a rich set of services is available.

Referring to main principles of Pastry, the limited dimensions of its internal data structures, aimed

at maintaing information of other nodes of the system, are such that the subject-based routing

may require a multi-hop routing at the middleware layer.

As a preliminary result, we noted that in ad hoc networks consisting of a small number of nodes,

all peers generally know all the others, and thus it is not necessary to execute a multihop routing

at the middleware layer. However, at the same time, operations needed to create and maintain the

c© Franca Delmastro, February 2006

32

Figure 7.2.: Experiments Area

overlay represent a high cost for ad hoc networks. In fact, when a node enters the Pastry network,

and it is not the first one, it has to contact one of its physical neighbors already present in the

overlay in order to collect routing table information. The contacted node sends a message on the

ring using the new node ID as the key of the message that thus will reach the node logically closest

to the specified ID. At this point, the new node can initialize its routing tables receiving the Leafset

from the logical closest node, the Neighborhood set from the specified physical neighbor, and the

Routing table as a join of the routing tables of nodes that forwarded the original message. Each of

these operations requires several remote connections that, in FreePastry (during this phase version

1.3 had been used), are implemented by TCP connections (thus introducing a high cost).

In addition, to maintain the overlay structure, each node has to execute a polling procedure

needed to discover neighbors status, so that a node is considered disconnected from the overlay

if it does not answer to a polling message before a timeout expiration. If this occurs, the sender

of the polling message has to update its routing tables contacting other remote nodes, which thus

implies opening other remote connections. FreePastry implements this polling procedure using

UDP connections, and the exchange of routing table data using TCP connections. In this way it is

possible that a node has to maintain several TCP connections to different nodes only to manage

the ring, introducing a high overhead in ad hoc networks, in particular when links are unstable

and there are many topology updates.

7.2. Experiments Environment

All the tests were conducted at the ground floor in the CNR campus in Pisa (Fig.7.2). At this level

there is the computing center (CED) together with some companies’ offices and measurement lab-

oratories with several kinds of instrumentations. The structural characteristics of the building, and

particularly of this floor, strictly determine the transmission capabilities for the nodes of a wireless

network situated within. Rooms (offices, laboratories, etc.) are generally delimited by masonry

c© Franca Delmastro, February 2006

Experiments Environment 33

Figure 7.3.: Experiments Scenario

padding walls situated between reinforced concrete pillars. In the CED area, instead, locations are

separated by either "sandwich panels" of plastic materials, which don’t reach the height of the ceil-

ing, or metal panels till the ceiling. These generally cause minor impediments to waves compared

to masonry walls or reinforced concrete pillars. Wireless links are also influenced by the nearby

presence of Access Points and measurement instrumentations which introduce quite a lot of noise.

Moreover, about 30-40 people work in this floor every day and get around from office to office

or towards service areas with coffee machines, toilets, etc. This makes the transmission coverage

characteristics of the floor and the stability of the links varying in a continuous and unpredictable

manner. As a result, the whole place can be considered quite a realistic environment for testing

an ad hoc network. Fig.7.3 presents the detailed map of the place together with the static trans-

mission coverage characteristics of the area. Nodes are situated where devices were placed during

the experiments and straight lines are used to point out the presence of wireless links (two nodes

see each other at one hop distance if a single straight line joins them). Dashed lines are used in-

stead to point out weaker wireless links wherever a couple of nodes see just sometimes each other

and their communications are affected by a considerable packet loss. The devices used for the

experiments were both laptops and PDAs (Compaq iPAQ 3950) equipped with different wireless

cards. This caused some links appear/disappear in different experiments depending on the power

of wireless cards used by the nodes at each side of the link.

Specifically, we used three different types of wireless cards: PCMCIA DLink DCF-660W for PDAs,

and D-Link DWL 650 (15 dBm) and 3COM 3CRWE62092A (14 dBm) for laptops.

In the experiments we used a limited number of nodes ranging from 5 up to 12 nodes. These

numbers may appear not meaningful respect to simulations scenarios using hundreds of mobile

nodes. However, recent results pointed out the existence, with the current technology, of an ad

hoc horizon of two-three hops and 10 to 20 nodes. Beyond these limits the benefit from wireless

multi-hop ad hoc networking virtually vanishes [GLNT]. Indeed all the experiments presented

hereafter fall inside this ad hoc horizon. This may represent a scenario consisting of few people

forming an ad hoc network to share documents. The focus of our study is therefore to contrast

c© Franca Delmastro, February 2006

34

and compare ad hoc networking solutions within current technology limits. Currently, networks

of hundreds of mobile nodes connected to several hops seem to be an unrealistic goal.

7.3. Experiments warm-up: a qualitative analysis

An extensive first experimentation phase was carried out during June 2004 in CNR campus in Pisa

(Italian National Research Council). The aim of the experimentation was to test if the software at

each layer of the protocol stack behaves correctly.

Specifically, the test concerned different layers:

✧ Routing: testing the selected implementations of proactive OLSR and reactive AODV routing

protocols to check their state of implementation, validate their functionalities and conduct

a comparative analysis on them all. The considered routing protocol implementations were

the Unik-OLSR [Ton] by the University of Oslo (Norway), and the UU-AODV [aod] by the

Uppsala University (Sweden).

✧ Middleware: testing the selected FreePastry implementation on top of proactive and reactive

routing protocols and evaluating the heaviness of the resulting solutions. The middleware

platform used in these experiments was FreePastry version 1.3 which is the open-source im-

plementation of the original Pastry model developed by the RICE University [fre]. To this

end we installed FreePastry on a set of laptops which had been previously equipped with the

j2sdk-1.4.02 Java Virtual Machine. FreePastry implements the p2p common API [DZD+03]

that has been proposed to guarantee a common interface for distributed applications devel-

oped on top of different middleware platforms based on structured overlay networks.

✧ Application: evaluating the impact of routing protocols on the Quality of Service (QoS)

experienced by the application (e.g., the transmission delay). We used both legacy Internet

applications (e.g., ping and ftp) working directly over the TCP/IP protocol stack, and a

Distributed Messaging application running on top of FreePastry.

Hereafter, we report main results of this experimental phase, a detailed presentation about all the

experiments can be found in [d8]. The experiments were organized in two steps. First we tested

OLSR and AODV in isolation to verify that they behave correctly. Then we integrated FreePastry

to investigate the behavior of our full MANET.

7.3.1. Unik-OLSR Testing

Due to the proactive nature of the protocol the test was based on observing the status of the net-

work routing tables while nodes were added/removed to/from the ad hoc network. This testing

was further divided in two steps. In the first step we used a 5-node network. In this case the

kernel routing tables were small and they could be read in real-time, hence it was possible to

follow configuration changes while in progress. Upon the beginning of the experiments, node

c© Franca Delmastro, February 2006

Experiments warm-up: a qualitative analysis 35

insertions and removals were provided to check that configuration updates effectively took place.

Moreover, by changing the time lag duration between successive node insertions and/or deletions,

it was also possible, to some extent, to measure the configuration-update delays after the appear-

ance/disappearance events. In all the experiments the protocol showed a correct behaviour. The

routing tables quickly updated upon node insertion and removal. Then we considered a 12-node

network. The increased number of nodes led to the increase of the number of protocol packets

exchanged. This allowed the validation of Unik-OLSR behaviour in a more congested context.

Also in this set of experiments, all the routing-forwarding operations were correctly performed.

After this analysis, we investigated the ability of an OLSR-based network to transfer data between

nodes at a distance of few hops. To this end, the Unik-OLSR protocol was started on all the nodes

at the same time, then after a little delay to let the routes stabilize, an FTP transfer was started

between two nodes. The destination was 3-hop distant from the source. The aim was to transfer

a 34 megabytes (MB) file. Several problems were experienced in this case. Intermediate nodes

along the sender-destination path stopped working correctly after a while. This was due to the

wireless card not properly working. It seemed that the excessive traffic they have to manage

caused problems to their cards’ drivers. In these experiments the routing protocol still behaved

correctly by selecting alternative routes to avoid the out-of-service nodes. The file continued until

a network partition occurred. At this time the destination host had received only the first 15MB of

the file. The throughput during the transmission had just been about 180Kbps. We repeated the

experiment and similar problems were observed. Specifically, we observed that the file-transfer

started correctly but while the transfer proceeded the throughput of the connection reduced. This

type of behaviour can be explained with problems produced by the interaction between TCP and

the 802.11 MAC extensively investigated in literature, see Chapter 3 in [BCGS04] for a summary
2.

7.3.2. UU-AODV Testing

As this protocol is reactive, some application-level traffic was introduced in order to observe the

route creation process. To this aim we used the simple ping utility. Specifically, each node sent

periodically a set of ping operations to different destinations and this forced the routing protocol

to set up a route towards each destination. In this case, each sender was always able to discover

the correct path, however the route discovery was very time-expensive. In the next section, some

estimates of these delays will be provided. After this, we tested the UU-AODV ability to support

user-data transfer. We used again a file transfer application. The file transfer was started from

a couple of nodes at a 3-hop distance, aimed at transferring a 5MB file. The transfer was defi-

nitely too slow and after 16 minutes only 140KB had reached the destination; the experiment was

then interrupted. Even in this case, the problem seemed related to interaction of MAC and TCP

mechanisms. Packet losses caused a TCP congestion-reaction that slowed down the connection

throughput. In addition, in this case, the reactive nature of the routing protocol made the things

worse.

2In these experiments we used default values for TCP parameters, e.g., advertised window. It is left for further studies to
investigate the impact of TCP parameters on the ad hoc network performance.

c© Franca Delmastro, February 2006

36

7.3.3. FreePastry Testing

The last set of experiments was carried out in order to evaluate the overhead introduced by a

middleware platform based on the original Pastry model [RD01] and to validate its features on ad

hoc networks. We integrated on top of FreePastry a simple application of Distributed Messaging

(DM), aimed at testing main Pastry features. Nodes participating to DM set up and maintain a

Pastry overlay corresponding to this Pastry service. Specifically, each instance of the messaging

application defines an Identifier (ID) for the local node on which it runs. The ID is then used as

the key for implementing the Pastry distributed hashing operations. When the application starts,

the overlay initialization depends on the existence, or not, of a Pastry ring already providing that

service. In the first case the node performs the operation required to join the overlay contacting

a bootstrap node, otherwise, the node is the first one, and it creates a new overlay. If the over-

lay already exists, the user has to specify the IP address of a known physical neighbor already

connected, so that the local node can collect information about middleware routing tables from it

and enter the overlay. Once the local node has created/joined the overlay, the application allows

the user to create/delete a mailbox on the nodes of the overlay. A mailbox physical location is

randomly selected applying the DHT to the identifier associated to the mailbox, i.e., the identifier

represents the key of the message on which the hash function is computed. Once the mailboxes are

created, the user can send/receive a message to/from each of them. These operations are based

on the Pastry subject-based routing mechanism. The DM application also generates 100 mailboxes

with random IDs. Using this application we tested FreePastry to verify the overlay construction,

the workload it generates, and the data distribution on the overlay. Furthermore, it is also possible

to evaluate the overhead introduced by this platform on ad hoc networks.

These tests showed that all operations were performed correctly. However, the produced overhead

was quite high, particularly, due to the large number of remote connections needed to maintain

the overlay data structures. This overhead will be quantified in the next section. The same set

of experiments (i.e., the same network configuration) was performed by running Unik-OLSR and

UU-AODV. The network topology was kept as much similar as possible to the one used for previous

experiments. In the network we had 8 nodes: 6 nodes ran FreePastry and the others 2 just worked

as routers. During the experiments the nodes started running either Unik-OLSR or UU-AODV. After

a delay of a few seconds to have the network topology stabilized, they ran the DM application

trying to build a single Pastry overlay.

From the performed experiments we noticed that rarely application messages had to execute a

multi-hop middleware path. Hence, the real overhead introduced by FreePastry on ad hoc net-

works is due to the periodical remote connections needed to the overlay maintenance. In this

set of experiments, the main problems were observed when running UU-AODV. In this case, we

experienced a high number of Pastry connections’ failures (i.e., the connection used by Pastry to

build and maintain the overlay). This was mainly caused by the reactive procedure to discover a

route towards a specified node. When a node tries to connect to another one, FreePastry generates

a TCP connection in order to recover middleware routing table information. If the local node has

no routes to the destination, AODV generates a Route Request and waits for the answer. In the

meanwhile, if path discovery is slow, the timeout of the Pastry connection may expire causing the

raising of a Java exception. As TCP remote connections are periodically executed by FreePastry

c© Franca Delmastro, February 2006

Quantitative analysis 37

in order to maintain the overlay structure, the previous problem causes the wrongly notification

of "dead node", even if it is still connected to the overlay 3. Therefore, using Pastry, the overhead

reduction introduced by reactive protocols is cancelled by periodic remote connections at the mid-

dleware layer. Unik-OLSR experiments did not suffer these problems thanks to the continuous

update of the kernel routing tables.

To summarize, our preliminary evaluation (mainly qualitative) of a full MANET prototype indi-

cated that:

1. Unik-OLSR and UU-AODV correctly behave. They discover multihop paths and reconfigure

the paths upon node failure/insertion.

2. FreePastry correctly operates on top of the multi-hop ad hoc networks.

3. TCP data transfers on top of a multi-hop ad hoc networks show severe performance prob-

lems. The performance seem to decrease when using a reactive routing algorithm due to the

delays caused by the route discovery process.

4. FreePastry overheads are mainly caused by overlay creation and maintenance operations.

These operations are based on the TCP protocol. As pointed out at point 3, TCP operations

exhibit poorer performance by using AODV. In FreePastry this causes problems in the correct

execution of the overlay maintenance operations, as TCP delays cause the timeout of the

Pastry connection to expire causing the raising of a "Connection Refused" message at the

Pastry level.

7.4. Quantitative analysis

A second set of experiments was performed, in the same environment used so far (see Section

7.2), to provide a quantitative estimation of the most interesting phenomena observed. Again,

we first measured the performance of OLSR and AODV in isolation, then we analyzed the testbed

integrating FreePastry on top of the ad hoc network.

7.4.1. AODV and OLSR Performance

The experiments were made in the environment shown in Fig.7.3. For ease of reading, in Fig.7.4

we report the same scenario in which we label the MANET nodes in order to identify them in the

following discussion. The figure shows the 8-node scenario on which results reported below have

been obtained. A line among a couple of nodes indicates that a link exists among them4. The aim

of the experiments was to compare the two routing protocols in terms of:

3The AODV implementation we used caches routes into the kernel routing table for 15sec only. Therefore, a new path
discovery phase is generally required when Pastry performs its overlay maintenance operations.

4It can be noted that some links that were marked as unstable in Fig.7.3 are now marked with solid lines to point out
that they are now stable links, since we removed some obstacles to signal propagation (e.g., fire doors, that previoulsy
caused weak links, in these experiments were opened).

c© Franca Delmastro, February 2006

38

Figure 7.4.: Routing Network Topology

✧ overhead introduced in the network due to the routing messages;

✧ delay introduced for path discovery.

To have a meaningful comparison we used the ping application to generate some user-level traffic,

otherwise the reactive protocol (AODV) discovers only 1-hop neighbors.

Two set of experiments were performed depending on the way the ping operation was performed.

7.4.1.1. Experiment 1

In this set of experiments, the central node E performed a ping operation towards the other nodes

of the network according to a randomly selected sequence: A,H,D,F,G,B,C. For each node in this

sequence, the ping operation lasts for 1 minute. We performed several experiments that produced

similar results using ever the same sequence. Main results are summarized in Fig.7.5 and Fig.7.6

for OLSR and AODV, respectively. In these figures the amount of traffic (expressed as number of

Bytes per second) forwarded by each node of the network is reported. Specifically, this traffic

includes both the routing traffic generated and forwarded by each node.

As expected, the traffic depends on the specific position of each node inside the network topology.

In Fig.7.5 we can note that:

✧ nodes B and D measured the highest values (about 1.1 KBps);

✧ nodes C, E, and G measured intermediate values (about 0.8 KBps);

✧ nodes A and F measured a traffic load of about 0.4 KBps;

✧ node H is lightly loaded (its traffic, 300 KBps in average, is about 1/4 of node B and H

traffic).

c© Franca Delmastro, February 2006

Quantitative analysis 39

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

B
/s

)

Time (sec)

OLSR

node H
node D
node F
node E
node C
node G
node A
node B

Figure 7.5.: OLSR overhead

These different traffic loads have a good correspondence with nodes positions and their degree

(i.e. the number of links connecting to it). Specifically, the degree of H is equal to one since it is

only connected to node G, nodes A and F have a degree of two, while the others located in the core

of the network have several neighbors and they measured higher traffic loads. As expected, OLSR

generated a traffic that was significantly higher than that produced by AODV. Specifically, while

in case of AODV the traffic range is [100, 400] Bps, in case of OLSR it is [200, 1200] Bps. Even

though their difference is very high, in both cases the impact on the utilization of the 802.11b

bandwidth is almost negligible. In fact, a single node observed at most 1.2 KBps of routing traffic.

On the other hand, delay measurements pointed out possible severe problems on QoS when using

AODV. Specifically, for completing a simple ping operation between a couple of nodes at 2-hop

distance, we measured delays of about 19-20 sec involving the route discovery procedure. To

perform the same operation, OLSR requires 1 second (or less) since routing tables are generally

updated.

7.4.1.2. Experiment 2

In this set of experiments, the external node H continuously pings node A for 400 seconds. Initially

the shortest path is H-G-E-B-A, but after x seconds from the beginning of the experiment, node

B disconnects from the network and the shortest path becomes H-G-E-D-C-A. x is equal to 250

seconds in case of OLSR and 180 seconds in case of AODV.

Figures 7.7 and 7.8 show the network load of the two routing protocols. In case of OLSR, the load

distribution between different nodes is similar to that observed in the previous experiment (e.g.,

node B and node H experienced the highest and lowest load, respectively). The main difference

c© Franca Delmastro, February 2006

40

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

B
/s

)

Time (sec)

AODV

node H
node D
node F
node E
node C
node G
node A
node B

Figure 7.6.: AODV overhead

is observed after node B shut down. In fact, there is a transient phase during which the traffic

load decreases due to some missing routes. Then a new steady state is achieved, and we observe

a significant decrease of the traffic on nodes that were connected with node B (in particular nodes

E, D, and C). Instead in case of AODV less marked differences can be observed. In fact, after the

transient state, the active nodes almost observed the same load experienced before the shut down

event.

Also analysing delays, we got similar results to those observed in the previous experiment:

✧ large delays with AODV (about 20 seconds) when the path is not already in the cache and a

route discovery process is needed;

✧ small delays with OLSR before the shut down event; while after the routing table reconfigu-

ration the ping operation performed a delay of about 6 sec to be completed.

7.4.2. Performance of FreePastry on Ad Hoc Networks

This set of experiments was made by adopting a network topology (see Fig.7.9) which slightly

differs from that used for the analysis of the routing algorithms. We decided this modifications as

experiments shown in Section 7.4.1 showed that central nodes in the network tends to become

saturated. To avoid this, we moved one node towards the center of the network. In this way we

increased the redundancy in this area. Among the eight nodes of the ad hoc network, six provided

the Pastry service, while nodes B and G (the blue circles in the figure) were only involved in

routing and forwarding operations.

c© Franca Delmastro, February 2006

Quantitative analysis 41

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500

T
hr

ou
gh

pu
t (

B
/s

)

Time (sec)

OLSR

node H
node F
node E
node C
node B
node G
node A
node D

Figure 7.7.: OLSR overhead in case of disconnection event

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

B
/s

)

Time (sec)

AODV

node H
node F
node E
node C
node B
node G
node A
node D

Figure 7.8.: AODV overhead in case of disconnection event

c© Franca Delmastro, February 2006

42

Figure 7.9.: Network Topology for FreePastry Experiments

Referring to Pastry operations to build the overlay network, we decided a bootstrap sequence to

allow nodes to correctly join the system. Specifically, node E was the first to start and then it

initialized the overlay related to the distributed messaging service. Then the following actions

were performed in sequence:

1. F joined the overlay by connecting to E,

2. D connected to E,

3. C connected to D,

4. A connected to C,

5. H connected to F.

At this point all the nodes were connected to the overlay.

In next figures we investigate the costs (in terms of traffic load) required to maintain the Pastry

overlay on top of our ad hoc network. It is worth remembering that Pastry generates a manage-

ment traffic both when a node joins the network (and hence it needs to acquire the information

about the other nodes belonging to the same service), and periodically to check the status of the

overlay. This operation performed by each node is implemented by opening TCP connections from

that node towards all the other nodes belonging to the overlay.

Figures 7.10 and 7.11 show the amount of traffic generated and forwarded by the network nodes

using OLSR and AODV, respectively. As expected, nodes B and G, which only participate to the

routing and forwarding operations, generate the same amount of traffic observed in Section 7.4.1

in which the traffic was mainly due to routing operations. On the other hand, nodes belonging

to the Pastry overlay periodically experience peacks of traffic due to the overlay maintenance

operations. To better investigate this aspect, in the following graphs we focus on a single node

and analyse the type of traffic it generates.

Specifically, we identify four traffic classes:

c© Franca Delmastro, February 2006

Quantitative analysis 43

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

B
/s

)

Time (sec)

PASTRY on OLSR

node E
node F
node D
node B
node G

Figure 7.10.: Traffic Load on each node running Pastry on top of OLSR

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250 300 350 400

T
hr

ou
gh

pu
t (

B
/s

)

Time (sec)

PASTRY on AODV

node E
node F
node C
node B
node G

Figure 7.11.: Traffic Load on each node running Pastry on top of AODV

c© Franca Delmastro, February 2006

44

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

B
/s

)

Time (sec)

PASTRY on OLSR: throughput related to node F

ARP
OLSR

UDP
TCP

Figure 7.12.: Node F traffic on an OLSR network

✧ the traffic due to the ARP-protocol operations;

✧ routing traffic;

✧ the UDP traffic generated by Pastry overlay maintenance operations (e.g., ”ping” operations

performed at the Pastry level by a node to verify the presence of other nodes in the overlay;

✧ the TCP traffic used by nodes belonging to the overlay to exchange their routing tables and

other overlay-related information.

In the following figures we report the total traffic generated by a single node. More specifically,

while the curve ARP indicates only the total traffic produced by the ARP protocol, the curve OLSR

indicates the sum of ARP + OLSR traffic. The curve UDP denotes the sum of ARP+OLSR+UDP

traffic, and the TCP curve is the total traffic (i.e., ARP+OLSR+UDP+TCP) measured by the node.

Figures 7.12 and 7.13 clearly point out that the traffic peacks are due to the overlay management

(i.e., TCP and UDP traffic). On the other hand, from these figures we can observe that the ARP

traffic is almost negligible, while routing traffic is quite regular and provides links utilization levels

similar to those observed in Section 7.4.1 without FreePastry. Thus, the traffic burstiness is almost

due only to TPC/UDP traffic required by the overlay maintenance operations 5.

These observations are confirmed by observing other network nodes. In particular, by observing

node A, in case of AODV (see Fig.7.14), it clearly appears that Pastry operations may produce big

traffic peacks, mainly during overlay initializations.
5The flat behavior in the first 100 seconds of the OLSR experiment is due to the schedule of the experiment. In fact,

in this case the overlay starts only after a delay of 100 seconds in order to have the network topology stabilized with
complete routing tables. We did not add any delay in AODV, due to the reactive nature of the protocol.

c© Franca Delmastro, February 2006

Quantitative analysis 45

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250 300 350 400

T
hr

ou
gh

pu
t (

B
/s

)

Time (sec)

PASTRY on AODV: throughput related to node F

ARP
AODV

UDP
TCP

Figure 7.13.: Node F traffic on an AODV network

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350 400

T
hr

ou
gh

pu
t (

B
/s

)

Time (sec)

PASTRY on AODV: throughput related to node A

ARP
AODV

UDP
TCP

Figure 7.14.: Node A traffic profile (AODV case)

c© Franca Delmastro, February 2006

46

7.5. Lessons learned and further work

From this experimentation we can conclude that good pieces of software exist, correctly imple-

menting single features required in a MANET. The implementation of AODV and OLSR we tested

are quite robust. They are able to maintain updated routing tables even under frequent topology

changes. However, their usage is not yet user friendly. Problems were experienced depending on

the release of the LINUX kernel. The FreePastry implementation we tested properly operated on

top of our multi-hop ad hoc networks. On the other hand severe problems have been identified

from the performance standpoint. Such problems affected almost all MANET layers: network

interface, routing and forwarding, TCP, and Pastry. The quality of the wireless links is highly

variable. IEEE 802.11 operates in the ISM spectrum and hence experienced a lot of noise from

external sources. In addition, the increasing success of WiFi hot spots tends to saturate all the

available channels. In this experimentation we have often to switch our MANET on a different

802.11 channel to avoid the influence of existing WiFi access points.

Main routing and forwarding performance problems were experienced when using AODV and are

due to the reactive nature of the protocol. Delays introduced by path discovery and maintenance

have a strong negative impact on upper layer protocols that use "connection-oriented" operations.

Specifically, with AODV, when no route is in the node cache, we measured a delay of about 20

seconds for completing a simple ping-operation between a couple of nodes at a 2-hop distance

(values of this order were experienced several times). For the same operation, OLSR takes 1

second (or less) generally having routing tables updated. In rare cases, in which the ping operation

was performed just after a change in the topology and hence no updated route was available, we

experienced a delay of up to 6 seconds to complete the ping operation. At the upper layers

AODV delays often caused timeout expiration (e.g., the FreePastry timeout related to overlay

maintenance) that, as a consequence, declared failed an operation that is indeed only delayed due

to the route discovery procedure.

From the overhead standpoint we observed that, as expected, OLSR produces a higher routing

traffic in respect to AODV, but at least in the network we analyzed, the percentage of this traffic is

small compared to the 802.11b available bandwidth.

At the transport level, we experienced TCP problems already pointed out in literature. Long TCP

connections show a throughput that decreases with time. This aspect requires further investigation

in future experimentation to verify if an appropriate tuning of the TCP parameters is needed (e.g.,

advertised window).

Finally, at the middleware layer, the FreePastry implementation, by operating its own routing over-

lay independently from the underlying ad hoc network, introduces a heavy overhead. In addition,

the FreePastry maintenance operations exploit TCP services. Thus, poor TCP performances couple

with FreePastry overhead to reduce the overall system performance.

From this experience we gained some indications for solving performance problems in our MANET.

Specifically, these results encourage using a cross-layer architecture for a MANET as proposed in

[CMTG04] [CCMT04].

Results related to the comparison between reactive and proactive routing protocols indicate that,

c© Franca Delmastro, February 2006

Lessons learned and further work 47

with a proactive protocol: i) the response times are much better, and ii) the protocols overhead,

at least inside the ad hoc horizon, are not heavy.

Furthermore, results related to FreePastry indicate that significant performance benefits can be ex-

pected if routing information (extended with services information) can be used at the middleware

layer to implement the overlay maintenance operations. In this way the big overhead connected

with all remote connections is avoided.

According to this indication, a new optimized solution of overlay network for MANET is designed

exploiting cross-layer interactions with a proactive routing protocol. In following chapters main

principles of the cross-layer architecture are given, followed by the definition of the optimized p2p

system called CrossROAD: Cross-layer Ring Overlay for AD hoc networks. The entire system is then

validated and evaluated through several experimental sessions to highlight its advantages.

c© Franca Delmastro, February 2006

8. The Cross-Layer Architecture

One of the major challenges in the research on mobile ad hoc networks is to have them fully

functional with good performance while, at the same time, make them able to communicate with

the rest of the Internet. The IETF MANET WG proposes a view of mobile ad hoc networks as an

evolution of the Internet. This mainly implies an IP-centric view of the network, and the use of a

layered architecture. This paradigm has greatly simplified network design and led to the robust

scalable protocols in the Internet. The use of the IP protocol has two main advantages: it simplifies

MANET interconnection to the Internet, and guarantees the independence of wireless technologies

[MC03]. However, current results show that the layered approach is not equally valid in terms of

performance [GW02]. The layered approach leads the research efforts mainly to target isolated

components of the overall network design (e.g., routing, MAC, power control). Each layer in the

protocol stack is designed and operated independently, with interfaces between layers that are

static and independent of the individual network constraints and applications.

However, as shown in Fig.7.1 in a MANET some functions cannot be assigned to a single layer.

Energy management, security and cooperation and others cannot be completely implemented in a

single layer but they are implemented by combining and exploiting mechanisms implemented in

all layers. An efficient implementation of these functions can thus be achieved by avoiding a strict

layering approach in which the protocols at each layer are developed in isolation, exploiting an

integrated and hierarchical framework to take advantage of the interdependencies between them.

For example, from the energy management standpoint, power control and multiple antennas at

the link layer are coupled with scheduling at MAC layer, and with energy-constrained and delay-

constrained routing at the network layer.

On the other hand, the layered approach was, and is, one of the key elements of the world-wide

diffusion of the Internet, and a full cross-layer design is an extreme solution. In this case, control

information is continuously flowing top down and bottom up through the protocol stack and a

protocol behavior adapts both to higher and lower protocols status. For example, the physical

layer can adapt rate, power, and coding to meet the requirements of the application given current

channel and network conditions. The MAC layer can adapt its behavior based on underlying

link and interference conditions as well as delay constraints and bit priorities. Adaptive routing

protocols can be developed based on current link, network, and traffic conditions. Finally, the

application layer can utilize a notion of soft QoS that adapts to the underlying network conditions

to deliver the highest possible application quality [GW02].

The research community recognizes that cross layering can provide significant performance bene-

fits, but it is also pointed out that a layered design has been one of the key element of the success

and proliferation of Internet [KK03]. Supporters of the layered architectures point out that:

50

Figure 8.1.: Cross-Layer Architecture

✧ this design approach guarantees controlled interactions among layers, and hence designers

of protocols at a particular layer do not need to worry about the rest of the stack. On the

other hand, a cross layer design can produce unintended interactions among layers resulting

in performance degradation;

✧ An "unbridled" cross-layer design can produce a spaghetti-like code that is impossible to

maintain in an efficient way as every modification needs to be propagated to all protocols.

Our approach is to introduce inside the layered architecture the possibility of cooperation between

protocols belonging to different layers by sharing network-status information still maintaining lay-

ers separation for protocols design.

8.1. The Network Status

Figure 8.1 shows the cross-layer reference architecture defined in the framework of IST-FET Mo-

bileMAN Project [mob]. As shown in the figure, the innovation of this architecture is a shared

memory, called "Network Status" (NeSt) that is a repository of all the network status information

collected by all protocols. Each of them can access this memory to write the information to share

with the other protocols, and to read information produced/collected from the others. This avoids

duplicating layers efforts for collecting network-status information, thus leading to a more effi-

cient system design. In addition, inter-layer co-operations can be easily implemented by variables

sharing. However, protocols are still implemented inside each layer, as in the traditional layered

reference architecture. This has several advantages:

✧ Since core functions of each layer are not influenced, a full compatibility with standards is

maintained.

✧ This solution is robust to upgrading, and protocols belonging to different layers can be

added/removed to/from the protocol stack without modifying the operations at the other

layers.

✧ It maintains all the advantages of a modular architecture.

c© Franca Delmastro, February 2006

The Network Status 51

To summarize the reference architecture tries to achieve the advantages of a full cross-layer de-

sign (i.e., joint optimization of protocols belonging to different layers) still satisfying the layer

separation principle.

Layer separation is achieved by standardizing the access to the Network Status. This mainly

implies defining the way protocols can read and write data from it.

Interactions between protocols and the Network Status represent enhancements to normal layers

behavior, and provide optimization without compromising the expected normal functioning. Re-

placing thus a Network Status oriented protocol with its legacy counterpart allows the whole stack

to keep working properly. For example, using the legacy TCP protocol as the transport protocol

of the architecture implies that cross-layer optimizations do not occur at this layer. In addition,

in this case the transport protocol does not provide any information to the Network Status but,

even though in a degraded way, from the performance standpoint, the overall protocol stack still

correctly operates.

The NeSt module stands vertically beside the network stack (as shown in Fig. 8.1) handling

possible cross-layer interactions among protocols. In other words, the NeSt plays the role of in-

termediary, providing standard models to design protocol interactions. While the new component

uniformly manages vertical exchange of information between protocols, usual network functions

still take place layer-by-layer through standardized interfaces, which remain unaltered.

The idea is to have the NeSt exporting an interface toward protocols, so as to allow them to share

information and react to particular events. In [d13] and [CCMT04] the specification of a general

interface for the NeSt module is proposed. Specifically, it is specified that NeSt supports cross-

layering implementing two models of interactions with protocols: synchronous and asynchronous.

Protocols interact synchronously when they share private data (i.e. internal status collected during

their normal functioning). A request from a protocol for private data takes place on-demand,

querying the NeSt to retrieve data produced at other layers, and waiting for the result.

Asynchronous interactions characterize the occurrence of specified conditions, to which protocols

may be willing to react. As such conditions are occasional (i.e. not deliberate), protocols are

required to subscribe for their occurrences. In other words, protocols subscribe for events they are

interested in, and then return to their work. The NeSt in turn is responsible for delivering possible

occurrences to the right subscribers.

Specifically, we consider two types of events: internal and external. Internal events are directly

generated inside the protocols. For example, the routing protocol could notify the rest of the

stack about a broken route event, whenever it discovers the failure of a preexisting route. On the

other side, external events are discovered inside the NeSt on the basis of instructions provided by

subscriber protocols. An example of external event could be a condition on the host energy level.

A protocol can subscribe for a batterylow event, specifying an energy threshold to the NeSt, which

in turn will notify the protocol when the battery power falls below the given value.

In addition, a common data representation inside the NeSt is fundamental for the correct inter-

action of protocols. To this end, the NeSt works with abstractions of data and events, intended

as a set of data structures that comprehensively reflects the relevant (from a cross-layering stand-

point) information and special conditions used throughout the stack. A straightforward example

c© Franca Delmastro, February 2006

52

is the topology information collected by a routing protocol. In order to abstract network topol-

ogy information from implementation details of particular routing protocols, topology data can be

represented as a graph inside the NeSt. Therefore, the NeSt becomes the provider of shared data,

which appears independent of its origin and hence usable by each protocol.

Details on the interface specification can be found in [d13] while in this chapter we focus on some

examples of cross-layer interactions to better understand advantages of this architecture.

8.2. Examples of Cross-Layer interactions

Hereafter we give some examples of cross-layer interactions that optimize protocols behavior in

a MANET. Let us consider ad hoc routing, which is responsible for finding a route toward a des-

tination in order to forward packets. With reference to the classifications reported in Chapter 5,

the main classes of routing protocols are proactive and reactive. While reactive protocols establish

routes only toward destinations that are in use, proactive approaches compute all the possible

routes, even if they are not (and eventually will never be) in use. Typically, reactive approaches

represent the best option: they minimize flooding, computing and maintaining only indispensable

routes (even though they incur an initial delay for any new session to a new destination).

But what happens when we consider the cross-layer contribution that a routing protocol may

introduce in a NeSt framework?

In the framework of this thesis we mainly focus on middleware and application layers, where

the knowledge of the network topology from the routing protocol can extremely facilitate system

performance. Thus we consider as the main example the interaction between a routing protocol

and a middleware platform aimed at building an overlay network. In this case the routing protocol

contributes exporting the locally collected knowledge of the network topology, while the other can

exploit these information to maintain a correspondence between the logical and physical address

space.

Building an overlay network mainly consists of discovering nodes in the network that provide a

selected service or the same set of services (peers). Then it must establish and maintain routes

toward them, as they will constitute the backbone of a distributed service.

As previously explained in Chapter 6, the overlay network is normally constituted by a subset of

the network nodes, and a connection between two peers exists when a route in the underlaying (or

physical) network can be established. The task of building and maintaining an overlay is carried

out at the middleware layer, with a cost that is proportional to the dynamics of the physical

network with degrading performance in MANETs, even in small-scale testbeds (as explained in

Chapter 7).

Overlay platforms for the fixed Internet assume no knowledge of the physical topology, and each

peer collects information about the overlay structure in a distributed manner with several remote

connections. This is possible as the fixed network offers enough stability, in terms of topology,

and bandwidth to exchange messages. Of course, similar conditions do not apply for ad hoc

c© Franca Delmastro, February 2006

Examples of Cross-Layer interactions 53

environments, where bandwidth is a precious (and scarce) resource, wireless connectivity is often

unstable and the topology is highly dynamic.

In a cross-layer architecture, information exported by the network routing protocol can be offered

to the middleware layer. The key idea is that most of the overlay management can be simplified

(and eventually avoided) on the basis of already available topology information [Del05]. In this

case, the more information available, the easier the overlay management, and for this reason a

proactive routing approach results more appealing. To support this claim, let us look at what

is described in [SN03]. This paper describes a cross-layer interaction between a middleware

that builds an overlay for peer-to-peer computing and a Dynamic Source Routing (DSR) at the

network layer. In this work the DSR algorithm is forced to maintain valid routes toward the

overlay peers, even if these routes are not in use. In other words, a reactive routing is forced

to behave proactively, with the additional overhead of reactive control packets. The same cross-

layer approach with a proactive protocol would probably represent the best joint optimization,

and every node can maintain a complete view of the overlay exploiting the complete knowledge

of the network topology.

At the same time, the network routing table contents are not sufficient to simplify the overlay

management. In fact each overlay network has to be associated to a specific service, and only

nodes providing that can take part to the overlay. For this reason a Service Discovery protocol

is needed to identify all nodes providing the same service. Thus, avoiding the introduction of

an additional protocol to send services information over the network, a further example of cross-

layer interaction can be represented by an embedded solution of Service Discovery that exploits a

proactive routing protocol.

In this case services information, specified by each node to publish a service on the network, can

be added as optional field to routing packets and automatically sent on the network. Assuming

that services information can be represented by small application identifiers, the hypothesis of a

proactive routing protocol cannot negatively influence system’s performance. In fact, as analyzed

in Chapter 7, the overhead introduced by OLSR, as a proactive routing protocol, is not so heavy

compared to performance obtained from AODV experiments. In addition, in order to collect in-

formation related to services provided by other nodes, each of them has to be associated to the IP

address of the providing node in the NeSt abstraction of the network routing table, such that the

middleware layer can directly access them and autonomously build its overlay.

All these concepts represent the building-blocks on which we based our optimized solution of a

cross-layer p2p systems for ad hoc networks, called CrossROAD (Cross-layer Ring Overlay for AD hoc
networks). The detailed description of this new middleware solution and its software architecture

will be presented in the next chapters.

c© Franca Delmastro, February 2006

9. From Pastry to CrossROAD:
Cross-layer Ring Overlay for AD hoc networks

Experimental results showed that applying Pastry [RD01] to ad hoc networks based on a classical

legacy architecture is not a valid solution to develop an optimized middleware platform for this

kind of scenario. In fact, Pastry is designed for wired networks where thousands of nodes take

part in the same service in order to share and exchange information. In this case, nodes have

generally fixed positions and they have not power constraints or connection problems, while in ad

hoc networks mobile nodes cause frequent topology updates due to their movements or possible

coverage problems. In addition they also have to save energy correctly managing their resources.

The classical Pastry model does not care of these aspects, and particularly defines overlay manage-

ment policies that can negatively influence ad hoc network performance (see Chapter 7). Specif-

ically, join operations and monitoring overlay status require a lot of remote connections, not only

to physical neighbors, producing a big overhead on ad hoc networks. In addition the distribution

and recovery of information, can introduce a further overhead forcing the message forwarding to

use additional path due to the subject-based policy.

CrossROAD represents a new overlay network for MANET, based on cross-layer interactions be-

tween middleware and network layers. It exploits the cross-layer architecture to directly interact

with a proactive routing protocol, which guarantees a complete knowledge of the network topol-

ogy, in order to maintain a correspondence between physical and logical address spaces, without

increasing the network overhead. In this way CrossROAD can collect routing information in order

to optimize the overlay’s construction and management simply accessing shared information.

CrossROAD follows Pastry basic principles and, at the same time, it enhances them through the

cross-layer interaction with the routing protocol, but the only knowledge of the network topology

is not sufficient to define the optimized overlay network. In fact, a Service Discovery protocol is

needed to associate to each node of the network the list of services they provide and to allow each

node to autonomously build its own overlay. A detailed description of the entire system and its

features is given in following sections.

9.1. Node Identi�ers and Service Discovery protocol

As already described in Chapter 6, Pastry assigns a 128-bit logical address to each node willing to

join a ring overlay. This address will represent it in the logical space and it is generally obtained

hashing the IP address, the hostname or the public key of the local node, so that those nodes

56

Figure 9.1.: Cross-layer interactions for the service discovery

that are physical neighbors are logically scattered on the overlay. The hash function used to

compute logical identifiers uniformly and randomly distributes the logical addresses on the ring,

thus guaranteeing a fair balancing of the amount of keys each node is responsible for. In FreePastry

[fre], the open-source implementation of Pastry, each logical identifier is even represented by a

160-bit value obtained by the SHA-1 [EJ] hash function.

The same principle is applied in CrossROAD, but in this case, using the cross-layer architecture,

each node can directly know the entire network topology from the routing table managed by

the network routing protocol, based on a proactive approach. Since the network routing table

contains the IP address of each node of the network, the node identifier can be represented by

the hash function (SHA-1) applied to this information. However, the IP address of a node is not

sufficient to select services provided by every single node. Since all nodes in an overlay network

share a single service or a specific set of services, a mechanism to associate to each node the list of

services locally provided is needed. To this aim, the common idea of a Service Discovery protocol

developed at the application layer is not a good solution for MANETs, since it would introduce

additional traffic to spread and collect services information.

The presence of the cross-layer architecture even in this case further optimizes system perfomance.

In fact, considering the proactive routing protocol at the network layer, a new embedded solution

can be defined. Specifically, the proactive flooding of routing packets can be exploited to broad-

cast service information on all nodes of the network and, at the same time, it allows nodes to

recover the list of services provided by each node. Generally, this solution can be viewed as a soft-

ware module that collect services information from upper-layer applications and interacts with the

routing protocol through the NeSt.

In case of CrossROAD, each overlay network is associated to a single service. Thus, when a node

decides to join the overlay, CrossROAD notifies to the NeSt the presence of a new service on the

local node, then it informs the routing protocol to publish the new identifier through the first

available packet.

Fig.9.1 shows an example of two nodes in the network that exploit the cross-layer interaction be-

tween the middleware layer and the network layer to publish a service identifier and consequently

c© Franca Delmastro, February 2006

Managing overlay data structures 57

Figure 9.2.: Sending of an application message

retrieve it. In the first step node A starts providing a service and the overlay notifies the related

identifier to the NeSt. Then, the NeSt stores the information in its local data structures that repre-

sent an abstraction of middleware routing tables, and in step 2 it forwards the same information

to the routing protocol. This one not only encapsulates the service identifier as additional infor-

mation in the first available routing packet, but it also provides a periodical reflooding of the same

information through Hello packets until it receives a service disconnection event from the local

node. When the routing protocol running on other nodes receives a packet containing additional

information, it notifies its content to the NeSt that stores it in its data structure associating to each

IP address the list of services identifiers provided by the related node (step 4). Thus, the local

node can directly build the overlay network contacting the NeSt and simply applying the hash

function to the IP address of the nodes providing the same service. In this way, all remote connec-

tions required by Pastry for each join operation are removed and there is no additional overhead

to build the overlay network.

In addition, since a MANET topology is highly dynamic and nodes can be characterized by an

intermittent connectivity and can also decide to temporary disconnect themselves from the service,

the overlay network on the destination nodes is not notified by the NeSt of the presence of a new

node. The local node gets back the state of the overlay from the NeSt only when it is going to send

an application message. In this case the overlay must have an updated view of all participants to

compute the best match for each application message. A simple example is shown in Fig.9.2. In

this case node B wants to send an application message on the overlay, but it first requires to the

NeSt the current state of the overlay to find the node whose logical identifier is the closest one

to the message key (step 1-2). Once the best match has been found, node B directly sends the

message to the selected destination (step 3-4-5).

9.2. Managing overlay data structures

In order to manage the overlay data structures consequently to join and disconnection events, Pas-

try requires several remote connections, increasing the overhead of ad hoc network communica-

tions. In addition it has to manage three different data structures to maintain the correspondence

c© Franca Delmastro, February 2006

58

between the physical and the logical topology. Specifically, it stores the node identifiers of strict

logical neighbors in the Leaf set, those of physical neighbors in the Neighborhood set and the

others sharing a common prefix with the logical address of the local node in the Routing Table.

CrossROAD avoids all remote connections for the overlay management exploiting the cross-layer

interaction with the routing protocol. In addition it reduces the data structures used to define the

overlay to a simple routing table while Leaf set and Neighborhood set disappear.

In fact CrossROAD Routing Table contains the logical addresses of all nodes taking part in the

same service, organized following the same prefix-based metric of Pastry. Thus the subject-based

routing principle is maintained. In this way the routing table size depends on the number of nodes

providing the service and, in the worst case, it is equal to the network size if all nodes participate

in the ring. This is a reasonable hypothesis for ad hoc networks characterized by a limited number

of nodes. At the same time each node has a complete knowledge of the overlay network. Further

information about nodes behavior (e.g. mobility, reliability) can also be inserted in CrossROAD

Routing Table, enhancing the proactive routing protocol to maintain different metrics.

Once the CrossROAD Routing Table is locally built, consequently to the join operation of the

local node, it has also to be maintained accordingly to the physical network topology and to

additional connection and disconnection events. To this aim, Pastry defines a polling procedure

limited to the physical neighbors, in order to discover their status (i.e. a remote node is considered

disconnected from the Pastry network if it does not answer to a polling message before the timeout

expiration). In this way Pastry requires additional remote connections that negatively influence

network performance.

Even in this case CrossROAD does not require any remote connection thanks to the network rout-

ing protocol that, periodically sending its LSU packets, recovers all the topology updates and

directly manages the routing table and its abstraction in the NeSt. Thus every time CrossROAD

has to send a message on the overlay network, it has to verify in the NeSt if the content of its

routing table is consistent with the current network topology. Otherwise it has to update its data

structures before selecting the best destination and sending the message. In addition the system

becomes aware of topology changes or services disconnections with the same delay of the routing

protocol.

With this solution the overlay management is enormously simplified and there is no additional

overhead on the ad hoc network.

9.3. CrossROAD Subject-based routing

The main characteristic of the structured overlay model based on Pastry is represented by the

subject-based routing defined to distribute and recover data on the network.

Since the overlay data structures in Pastry have a fixed dimension depending on the network

size, they cannot maintain the entire set of nodes taking part to the ring and, for this reason, the

subject-based routing is represented by a multi-hop routing at the middleware level if the selected

destination is not part of the logical neighbors of the sender (see Fig.9.3a). This implies that at

c© Franca Delmastro, February 2006

CrossROAD Subject-based routing 59

(a) Pastry subject-based routing (b) Routing a message in CrossROAD and re-
lated network forwarding

Figure 9.3.: Overlays subject-basd routing

the network layer, the message forwarding is forced to send the message to intermediate nodes

(logically nearer to the key of the message) extending the optimum path between the source and

the destination. This creates an additional overhead to ad hoc network communications.

Instead, in case of CrossROAD this overhead is removed, thanks to the complete knowledge of the

overlay. In fact, since each node knows all the others, the sender can directly recover the nearest

destination for a selected key and send the message through a simple peer-to-peer connection.

Thus, the forwarding protocol at the network layer can deliver the message through the shortest

path (see Fig.9.3b). In this way in CrossROAD the logarithmic lookup cost depending on the

network size is further reduced to a constant value, independently of the network dimension.

However, whether the local node has a not updated view of the network topology, due to routing

delays, the node elected as best destination for the message checks whether in its data structure

exists another node closest to the key value. In that case, CrossROAD adopts the proximity metric

and forwards the message to the new destination. In this way, the system is reliable in case of

routing errors, and the complexity of the lookup procedure is reduced with respect to Pastry.

c© Franca Delmastro, February 2006

10. Software Architecture

In the framework of this thesis a prototype of the entire system has been developed. Specifically

the optimized p2p system has been completely developed and tested on real ad hoc networks, from

a small-scale [BCDG05] to a medium-large scale testbed [d16]. In order to highlight CrossROAD

advantages, the implementation of the cross-layer architecture has been limited to middleware

and routing interactions. In addition, several distributed application have been developed on top

of CrossROAD, implementing a common API defined for structured overlay networks [DZD+03],

and subsequently enhanced with cross-layer features due to the interaction with the proactive

routing protocol (XL-CommonAPI [CDG]). Technical details of the software architecture of Cross-

ROAD, the new cross-layer Common API, and the implementation of the prototype of cross-layer

architecture are given in the following sections. All applications developed on top of this system

together with their performance evaluations will be then described in subsequent chapters.

First of all an overall view of CrossROAD and its interaction with the NeSt and the proactive

routing protocol is needed to obtain a complete view of the system architecture. As is shown

in Fig.10.1, the NeSt architecture is limited to two main packages aimed at managing services

information, directly connected to CrossROAD and the proactive routing protocol through simple

interprocess communications. Every time a new instance of CrossROAD is created, because a new

service starts running upon it, it sends a “PublishService” request to the NeSt which forwards the

service information to the routing protocol. This one encapsulates them in the next LSU packet,

sending it through the network as soon as possible. Then, when the local node decides to send

an application message, it has to check the consistency of CrossROAD data structures through a

“Network Topology Request” to the NeSt, that recovers the state of the overlay from its topology

abstraction.

For the development of this prototype of cross-layer architecture, we exploited an open source

implementation of the proactive routing protocol OLSR [Ton] that allows developers to implement

dynamic libraries (plugins) for the definition of additional information to be sent on the network

through routing packets. In case of CrossROAD, this library has been called XL-plugin, because it

implements cross-layer interactions between middleware and routing protocols and it is described

in the next section.

10.1. XL-plugin: the NeSt implementation

As previously said, the main idea of CrossROAD is to exploit the cross-layer interaction with a

proactive routing protocol in order to collect network topology information and to broadcast ser-

vices information on the network through the flooding of routing packets. For this reason we

62

Figure 10.1.: Overview of the software architecture

Figure 10.2.: UNIK-olsr software architecture

selected an open source implementation of OLSR (Unik-OLSR v.0.4.8 [Ton]), that we had already

tested from the functionality and overhead standpoints as described in Chapter 7. OLSR provides

a default forwarding algorithm that allows the distribution of additional messages of unknown

types. A user may want to use the optimized flooding technique in OLSR to flood certain informa-

tion, routing related or not, to all nodes that know how to handle this message. This particular

version of Unik-OLSR allows the development of an internal plug-in for the definition of this ad-

ditional information.

In the case of CrossROAD, the additional information is represented by services identifiers used

to associate to each node the list of services locally provided. In fact, each overlay consists of all

nodes providing the same service, and every node (in order to join the overlay) has to know all

the nodes providing that service.

The software architecture of Unik-OLSR is described in Fig.10.2. It consists of four main packages:

c© Franca Delmastro, February 2006

XL-plugin: the NeSt implementation 63

✧ Socket Parser: this package waits for incoming traffic on a set of registered sockets. Since

it is possible to define additional information to be sent on the network, different software

modules may want to interact with OLSR and to do this they have to specify a local socket on

which they can communicate. When data is received from one of these sockets, the socket

parser calls the function associated with the specified socket. Sockets and their correspond-

ing functions are registered at run-time.

✧ Packet Parser: it receives all incoming OLSR traffic. Particularly it assumes three different

behaviors depending on the received packet:

i) it discards the packet if it is found to be invalid;

ii) it processes all messages contained in the packet if it recognizes valid message types;

iii) it forwards the packet according to the default forwarding algorithm if it does not know

the message type.

A parse function is associated to each message type in order to process the related messages

and update the information repositories.

✧ Information repositories: set of tables where information related to the current state of the

network is kept. All calculation of routes and packets are executed based on these reposito-

ries. In addition all packet parsing functions update and check the content of these tables

to process received messages. In particular, the forwarding functionality directly accesses to

the duplicate table that is a cache of all recent processed and/or forwarded packets. Each

entry of these tables is timed out.

✧ Scheduler: it runs different events at different time intervals. To transmit a message at a

given interval, one can register a packet generation function with the scheduler. Timing out

of tables entries is also triggered by the scheduler. To maintain an information repository

that is timed out on a regular period, it is necessary to register a timeout function with the

scheduler.

The Unik-OLSR implementation supports loading of dynamically linked libraries (DLL), called

plugins, to generate and process private message types and any other custom functionality. One

of the big advantages of DLLs is that they can be used simultaneously by multiple processes,

maintaining only one instance of the library in memory. In this way, plugins provide new functions

to an existing application without altering the original application. In addition the definition of

plugins does not need to change any code in the OLSR daemon. Users are free to implement and

license it under whatever terms they like, and they can be written in any language that can be

compiled as a dynamic library.

In general the software architecture of a plug-in (see Fig.10.3) is mainly represented by its local

data structures, and it can be organized in multiple threads in order to manage them and interact

with the routing protocol, depending on the purpose of each single plug-in. It communicates with

OLSR through the interprocess communication (IPC) using a local socket. When it is loaded by

the routing protocol, it has to register the communication socket to the socket parser module of

OLSR and to define the new message data structure and the related parsing function. In addition

c© Franca Delmastro, February 2006

64

Figure 10.3.: CrossROAD and routing protocol interaction through the plug-in definition.

Figure 10.4.: Nodes communication example.

it has a direct interaction with the scheduler module to manage timeouts related to its internal

data structures and the generation of additional messages. Finally, it has to define another socket

on which it can directly interact with a specific application. Using the IPC model, there are no

constraints on the programming languages chosen for the development of the application and the

plug-in.

In our case, the plug-in exactly represents the cross-layer interaction between the routing protocol

and the middleware platform (CrossROAD). For this reason it has been called XLplugin. At this

point, CrossROAD and routing interactions shown in Chapter 9 can be presented by interprocess

communications between CrossROAD, XL-plugin, and OLSR. Communications between any pair

of nodes of the network participating in the overlay are summarized in Fig.10.4.

Since each overlay is associated to a single service, multiple instances of CrossROAD can be active

on the same node, related to different services. Fig.10.5 shows how XL-plugin manages interac-

tions between multiple instances of CrossROAD and the routing protocol.

In order to manage all the instances, the XL-plugin has been divided in two main threads:

c© Franca Delmastro, February 2006

XL-plugin: the NeSt implementation 65

Figure 10.5.: XL-plugin as cross-layer interaction between CrossROAD and OLSR.

Figure 10.6.: XL-plugin internal data structures.

✧ MW-Server: it registers a local socket to the Socket Parser module to send all additional

information. In addition it opens another socket on which it waits for requests from the

middleware. When a new instance of CrossROAD is created, it opens a connection to the

MW-Server in order to register the service identifier related to the upper-layer application.

At this point the MW-Server generates a child thread to manage interactions with each Cross-

ROAD instance. The child thread is responsible for processing CrossROAD messages, updat-

ing the local data structures and forwarding the additional information (all related to that

particular service) to the routing daemon that will send it on the network through the next

available packet.

✧ Listener: when the plug-in is loaded, it registers a local socket to the Socket Parser module

on which it receives additional information processed by the plug-in parsing function when

OLSR receives packets from other nodes.

Furthermore, since XL-plugin has been designed to implement a cross-layer Service Discovery

protocol to optimize the overlay management, two main data structures have been defined. In

Fig.10.6 they are represented as two tables: LocalService Table and GlobalService Table. Specifically,

the LocalService Table maintains the list of services provided by the local node. Each entry of this

table consists of a 32-bit service identifier (ServiceID) and the related port number on which it is

served by CrossROAD. Instead the GlobalService Table maintains, for each service present in the

network and currently running on CrossROAD, the list of nodes providing it. For this reason each

c© Franca Delmastro, February 2006

66

Figure 10.7.: Sequence Diagram

entry of this table is represented by the service identifier and a dynamic list of elements consisting

of the IP address of the related node, and the port number on which the specific service is served.

All entries are timed out in order to preserve the consistency of the service information.

Through the definition of this dynamic library, we developed a first prototype of the cross-layer

architecture even though it represents only a subset of all cross-layer features presented in Chapter

8 and [CMTG04] [CCMT04].

To analyse the time-scale of the system interactions, a sequence diagram is reported in Fig.10.7.

Note that XL-plugin, after receiving a PublishService request, waits for at least another node pro-

viding the same service to send the related NodeList to CrossROAD. Otherwise all CrossROAD

features are useless since the local node cannot distribute information since the overlay is empty.

At this point, to better understand CrossROAD interactions with upper-layer applications, it is

important to describe its software architecture. However, since CrossROAD implements the P2P

CommonAPI, the architecture of its internal packages strictly depends on the internal structure of

this interface. For this reason, before detailing CrossROAD architecture a brief description of this

API is given in the following section. The detailed specification can be found in Appendix A.

10.2. The P2P CommonAPI and its cross-layer enhancements

The P2P CommonAPI has been designed to allow each distributed application developed on top

of it to run on different middleware platforms based on the structured overlay network concept.

Every p2p system that implements it maintains applications completely transparent in respect of

the internal architecture of the system.

Actually, in literature another possible solution to group structured overlay networks under a

common infrastructure have been presented [CDKR02]. It focused on the problem of finding a

bootstrap node to join the overlay, and on the fact that every system requires that each node

supports the same set of applications, pre-installed on each node. To solve these problems, the

c© Franca Delmastro, February 2006

The P2P CommonAPI and its cross-layer enhancements 67

authors proposed the use of an universal ring that only provides the bootstrap functionality while

each service runs in a separate p2p overlay. The universal ring enables peers to advertise and

discover services of interest, to find the code they need to run to participate in a particular service

overlay, and to find a contact node to join the overlay. To this aim, the proposed infrastructure

represents a higher level overlay network providing particular kind of services: an indexing service

that enables users to find specific services and the list of contact nodes submitting particular

queries. It represents a multicast service used to distribute software and related updates and

to coordinate members of a single overlay. Since this solution requires to maintain additional

data structures for the management of the universal ring, and the consequent increase of data

exchange and peers communication in addition to the upper applications, this solution does not

represent the optimal approach for ad hoc networks. In fact, in order to collect and maintain

services information of all overlays used by nodes of the network, the introduction of selected

nodes aimed at managing those information is needed, and temporary connections and mobility

of ad hoc nodes do not represent a good prerequisite. For this reason we mainly focus on using a

common API that does not require any infrastructure on top of the p2p systems.

However, the original specification of the P2P Common API [DZD+03] is meagre and current

implementations of structured p2p systems have customized it reducing the portability of appli-

cations. In addition, in mobile environments, the possibility to exploit cross-layer interactions

considerably improves overall performance. For this reason, in the framework of this work, this

interface has been further enhanced with cross-layer features typical of CrossROAD, so that ap-

plications developed on top of it can either exploit cross-layer advantages or run on other legacy

structured p2p systems. Specifically, each application developed on top of the XL-CommonAPI can

collect network routing table information and the current state of the overlay (e.g. the complete

list of nodes that participates to the system). In this way a large set of applications already de-

veloped for the Internet can also be ported on ad hoc networks and they can represent a great

inheritance for the mobile environment.

Each application running on top of a structured p2p system can exploit a set of basic features that

are represented by the assignment of logical identifiers and the subject-based routing. This was

defined in [DZD+03] as “key-based routing API (KBR)”, the basic layer of the commonAPI.

XL-CommonAPI represents the extension of KBR with cross-layer features. Further features devel-

oped to organize particular applications like multicast (Scribe [CJK+03]) or Decentralized Object

Location and Routing (DOLR)[HKRZ02] can be implemented directly on top of this API as a sim-

ple distributed application. Then this kind of services export another interface to their upper layer,

where specific applications can be developed.

XL-CommonAPI appears to the applications’ programmer as a set of java interfaces. Most of them

are implemented by the underlying p2p system, except the Application interface, which is imple-

mented by each particular application.

Specifically, Fig.10.8 shows the UML class diagram of XL-CommonAPI and the specification of most

important interfaces. We maintain the maximum consistency with the original definition of each

interface to support all applications already developed. A brief description of single interfaces

is given below, and a detailed specification is added only to the most important ones. Further

technical details can be found in Appendix A.

c© Franca Delmastro, February 2006

68

Figure 10.8.: XL-Common API class diagram.

Id: data abstraction of the logical identifier. In case of CrossROAD, it is implemented as a 160-bit

value obtained from the SHA-1 hash function applied to the IP address of the local host. In

Pastry a random quantity is added to the same value.

IdFactory: abstraction of the class that implements the arithmetic computation of the logical Id

starting from an array of byte, an array of int values, or a String. The p2p system must

choose the hash function to be applied to input values.

NodeHandle: abstraction of the pair of logical and physical identifiers associated to a specific host

(Id, IP address and port where the specific service is provided).

Message: abstraction of each message that has to be sent on the network through the overlay.

The data structure that represents an application message must implement this interface,

that only represents a Serializable java object, to have a reference type for each message.

RouteMessage: it represents a group of data structures, i.e. the message to send to the overlay,

the key specified for that message, and the optional next hop where the message would

be forwarded. This interface can be used by the application to modify the contents of the

message, the key or the next hop using specific functions detailed in Appendix A. If the next

hop is specified by the application, the system directly connect to it without checking the

current presence of the destination in the network.

Endpoint: represents the entity that allows the interaction of the programmer with the internal

data structures of the p2p system. As shown in Fig.10.8, this interface provides the following

functions to the application:

c© Franca Delmastro, February 2006

The P2P CommonAPI and its cross-layer enhancements 69

✧ void route(Id key, Message message, NodeHandle hint); it sends the specified

message to the node logically closest to the key value. The hint value is optional,

and it represents a node that should be used by the system to forward the message.

Key and hint cannot be both set to null. If a key value is specified, in Pastry, Chord

et al. this function represents a possible multi-hop routing of the message to reach

the final destination, since each node maintains only a limited part of the overlay in

its data structures. Instead, in case of CrossROAD, this function generates a single

p2p connection to the final destination of the message, since each node should have

a complete knowledge of the current state of the overlay. However, to increase the

reliability of the system due to routing delays, the destination checks if it is the closest

node to the key, otherwise it forwards the message following the proximity metric.

✧ NodeHandleSet replicaSet(Id id, int maxRank); this methods returns an ordered

set of NodeHandles on which replicas of an object with a given id can be stored. The

call returns a number of nodes up to maxRank.

✧ NodeHandleSet localLookup(Id id, int num, boolean safe); this method returns

a list of a maximum number of num NodeHandles that can be used as next hops on a

route towards the best destination for a given Id. The list is ordered by the logical prox-

imity between the specified id and the logical Ids of nodes of the overlay. In FreePastry1

[fre], if the safe flag is specified, the fraction of faulty nodes returned is no higher than

the fraction of faulty nodes in the overlay. In CrossROAD it is equivalent to the pre-

vious function, because the subject-based routing is anyway a single p2p connection.

However, if the safe flag is set to true, the cross-layer interaction updates the state of

the overlay to remove the possibility of faulty nodes, otherwise the system exploits the

last updated information stored in its internal data structures. This has been done to

reduce the frequency of cross-layer interactions when unnecessary.

✧ NodeHandleSet neighborSet(int num); this method returns an unordered set of up

to num NodeHandles that are logical neighbors of the local node.

✧ void scheduleMessage(Message message, long delay); it schedules a message to

be delivered to the local application after the provided number of milliseconds.

✧ Id getId(); NodeHandle getLocalNodeHandle(): they return respectively the Id

and NodeHandle of the local node.

✧ void closeApplication(); this function has been added in this version of the com-

monAPI in order to manage cases in which the application decides to notify its discon-

nection from the p2p system. In this way, CrossROAD manages the shutdown of the

application by sending a DisconnectMessage on the network through the routing pro-

tocol, to notify other nodes of the disconnection of such node from the service. The

receiving nodes update their internal data structures with the delay of the proactive

routing protocol. On the other hand, in case of Pastry, the disconnection of a node from

the overlay is detected by each node periodically monitoring the status of their logical

neighbors, increasing the overhead on the network.

1An open source implementation of Pastry developed by Rice University. It implements a commonAPI that reflects basic
concepts defined in [DZD+03], but it also extends it with many other specific functions.

c© Franca Delmastro, February 2006

70

Furthemore, functions explained below have been added to this interface as cross-layer en-

hancements to the interaction between the application and CrossROAD. At the same time,

classic p2p systems can simply maintain the empty definition of these functions in their

implementation. Specifically:

✧ OverlayRoutingTable getOverlay(); it returns a list of Ids of nodes currently present

in the overlay network. In order to return an updated view of the overlay to the appli-

cation, CrossROAD implements this function as a reactive cross-layer interaction with

the routing protocol, that returns the list of Ids of nodes that are providing the specified

service. Some applications can be optimized directly knowing the current state of the

overlay, managing the distribution of particular messages or becoming aware of overlay

changes.

✧ NetworkRoutingTable getNetworkRT(); it returns a list of entries consisting of: IP

address of the destination, IP address of the next hop, and cost to reach the destina-

tion from the local node. CrossROAD implements this function directly requiring the

network routing table to the XL-plugin. Also in this case the knowledge of the physical

topology of the network can be exploited to optimize the behavior of some applications,

e.g. defining the set of best nodes where to store replicas as the nodes whose logical

ids are close to the key but, at the same time, are physical neighbors of the sender. We

are also currently working on alternative metrics for the routing protocol (e.g. nodes

mobility, link power). Such information can be exported by this function to applications

as further cross-layer interactions.

✧ NodeHandle getRemoteHandle(InetSocketAddress add); it returns the NodeHandle

of a remote node, starting from the IP address and the port where the service is pro-

vided. This function can be useful for applications that want to force the route of a

message to pass through a specific node, knowing its address. To do this, they must

know the NodeHandle of the related node but they cannot directly compute it through

the NodeHandle interface.

In order to define standard data abstractions for middleware and network routing tables,

two additional interfaces have been defined: OverlayRoutingTable and NetworkRoutingTable.

They are represented by lists of single elements: Ids in case of OverlayRoutingTable, and (IP

destination, IP next hop, cost) in case of NetworkRoutingTable (see Appendix A).

Node: entity that directly manages internal data structures of the overlay network (overlay rout-

ing tables, association between logical and physical identifiers, messages, and others). It

is implemented by the p2p system and it appears to the applications’ programmer just

as a simple function that generates the Endpoint as a connection between the instance

of the service and overlay data structures (Endpoint registerApplication(Application
application, String instance)). This function allows the programmer to use and man-

age instances of overlay data structures through Endpoint functions, without knowing their

specific implementation.

Application: abstraction of the service locally provided. The application’s programmer has only to

c© Franca Delmastro, February 2006

The P2P CommonAPI and its cross-layer enhancements 71

implement this interface to exploit all features of the overlay network. Specifically it consists

of 3 functions:

✧ void deliver(Id key, Message message); it is invoked by the p2p system on the

node that is the best destination for the specified key upon the arrival of the message.

The application has to interpret the content of the message and consequently operate

on its data structures.

✧ boolean forward(RouteMessage message); this method is invoked at each node that

forwards the message, including the source node. As the parameter is a RouteMessage,

the application can decide to modify its contents, the key and/or the default routing

behavior selecting a different next hop. If the next hop is modified from a valid value

to null, the message will be terminated on the local node. Since CrossROAD always

requires just a single p2p connection, this function is mainly maintained for other p2p

systems.

✧ void update(NodeHandle handle, boolean joined); it is used by p2p systems to

notify the application of a connection/disconnection event in the overlay. This upcall

derives from proactive monitoring procedures that send neighbors discovering mes-

sages to recover their current status. In CrossROAD it is completely useless because, if

the application needs to know the current state of the overlay, it can directly require

it through the related function, and the consistency of the information is guarateed

strictly depending on the network routing protocol. In addition, since it is a reactive

operation, executed only if required by the application, it does not increase the over-

head on the network.

An additional component of this new commonAPI is represented by a java class that initializes

all data structures necessary to the service to interact with the p2p system. The application’s

programmer cannot initialize the overlay data structures only through their interfaces, because an

explicit contructor is needed to build an istance of each object. This would require the knowledge

of technical details of the overlay implementation in order to direclty access those data structures,

making the application dependent on the overlay implementation.

To avoid this dependence, the InitCommonAPI class has been defined. In our case this class has

been implemented for CrossROAD, and it provides a constructor to create instances of CrossROAD

objects, referring to them through the related interfaces. Specifically, it creates an instance of

CrossROAD node, the IdFactory that provides the generation of Ids, the local NodeHandle and

the local Id. Thus, each application only needs to create an instance of the InitCommonAPI and

retrieve from it all the references to the correspondent interfaces. In addition it has to directly

implement the Application interface and to execute the registerApplication method of the Node

interface to get the endpoint needed to interact with the overlay network. Once the service has

got the reference to the instance of each single object, it can execute all functions declared in the

interface. On the other hand, overlay networks have only to implement XL-commonAPI interfaces

and modify the definition of the InitCommonAPI class, referring to their internal data structures.

The validation of this new commonAPI has been carried out implementing several distributed

applications for ad hoc networks [DP05] [d13]. The description of these applications and the

c© Franca Delmastro, February 2006

72

Figure 10.9.: CrossROAD package diagram

related performance results are detailed in Chapter 13, but first of all we must complete the

system description with CrossROAD software architecture.

10.3. CrossROAD Software Architecture

Analysing the software architecture of CrossROAD we can better understand how the structure of

the commonAPI influenced the system design to maintain the maximum correspondence with the

other p2p systems like Pastry. As is shown in Fig.10.9, CrossROAD consists of four main packages

aimed at implementing different features and managing related data structures. Specifically, we

can describe them as follows:

✧ Node: it represents the kernel of this middleware platform. Not only it defines all objects

necessary to interact with other packages, but it also generates all threads designed for

the management of the overlay, for the establishment of remote connections towards re-

mote nodes and for the maintenance of the cross-layer interaction with the routing protocol

through the XL-plugin. It is also in charge of correctly managing disconnection and failure

events.

✧ Overlay: it contains all data structures designed to collect the overlay routing table and the

association between each node identifier and its IP address;

✧ Messaging: it defines all messages used by CrossROAD to communicate with the application

and the XL-plugin;

✧ SocketManager: it manages all local and remote sockets used to communicate with the ap-

plication, the XL-plugin, and other instances of CrossROAD running on different nodes for

the same service.

c© Franca Delmastro, February 2006

CrossROAD Software Architecture 73

Specifically, the Node package contains most of the classes that implement XL-CommonAPI inter-

faces. In particular, it contains the following classes:

✧ Id: implementing the related interface of XL-CommonAPI it represents a 160-bit logical

identifier obtained as the results of the hash function on the IP address of the local node.

✧ HashIdFactory: class that defines the specific hash function (SHA-1) to build logical identi-

fiers. It implements the IdFactory interface.

✧ NodeHandle: it implements the related interface collecting the IP address, port and Id of the

local node.

✧ NodeHandleSet: it implements a data structure to collect a set of NodeHandles used to man-

age a set of possible destinations, or replicas.

✧ CRendpoint: implements all method defined in the related interface representing the entity

that allows the interaction of the application with the internal data structures of the system.

✧ CRendpointMsg: represents the general structure of a CrossROAD message containing the

key used for the subject-based routing together with the application message.

✧ CRnode: it defines all methods needed to manage internal data structures of CrossROAD and

it implements all methods of the Node interface.

Following the previous order, the Overlay package contains a set of classes that implement main

overlay data structures as represented by their names:

✧ CrossROADRT: implements the routing table of CrossROAD (logical Ids of all nodes of the

overlay) organized following the prefix-based metric originally defined by Pastry.

✧ TempRoutingTableEntry: implements a single entry of the CrossROAD routing table, used to

re-organize the previous data structure after a join/disjoin operation of another node of the

overlay.

✧ NetworkRT: implements the middleware abstraction of the network routing table obtained

from the cross-layer interaction with the routing protocol.

✧ RoutingTableEntry: implements a single entry of the network routing table, used to re-

organize the previous data structure after a connection/disconnection event to/from the

network.

The Messaging package contains all types of messages used by CrossROAD in the inter-process

communication with XL-plugin and with other nodes of the overlay:

✧ Message: class that implements the related interface to define a common structure for all

messages send/received to/from the overlay.

✧ ApplicationMessage: class that defines the common structure of all application messages that

has to be passed to CrossROAD.

c© Franca Delmastro, February 2006

74

✧ RouteMessage: main argument of forward function from the XL-commonAPI. It notifies the

forwarding of the application message to the next hop. A route message contains a message

that has been wrapped to be sent to another node.

✧ Service: data structure that represents the pair (serviceID, port) used by CrossROAD to re-

quire information to XL-plugin.

✧ ServiceNodeList: list of pairs (IP address, port) of each node currently providing a specific

service.

✧ Message2Plugin: general structure of messages used by CrossROAD to communicate with

XL-plugin.

✧ MessageFromPlugin: general structure of messages that CrossROAD expects to receive from

XL-plugin.

The SocketManager package contains the definition of all threads used by CrossROAD to man-

age either cross-layer interactions or the client-server protocol to distribute and recover messages

to/from the overlay.

✧ PluginSocketManager: it defines and manages the socket connection between crossRoad and

the plugin.

✧ PublishLookupService: class that implements the main thread of communciation with XL-

plugin. First of all it is used to send a PublishService request and waits until at least another

node takes part to the same overlay. When it receives XL-plugin reply, it waits for a subse-

quent Topology request from the main thread of CrossROAD in case the application wants

to send a message on the overlay and the consistency of the internal data structures has to

be checked.

✧ PluginReader and PluginWriter: classes that serve as a “reader” and “writer” for messages

received/sent from/to XL-plugin via a local socket.

✧ AliveServer: server aimed at managing the “ALIVE” control message from XL-plugin. This

message is periodically sent by the plugin to monitor the status of the CrossROAD instance.

✧ DisconnectClient: client aimed at sending a Disconnection event to XL-plugin in case the

application explicity ends. XL-plugin when receives a Disconnect message forwards it on the

network inside the first available OLSR packet.

✧ GetRTclient: client aimed at sending a GetRoutingTable request to XL-plugin in case the ap-

plication requires to know the physical topology of the network.

✧ RoutingServer: server that manages all incoming requests from other nodes of the overlay.

✧ RoutingServerManager: it is the manager of a single incoming request.

✧ RoutingClient: it manages all messages sending from the local node to the others.

c© Franca Delmastro, February 2006

CrossROAD Software Architecture 75

✧ SocketReader and SocketWriter: classes that serve as a "reader"/”writer” for messages re-

ceived/sent from/to the CrossROAD overlay.

Fig.10.10 shows the activity diagram of CrossROAD, where concurrent operations of several threads

are described. Specifically, after the initialization of CrossROAD data structures through a new in-

stance of the InitCommonAPI class, the endpoint is created calling the registerApplication
function. This is in charge of creating the AliveServer thread that is responsible for a specific con-

trol message from XL-plugin to monitor the status of CrossROAD. Concurrently the PublishLookupSer-

vice client is created to manage the message exchange with XL-plugin to publish the service and

recover the current list of nodes. Once at least another node takes part in the overlay, the Cross-

ROAD routing table is initialized, and the overlay is active. At this point the RoutingServer thread

is created to manage incoming messages from other nodes, while the system waits for local ap-

plication messages to be sent on the overlay. For each application message the best destination is

computed and the P2P connection is established. When the application sends a closeApplication

message, the related Disconnect message is sent to XL-plugin to be flooded on the network and all

active threads and sockets are closed ending the entire system.

After this exhaustive description of the software architecture of the entire system, a detailed anal-

ysis of its performance in small scale and medium-large scale ad hoc networks is given in next

chapters.

c© Franca Delmastro, February 2006

76

Figure 10.10.: CrossROAD activity diagram

c© Franca Delmastro, February 2006

11. CrossROAD on a small-scale ad hoc network
testbed

In this chapter we report our experiences and results obtained by measurements on a real MANET

implementing a full ad hoc network architecture as extension of our first experimental analysis

(see Chapter 7). This part of our work provides an orginal contribution to the research community

setting up a cross-layer MANET prototype. Specifically, we performed several sets of experiments

and we focused the study on different solutions for routing protocols and middleware platforms.

Specifically:

1. we investigate a full protocol stack with particular attention to routing and middleware

layers;

2. we evaluate through experimental results the advantages of the cross-layer architecture,

mainly focusing on routing and middleware interactions.

11.1. Testbed architecture and experiments environment

The novelty of this part of our study is the analysis of a full ad hoc network protocols stack, from

the physical layer up to the application layer, comparing performance results of a legacy-layer

architecture with those of a cross-layer architecture. Specifically, our prototype represents a cross-

layer solution to exploit cross-layer interactions between middleware and routing protocols. A

first phase of this experimental evaluation, presented in Chapter 7, was divided in the following

steps:

✧ Routing: functional analysis of existent implementations of reactive (AODV [PR99]) and

proactive (OLSR [rfc]) routing protocols and their comparisons in terms of traffic generation

and configurations delays;

✧ Middleware: porting of Pastry on top of the selected routing protocols, in order to evaluate

the performance of a structured p2p platform on a MANET. Specifically, we used FreePastry

[fre] as open-source implementation of Pastry.

This chapter represents an evolution of the previous analysis, considering not only mobility sce-

narios and their impact on the network topology reconfiguration, but also evaluating CrossROAD

performance.

78

Before analyzing system performance, a detailed description of the testbed architecture and the

experimental environment is needed. All the experiments have been executed inside the same

building of the CNR campus in Pisa used in previous experiments. In order to deploy a multi-hop

ad hoc network in a small geographic area, physical characteristics of the building (masonry walls)

and possible interferences (due to the presence of access points and measurement instrumenta-

tions), were exploited to limit transmission capabilities of nodes and obtain realistic wireless links

(i.e., with variable quality due to external interferences). Taking into account the environment

constraints we identified the initial positions for mobile devices and hence the starting topology

of our MANET. For all the experiments a set of (up to 8) laptops (IBM R50) equipped with the

integrated wireless card Intel PRO-Wireless 2200 have been used. Experimental scenarios cannot

be compared with those used during simulations, where hundreds of nodes move inside areas

arbitrarily wide. However, a small ad hoc network represents a more realistic scenario in which

users, equipped with mobile devices, can decide to connect to each other, sharing information

[GLNT]. The initial phase of the testbed was devoted to investigate the performance evaluation of

network layer protocols, i.e., AODV and OLSR on static and mobile scenarios. Then, we focused

on the performance evaluation of two different middleware platforms, Pastry vs CrossROAD, on

top of the two routing protocols.

To compare and contrast the Pastry model with its cross-layer enhancement, we used the Dis-
tributed Messaging (DM) application, already developed on top of FreePastry, also on top of Cross-

ROAD. Nodes running DM set up and maintain an overlay network related to this service. Once

a node has created/joined the overlay, the application allows users to create/delete one or more

mailboxes distributed on the other nodes and to send messages to them. A mailbox’s physical

location is randomly selected applying the hash function to the associated identifier, used as the

key value of the related messages.

11.2. Experiments and performance evaluation

In order to obtain a complete performance evaluation of the entire system on a real multi hop

ad hoc network, several sets of experiments had to be executed, focusing on different aspects

of the MANET architecture. First of all we examined routing performance in case of mobility

scenarios and topology changes. Then we analyzed CrossROAD in terms of functionality, overhead

introduced on the network, and delays needed to build the overlay network and to become aware

of overlay and topology changes.

11.2.1. Routing performance

In this section we present the performance evaluation of the routing protocols on a string topol-

ogy. As evolution of a previous work [Bor05], in which only static networks were considered,

we introduced mobile nodes in order to evaluate the impact of the mobility on routing protocols.

To this end, we considered a string topology network of four nodes and we performed three sets

of experiments increasing the number of mobile nodes (all the scenarios are shown in Fig.11.1).

c© Franca Delmastro, February 2006

Experiments and performance evaluation 79

Figure 11.1.: String topology

In this scenarios the connectivity between the sender and the receiver changes from 1 hop to 3

hops and viceversa during the experiments. To have a comparison between OLSR and AODV, we

studied the Packet Delivery Ratio (total number of packets received at the intended destinations di-

vided by the total number of generated packets) and the delay needed to reconfigure the network

consequently to the movements of nodes. In addition to the routing protocol, we introduced some

traffic at the application layer using the ping utility. This guarantees that AODV runs in a complete

manner; otherwise, without any application-level traffic, its routing information is reduced only

to Hello packets exchanges. In particular, in our scenarios, all the nodes start running the routing

protocol and, after an initial period necessary for network topology stabilization, node A pings

continuously node D until the end of the experiment. We repeated the same set of experiments

several times. Obtained results were similar, thus we present an average of them. One may argue

that similar set of experiments were already available in literature [Lun]. On the other hand we

think that there are several main reasons to perform these experiments in our environment:

1. Our cross-layer architecture assumes an underlaying proactive routing protocol. Compar-

ing AODV and OLSR performance enable us to better understand if and how the proactive

assumption impacts on the overall system performance. Previous results (see Chapter 7)

and those presented in this chapter indicate that in small-medium scale networks and low

mobility scenarios OLSR does not penalize the system performance.

2. Measurements related to the topology management provide a reference to understand the

behavior of the p2p protocols and, in the specific case of CrossROAD, also give a direct mea-

surement of the expected delays in the overlay construction and reconfiguration. Therefore,

a better understanding of the routing protocol performance will be useful when analyzing

the behavior of the p2p platforms.

The configuration and the methodology used for the experiments follow those published in [Lun],

and they can be taken as a reference for our performance evaluation.

In the first set of experiments, called "Roaming node", there are 3 static nodes (B, C, D) and the

"roaming" node A. The experiment lasts 2 minutes: from the initial position W, node A starts

c© Franca Delmastro, February 2006

80

moving and every 20sec it reaches the next position in the line (X, Y, Z). Once it has reached

the last position Z, it immediately moves in the opposite direction following the reverse path and

reaches the starting position near node D after another minute.

The second set of experiments is referred as "End node swap" due to the movement of the two

communicating nodes (A and D), while the rest of the network remains in the same configura-

tion. More specifically, the two end nodes maintain their initial position for the first 20sec of the

ping operation, then they start moving reaching the next position in the line every 20sec. The

experiment lasts other 20sec after the end nodes have swapped their positions.

The last set of experiments, named "Relay swap", is similar to the previous one: there are 2 mobile

nodes in the network that change positions during the test. In this case after 20sec from the

beginning of the ping operation, central nodes start moving and swap their positions after 20sec,

then they remain in this new configuration until the end of the experiment (it lasts 60sec).

In all the experiments each mobile node moves along the line with a speed of about 1m/s, since

we are interested in investigating low mobility scenarios.

Looking at the Packet Delivery Ratio index, as shown in Table 11.1, we note that increasing the

complexity of the proposed scenarios, performance of the two routing protocols decreases up to

about 60% of packets delivery in case of Relay swap scenario. Specifically, in the Roaming node

scenario we can note that both protocols have similar behaviors: there is a packet loss of about

25%. Examining the log files, we observe that, for both protocols, packet losses mainly occur when

node A goes beyond position Y and reaches the string’s end. Specifically this represents the time

in which the connection A-D changes from a 2-hop to a 3-hop connection, due to the loss of the

direct link A-C. In the End swap scenario, the proactive protocol performs better than the reactive

protocol: delivered packets increase of 10%. OLSR introduces the high percentage of its packet

loss in the last 40sec of the test-run when the connection becomes again a 3-hop connection. On

the other hand, at the beginning of the experiment all packets are correctly received since the

network is already stabilized when data transfer starts. In contrast AODV distributes uniformly its

packet loss during the entire test-run.

As previously said, in the third set of the experiments the packet delivery ratio of OLSR and

AODV decreases up to 66% and 60%, respectively. In particular, from the log files we note that

packet losses occur during the relay swap phase (i.e., from 20 to 40sec), in which only half of the

number of packets generated by node A reaches the destination successfully. To evaluate the delay

introduced by the two routing protocols due to nodes’ movements, we measured the time needed

to update the routing tabl e for OLSR and to discover new paths to the destination for AODV.

In the first scenario, when node A moves towards position Z, OLSR requires 5sec to discover a

2-hop path to D after the direct link A-D is lost. It needs 10sec when the path in the connection

increases from 2 to 3 hops. AODV introduces a delay of 2sec for the first topology change, and

7sec for the second one. Both protocols do not introduce any additional delay in the reverse path

(from Z to W position).

In the End swap scenario, OLSR introduces a delay of 15sec when the topology changes from a

fully connected (each node see all the others) to a topology of three hops. In the same topology

c© Franca Delmastro, February 2006

Experiments and performance evaluation 81

PDR Roaming node End node swap Relay swap
AODV 0.87 0.67 0.60
OLSR 0.83 0.77 0.66

Table 11.1.: Overall Packet Delivery Ratio.

Figure 11.2.: Experimental network topology

change, AODV experiences a delay of 10sec but it also introduces a similar delay to move from the

starting configuration to a fully connected topology.

In the last scenario, during the relay movement, OLSR introduces a delay of 15sec for the routing

table reconfiguration, while AODV requires 11sec to discover a new route to the destination.

11.2.2. Overlay network performance

In order to evaluate CrossROAD performance, several sets of experiments were performed using 8

nodes (see Fig.11.2) but only 6 running the overlay. In fact nodes B and G just worked as routers.

During the experiments all nodes were synchronized and started running OLSR enhanced with

the XL-plugin.

In the first set of experiments, the overhead introduced by CrossROAD and FreePastry has been

measured. The experiment consists of defining an order with which nodes start running the

overlay, and no message generation is required by the application. In this way we can measure

only the overhead introduced by the overlay construction and management. The main difference

between these experiments is due to the self-organizing nature of CrossROAD and its complete

independence on building and managing the overlay.

In fact, as is shown in fig.11.3, nodes B and G, that just work as routers, only perform routing

traffic that is almost negligible (about 50Bps). But also the other nodes, which start running the

overlay with a delay of 10sec one from the other (interdeparture time), introduce an overhead less

than 100Bps. Comparing these results with Pastry performance on the same set of experiments

(see fig.11.4), we can notice that nodes running the overlay introduce a much higher overhead

than in case of CrossROAD, with several traffic peacks corresponding to TCP and UDP connections

used to initialize and maintain the overlay data structures.

Another important feature of CrossROAD is represented by the timeliness with which every node

at the startup becomes aware of the other participants. Since the PublishService message is sent

on the network as soon as the next routing packet is ready, the delay introduced for each node to

c© Franca Delmastro, February 2006

82

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600

B
/s

seconds

CrossROAD and XL-plugin on OLSR

node D
node F
node E
node G
node B

Figure 11.3.: CrossROAD: Throughput related to main nodes.

Delays for overlay establishment First node Other nodes
2nd node at 1-hop distance 180msec 40msec
2nd node at 3-hops distance 325msec 30msec

Table 11.2.: CrossROAD delays for the overlay construction.

collect information about all nodes taking part to the overlay, is lower than in case of establishing

one or more remote connections.

In order to obtain these results, we set up two sets of experiments using an interdeparture time

of 10sec. In both cases the first node starts running CrossROAD and waits for being notified from

the XL-plugin that some other nodes join the overlay. Specifically, in the first set the second node

is 1-hop distant from the first, while in the second set the second node is 3-hop distant from

the first node. As shown in table 11.2, the first node of the overlay experiences different delays

in those experiments, due to the physical distance from the second node. When they are 1-hop

neighbors, the first node experiences a delay of 180msec, while in the second case it experiences

a delay of 325msec. The measured delay corresponds to the interval time between the sending of

the PublishService from the second node to the notification of the list of nodes of the overlay to

the first node. All the other nodes experience a delay of about 30 − 40msec because when they

start the overlay, the plugin has already stored at least one other node providing the service in its

local data structures. Hence, in this case, the delay represents only the processing time needed to

exchange messages between CrossROAD and the plugin on the local node.

As the last set of experiments, we analyze a possible network partitioning and the consequent

reaction of CrossROAD in the overlay management. To do this, a new network topology, shown

in Fig.11.5a, has been set up. Specifically, the ad hoc network consists of 5 nodes, and only nodes

in adjacent positions are in the transmission range of each other. All nodes start running OLSR

enhanced with the XL-plugin, and after about 30sec to have the network topology stabilized, they

start executing CrossROAD with a delay of 10sec from each other.

c© Franca Delmastro, February 2006

Experiments and performance evaluation 83

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250 300 350

B
/s

seconds

PASTRY on OLSR

node D
node F
node E
node G
node B

Figure 11.4.: Pastry: Throughput related to main nodes.

When all nodes are correctly connected to the overlay, node C starts periodically sending an ap-

plication message with a specified key value. The period with which the message is sent on the

overlay is set to 1sec. Initially, the key value results to be logically closest to the node identifier of

B, hence node C sends those messages directly to B. Then after about 30sec, node C starts moving

towards position X with a speed of about 1m/s, generating a network partitioning: nodes A and B

create an independent ad hoc network as well as nodes C, D, and E (see Fig.11.5b).

Since the direct link B-C is lost, the cross-layer interaction between CrossROAD and the routing

protocol allows node C to become aware of the network partitioning and the consequent removal

of nodes A and B from the overlay. Hence, the successive messages sent by node C on the overlay

with the same key value, are directly sent to the new best destination: node D.

After 2 minutes, node C starts coming back to the initial position re-establishing a single ad hoc

network. At this point, the following messages are sent again to node B. As shown in Fig.11.6,

CrossROAD, thanks to the cross-layer interaction with the routing protocol, correctly manages

data distribution in case of overlay and network partitioning. Specifically, the figure shows that:

i) during the first phase (a single ad hoc network), C’s data are stored on node B;

ii) when the partition occurs, after a transient, C’s data are delivered to node D;

iii) when the network is connected again, C’s data are stored again on node B.

It is important to specify that CrossROAD, before sending each application message, requires to

XL-plugin the list of nodes currently taking part to the overlay. At the same time, the XL-plugin has

to maintan the consistency of its internal data structures with the processing of service discovery

messages periodically received. For this reason, a validity timeout has to be associated to each

entry of the GlobalServiceTable and a ServiceMaintanance message has to be sent periodically on

the network.

c© Franca Delmastro, February 2006

84

(a) Initial Topology (b) Partitioned Topology

Figure 11.5.: CrossROAD mobility experiment

E

D

B

A

 0 100 200 300 400 500 600

N
od

es

seconds

Data Distribution in case of Network Partitioning

node B
node D

Figure 11.6.: CrossROAD reaction to network partitioning

In order to guarantee the maximum timeliness of CrossROAD to overlay topology changes, this

period is set equal to that used by OLSR to flood Hello messages on the network (2sec). This pro-

cedure does not negatively influence system performance because each service identifier is simply

represented as 32-bit value. Hence, even changing the maintanance period, the total overhead

does not considerably change.

In conclusion, cross-layer interactions between routing and middleware make every node of the

overlay completely autonomous from the others, optimizing data distribution and recovery for

upper applications without introducing additional overhead on the network. In this way, all the

advantages introduced by the use of a structured p2p system are further optimized and all disad-

vantages introduced by Pastry on ad hoc networks are completely removed.

11.3. Conclusions

During this study a large number of experiments has been set up in order to obtain real mea-

surements on a full ad hoc network architecture. In particular routing protocols and middleware

c© Franca Delmastro, February 2006

Conclusions 85

platforms have been evaluated in terms of overhead and reconfiguration delays in case of mobility

scenarios and network topology changes. This real testbed demonstrated that:

i) the use of a proactive routing protocol (OLSR) does not penalize the system performance either

in terms of PDR and reconfiguration delays in static and low mobility scenarios;

ii) CrossROAD drastically reduces the overhead introduced by a classical p2p system on ad hoc

networks, and correctly manages cases of network partitioning and topology changes.

The next step of our study is to create a larger testbed in order to evaluate the overall system

performance on a large scale ad hoc network, as is shown in the next chapter.

c© Franca Delmastro, February 2006

12. CrossROAD on a medium-large scale ad hoc
network testbed

An extensive experimentation on our mobile ad hoc solutions involving up to 23 nodes was carried

out in Pisa at CNR (Italian National Research Council) last summer in five different days: 29 May,

3 June, 11 June, 17 June and 23 July 2005.

All the experiments took place at the ground floor in CNR campus in Pisa. Since more than 20

nodes were involved in this experimentation, a wide area has been used for testing a medium scale

network. Hence, in addition to the CED Area used in previous experimentations, the Conference

Area located in the adjoining building was also used (see Fig.12.1). The structural characteristics

of these buildings strictly determine the transmission capabilities for nodes of a wireless network

located within. Wireless links are also influenced by the presence nearby of Access Points and

measurement instrumentations which introduce quite a lot of noise. Moreover, about 30-40 peo-

ple work in this floor every day and get around from office to office or towards service areas with

coffee machines, toilets, etc. This makes the transmission coverage characteristics of the floor

and the stability of the links modify continuously and in an unpredictable manner. For this rea-

son all the experiments were executed during Saturday or non-working days to reduce human

interferences maintaining a realistic environment to test an ad hoc network.

A great number of experiments had been conducted during this experimentation. In following

sections the most meaningful experiments are described and main results on system performance

are detailed.

Figure 12.1.: Testbed area

88

Figure 12.2.: Physical position of nodes

12.1. The network topology

The first step to set up the ad hoc network and start investigating software features was configuring

the network topology. We had 23 nodes to be distributed inside the CNR campus to carry out a

multi-hop ad hoc network as much large as possible. For this reason we used a heterogeneous

environment consisting of indoor and outdoor spaces since not all buildings are strictly connected

between them. We started from the same configuration used in the experimental session of July

2004 with 12 nodes, explained in Chapter 7. Since we used a greater number of laptops with

different capabilities (also for the transmission range of wireless cards), a new measurement of

the link connectivity had to be done. In this case the interested area was extended from the CED

area to the neighborhood of the conference area as shown in Fig.12.2. Most part of nodes (17) was

located inside buildings. In particular we placed 13 nodes at the ground floor (red circles), three

at the first floor (yellow circles), and one on the stairs (the white circle). The last six nodes were

located outside the buildings (blue circles) along the street or the corridor between the involved

buildings.

In order to verify the coverage area of every device, each node started running Unik-OLSR for

five minutes storing the kernel routing table in a log file every second. Then, we analyzed the set

of 1-hop neighbors of each node to define the final network topology. Considering a large multi-

hop ad hoc network we could test and evaluate features and performance of a complete MANET

architecture. For this reason, since many devices had a wireless card with a high transmission

power, we had to reduce it on single nodes (if allowed by the driver of the wireless card) to

remove some redundant links. We repeated this procedure many times to check that the obtained

configuration was stable.

Fig.12.3 shows the final network topology, where straight lines point out the presence of stable

links (two nodes directly see each other), while dashed lines show the presence of weaker links

(the communication between two nodes is affected by a considerable packet loss). We thus ob-

tained a multi-hop MANET of 23 nodes with the maximum extension of eight hops. To simplify

the explanation of single experiments, we referred to the network topology through the graph

c© Franca Delmastro, February 2006

Middleware Experiments 89

Figure 12.3.: Network topology

Figure 12.4.: Topology graph

illustrated in Fig.12.4.

The experimentation focused on the analysis of different layers of the protocol stack to compare

a legacy architecture with those of a cross-layer architecture. Even in this case a comparative

performance analysis of two routing protocols (OLSR and AODV) have been done both in static

and mobile scenarios. The detailed analysis can be found in [d16], while in this chapter we mainly

focus on middleware performance.

12.2. Middleware Experiments

In the middleware experiments we compared CrossROAD and FreePastry in static and mobile

scenarios running the Distributed Messaging application on top of them. In static scenarios we

mainly analysed the overhead introduced by the overlay management on the network in terms of

c© Franca Delmastro, February 2006

90

network load and delay. On the other hand, in case of mobile scenarios, we focused on CrossROAD

performance to distribute data on the overlay nodes and the responsiveness of the cross-layer

architecture to topology changes.

Since Pastry requires the knowledge of a bootstrap node to join the overlay, each node running

FreePastry must define a priori the IP address of that node to directly send its join request. Obvi-

ously, the bootstrap node has to be active before other nodes sending their join request. A time

interval is thus associated with each join procedure to be compliant with the bootstrap sequence

and to avoid connection failures during this phase. To maintain a correspondence between the

two different sets of experiments, the same bootstrap sequence was also used for CrossROAD

experiments. Specifically:

✧ N started DM as the first node of the overlay;

✧ E,K,M,L,R,O started DM after 10 seconds from N, as its 1-hop neighbors;

✧ D, J, Q, S, P, started DM after 20 seconds from N, as its 2-hop neighbors;

✧ C, B, G, F, I, T, Y, W started DM after 30 seconds from N, as its 3-hop neighbors;

✧ A, H, X started DM after 40 seconds from N, as its 4-hop neighbors.

For all these experiments all nodes were synchronized and started running the routing protocol

for 30 seconds to have the network topology stabilized. Then they ran the DM application with

specified different start-up delays. They are all active after 60 seconds from the starter of the

overlay.

In particular, to numerically evaluate system performance grouped by network load, delays, and

data distribution, we defined different types of experiment:

✧ Experiment 1: All nodes started running the routing protocol, followed by DM application

on top of CrossROAD or FreePastry. In this experiment no application messages were sent in

order to evaluate only the overhead introduced by the overlay management on the routing

protocol. DM ran for 4 minutes, and then each node explicitly closed it. The routing protocol

stopped after 30 seconds after DM ending.

✧ Experiment 2: All nodes started running the routing protocol, followed by DM application.

In this experiment one application message (Create Mailbox message) of 100 Bytes with a

random key was generated and sent on the network by each node every 100 msec for 120

seconds. Before sending those messages, nodes waited for all the others joining the overlay.

Therefore, the first message was sent (on each node) after 60 seconds from the first node

that had started the overlay. The Create Mailbox message requires to the destination node

to store a mailbox with the specified identifier as the key of the message. It does not require

any reply.

✧ Experiment 3: All nodes started running the routing protocol, followed by DM application.

In this experiment one application message (Create Mailbox message) of 100 Bytes with

random key was generated and sent on the network by each node (except for nodes A and

c© Franca Delmastro, February 2006

Network load analysis 91

Y). Messages were sent with a period of 100 msec for 120 seconds. At the same time,

A and Y generated a Get message with a random key using the same frequency of other

nodes. As in the previous case, before sending all messages, nodes waited for all the others

joining the overlay. The Get message notifies to the destination node the request of the list

of messages stored in the mailbox with logical identifier equals to the key (the mailbox had

to be previously created by a Create message). The node selected as best destination for

this kind of messages has to directly reply to the sender with the list of messages. Using a

timestamp inside the application message, a round-trip delay can be measured.

✧ Experiment 4: All nodes started running the routing protocol, followed by DM application.

In this experiment 10 nodes (A, Y, T, R, M, H, I, C, E, G) generated a Get message every 100

msec for 120 seconds, while the others (N, D, F, J, O, P, S, B, K, W, Q, X) only maintained

the overlay, receiving messages and replying directly to their sender. In this case we could

evaluate system performance with a different traffic load.

✧ Experiment 5: data distribution in case of delayed joining of the overlay with CrossROAD. In

this experiment node L was not available, and all nodes, except for N and M, started running

Unik-OLSR and XL-plugin creating two different ad hoc networks (see Fig.12.5). They only

ran the routing protocol for 30 seconds to have the two network topologies stabilized. Then

they ran DM application with different delays following the same sequence specified for the

first set of experiments on CrossROAD. N and M, which are central nodes, started the routing

protocol and the overlay with a delay of 2 minutes joining the two networks in an only one.

On the other hand, when all nodes of the first group correctly joined in the overlay, A and Y

started sending a Get message every 200 msec for 6 minutes. This experiment allows us to

evaluate system performance in case of merging of two networks and subsequently of two

overlays.

A detailed description of each experiment can be found in [d16]. In the following sections the

analysis of main performance results obtained by selected experiments are presented. In particular,

the overhead to maintain these two different overlays in terms of network load is presented in

Section 12.3. Then, measured delays to distribute and recover data are analyzed in Section 12.4

and, finally, the responsiveness of the cross-layer interactions between CrossROAD and OLSR to

distribute data in a partitioned overlay is described in Section 12.5.

12.3. Network load analysis

To analyse the overhead introduced on the ad hoc network by the different overlays (Pastry or

CrossROAD), we considered the experiment number 2, in which every node generated an applica-

tion message every 100 msec for 120 seconds after the initial phase of 30 seconds to stabilize the

network topology using only the routing protocol.

We defined the average traffic load as the aggregation of the overlay management traffic, the ap-

plication data traffic, and the routing traffic sampled every second and mediated on the number

of network nodes. Considering the routing traffic together with the overlay and application traffic

c© Franca Delmastro, February 2006

92

Figure 12.5.: Network topology for delayed joining experiment

is important in case of CrossROAD, because, on the opposite of Pastry, CrossROAD does not in-

troduce additional overhead to maintain the overlay data structures at the middleware layer, but

it exploits the routing protocol to distribute services information and locally compute contents of

the overlay data structures.

The average traffic load is shown in Fig.12.6 considering three different cases: CrossROAD, FreeP-

astry running on top of OLSR, and FreePastry on top of AODV. As shown by the figure, the overhead

introduced by Pastry is much higher than that of CrossROAD, either in case of OLSR or AODV rout-

ing protocols. This is mainly due to periodical TCP and UDP connections needed by FreePastry to

monitor the status of other nodes of the overlay and consequently update overlay data structures.

On the other hand, in case of CrossROAD, each node becomes aware of changes in the overlay di-

rectly from the crosslayer interactions with the proactive routing protocol. The cross-layer service

discovery protocol does not significantly overload the routing protocol since service information

piggybacked in routing packets consists of few bytes: the service identifier (int value of 32 bit)

and the port on which the service is provided (int value of 16 bit). This information is spread on

the network with the same frequency of Hello packets (every 2 seconds).

Analysing Fig.12.7 in more detail, we can note that the average traffic load is negligible for the

first 30 seconds of the experiment compared to high values in the second part. In fact, nodes spent

30 seconds running only the routing protocol to stabilize the network topology.

In this phase the AODV curve is the lowest one since AODV only sends Hello packets to discover

1-hop neighbors, while OLSR measures higher values even though they are negligible. In this

phase, in case of CrossROAD the routing traffic coincides with the original protocol (OLSR) since

the p2p system is not yet active.

On the other hand, from 30 to 90 seconds, the average throughput increases. In this phase nodes

exchanged the information required to build the overlay from scratch. In case of Pastry, each node

needs to bootstrap from another node already in the overlay, thus generating peacks of about

6KBps.

In case of CrossROAD, the traffic load is about 60% higher than the legacy OLSR (see Fig.12.8),

c© Franca Delmastro, February 2006

Network load analysis 93

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250

B
yt

e/
s

seconds

CrossROAD
Pastry on OLSR
Pastry on AODV

Figure 12.6.: Average aggregate network load

since nodes started running the system and they sent and received services information inside

routing packets. After this phase, the overhead of the enhanced routing protocol approaches

to the same values of OLSR, considering the periodical sending of service information on the

network with the same frequency of Hello packets. For this reason, in the rest of the experiment

CrossROAD overhead corresponds to the data traffic load introduced by the application, since the

overlay management cost is almost negligible (see Fig.12.9). Instead, in case of Pastry, the overlay

management is much higher than the data traffic load, identified by CrossROAD in Fig.12.6.

In addition, comparing the average throughput of FreePastry on AODV and OLSR on each single

node, we noticed that some groups of nodes measured highly different throughput in these exper-

iments. This is mainly due to the bootstrap procedure needed to join the overlay in case of Pastry.

Figures 12.10 12.11 12.12 show the state of the overlay after the joining phase.

In case of CrossROAD every node of the network participated in the same overlay, since the cross-

layer service discovery protocol notifies other nodes of connection/disconnection events.

On the other hand, in case of Pastry running on top of OLSR, four overlays had been carried out

and five in case of Pastry on AODV. These phenomena depend on connection failures occurred

during the join procedure, and they influence the entire experiment. In fact, when a node fails

the connection to its bootstrap node, it creates a new overlay. The failure can be due to the

absence of a route to the destination, or to the instability of the selected link. If some other nodes

consequently connect to the failed node, they join the new overlay and a future rejoining with the

original overlay is not possible. In Pastry, nodes are not aware of the network topology and each

of them is responsible only for maintaining information related to its overlay. Hence, the amount

of data to be exchanged in a small overlay is lower than that exchanged in a wider one.

In Table 12.1 different colours correspond to different overlays formed during the experiment.

Some entries are empty because during the execution of the experiment not every node correctly

ran the tcpdump utility to store sent and received packets.

c© Franca Delmastro, February 2006

94

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70 80

B
ps

seconds

Average Network Load

CrossROAD
OLSR
AODV

Figure 12.7.: Average aggregate network load, the first phase

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

B
yt

e�
/s

seconds

CrossROAD routing
OLSR

Figure 12.8.: Average network load

c© Franca Delmastro, February 2006

Network load analysis 95

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250

B
ps

seconds

Average Traffic Load

CrossROAD
Data traffic

Figure 12.9.: Routing traffic load

Nodes CrossROAD (Bps) Pastry on OLSR (Bps) Pastry on AODV (Bps)
A 7864.83 446.02 9818.63
B 1430.44 21105.81 10121.92
C 6987.27 50445 15074.81
D 9825.43 29758.44 7810.33
E 6425.7 10801.22 2434.22
F 13929.36 67684.04 8875.53
G 17517.3 50711.24 550.56
H 7485.49 3626.05 5308.8
K 3625.77 9750.221 102.910.1
J 14441.47 9983.44 -
I 11457.44 3662.84 10988.85

M 2499.88 6712.37 8308.95
N 13353.95 74777.96 10070
O 13171.84 10574.02 5368.29
P 10455.38 3007.5 -
Q - 10171.61 10960.5
R 10684.71 57114.13 5334.54
S - 5985.35 -
T 13830.02 12480.14 14180.41

W 3667.63 3463.5 5418.92
X 13217.73 - -
Y 12741.6 10300.04 11917.92

Table 12.1.: CrossROAD delays for the overlay construction.

c© Franca Delmastro, February 2006

96

Percentiles CrossROAD Pastry on OLSR Pastry on AODV
0, 6 599msec 11.171sec 9.138sec
0, 7 2.306msec 20.032sec 16.055sec
0, 8 4.692sec 34.846sec 28.823sec
0, 9 10.648sec 46.340sec 75.475sec
0, 95 23.025sec 61.858sec 88.701sec
0, 99 60.468sec 111.560sec 105.649sec

Table 12.2.: Delays distribution

In case of CrossROAD, the distribution of the average traffic load of single nodes mainly depends

on the location of nodes in the network topology, since most connected nodes, that are also the

central ones, not only see packets generated and received by themselves, but also packets that

they forward to other nodes.

On the other hand, in case of Pastry, nodes that built an independent overlay, without other

participants, measured a very low traffic load (e.g. node A in OLSR measured 446 Bps, while

node G in AODV measured 550.56 Bps). In these cases the measured traffic load refers to the

routing overhead and to periodical tentative connections to the original bootstrap node to recover

information on other nodes taking part in the same overlay. In these cases application messages

are only sent to the local node without involving the network socket, since the local node identifier

is the nearest to each random key.

In addition, nodes that originated an overlay of two or three participants measured about the

same amount of traffic either in case of AODV and OLSR. For example, nodes K and J in the OLSR

experiment measured about the same traffic of nodes A and B in the AODV experiment. On the

other hand, highest values of traffic were measured by nodes participating in the original overlay.

Figure 12.10.: CrossROAD overlay

c© Franca Delmastro, February 2006

Delays Analysis 97

Figure 12.11.: Pastry on OLSR overlays

Figure 12.12.: Pastry on AODV overlays

12.4. Delays Analysis

Since the number of nodes in the original overlay in case of OLSR is greater than that in case of

AODV, the average traffic load of Pastry on OLSR is higher than that of Pastry on AODV. In fact,

values shown in Fig.12.6 represents the average on all nodes of the network, independently from

the number of overlays.

To analyze the distribution of delays measured by nodes to send a specific message and receive

the related reply, we considered the experiment number 4. In this experiment 10 nodes (A, Y, T,

R, M, H, I, C, E, G) generated a Get message every 100 msec for 120 seconds, while the others (N,

D, F, J, O, P, S, B, K, W, Q, X) only maintained the overlay, receiving messages and replying directly

to the sender. Even though only a part of nodes is involved in the message transmission, this

experiment is the most suited for analysing delays. In fact, in each Get message a timestamp was

added to the original content by the sender. When it thus receives the related reply maintaining

the original timestamp, it directly computes the delay as the difference between the local time and

the original timestamp.

The delay distribution and related percentiles, shown respectively in Fig.12.13 and Table 12.2,

highlight that delays reach the order of 100 seconds in case of Pastry and 60 seconds in case

c© Franca Delmastro, February 2006

98

 0

 20

 40

 60

 80

 100

over6030252015109876543210.50.1

Delay Distribution

CrossROAD
Pastry on OLSR
Pastry on AODV

Figure 12.13.: Delay Distribution

of CrossROAD, but the most part of them is concentrated on the following time intervals: (0,

100msec) and (100msec, 500msec).

In order to have a consistent view of the distribution, only packets generated by nodes of the

main overlay were considered (i.e. nodes that correctly executed the bootstrap procedure, joining

the right overlay). In fact, in case of smaller overlays, delays are reduced to few milliseconds

because few packets have to be managed by the involved nodes. In addition, since the network

topology is redundant and, in some cases, there are several unstable links, the distribution of data

packets through TCP connections suffers many retransmissions, increasing the related timeout and

transmission delay. Finally, in case of Pastry, processing data packets and concurrently managing

overlay data structures further affects system performance.

12.5. Data Distribution in case of delayed joining of the overlay

To analyse the responsiveness of the cross-layer interactions of CrossROAD with the routing pro-

tocol, we carried out a set of experiments in which central nodes started the routing protocol and

the overlay with a delay of 2 minutes after the others. In this way, even though nodes were not

moving, the topology changes, and CrossROAD became aware of these changes. This consider-

ably influences the application behavior. We analysed results from experiment number 5, where,

referring to the topology graph shown in Fig.12.5, all nodes, except for N and M, started running

Unik-OLSR and XLplugin creating two different ad hoc networks. Thus, the initial network topol-

ogy consisted of two ad hoc networks (i.e., nodes A, B, C, D, E, F, G, H, I, J, and K form MANET1,

while nodes O, P, W, Q, R, S, T, X, Y form MANET2).

After the join of central nodes, the two networks merged in a single one, as the two overlays did.

Note that Pastry is never able to merge two distinct overlays into a single one.

To better observe the system behavior, during the experiment nodes A and Y generated periodical

c© Franca Delmastro, February 2006

Conclusions 99

MANET �2

MANET 1

MANET 2

MANET 1

 0 100 200 300 400 500 600 700 800

Packet Sequence Number

sender A
sender Y

Figure 12.14.: CrossROAD data Distribution

messages with random keys. For this reason messages were originally sent to random destination

inside the network area of the sender (i.e. node A sent messages to nodes of MANET 1, while node

Y sent messages to nodes of MANET 2). Then, when nodes N and M joined the routing protocol,

the cross-layer service discovery protocol flooded the service information of all participating nodes

on the entire network. From that moment senders became aware of the topology change through

the cross-layer interaction with the routing protocol, and their random messages were sent also

to nodes located in the other network area. In addition, when N and M also joined the overlay,

they became also possible receivers of those messages. As is shown in Fig.11.6, messages are

initially distributed on nodes of the same area of the sender and, after the first 100 packets, they

are also sent on the other area. This demonstrates the effectiveness of the cross-layer approach

in a MANET, where supporting mobility and possible partitions should represent one of the main

characteristics of network protocols.

12.6. Conclusions

By setting up a large-scale ad hoc network, we really examined system features and performance in

real conditions, using both static and mobile scenarios. Even though this kind of experimentation

is difficult to be carried out, due to the high number of people and devices involved, it allowed us

to analyze advantages and drawbacks of a complete MANET architecture. Analyzing performance

of a simple distributed application on top of two different p2p systems, we pointed out advantages

of using a cross-layer approach to exploit network topology information at the middleware layer,

and drawbacks of using a legacy p2p system on ad hoc networks.

The main purpose of a structured overlay network consists of defining a good policy to distribute

workload on all nodes of the network. In a legacy solution, for fixed Internet, there are no con-

nectivity problems and the joining procedure that requires a bootstrap node is not a problem. On

the other hand, on ad hoc networks characterized by unstable links and mobile nodes, the high

c© Franca Delmastro, February 2006

100

possibility of connection failures during this phase negatively influences system performance. In

addition, using a great number of UDP and TCP connections to update overlay data structures

increases the network overhead and delays of application messages.

From these results we pointed out that a cross-layer solution developed to optimize the structured

overlay on ad hoc networks increases the system performance making nodes independent of each

other in managing the overlay, and able to notify them their connection or disconnection events

through a proactive routing protocol. The overhead needed to maintain the overlay is thus trans-

ferred at the routing layer, but it is quite negligible. However, high application delays have to be

investigated to study further optimizations in order to improve system performance. To this aim,

in the following chapter some application developed both on top of Pastry and CrossROAD are

anayzed.

c© Franca Delmastro, February 2006

13. Distributed Applications on CrossROAD

Even though research on MANETs has been very active in the last decade, real applications ad-

dressed to people outside the research community still have to be developed. However, starting

from existent p2p systems developed for Internet, the large number of distributed applications

developed on top of them can represent a great inheritance also for MANETs and a good incen-

tive for users to adopt this technology in the daily use. In addition, there are several applications

that originally do not require the presence of a p2p substrate, but that can exploit cross-layer

optimizations of CrossROAD to increase their performance on MANETs.

Traditionally, MANETs have been considered as stand-alone networks, but extending the use of

applications originally developed for wired networks, they can appear as flexible and low-cost

extensions of them. In addition a new class of networks is emerging as a mix of fixed and mobile

nodes interconnected via heterogeneous links (wireless and wired). This class has been called

Mesh Networks [BCG05].

For this reason the interaction of Internet and MANET applications must be supported to guarantee

the service extension and a global communication between users.

In this chapter we give some examples of existent applications that have been ported on MANET

in their original definition to evaluate their performance and subsequently highligth advantages

gaining from the cross-layer architecture, and specifically from CrossROAD.

13.1. A Group-Communication application: the Whiteboard

∗ Whiteboard application (WB) implements a distributed whiteboard among users. It allows

users to share drawings, messages, and other dinamically generated content of interest. Such a

self-organizing distributed application can be naturally supported by p2p systems.

Fig.13.1 shows a snapshot of WB running on two nodes. It provides the basic functionality of

subscribe of an arbitrary topic, drawing or writing something related to the topic on a canvas,

and sharing images with other members of the same topic. WB exploits an overlay p2p multicast

algorithm as the engine to publish canvas changes to topic members. Scribe [CJK+03] is chosen as

the multicast algorithm, since it performs better than other standard solutions (e.g. CAN-Flooding

[CJK+03]). We use Pastry as the overlay substrate since Scribe has been developed on top of it.

It is woth pointing out that Pastry, scribe and WB are very loosely coupled to each other, thanks to

a modular approach, and well-defined interfaces. It is therefore easy to substitute either Pastry or
∗This work has been developed in the framework of the IST-FET MobileMAN project [mob] in collaboration with the

Computer Laboratory of the University of Cambridge [cam].

102

Figure 13.1.: Two nodes running WB

Scribe with their optimized solutions for MANETs since they implement the P2P CommonAPI and

hence also the cross-layer enhancement.

WB is a very simple example of group-communication applications, which can be seen as a ref-

erence scenario for ad hoc networks. It is thus interesting investigating how such an application

performs in a real ad hoc testbed.

13.1.1. Scribe Overview

Scribe is a subject-based, reverse-path forwarding, multicast algorithm implemented on top of

an overlay network. For each WB topic a multicast group is defined at the Scribe level. Nodes

subscribing for a topic (at the WB level) actually join the corresponding multicast group (at the

Scribe level).

Scribe builds, on top of the overlay, a shared tree connecting the nodes subscribed to the same

group. Each node may act both as sender and receiver of the group. Scribe simplifies the join

operations and the multicast tree maintenance in respect of traditional network-level multicast

protocols. Specifically, it exploits the subject-based nature of the underlaying overlay network to

reduce the maintenance traffic (e.g., flood&prune messages or rendez-vous points dissemination

are not required).

Scribe has been proved to scale well with large groups of nodes [CJK+03]. Finally, this pro-

tocol offers simple APIs to its applications, such as create(topicID), subscribe(topicID),

unsubscribe(topicID) and publish(topicID). Main operations of Scribe are described below.

✧ Joining of a multicast group and content publishing
Scribe defines a rendez-vous point in the tree. Since it exploits the proximity logic of Pastry,

the rendez-vous point of the group is the node numerically closest to the topicID. This is a

c© Franca Delmastro, February 2006

A Group-Communication application: the Whiteboard 103

subject-based way of defining RV points, instead of a topology-based way, as in traditional

network-level multicast. Therefore, the RV point can be reached by the overlay routing,

and no mechanism for publishing the RV point(s) is required, introducing a low overhead

on the system. In order to join the group, the Scribe module at the joining node sends

through Pastry a join message to the rendez-vous point (specifying thus the topicID as the

key of the message). The first node in the Pastry path towards the rendez-vous point gets

the join message and delivers it to its Scribe module. If it does not recognize the topic since

it is not yet registered to it, it discards the join message, creates a new children list for that

topic, and adds the sender of the request to this list. Then, it tries to join itself to the group

by generating a new join message. When the join message reaches a node that is already

member of the multicast group (possibly, the RV point), it simply adds the sender of the join

message to its children list, and the message is not further propagated. Since each node

maintains a child list, the join message has just to travel up to the first branching point in

the multicast tree (i.e., the first node in the path that is already registered to the topic). Thus

the joining procedure scales well with the number of nodes.

Application messages are sent on the overlay with key equal to the topic ID. Hence, the reach

the node logically closest to it, that represents the root of the shared tree, and it forwards

the message to its children, which futher forward to its children, and so on. Figures 13.2 a)

and b) show an example of building the tree and disseminating application messages.

B C:I’m the root!

 enroll E
2. B:route(t,subs)
 B is next hop
1. E:route(t,subs)
multicast topic: t

 discard msg
13

2

A

C

F

ED

3. B:enroll D

(a)

1 2

3
3

2

3

 <children>,msg)

C

ED

B
F

A

1. D:route(t,msg)
2. C:route(
 <children>,msg)
3. B,F:route(

(b)

Figure 13.2.: Scribe building the tree (a), and disseminating messages (b).

✧ Shared tree maintenance
Scribe manages the tree as follows. Each parent periodically sends a HeartBeat message to

each child. If a child does not receive any message from the parent for a given time interval

(20 seconds is the default value), it assumes that the parent is disconnected from the tree

and re-execute the join procedure. A publish message received by the parent implicitly acts

as a HeartBeat. This procedure allows nodes to discover parent failures and re-join the tree.

13.1.2. Experimental Environment

In order to evaluate the application performance on a real MANET, a small-scale testbed has been

set up in the CNR campus in Pisa. In a first phase we analyzed static scenarios highlighting

limitations that originate from Pastry and Scribe design, rather than to mobility. The same sets

c© Franca Delmastro, February 2006

104

Figure 13.3.: Network Topology

of experiments were then repeated using CrossROAD as p2p substrate to point out cross-layer

advantages.

As in previous small-scale testbeds, we set up a 8-nodes ad hoc network reproducing the network

topology shown in FIg.13.3.

During the experiments, nodes marked A through to F participate in the overlay network, and run

the WB application (they will be throughout referred to as “WB nodes”). Nodes marked with “R”

are used just as routers.

In order to have a controllable and reproducible setup, a human user at a WB node is represented

by a software agent running on the node. During an experiment, each software agent alternates

active and idle phases. During an active phase, it draws a burst of strokes on the canvas, which are

sent to all the other WB nodes through Scribe. Note that in our experiment each stroke generates

a new message to be distributed on the Scribe tree. During an idle phase, it just receives possible

strokes from other WB nodes. After completing a given number of such cycles (a cycle is defined

as a burst of strokes followed by an idle time), each agent sends a Close message on the Scribe,

waits for getting Close messages of all the other nodes, and stops the application.

Burst sizes and idle phase lengths are sampled from exponentially distributed random variables.

The average length of idle phases is 10 seconds, and it is fixed through all the experiments. On

the other hand, the average burst size is defined on a per-experiment basis. As a reference point,

we define a traffic load of 100% as the traffic generated by a user drawing, on average, one stroke

per second. Finally, the number of cycles defining the experiment duration is fixed through all the

experiments. Even at the lowest traffic load taken into account, each agent draws – on average

– at least 50 strokes during an experiment. For the performance evaluation this represents a

good trade-off between the experiment duration and the result accuracy, as is shown by following

results.

Some final remarks should be pointed out about the experiment start-up phase. Nodes are syn-

chronized at the beginning of each experiment. Since Pastry requires a bootstrap sequence to join

the overlay, the same schedule was used also for CrossROAD, even though it does not require it.

Specifically, node C starts first, and generates the ring. Nodes E and D start 5 seconds after C, and

bootstrap from C. Node B starts 5 seconds after E and bootraps from E. Node A starts 5 seconds

after B and bootraps from B. Finally, node F starts 5 seconds after D and bootraps from D.

After this point in time, the Scribe tree is created and, finally, WB instances start sending appli-

c© Franca Delmastro, February 2006

A Group-Communication application: the Whiteboard 105

cation messages (herafter, WB messages). In this way, the Scribe tree is built when the overlay

network is already stable, and WB starts sending messages when the Scribe tree is completely

built.

To evaluate if the application provides an adequate Quality of Service to users in a MANET envi-

ronment we used two performance indices:

Packet Loss: at each node i, we measure the number of WB messages received and sent (Ri and

Si, respectively) during an experiment; the packet loss experienced by node i is defined as

pli = 1− RiP
i Si

.

Delay: the time instant when each packet is sent and received is stored at the sending and

receiving node, respectively. This way, we are able to evaluate the delay experienced by

each node in receiving each packet. If dij is the delay experienced by node i in receiving

packet j, and Ni the total number of packets received by i during an experiment, the average

delay experienced by node i is defined as Di =
P

j dij

Ni
.

Furthermore, we define two more indices, aimed at quantifying the quality of the multicast tree

created by Scribe.

Node Stress: for each node, it is defined as the average number of children of that node. If tij is

the time interval (within an experiment) during which node i has nj children, the average

node stress of node i is NSi =
P

j njtijP
j tij

.

Re-subscriptions: for each node, we count the number of times (during an experiment) this node

sends new subscriptions requests, because it can’t communicate with the previous parent

anymore.

13.1.3. Performance with Pastry

The results we report in this section are obtained by using Pastry as DHT, and either OLSR or

AODV as routing protocol. Experiments are run by increasing the traffic load starting from 20%

up to 80%.

Before presenting the results in detail, let us define what herafter will be referred to as “crash of

the Scribe Root Node”. In our configuration Pastry assigns nodeIds by hashing the IP address and

the port used by Scribe on the node. Hence, each node always gets the same node id. Furthermore,

the topic used by the WB users is always the same. Under the hypothesis that Pastry generates

a single ring encompassing all WB nodes, the Root of the Scribe tree (i.e., the node whose id is

closest to the WB topic id) is the same through all the experiments, and is node C in Figure 13.3.

This node will be throughout referred to as the Main Scribe Root Node (MSRN).

Due to the Scribe algorithm, each WB message to be distributed on the tree must be firstly sent to

MSRN, and then forwarded over the tree. Often, this is an excessive load for MSRN, which, after

some point in time, becomes unable to deliver all the received messages. Instead, messages are

c© Franca Delmastro, February 2006

106

 0

 20

 40

 60

 80

 100

FEDC(R)BA

P
ac

ke
t L

os
s

(%
)

Node

Pastry: Packet Loss under Normal Root Behavior

xx x

AODV(10%): rings (A),(BCDE),(F)
AODV(20%): rings (A),(BCDEF)
OLSR(20%): rings (ABCDEF)
OLSR(50%): rings (A),(CDEF)
OLSR(80%): rings (BCDE)

(a) Packet Loss w/o MSRN crash

 0

 2

 4

 6

 8

 10

FEDC(R)BA

A
vg

er
ag

e
D

el
ay

 (
s)

Node

Pastry: Average Delay under Normal Root Behavior

xx x

AODV(10%): rings (A),(BCDE),(F)
AODV(20%): rings (A),(BCDEF)
OLSR(20%): rings (ABCDEF)
OLSR(50%): rings (A),(CDEF)
OLSR(80%): rings (BCDE)

(b) Delay w/o MSRN crash

dropped at the MSRN sending queue. We refer to this event as a crash of MSRN. Of course, since

the application-level traffic is randomly generated, the MSRN crash is not a deterministic event.

Figures 13.1.3 a) and b) show respectively the packet loss and the delay indices experienced by

the WB nodes. We here consider experiments were there is no MSRN crash. Furthermore, we

consider AODV experiments with 10% and 20% traffic load, and OLSR experiments with 20%,

50% and 80% traffic load, respectively. There is no point in running AODV experiments with

higher traffic load, since performance when using AODV is quite bad even with such a light traffic

load. In addition, an “x” label for a particular node and a particular experiment denotes that for

that experiment we are not able to derive the index related to the node (for example, because

some component of the stack crashed during the experiment). Finally, in the figure legend we also

report the rings that Pastry builds during the bootstrap phase. Theoretically, just one ring should

be built, encompassing all WB nodes, but it is not so easy in practice.

In fact, if a WB node is unable to successfully bootstrap, it starts a new ring, and remains isolated

for the rest of the experiment. In MANET environments links are typically unstable, and the event

of a WB node failing during the bootstrap procedure is quite likely. Clearly, once a node is isolated,

it is unable to receive/send WB messages from/to other nodes for the rest of the experiment, and

this results in packet losses at all nodes. This is an important weakness of Pastry.

as is shown in fig.13.1.3a), in the “AODV 10%” experiment, nodes A and F are isolated, and create

their own rings. This results in packet loss of about 80% at those nodes (i.e., they just get their

own WB messages, which is about one sixth of the overall WB traffic), and about 32% at nodes B,

C, D and E. Similar remarks apply to the “OLSR 50%” experiment.

It is more interesting to focus on the “AODV 20%” experiment. In this case, node A is isolated,

while nodes B, C, D, E and F belong all to the same ring. As before, the packet loss measured by

A is about 80%, and the packet loss at the other nodes due to A’s isolation is about 18% (one sixth

of the overall traffic) except for nodes B and D, that experience a little bit higher packet loss.

On the other hand, in the case “OLSR 20%” Pastry is able to correctly generate a single ring, and

the packet loss is quite low (apart from node F). In the case “OLSR 80%” nodes A and F crash.

However, the packet loss experienced by the other nodes is negligible.

c© Franca Delmastro, February 2006

A Group-Communication application: the Whiteboard 107

 0

 20

 40

 60

 80

 100

FEDC(R)BA

P
ac

ke
t L

os
s

(%
)

Node

Pastry: Packet Loss under Root Crash

x

AODV(10%): rings (A),(BCDEF)
AODV(20%): rings (A),(BCDEF)
OLSR(50%): rings (A),(CDEF)
OLSR(80%): rings (ABCDEF)

(c) Packet Loss in case of MSRN crash

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

FEDC(R)BA

A
vg

er
ag

e
D

el
ay

 (
s)

Node

Pastry: Average Delay under Root Crash

x

AODV(10%): rings (A),(BCDEF)
AODV(20%): rings (A),(BCDEF)
OLSR(50%): rings (A),(CDEF)
OLSR(80%): rings (ABCDEF)

(d) Delay in case of MSRN crash

Similar observations can be drawn by focusing on the delay index (Fig.13.1.3b)). First of all, it

should be pointed out that the delay measured by isolated nodes (e.g., A and F in the “AODV 10%”

case) is obviously negligible. Even though the delay in this set of experiments is generally low,

it can be noted that OLSR outperforms AODV. In addition MSRN (node C) always experiences a

lower delay with respect to the other nodes in the same ring since all packets are first sent to it

and then it forwards them to all the others.

Figures 13.1.3a) and b) show the packet loss and the delay indices in cases of MSRN crash. The

packet loss experienced by nodes in the same type of experiment is much higher than in case of

no crash of MSRN.

In the first three experiments, node A isolation causes a packet loss of about 18% at other nodes.

Hence, MSRN crash is in charge of the remaining 60% packet loss. Quite surprisingly, OLSR with

80% traffic load shows better performance than OLSR with 50% traffic load. This can be also due

to some temporary unstable links in case of 50% traffic load. However, generally we can note that

the packet loss at MSRN is always lower than at other nodes in the same ring. This highlights that

MSRN is not able to forward received WB messages over the Scribe tree.

Observing the worst cases in Fig. 13.1.3b), the delay experienced by nodes B, D, E and F reach

high values in the order of few minutes, either by using AODV or OLSR.

To summarize, the above analysis allows us to draw the following conclusions. The Pastry boot-

strap algorithm is too weak to work well in MANETs, and produces unrecoverable partitions of

the overlay network. This behavior is generally exacerbated by AODV (compared to OLSR). Fur-

thermore, MSRN is clearly a bottleneck for Scribe. MSRN may be unable to deliver WB messages

also at moderate traffic loads, resulting in extremely high packet loss and delay. Moreover, the

performance of the system in terms of packet loss and delay is unpredictable. With the same pro-

tocols and traffic load (i.e., OLSR and 50% traffic load), MSRN may crash or may not, resulting

in completely different performance figures. In cases where MSRN crashes, packet loss and delay

are clearly too high for WB to be actually used by real users. However, even when MSRN does

not crash, the probability of WB users to be isolated from the overlay network makes the packet

loss unacceptably high. These results suggest that Pastry and Scribe need to be highly improved

c© Franca Delmastro, February 2006

108

 0

 1

 2

 3

 4

 5

 6

FEDC(R)BA

A
vg

er
ag

e
N

od
e

S
tr

es
s

Node

Pastry: Node Stress under Root Crash

R R

R

R R

R

RR x

R

R

R

R

AODV(10%): rings (A),(BCDEF)
AODV(20%): rings (A),(BCDEF)
OLSR(50%): rings (A),(CDEF)
OLSR(80%): rings (ABCDEF)

(e) Node stress in case of MSRN crash

 0

 1

 2

 3

 4

 5

 6

 7

FEDC(R)BA

A
vg

er
ag

e
N

od
e

S
tr

es
s

Node

Pastry: Node Stress under Normal Root Behavior

xx xR R

R

R

RR

R

RR

AODV(10%): rings (A),(BCDE),(F)
AODV(20%): rings (A),(BCDEF)
OLSR(20%): rings (ABCDEF)
OLSR(50%): rings (A),(CDEF)
OLSR(80%): rings (BCDE)

(f) Node stress w/o MSRN crash

to support group communication applications such as WB in MANET environments.

13.1.4. Multicast Tree Quality

In this section we analyse the node stress and re-subscription indices, with respect to the same

experiments used in the previous section.

Figures 13.1.4a) and b) show the average node stress with and without MSRN crashes, respec-

tively. In both cases, the node stress is significantly higher at MSRN than at every other node.

This means that the Scribe tree is a one-level tree, and MSRN is the parent of all the other nodes.

This behavior is expected, and can be explained by recalling the way Scribe works. In our small-

scale MANET, all nodes are in the Pastry routing table of each other. Hence, Scribe join messages

reach MSRN as the first hop, and MSRN becomes the parent of all other nodes (in the same ring).

Together with the way application-level messages are delivered, this phenomenon explains why

MSRN is a bottleneck, since it has to send a distinct message to each child when delivering WB

messages over the tree. This is the major limitation of the Scribe algorithm, and optimizations of

the P2P system are clearly not sufficient to cope with it.

In Figures 13.1.4a) and b) we have added “R” labels to indicate nodes that occur to become Scribe

Root during the corresponding experiment. When MSRN does not crash (Fig. 13.1.4b)) other

nodes become Scribe root only as a side effect of a failed Pastry bootstrap. On an isolated WB

node, Scribe builds a degenerate tree which consists only of the node itself, that is thus the root.

However, Scribe partitions may also occur due to congestion at the Pastry level in cases where

MSRN crashes. By looking at Fig. 13.1.4a), it could be noticed that other nodes may become root

also if they belonged (after the Pastry bootstrap phase) to the same overlay network of MSRN.

This phenomenon occurs, for example, at node A in the OLSR 80% case. A child node with id

n1 becomes root when it looses its previous parent and the Pastry routing table does not contain

another node id n2 such that n2 is closer to the WB topic id than n1. In addition in case of MSRN

crash, the congestion at the Pastry level is so high that the Pastry routing table of some node

becomes incomplete (i.e., MSRN disappears from other nodes’ routing table). Thus, the Scribe

c© Franca Delmastro, February 2006

A Group-Communication application: the Whiteboard 109

 0

 10

 20

 30

 40

 50

FEDC(R)BA

N
um

be
r

of
 R

e-
su

bs
cr

ip
tio

ns

Node

Pastry: Re-subscriptions under Root Crash

R

R

R

R

R

R

R

R

x

R

R

R

R

AODV(10%): rings (A),(BCDEF)
AODV(20%): rings (A),(BCDEF)
OLSR(50%): rings (A),(CDEF)
OLSR(80%): rings (ABCDEF)

(g) Re-subscriptions in case of MSRN crash

 0

 2

 4

 6

 8

 10

FEDC(R)BA

N
um

be
r

of
 R

e-
su

bs
cr

ip
tio

ns

Node

Pastry: Re-subscriptions under Normal Root Behavior

xx

x

R

R

RR RRR RR

AODV(10%): rings (A),(BCDE),(F)
AODV(20%): rings (A),(BCDEF)
OLSR(20%): rings (ABCDEF)
OLSR(50%): rings (A),(CDEF)
OLSR(80%): rings (BCDE)

(h) Re-subscriptions w/o MSRN crash

tree is partitioned in several isolated sub-trees. Clearly, this contributes to the high packet loss

measured in these experiments.

Another effect of Pastry congestion during MSRN crashes is a possible reshaping of the Scribe tree.

Fig. 13.1.4a) shows that node E’s average Node Stress is close to 1 in the “AODV 20%” and “OLSR

80%” cases. This means that MSRN disappears from the Pastry routing tables of some node, which

– instead of becoming a new root – finds node E to be the closest node to the WB topic id. This

phenomenon could be seen as beneficial, since it reduces the MSRN node stress. However, it stems

from an incorrect view of the network at the Pastry level, originating from congestion.

Figures 13.1.4a) and b) show the re-subscription index for the same set of experiments. Fig-

ure 13.1.4b) shows that, when MSRN does not crash, the Scribe tree is quite stable. Most of

the re-subscriptions occurs at node F, which is the “less connected” node in the network (see

the network topology in Fig. 13.3). In these experiments, the performance in the AODV cases

is worse than in OLSR cases. Furthermore, upon MSRN crashes (Fig. 13.1.4a)), the number of

re-subscriptions increases dramatically, even at “well-connected nodes” (i.e., node B, D and E).

MSRN crashes make other nodes unable to get messages from their parent (i.e., MSRN itself),

thus increasing the number of re-subscriptions. It is interesting to point out that this is a typical

positive-feedback cycle: the more MSRN is congested, the more re-subscriptions are sent, the more

congestion is generated.

To summarize, the multicast tree generated by Scribe on top of Pastry is quite unstable, espe-

cially in cases of MSRN crashes. The tree may get partitioned in disjoint sub-trees, and many

re-subscriptions are generated by all nodes. Furthermore, Scribe is not able to generate a well-

balanced multicast tree, since MSRN is the parent of all other nodes.

13.1.5. CrossROAD Improvements

In this section we show that using CrossROAD is highly beneficial to the stability of the Scribe tree.

In this experiments, we set the traffic load to 20%, 50% and 100%. We focus on the performance

figures related to the quality of the multicast tree, i.e., the average node stress (Figure 13.1.5a))

c© Franca Delmastro, February 2006

110

 0

 1

 2

 3

 4

 5

 6

 7

FEDC(R)BA

A
ve

ra
ge

 N
od

e
S

tr
es

s

Node

CrossRoad: Node Stress for increasing loads

RRR

20%: ring (ABCDEF)
50%: ring (ABCDEF)
100%: ring (ABCDEF)

(i) Node Stress with CrossROAD

 0

 5

 10

 15

 20

 25

 30

 35

FEDC(R)BA

N
um

be
r

of
 R

e-
su

bs
cr

ip
tio

ns

Node

CrossRoad: Re-subscriptions for increasing loads

RRR

20%: ring (ABCDEF)
50%: ring (ABCDEF)
100%: ring (ABCDEF)

(j) Re-subscriptions with CrossROAD

and the number of re-subscriptions (Figure 13.1.5b)). A complete evaluation of the User Satisfac-

tion parameters, as well as further optimizations of the Scribe algorithm, are currently a work in

progress.

The first main improvement achieved by using CrossROAD is that neither the overlay network

nor the Scribe tree get partitioned. CrossROAD is able to build a single overlay network in all the

experiments. Furthermore, even at very high traffic loads (e.g., 100%), MSRN is the unique root of

the Scribe tree. Therefore, CrossROAD is able to overcome all the partition problems experienced

when Pastry is used.

Fig. 13.1.5a) clearly shows that the node stress still remains quite unbalanced among the nodes.

MSRN is typically the parent of all other nodes, and this contributes to make it a bottleneck of the

system, as highlighted above. This behavior is expected, since it stems from the Scribe algorithm,

and cannot be modified by changing P2P system.

Finally, Fig. 13.1.5b) shows that the Scribe tree is more stable (i.e., requires less re-subscriptions)

when CrossROAD is used instead of Pastry. To be fair, we have to compare Fig. 13.1.5b) with

both Figures 13.1.4 a) and b). It is clear that CrossROAD outperforms Pastry when used on

top of AODV. The “20%” case of CrossROAD should be compared with the “OLSR 20%” case of

Fig. 13.1.4b), since in both experiments the overlay network is made up of all nodes. The number

of re-subscriptions measured at node F is the same in both cases, while it is higher at node E

when Pastry is used. The CrossROAD “50%” case shows a higher number of re-subscriptions with

respect to the “OLSR 50%” case in Pastry “no crash”. However, it should be noted that in the latter

case the overlay network includes less nodes, and hence the congestion is lower. In addition, with

the same nodes and traffic load in the overlay network, Pastry experiments suffer MSRN crashes

(Fig. 13.1.4b)). In this case, the number of re-subscriptions is much higher than in the CrossROAD

case. Finally, results in the CrossROAD “100%” case should be compared with the “OLSR 80%”

case of Fig. 13.1.4b), since the overlay network is the same in both experiments. CrossROAD

achieves comparable performance, and at some nodes it outperforms Pastry, even though the

application traffic is significantly higher.

c© Franca Delmastro, February 2006

A Group-Communication application: the Whiteboard 111

13.1.6. Overlay management overhead

In the previous section we have shown that adopting CrossROAD significantly improves the per-

formance of Scribe. In this section we highlight that one of the main reasons for this improvement

is the big reduction of the network overhead. This is a key advantage in MANET environments.

Fig. 13.4 shows the network load experienced by nodes A, C and by the two nodes which just act

as routers, during the Pastry “OLSR 80%” experiment in which MSRN crashes2. The traffic load is

sampled every 5 seconds. We take into consideration the traffic related to the whole network stack,

from the routing level up to the application. For WB nodes (A and C), we thus include routing,

transport, middleware (Pastry and Scribe) and application-level (WB) traffic. For “routing” nodes,

we just include the OLSR traffic. We do not plot the network load related to other WB nodes, since

it is qualitatively similar to that of node A.

The discrepancy between the curves related to node A and C confirms that the MSRN node has

to handle a far greater amount of traffic with respect to the other WB nodes, due to the Scribe

mechanisms. Furthermore, the curves related to the two routers can hardly been distinguished in

Figure 13.4. This means that the main load on WB nodes is related to Pastry, Scribe and the WB

application.

Fig. 13.5 plots the same curves, but related to the “100%” CrossROAD experiment. Also in this

case, MSRN (node C) is more loaded than the other WB nodes. However, by comparing the two

figures we can highlight that the network load of CrossROAD is much lower than the network load

of Pastry. Specifically, while in the Pastry case the average load of C and A is 48.5 KBps and 16.5

KBps, respectively, in the CrossROAD case it drops to 21.1 KBps and 2.96 KBps, respectively. The

reduction of the network load achieved by CrossROAD is 56% at node C and 82% at node A. Since

the other stack components are exactly the same, CrossROAD is responsible for this reduction3.

Furthermore, note that, during several time intervals, the load of node A is just slightly higher

than that of “routing” nodes. This suggests that the additional load of CrossROAD management

with respect to the routing protocol is very limited.

Performance results previously shown, demonstrated that Pastry and Scribe are not good candi-

dates to support group communication applications in MANET environments. Pastry is particularly

weak during the bootstrap phase, causing the overlay network to be partitioned into several sub-

networks, and some nodes to be unable to join application services. Further partitions may occur

in the Scribe tree due to congestion at the Pastry level. Finally, the delivery algorithm imple-

mented by Scribe generates a severe bottleneck in the tree, which is highly prone to get over-

loaded. All these limitations result in unacceptable levels of packet loss and delay for applications.

Many of these problems can be avoided by adopting a cross-layer optimized P2P system such as

CrossROAD. Thanks to the cross-layer interactions CrossROAD is able to avoid all the partitioning

problems experienced with Pastry.

However, CrossROAD cannot solve the problem of bottlenecks in the Scribe trees. Therefore,

optimized version of Scribe are required for group communication applications such as WB to

be really deployed on MANETs. There are mainly two ideas. The first one is related to existent
2We do not take into account AODV experiments, since OLSR has clearly shown to outperform AODV.
3The actual reduction is even higher, since the application-level traffic is 100% in the CrossROAD case.

c© Franca Delmastro, February 2006

112

 0

 50000

 100000

 150000

 200000

 0 50 100 150 200 250 300 350 400 450

N
et

w
or

k
Lo

ad
 (

B
/s

)

seconds

WB on Pastry

C(R)
A

R1
R2

Figure 13.4.: Network Load with Pastry

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250 300 350 400 450

N
et

w
or

k
Lo

ad
 (

B
/s

)

seconds

WB on CrossRoad

C(R)
A

R1
R2

Figure 13.5.: Network Load with CrossROAD

c© Franca Delmastro, February 2006

Content Sharing: The UDDI approach 113

multicast algorithms for MANETs independently of a p2p substrate, directly exploiting a cross-

layer interaction between the application-level multicast and the proactive routing protocol.

The other approach is to allow the multicast algorithm to exploit cross-layer information through

CrossROAD. In this case, Scribe could be enhanced recovering from CrossROAD the state of the

overlay and the current network topology. However, in this case the information related to the

service identifier needed to associate to each node the service it currently provides, is not sufficient.

Each node has to publish also the list of topics it is interested in. In this way a shared tree is

not necessary since each node has a complete knowledge of the overlay participants and it can

autonomously maintain its multicast group selecting from CrossROAD the list of nodes currently

interested in a specific topic. Thus, each node becomes “root” of its own messages, and it can

directly forward them to all the others. The application becomes thus completely self-organising

and distributed on all nodes of the overlay, avoiding bottlenecks of the original Scribe.

These cross-layer enhancements to multicast algorithms for MANETs are currently the subject of

our research.

13.2. Content Sharing: The UDDI approach

§ Service Discovery protocols represent an important set of applications for MANETs, where nodes

are mobile and require to recover information on current available services.

Originally, the web services community has defined the UDDI (Universal Description, Discovery,

and Integration [udd]) as a standard protocol to publish and discover information about web

services on Internet with a centralized service management. The same approach has been followed

also in ad hoc networks, but in this case resource costraints and mobility cannot guarantee a

constant presence of nodes in the network to allow the use of centralized servers. For this reason

a new service discovery protocol for MANETs, called UDDI for manets (UDDI4m) has been defined

in the framework of the MobileMAN project. It inherits the basic principles of UDDI but it is

enhanced with a cross-layer p2p substrate (CrossROAD) to optimize its behavior.

UDDI4m nodes are divided into two categories, characterized by different features:

✧ UDDI4m clients publish and recover services information, but they do not store related con-

tent;

✧ UDDI4m servers store information about published services in a local data structure and they

can also assume the role of client to publish and require other services information.

One of the main hypothesis of the standard UDDI is represented by the knowledge of each node of

a set of servers where publishing and recovering services information. In ad hoc networks, where

the network topology is highly dynamic and nodes interactions are temporary, it is not possible to

have a list of server nodes surely available. For this reason, the presence of an overlay network can

§This work has been developed in the framework of the IST-FET MobileMAN project [mob] in collaboration with NetiKos
[net].

c© Franca Delmastro, February 2006

114

Figure 13.6.: UDDI4m nodes on CrossROAD overlay

optimize UDDI4m performance. In this way, each node has at least a partial knowledge of nodes

taking part in the same service, and a policy to establish a possible destination for each request is

defined.

However, in the overlay network all nodes have the same characteristics, physical constraints are

not specified and they are uniquely identified by a logical address. This information is used by the

subject-based routing to distribute data to the nodes that one logically closest to the specified key

values. Each node is thus a possible destination for data that has to be distributed on the network.

In case of UDDI4m, client nodes are not able to receive a publish request from another node

because they cannot store the related information. For this reason, all requests that involve data

storage cannot be delivered to a client node, but they must be delivered to server nodes.

To solve this problem, also at the middleware layer a node categorization is needed. Since Cross-

ROAD overlay network is represented by a 160-bit circular address space, it is possible to divide

this logical space into two parts applying a mask to logical identifiers in order to distinguish server

nodes from client nodes. This represents an enhancement to standard features of overlay network

that can enormously optimize UDDI performance on ad hoc networks.

In Fig.13.6 an example of overlay network consisting of several client and server nodes is shown.

In order to obtain this kind of configuration, it is necessary that a UDDI4m application, running

on a particular node, specifies whether that node assumes the role of client or server. In this way,

when the CrossROAD instance is created, it knows how to compute the local node identifier and

which types of requests can be accepted from that node. Specifically, CrossROAD must implement

the subject-based routing applying the same mask of the server nodes also on key values used to

distribute data on the network. All requests of storage or recovery of services information are thus

forwarded only to one of the server nodes, the closest one to the “masked” key value.

For this reason, also the definition of key values for data distribution is an important feature of

UDDI4m. Since UDDI4m requests are mainly represented by publication and recovery of services

information, the definition of services categories is necessary to exploit the subject-based policy of

a structured overlay network. Hence, we define the key value as the type of service to be stored

in the nodes databases or to be retrieved.

c© Franca Delmastro, February 2006

Content Sharing: The UDDI approach 115

In this way, each server is in charge of maintaining information related to a specific service cat-

egory, that one identified by the logical identifier numerically closest to its own. In addition, in

order to guarantee the system reliability in case of nodes failures, a policy to store replica infor-

mation on other server nodes has to be defined, and it is currently a work in progress.

We can suppose to define a set of macro-services as Content Sharing, Chat, Video-Conference,

Devices, E-Commerce, Mail Server, Forecast Information, and others, foreseeing additional spe-

cializations in sub-services (e.g. a Content Sharing service can be divided in mp3, movies, games,

documentation, and others). In this way, each UDDI4m node has not to know the server list a

priori, but it has only to implement the XL-CommonAPI in order to exploit CrossROAD advan-

tages. When a client node decides to publish a service, it specifies the category of the service as

key value of the CrossROAD message, and the same for a request of update or recovery of ser-

vices information. Then, CrossROAD selects the best destination for each message checking every

time the consistency of its internal data structures with the current state of the network topology.

Each message is sent to a destination currently available on the network, avoiding all attempts

to connect to all server nodes looking for the one maintaining the required information, as in the

standard implementation of UDDI.

In this way, this application is highly optimized and allows the interaction of etherogeneous de-

vices, with different resource constraints.

c© Franca Delmastro, February 2006

14. Conclusions

Ad hoc networks are distributed systems composed of self-organized wireless nodes. As these

systems cannot benefit from any centralized infrastructure, networking features, like packet for-

warding, routing and network management, as well as application services, should be distributed

among users devices. The distributed nature of ad hoc networking finds in p2p interactions its

natural model of computation.

Recently, several self-organizing overlay platforms have been proposed for building decentralized

and distributed applications for the Internet. The variety of applications and services feasible on

top of these overlays, suits also ad hoc scenarios. Thus, having them working in ad hoc environ-

ments would be an advantage for the MANET technology. However, it was not clear how to adapt

these overlays to ad hoc networks, and how they perform on them.

For this reason, a preliminary experimental study has been conducted to evaluate Pastry perfor-

mance on ad hoc networks and, first of all, two main routing protocols that must support the

entire system.

Main results highlighted that the proactive protocol (OLSR) introduces a higher traffic load than

the reactive protocol (AODV) but the percentage of this traffic is negligible compared to the

802.11b available bandwidth. In addition AODV measures higher delays and packet losses to de-

liver application packets since it exploits also unidirectional links. In this way it makes the system

unreliable in case of mobility and network topology changes. On the other hand, OLSR guarant-

ess a high responsiveness to topology changes through its proactive flooding lightly increasing the

network overhead.

At the middleware layer, we experienced that Pastry, carrying out the overlay management through

a high number of remote connections, introduces a heavy overhead on ad hoc networks, reducing

the overall system performance. In addition, possible failures during the bootstrap procedure of

Pastry generate different overlays that cannot rejoin subsequently. In this way, nodes belonging

to different overlays are unable to communicate to each other, even though they run the same

service.

In order to improve the system, each node should become aware of the network topology, main-

taing a local correspondence between logical and physical address spaces.

[CDHR] defines a reorganization of Pastry’s overlay exploiting the network proximity to improve

application performance and the network usage. This solution is based on an additional location

discovery protocol to recover physical distances between nodes, increasing the total overhead.

On the other hand, a cross-layer architecture, defining interactions between protocols belonging to

different layers, allows us to exploit additional information to optimize the overlay management.

From these principles the idea of a novel cross-layer p2p system for MANETs arises.

118

Figure 14.1.: Integration of mobile and fixed p2p systems.

CrossROAD exploits the cross-layer architecture to directly interact with a proactive routing pro-

tocol, which guarantees a complete knowledge of the network topology. Services information are

added to the proactive flooding of the routing protocol developing a cross-layer service discovery

protocol to allow nodes to associate topology information to provided services, lightly increasing

the network overhead. In this way CrossROAD collects routing information optimizing the overlay

construction and management through simple accesses to shared information.

The entire system has been developed and tested on small-medium scale testbeds. Main results

highlithed that:

✧ the use of a proactive routing protocol does not penalize the system performance in terms

of overhead, but it performs better than the reactive in terms of packet delivery ratio and

reconfiguration delays in static and low mobility scenarios;

✧ CrossROAD drastically reduces the overhead introduced by a classical p2p system on ad hoc

networks, and correctly manages cases of network partitioning and topology changes;

✧ several distributed application already developed for Internet have been successfully ported

on CrossROAD, increasing their performance, and paving the way to new algorithms for

data distribution and recovery (e.g. a cross-layer multicast protocol on top of the overlay

network to develop group-communication applications).

In addition, the standardization of a Common API for structured overlay networks enhanced with

cross-layer interactions in case of ad hoc networks, represents a point of contact between fixed and

mobile p2p systems. Specifically, the use of services and applications already developed for legacy

systems on MANETs can be a great incentive for users to interact with this new technology. For

c© Franca Delmastro, February 2006

CHAPTER 14. CONCLUSIONS 119

this reason we cannot maintain this two worlds completely separated, but an effort to integrate

them is needed.

We are currently designing a solution for the interaction between the CrossROAD “mobile” overlay

and Pastry, Chord, CAN and others, running on wired hosts. As shown in Fig.14.1, from the

network level, ad hoc nodes can be connected with wired hosts through one or more nodes that

act as gateways for the routing protocol. In this way also nodes belonging to different MANETs

connected to gateways can communicate. Specifically, a gateway for OLSR has been already

developed and tested [ABC+05].

At the same time, supposing that ad hoc and wired hosts run the same application on a structured

p2p system, each gateway could also represent an intersection point between different overlays.

The gateway should have a wireless interface for the ad hoc network and a wired interface to

forward packets to the wired network or to other ad hoc networks. To implement a fusion be-

tween the CrossROAD overlay and, for example, a Pastry ring on the Internet, the gateway has

to run the two systems concurrently, and a particular service on top of them that elaborates mes-

sages, content, and decides on which ring each message should be forwarded. Instead, distributed

applications must only implement the XL-CommonAPI on top of the selected p2p system.

A recent work [RGK+05] proposes a system (OpenDHT) that represents a common platform for

several structured overlay networks on Internet. Specifically this new solution centralizes the ex-

ecution of the p2p system on a set of servers, lightening client nodes. In this case the definition of

the commonAPI is reduced to a simple PUT/GET api, and client nodes can interact with the over-

lay only through put/get requests to a specific server. Then it elaborates the related information

forwarding it to the best destination.

The main idea of integrating mobile and fixed p2p systems can be applied also in this case, spec-

ifying on the gateway the translation from the XL-commonAPI requests to the PUT/GET interface

of the OpenDHT system.

Nowadays, multi-hop ad hoc networks do not appear as isolated self-configured networks, but

they emerge as flexible and low-cost extension of wired networks. This new paradigm is known as

Mesh Networks [BCG05]. To this aim, the integration of mobile and fixed p2p systems is necessary

to broaden the use of distributed applications on MANETs and to turn them into a commodity for

all users, increasing their interest towards these new technologies.

c© Franca Delmastro, February 2006

A. XL-CommonAPI: the complete speci�cation

Several structured p2p systems exist in literature and many applications have been developed on

top of them. To use these applications on top of different overlays without changing their im-

plementations, a common API was proposed in [DZD+03]. However, since that specification is

meagre, current implementations of structured p2p systems (e.g. Pastry, Chord, CAN and others)

have extended this version reducing the portability of applications. In addition, in mobile environ-

ments, the possibility to exploit cross-layer interactions considerably improves overall performace

providing cross-layer information also to upper-layer applications. In this way also their behaviour

is further optimized. To define a common tool for fixed and mobile p2p systems that includes all

these additional features, we report hereafter the detailed specification of the XL-CommonAPI.

Figure A.1.: Packages Diagram: XL-CommonAPI and its interactions with p2p systems and appli-
cations.

Each application running on top of a structured p2p system can exploit a set of basic features

that are represented by the assignment of logical identifiers and the subject-based routing. This

was defined in [DZD+03] as “key-based routing API (KBR)”. We maintain the same definition for

consistency with the previous specification. Further features developed to organize particular ap-

plications like multicast (Scribe [CJK+03]) or Decentralized Object Location and Routing (DOLR)

[HKRZ02] can be directly implemented on top of KBR as a simple distributed application. These

122 Appendix A

Figure A.2.: Class Diagram: Id interface

services export another interface to their upper layer, where more specialized applications can be

developed.

What we have defined as XL-CommonAPI represents an evolution of the KBR adding to the subject-

based routing some cross-layer features that can optimize both p2p systems and applications de-

veloped on top of them. This interface appears to the applications’ programmer as a set of java

interfaces. The p2p system must implement all interfaces except the Application interface, which

is implemented by each specific service. It defines main methods used by the service to manage a

received message, in case forward it, and eventually notify a change in the overlay data structures.

Specifically, Fig.A.1 shows the UML packages diagram including XL-CommonAPI, a generic p2p

system and a service. In particular, the p2p system has to define the InitCommonAPI class that

represents the initialization of all its internal data structures and that returns references to related

interfaces of the XL-CommonAPI. The implementation of the InitCommonAPI class has to be given

by the p2p system, while the other interfaces have a standard definition as detailed below.

Id: data abstraction of the logical identifier (Fig.A.2). In case of CrossROAD, it is implemented

as a 160-bit value obtained from the SHA-1 hash function applied to the IP address of the

local host. In Pastry a random quantity is added to the same value.

✧ String toString(); returns a String that represents the related Id in hexadecimal

format.

Figure A.3.: Class Diagram: IdFactory interface

IdFactory: abstraction of the class that implements the arithmetic computation of the logical Id

starting from an array of byte, an array of int values, or a String (Fig.A.3). The p2p system

must choose and implement the hash function to be applied to input values.

✧ Id buildId(byte[] b); returns an Id as the hash function applied to the specified

array of byte.

✧ Id buildId(int[] i); returns an Id as the hash function applied to the specified array

of int.

c© Franca Delmastro, February 2006

Appendix A 123

✧ Id buildId(String s); returns an Id as the hash function applied to the specified

String.

Figure A.4.: Class Diagram: NodeHandle interface

NodeHandle: abstraction of the pair of logical and physical identifiers associated to a specific host

(Id, IP address and port where the specific service is provided) (Fig.A.4).

✧ InetSocketAddress getAddress(); returns the IP address and port of the related

node.

✧ Id getId(); returns the Id of the related node.

Figure A.5.: Class Diagram: Message interface

Message: abstraction of each message that has to be sent on the network through the overlay

(Fig.A.5). The data structure that represents an application message must implement this

interface, that only represents a Serializable java object. No functions are specified. It is

defined as common data type for the application and the p2p system.

Figure A.6.: Class Diagram: RouteMessage interface

RouteMessage: it represents a group of data structures. The message to send to the overlay,

the key specified for that message, and the optional next hop where the message would be

forwarded represent its components (Fig.A.6). This interface can be used by the application

to modify the contents of the message, the key or the next hop through functions detailed

below.

c© Franca Delmastro, February 2006

124 Appendix A

✧ Id getDestinationId(); returns the Id of the node selected as best destination for

this message.

✧ NodeHandle getNexthopHandle(); returns the NodeHandle (Id, IP and port) of the

node selected as possible next hop for this message.

✧ Message getMessage(); retuns the related Message.

✧ void setMessage(Message msg); replaces the original message with that specified as

parameter.

✧ void setDestinationId(Id id); set a new value for the destination Id.

✧ void setNexthopHandle(NodeHandle nh); set a new value for the next hop handle.

Generally the next hop is set to null, otherwise the application forces the message to be sent

to a specific destinationgoing over the subject-based routing.

Figure A.7.: Class Diagram: Endpoint interface

Endpoint: represents the entity that allows the interaction of the programmer with the internal

data structures of the p2p system. It defines main functions to initialize and maintain the

overlay (Fig.A.7).

✧ void route(Id key, Message message, NodeHandle hint); sends the message, spec-

ified as parameter, to the node logically closest to the key value. The hint value is

optional, and it represents a node that should be used by the system to forward the

message. It is set to null value to use the original subject-based routing of the overlay,

but it has to be set to a valid value in case no key is specified. Key and hint cannot be

both set to null. If a key value is specified, in Pastry, Chord et al. this function represents

a possible multi-hop middleware routing of the message to reach the final destination,

since each node maintains only a limited part of the overlay in its data structures. In

case of CrossROAD, since each node has a complete knowledge of the current state of

the overlay, this function generates a single p2p connection to the final destination of

the message.

c© Franca Delmastro, February 2006

Appendix A 125

✧ Id getId(); returns the Id of the local node.

✧ NodeHandle getLocalNodeHandle(); returns the NodeHandle of the local node.

✧ NodeHandleSet replicaSet(Id id, int maxRank); this methods returns an ordered

set of NodeHandles on which replicas of an object with a given id can be stored. The

call returns a number of nodes up to maxRank.

✧ NodeHandleSet localLookup(Id id, int num, boolean safe); this method returns

a list of a maximum number of num NodeHandles that can be used as next hops on a

route towards the best destination for a given Id. The list is ordered by the logical prox-

imity between the specified id and the logical Ids of nodes of the overlay. In FreePastry1

[fre], if the safe flag is specified, then the fraction of faulty nodes returned is no higher

than the fraction of faulty nodes in the overlay. In CrossROAD it is equivalent to the

previous function, because the subject-based routing is anyway a single p2p connec-

tion. However, if the safe flag is set to true, the cross-layer interaction updates the state

of the overlay to eliminate the possibility of faulty nodes, otherwise the system exploits

the last updated information stored in its internal data structures. This has been done

to reduce the frequency of cross-layer interactions when unnecessary.

✧ NodeHandleSet neighborSet(int num); returns an unordered set of up to num Node-

Handles that are logical neighbors of the local node.

✧ void scheduleMessage(Message message, long delay); schedules a message to be

delivered to the local application after the provided number of milliseconds.

✧ void closeApplication(); this function has been added in this version of the com-

monAPI in order to manage cases in which the application decides to notify its discon-

nection from the p2p system. In this way, CrossROAD manages the shutdown of the

application by sending a DisconnectMessage on the network through the routing pro-

tocol, to notify other nodes of the disconnection of such node from the service. The

receiving nodes update their internal data structures with the delay of the proactive

routing protocol. On the other hand, in case of Pastry, the disconnection of a node from

the overlay is detected by each node periodically monitoring the status of their logical

neighbors, increasing the overhead on the network.

Furthemore, functions explained below have been added to this interface as cross-layer en-

hancements to the interaction between the application and CrossROAD. At the same time,

classic p2p systems can simply maintain the empty definition of these functions in their

implementation. Specifically:

✧ OverlayRoutingTable getOverlay(); returns a list of node Ids currently present in

the overlay network. In order to return an updated view of the overlay to the applica-

tion, CrossROAD implements this function as a reactive cross-layer interaction with the

routing protocol, that returns the list of Ids of nodes that are providing the specified

service. Some applications can be optimized directly knowing the current state of the

1An open source implementation of Pastry developed by Rice University. It implements a commonAPI that reflects basic
concepts defined in [DZD+03], but it also extends it with many other specific functions.

c© Franca Delmastro, February 2006

126 Appendix A

overlay, managing the distribution of particular messages or becoming aware of overlay

changes.

✧ NetworkRoutingTable getNetworkRT(); returns a list of entries consisting of: IP ad-

dress of the destination, IP address of the next hop, and cost to reach the destination

from the local node. CrossROAD implements this function directly requiring the net-

work routing table to the XL-plugin. Also in this case the knowledge of the physical

topology of the network can be exploited to optimize the behaviour of some applica-

tions (e.g. defining the set of best nodes where to store replicas as the nodes whose

logical ids are close to the key but, at the same time, are physical neighbors of the

sender). We are also currently working on alternative metrics for the routing protocol

to be exploited by applications as additional information obtained by the cross-layer

interaction (e.g. nodes mobility, link power).

✧ NodeHandle getRemoteHandle(InetSocketAddress add); returns the NodeHandle

of a remote node, starting from the IP address and the port where the service is pro-

vided. This function can be useful for applications that want to force the route of a

message to pass through a specific node. To do this, they must know the NodeHan-

dle of the related node but they cannot directly compute it through the NodeHandle
interface.

In order to define standard data abstractions for middleware and network routing tables, two

additional interfaces have been defined:

Figure A.8.: Class Diagram: OverlayRoutingTable interface

OverlayRoutingTable: list of node Ids that currently participates to the overlay (A.8).

✧ int size(); returns the number of elements of the overlay.

✧ Id getIdAt(int index); returns the Id stored at the specified index of the list.

NetworkRoutingTable: list of entries of the network routing table consisting of IP address of the

destination, IP address of the next hop, and the cost to reach the destination depending on

the metric chosen by the protocol (Fig.A.9).

✧ int size(); returns the number of elements of the network routing table.

✧ InetAddress getDestIPAt(int index); returns the IP address of the destination node

at the specified index of the list.

c© Franca Delmastro, February 2006

Appendix A 127

Figure A.9.: Class Diagram: NetworkRoutingTable interface

✧ InetAddress getNextHopIPAt(int index); returns the IP address of the netx hop

node at the specified index.

✧ int getCostAt(int index); returns the cost to reach a specified destination at the

selected index.

Figure A.10.: Class Diagram: Node interface

Node: entity that directly manages internal data structures of the overlay network (overlay rout-

ing tables, association between logical and physical identifiers, messages, and others). It

is implemented by the p2p system and it appears to the applications’ programmer just as

a simple function that generates the Endpoint as a connection between the instance of the

service and overlay data structures (Fig.A.10).

✧ Endpoint registerApplication(Application application, String instance) al-

lows the programmer to use and manage instances of data structures of the overlay

through Endpoint functions, without knowing their specific implementation.

Figure A.11.: Class Diagram: Application interface

Application: abstraction of the service locally provided (Fig.A.11). The application’s programmer

has only to implement this interface to exploit all features of the overlay network. Specifi-

cally it consists of 3 functions:

✧ void deliver(Id key, Message message); is invoked by the p2p system on the node

that is the best destination for the specified key upon the arrival of the message. The

c© Franca Delmastro, February 2006

128 Appendix A

application has to interpret the content of the message and consequently operate on its

data structure.

✧ boolean forward(RouteMessage message); is invoked at each node that forwards

the message, including the source node. As the parameter passed to the application is a

RouteMessage, it can decide to modify its contents, the key and/or the default routing

behaviour selecting a different next hop. If the next hop is modified from a valid value

to null, the message will be terminated on the local node. Since CrossROAD always

requires just a single p2p connection, this function is maintained mainly for other p2p

systems.

✧ void update(NodeHandle handle, boolean joined); is used by p2p systems to no-

tify the application of a connection/disconnection event in the overlay. This upcall de-

rives from proactive monitoring procedures that send neighbor discovering messages to

recover their current status. In CrossROAD it is completely useless because, if the appli-

cation needs to know the current state of the overlay, it can directly require it through

the related function, and the consistency of the information is guarateed strictly de-

pending on the network routing protocol. In addition, since it is a reactive operation,

executed only if required by the application, it does not increase the overhead on the

network.

Figure A.12.: Class Diagram: InitCommonAPI class

An additional component of this new commonAPI is represented by a java class that initializes all

data structures necessary to the service to interact with the p2p system. The application’s pro-

grammer cannot initialize the overlay data structures only through their interfaces, because an

explicit contructor is needed to build an istance of each object. This would require the knowledge

c© Franca Delmastro, February 2006

Appendix A 129

of the software architecture of the overlay in order to directly access those data structures, making

the application dependent on the overlay implementation. To avoid this dependence, the InitCom-
monAPI class has been defined. In our case this class has been implemented for CrossROAD, and

it provides the following functions:

✧ InitCommonAPI(int port); constructor that creates instances of CrossROAD objects. Specif-

ically, it creates an instance of CrossROAD node, the IdFactory that provides the generation

of Ids, the local NodeHandle and the local Id. The local IP address is specified in a con-

figuration file to avoid problems selecting the right interface. The configuration file, called

service_config, has been thought to maintain a set of information: the local IP and the

pair (name of the service, port) for each service currently running on top of CrossROAD.

This is necessary to associate a port to each service to allow the p2p system to know the port

on which communicate with other nodes of the same overlay.

✧ XL-CommonAPI.Node getLocalNode(); returns a reference to an instance of the local node

initialized by the constructor.

✧ XL-CommonAPI.getLocalId(); returns a reference to an instance of the local node’s Id.

✧ XL-CommonAPI.getLocalHandle(); returns a reference to an instance of the local Node-

Handle.

✧ XL-CommonAPI.Idfactory getIdFactory(); returns a reference to an instance of the Id-

Factory that implements the hash function chosen by the specific p2p system. This function

is necessary to the application to create instances of message keys and node Ids, starting

from their IP addresses.

✧ InetAddress getLocalIP(); returns the IP address of the local node selected from the

configuration file.

Thus, each application only needs to create an instance of the InitCommonAPI and retrieve from

it all the references to the correspondent interfaces. In addition each service has to directly im-

plement the Application interface and to execute the registerApplication method of the Node

interface to get the endpoint needed to interact with the overlay network. Once the service has

got the reference to each single object, it can execute all functions declared in their interface. On

the other hand, overlay networks have only to implement commonAPI interfaces and modify the

definition of the InitCommonAPI class, referring to their internal data structures.

c© Franca Delmastro, February 2006

Bibliography

[ABC+05] E. Ancillotti, R. Bruno, M. Conti, E. Gregori, and A. Pinizzotto. Experimenting a Layer

2-based Approach to Internet Connectivity for Ad Hoc Networks. In Proc. of IEEE ICPS
Workshop on multi-hop Ad hoc Networks: from theory to reality (REALMAN 2005), in
conjuction with IEEE ICPS 2005, Santorini, Greece, July 2005. 119

[ABCG04] G. Anastasi, E. Borgia, M. Conti, and E. Gregori. "Wi-Fi in Ad Hoc Mode: A Measure-

ment Study". In Proc. of PerCom 2004, Orlando, Florida, March 2004. 29, 30

[ADGS02] E. Anceaume, A. K. Datta, M. Gradinariu, and G. Simon. "Publish/subscribe scheme

for mobile networks". In Proc. of ACM Workshop on Principles of Mobile Computing
2002, pages 74–81, 2002. 3

[aod] AODV: Ad hoc on demand distance vector routing. http://user.it.uu.se/ hen-

rikl/aodv/. 16, 34

[BCDG05] E. Borgia, M. Conti, F. Delmastro, and E. Gregori. Experimental comparison of Rout-

ing and Middleware solutions for Mobile Ad Hoc Networks: Legacy vs Cross-Layer

approach. In Proc. of E-WIND Workshop, in conjuction with SigCom 2005 Conference,

Philadelphia, August 2005. 4, 12, 61

[BCDP05] E. Borgia, M. Conti, F. Delmastro, and L. Pelusi. Lessons from an Ad-Hoc Network

Test-Bed: Middleware and Routing Issues. In Ad Hoc and Sensor Wireless Networks,
An International Journal, Vol.1, Numbers 1-2, 2005. 4

[BCG05] Raffaele Bruno, Marco Conti, and Enrico Gregori. Mesh Networks: Commodity Mul-

tihop Ad Hoc Networks. IEEE Communications Magazine, Vol. 43, No. 3, pp. 123-131,

Mar 2005. 10, 101, 119

[BCGS04] S. Basagni, M. Conti, S. Giordano, and I. (Editors) Stojmenovic, editors. Mobile Ad
Hoc Networking. IEEE Press and John Wiley and Sons, Inc., New York, 2004. 10, 35

[BCM05] P. Bellavista, A. Corradi, and E. Magistretti. "Lightweight Replication Middleware for

Data and Service Components in DENSE MANETs". In Proc. of 6th IEEE Symposium
on a World of Wireless Mobile and Multimedia Networks (WoWMoM 2005), Taormina,

June 2005. 3, 12

[Bid01] C. Bidiskian. An overview of the Bluetooth Wireless Technology. IEEE Communication
Magazine, December 2001. 9

132 Appendix A

[BMJ00] J. Broch, D. A. Maltz, and D. B. Johnson. Quantitative lessons from a full-scakle multi-

hop wireless ad hoc network testbed. In Proc. of the IEEE Wireless Communications
and Network Conference (WCNC 2000), 2000. 30

[Bor05] E. Borgia. Experimental Evaluation of Ad Hoc Routing Protocols. In Proc. of Workshop
of Pervavise Wireless Networking 2005, in conjuction with the PerCom 2005 conference,

Kauai Island, Hawaii, March 2005. 78

[BR04] E. Belding-Royer. Routing approaches in Mobile Ad Hoc Networks,. S. Basagni and M.

Conti and S. Giordano and I. Stojmenovic Ed., IEEE Press and John Wiley and Sons,

New York, 2004. 12, 15, 16

[BRT99] E. M. Belding-Royer and C. K. Toh. A Review of Current Routing Protocols for Ad-

Hoc Mobile Wireless Networks. IEEE Personal Communication Magazine, pages 46–55,

April 1999. 15, 16

[cam] Computer Laboratory, University of Cambridge. http://www.cl.cam.ac.uk. 101

[CCL03] I. Chlamtac, M. Conti, and J. Liu. "Mobile Ad Hoc Networking: Imperatives and

Challenges". Ad Hoc Networks Journal, Vol. 1, N. 1, Jan-Feb-Mar", 2003. 3, 10, 12

[CCMT04] M. Conti, J. Crowcroft, G. Maselli, and G. Turi. A Modular Cross-Layer Architecture
for Ad Hoc Networks. Handbook on Theoretical and Algorithmic Aspects of Sensors,

Ad Hoc Wireless, and Peer-to-Peer Networks,Jie Wu (Editor), CRC Press, New York,

2004. 46, 51, 66

[CD04] D. Cook and S. K. Das. Environments: Technologies, Protocols and Applications. IEEE

Press and John Wiley and Sons, 2004. 9, 12

[CDG] M. Conti, F. Delmastro, and E. Gregori. P2P CommonAPI for structured overlay net-

works: a Cross-Layer Extension. Technical Report available at http://cnd.iit.cnr.
it/people/fdelmastro/. 6, 61

[CDHR] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploting network proximity in

peer-to-peer overlay networks. Technical report. http://freepastry.rice.edu/
PAST/. 117

[CDKR02] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. One Ring to Rule them All:

Service Discovery and Binding in Structured Peer-to-Peer Overlay Networks. In Proc.
of the Tenth ACM SIGOPS European Workshop, Saint-Emilion, France, 2002. 66

[CDT05] M. Conti, F. Delmastro, and G. Turi. Peer-to-Peer Computing in Mobile Ad hoc Networks.
Mobile Middleware, Computer and Information Sciences Series (coordinator Sartaj

Sahni),P. Bellavista and A. Corradi Ed., Chapman and Hall/CRC Press, Nov. 2005. 4,

5, 12

[CGH+02] E. Callaway, P. Gorday, L. Hester, J. A. Gutierrez, and Naeve M. Home Networking

with IEEE 802.15.4. IEEE Communications Magazine, pp. 70-77, Aug 2002. 12

c© Franca Delmastro, February 2006

http://cnd.iit.cnr.it/people/fdelmastro/�
http://cnd.iit.cnr.it/people/fdelmastro/�
http://freepastry.rice.edu/PAST/�
http://freepastry.rice.edu/PAST/�

Appendix A 133

[CGT05] M. Conti, E. Gregori, and G. Turi. "A Cross Layer Optimization of Gnutella for Mobile

Ad hoc Networks". In Proc. of ACM MobiHoc Symposium, Urbana-Champain, May

2005. 12

[CJK+03] M. Castro, M. B. Jones, A-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang, and

A. Wolman. An Evaluation of Scalable Application-level Multicast Built Using Peer-

to-peer overlays. In Proc. of INFOCOMM 2003, San Francisco, CA, April 2003. 67,

101, 102, 121

[CMTG04] M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross layering in mobile ad hoc

network design. IEEE Computer, February 2004. 4, 5, 46, 66

[Coh03] Bram Cohen. Incentive Build Robustness in BitTorrent. http://www.bittorrent.com,

2003. 21

[d10] MobileMAN Deliverable D10. http://cnd.iit.cnr.it/mobileMAN/pub-deliv.html. 13

[d13] MobileMAN Deliverable D13: Architecture, protocols and services.

http://cnd.iit.cnr.it/mobileMAN/pub-deliv.html. 4, 51, 52, 71

[d16] Deliverable D16: MobileMAN Technical Evaluation.

http://cnd.iit.cnr.it/mobileMAN/pub-deliv.html. 4, 61, 89, 91

[d8] MobileMAN Deliverable D8: First Phase. http://cnd.iit.cnr.it/mobileMAN/pub-

deliv.html. 34

[Del05] F. Delmastro. From pastry to crossroad: Cross-layer ring overlay for ad hoc networks.

In Proc. of Workshop of Mobile Peer-to-Peer 2005, in conjuction with the PerCom 2005
cinference, Kauai Island, Hawaii, March 2005. 4, 5, 53

[DP05] F. Delmastro and A. Passarella. On developing P2P Group-Communication Applica-

tions in Real-World MANETs: an Experimental Study. In Proc. of IEEE REALMAN
2005, ICPS Workshop, Santorini, Greece, July 2005. 4, 71

[DZD+03] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common api

for structured peer-to-peer overlays. In Proc. of the the 2nd International Workshop
on Peer-to-peer Systems (IPTPS’03), Berkeley, CA, February 2003. 6, 34, 61, 67, 69,

121, 125

[ECPS02] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the physical world with

pervasive networks. IEEE Pervasive Computing, 1 (1):59–69, 2002. 9

[EJ] D. Eastlake and P. Jones. Us secure hash algorithm (SHA1).

http://www.ietf.org/internet-drafts/draft-eastlake-sha1-02.txt. 56

[fre] Freepastry website. http://freepastry.rice.edu. 28, 31, 34, 56, 69, 77, 125

[GLNT] P. Gunningberg, H. Lundgren, E. Nordstrom, and C. Tschudin. "Lessons from Experi-

mental MANET Research". To appear in Ad Hoc Networks Journal, special issue on "Ad
Hoc Networking for Pervasive Systems". M.Conti, E.Gregori (Editors). 29, 30, 31, 33,

78

c© Franca Delmastro, February 2006

134 Appendix A

[GW02] A. J. Goldsmith and S. B. Wicker. Design Challenges for Energy-Contrained ad Hoc

Wireless Networks. IEEE Wireless Communication, Vol.9, N.4:8–27, August 2002. 49

[Haa97] Z. J. Haas. "A New Routing Protocol For The Reconfigurable Wireless Networks".

In 6th IEEE International Conference on Universal Personal Communications, IEEE
ICUPC’97, San Diego, CA, 1997. 16

[Her03] Klaus Hermann. "MESHMdl - A Middleware for Self-Organisation in Ad Hoc Net-

works". In Proc. of IEEE Workshop on Mobile and Distributed Computing (MDC2003),
in conjuction with ICDCS 2003, May 2003. 3

[HKRZ02] K. Hildrum, J.D. Kubiatowicz, S. Rao, and B.Y. Zhao. Distributed object location in a

dynamic network. In Proc. of ACM SPAA, Winnipeg, Canada, August 2002. 67, 121

[JM96] D. B. Johnson and D. A. Maltz. Dynamic Source Routing IN Ad-Hoc Wireless Networks.
Mobile Computing, T. Imielinski and H. Korth (Editors), Kluwer Academic Publisher,

1996. 16

[kaz] http://www.kazaa.com. 21

[KK03] V. Kawadia and P. R. Kumar. A Cautionary Perspective on Cross Layer Design. IEEE
Wireless Communication Magazine, July 2003. 49

[KM88] J. F. Kurose and H. Mouftah. Computer-aided modeling of computer communication

networks. IEEE Journal on Selected Areas in Communications, 6, No. 1:130–145, Jan.

1988. 29

[KM02] T. Klinberg and R. Manfredi. Gnutella Protocol Specification v.0.6. http://rfc-

nutella.sourceforge.net/src/rfc-0.6-draft.html, June 2002. 4, 21

[Lav83] S. S. Lavenberg. Computer Performance Handbook. Academic Press, New York, 1983.

29

[LNT02] H. Lundgren, E. Nordstrom, and C. Tschudin. "Coping with Communication Gray

Zones in IEEE 802.11 based Ad Hoc Networks". In Proc. of WoWMoM 2002, Atlanta,

GA, September 2002. 29

[Lun] H. Lundgren. Implementation and Experimental evaluation of Wireless

Ad hoc Routing protocols, PhD. Thesis. Dept. of Information Technology

"http://publications.uu.se/theses/abstract.xsql?dbid=4806. 79

[man] IETF Mobile Ad-hoc Networks (manet) working group.

http://www.ietf.org/html.characters/manet-charter.html. 11, 16

[MC02] R. Meier and V. Cahill. "STEAM: Event-Based Middleware for Wireless Ad Hoc Net-

works". In Proc. of 22nd International Conference on Distributed Computing Systems
Workshops (ICDCDW’02, 2002. 3

[MC03] J. P. Macker and S. Corson. Mobile Ad Hoc Networks (MANET): Routing Technology
for dynamic, wireless networking. S. Basagni, M. Conti, S. Giordano, I. Stojmenovic

(Editors), IEEE Press and John Wiley and Sons, Inc., New York, 2003. 49

c© Franca Delmastro, February 2006

Appendix A 135

[MCZE02a] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. "Middleware for Mobile

Computing (A Survey)". Advanced Lectures in Networking, 2002. G. Anastasi, S.

Basagni, E.Gregori (Editors). Springer. LNCS 2497. 3

[MCZE02b] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. "XMIDDLE: A Data-Sharing

Middleware for Mobile Computing". In Wireless Personal Communications, Vol. 21,

pages 77–103, 2002. 3

[MD02] K. M. Marina and S. R. Das. Routing performance in the presence of unidirectional

links in multihop wireless networks. In MOBIHOC 2002, EPFL Lausanne, Switzerland,

June 2002. 17

[mob] IST-FET MobileMAN Project. http://cnd.iit.cnr.it/mobileMAN/. 50, 101, 113

[MPR01] A.L. Murphy, G.P. Picco, and G. C. Roman. LIME: A Middleware for Physical and Log-

ical Mobility. In Proc. of the 21st International Conference on Distributed Computing
Systems, April 2001. 3

[net] NetiKos. http://www.netikos.com. 113

[NTCS99] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. "The broadcast storm problem in a

mobile ad hoc network". In The Fifth Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MOBICOM’99), Seattle, Washington, USA, August

1999. 15

[oCSaUS] Department of Computer Systems at Uppsala (Sweden). Ape: Ad hoc protocol eval-

uation testbed. http://apetestbed.sourceforge.net/. 30

[PC02] I. Pratt and J. Crowcroft. "Peer-to-Peer systems: Architecture and Performance". In

Networking 2002 Tutorial Session, Pisa, Italy, May 2002. 4

[Per00] C. E. Perkins. Ad Hoc Networking. Addison-Wesley, Reading, MA, 2000. 15

[PR99] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing. In Proc.
of 2nd IEEE Workshop on Mobile Computing Systems and Applications, February 1999.

16, 77

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object localtion and

routing for large scale peer-to-peer systems. volume 2218, pages 329–350, 2001. 4,

5, 22, 25, 26, 28, 36, 55

[rfc] Optimized link state routing protocol (OLSR): RFC3626.

http://www.ietf.org/rfc/rfc3626.txt. 16, 18, 77

[RFH+01] S. Ratsanami, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-

addressable network. In Proc. of ACM SIGCOMM 2001, San Diego, CA, August 2001.

4, 22, 23, 24

[RGK+05] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasanamy, S. Shenjer, I. Stoica,

and H. Yu. OpenDHT: A Public DHT Service and Its Uses. In Proc. of ACM SigCom
2005, Philadelphia, August 2005. 119

c© Franca Delmastro, February 2006

136 Appendix A

[SGF02] R. Schollmeier, I. Gruber, and M. Finkenzeller. "Routing in Mobile Ad Hoc and Peer-

to-Peer Networks. A Comparison.". In Proc. of Networking 2002 Workshops, Pisa, Italy,

May 2002. 3

[SMK+01] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and H. Balakrishnan. Chord:

A scalable peer-to-peer lookup service for internet applications. In Proc. of ACM
SIGCOMM 2001, San Diego, CA, August 2001. 4, 22, 24

[SN03] R. Schollmeier and F. Niethammer. protocol for peer-to-peer networking in mobile

environments. In Proc. of 12th IEEE International Conference on Computer Communi-
cations and Networks, Dallas, Texas, USA, 2003. 53

[SW03] I. Stojmenovic and J. Wu. Broadcasting and Activity-Scheduling in Ad Hoc Networks. S.

Basagni, M. Conti, S. Giordano, I. Stojmenovic (Editors), IEEE Press and John Wiley

and Sons, Inc., New York, 2003. 15

[tbr] Topology dissemination based on reverse-path forwarding (tbrpf): RFC3684.

http://www.ietf.org/rfc/rfc3684.txt. 16

[Ton] Andreas Tonnesen. OLSR: Optimized link state routing protocol. Institute for infor-

matics at the University of Oslo (Norway), http://www.olsr.org. 16, 34, 61, 62

[udd] UDDI: Universal Description, Discovery and Integration. http://www.uddi.org. 113

c© Franca Delmastro, February 2006

