607 research outputs found

    Mobile Online Gaming via Resource Sharing

    Full text link
    Mobile gaming presents a number of main issues which remain open. These are concerned mainly with connectivity, computational capacities, memory and battery constraints. In this paper, we discuss the design of a fully distributed approach for the support of mobile Multiplayer Online Games (MOGs). In mobile environments, several features might be exploited to enable resource sharing among multiple devices / game consoles owned by different mobile users. We show the advantages of trading computing / networking facilities among mobile players. This operation mode opens a wide number of interesting sharing scenarios, thus promoting the deployment of novel mobile online games. In particular, once mobile nodes make their resource available for the community, it becomes possible to distribute the software modules that compose the game engine. This allows to distribute the workload for the game advancement management. We claim that resource sharing is in unison with the idea of ludic activity that is behind MOGs. Hence, such schemes can be profitably employed in these contexts.Comment: Proceedings of 3nd ICST/CREATE-NET Workshop on DIstributed SImulation and Online gaming (DISIO 2012). In conjunction with SIMUTools 2012. Desenzano, Italy, March 2012. ISBN: 978-1-936968-47-

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Media handling for conferencing in MANETs

    Get PDF
    Mobile Ad hoc NETworks (MANETs) are formed by devices set up temporarily to communicate without using a pre-existing network infrastructure. Devices in these networks are disparate in terms of resource capabilities (e.g. processing power, battery energy). Multihop Cellular Networks (MCNs) incorporate multihop mobile ad-hoc paradigms into 3G conventional single-hop cellular networks. Conferencing, an essential category of applications in MANETs and MCNs, includes popular applications such as audio/video conferencing. It is defined as an interactive multimedia service comprising online exchange of multimedia content among several users. Conferencing requires two sessions: a call signaling session and a media handling session. Call signaling is used to set up, modify, and tear down conference sessions. Media handling deals with aspects such as media transportation, media mixing, and transcoding. In this thesis, we are concerned with media handling for conferencing in MANETs and MCNs. We propose an architecture based on two overlay networks: one for mixing and one for control. The first overlay is composed of nodes acting as mixers. Each node in the network has a media connection with one mixer in the first overlay. A novel distributed mixing architecture that minimizes the number of mixers in end-to-end paths is proposed as an architectural solution for this first overlay. A sub-network of nodes, called controllers, composes the second overlay. Each controller controls a set of mixers, and collectively, they manage and control the two-overlay network. The management and control tasks are assured by a media signaling architecture based on an extended version of Megaco/H.L248. The two-overlay network is self-organizing, and thus automatically assigns users to mixers, controls mixers and controllers, and recovers the network from failures. We propose a novel self-organizing scheme that has three components: self-growing, self-shrinking and self-healing. Self-growing and self-shrinking use novel workload balancing schemes that make decisions to enable and disable mixers and controllers. The workload balancing schemes use resources efficiently by balancing the load among the nodes according to their capabilities. Self-healing detects failed nodes and recovers the network when failures of nodes with responsibilities (mixers and controllers) occur. Detection of failed nodes is based on a novel application-level failure detection architecture. A novel architecture for media handling in MCNs is proposed. We use mediator concepts to connect the media handling entities of a MANET with the media entities of a 3G cellular network. A media mediator assures signaling and media connectivity between the two networks and acts as a translator of the different media handling protocols

    Design and Implementation of ID Based MANET Autoconfiguration Protocol

    Get PDF
    Auto-configuration protocols are used for assignment of unique IP addresses to nodes in Mobile ad hoc networks. Without the assignment of unique IP addresses, service provisioning between the nodes is not possible. Such protocols use various heuristics to ensure the uniqueness in IP address assignment; such aspects increase the overall complexity in MANET system design. Moreover the overriding role of IP address as an ID in Application layer and Locator in routing space is a bottleneck in future wireless network (FWN) design. Contemporary FWN research is focusing on ID/Locator split concept designs. In this paper we propose an ID/Locator based architecture for MANETs which also solves               auto-configuration requirements for MANETs. Our proposed architecture is an adaptation from available ID/Locator split concepts for infrastructure oriented networks for usage in MANET context. The designed protocol uses identifiers for node identification, node discovery and traffic flow between end points. The protocol support provision for running contemporary IP oriented services. We have also verified various use cases of our proposed protocol through Linux based implementation

    Design and Analysis of Distributed Faulty Node Detection in Networks

    Get PDF
    Propagation of faulty data is a critical issue. In case of Delay Tolerant Networks (DTN) in particular, the rare meeting events require that nodes are efficient in propagating only correct information. For that purpose, mechanisms to rapidly identify possible faulty nodes should be developed. Distributed faulty node detection has been addressed in the literature in the context of sensor and vehicular networks, but already proposed solutions suffer from long delays in identifying and isolating nodes producing faulty data. This is unsuitable to DTNs where nodes meet only rarely. This paper proposes a fully distributed and easily implementable approach to allow each DTN node to rapidly identify whether its sensors are producing faulty data. The dynamical behavior of the proposed algorithm is approximated by some continuous-time state equations, whose equilibrium is characterized. The presence of misbehaving nodes, trying to perturb the faulty node detection process, is also taken into account. Detection and false alarm rates are estimated by comparing both theoretical and simulation results. Numerical results assess the effectiveness of the proposed solution and can be used to give guidelines for the algorithm design. PRD assigns weights to individual links as well as end-to-end delay, so as to reflect the node status in the long run of the network. Large-scale simulation results demonstrate that PRD performs better than the widely used ETX metric as well as other two metrics devised recently in terms of energy consumption and end-to-end delay, while guaranteeing packet delivery ratio.

    Effective bootstrapping of Peer-to Peer networks over Mobile Ad-hoc networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) and Peer-to-Peer (P2P) networks are vigorous, revolutionary communication technologies in the 21st century. They lead the trend of decentralization. Decentralization will ultimately win clients over client/server model, because it gives ordinary network users more control, and stimulates their active participation. It is a determinant factor in shaping the future of networking. MANETs and P2P networks are very similar in nature. Both are dynamic, distributed. Both use multi-hop broadcast or multicast as major pattern of traffic. Both set up connection by self-organizing and maintain connection by self-healing. Embodying the slogan networking without networks, both abandoned traditional client/server model and disclaimed pre-existing infrastructure. However, their status quo levels of real world application are widely divergent. P2P networks are now accountable for about 50 ~ 70% internet traffic, while MANETs are still primarily in the laboratory. The interesting and confusing phenomenon has sparked considerable research effort to transplant successful approaches from P2P networks into MANETs. While most research in the synergy of P2P networks and MANETs focuses on routing, the network bootstrapping problem remains indispensable for any such transplantation to be realized. The most pivotal problems in bootstrapping are: (1) automatic configuration of nodes addresses and IDs, (2) topology discovery and transformation in different layers and name spaces. In this dissertation research, we have found novel solutions for these problems. The contributions of this dissertation are: (1) a non-IP, flat address automatic configuration scheme, which integrates lower layer addresses and P2P IDs in application layer and makes simple cryptographical assignment possible. A related paper entitled Pastry over Ad-Hoc Networks with Automatic Flat Address Configuration was submitted to Elsevier Journal of Ad Hoc Networks in May. (2) an effective ring topology construction algorithm which builds perfect ring in P2P ID space using only simplest multi-hop unicast or multicast. Upon this ring, popular structured P2P networks like Chord, Pastry could be built with great ease. A related paper entitled Chord Bootstrapping on MANETs - All Roads lead to Rome will be ready for submission after defense of the dissertation

    A one hop overlay system for Mobile Ad Hoc Networks

    Get PDF
    Peer-to-Peer (P2P) overlays were initially proposed for use with wired networks. However, the very rapid proliferation of wireless communication technology has prompted a need for adoption of P2P systems in mobile networks too. There are many common characteristics between P2P overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, a dynamic nature and changing topology are the most commonly shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality and MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. P2P overlay networks can be deployed over MANET to address content discovery issues. However, previous research has shown that deploying P2P systems straight over MANET does not exhibit satisfactory performance. Bandwidth limitation, limited resources and node mobility are some of the key constraints. This thesis proposes a novel approach, OneHopOverlay4MANET, to exploit the synergies between MANET and P2P overlays through cross-layering. It combines Distributed Hash Table (DHT) based structured P2P overlays with MANET underlay routing protocols to achieve one logical hop between any pair of overlay nodes. OneHopOverlay4MANET constructs a cross-layer channel to permit direct exchange of routing information between the Application layer, where the overlay operates, and the MANET underlay layer. Consequently, underlay routing information can be shared and used by the overlay. Thus, OneHopOverlay4MANET reduces the typical management traffic when deploying traditional P2P systems over MANET. Moreover, as a result of building one hop overlay, OneHopOverlay4MANET can eliminate the mismatching issue between overlay and underlay and hence resolve key lookups in a short time, enhancing the performance of the overlay. v In this thesis, we present OneHopOverlay4MANET and evaluate its performance when combined with different underlay routing protocols. OneHopOverlay4MANET has been combined with two proactive underlays (OLSR and BATMAN) and with three reactive underlay routing protocols (DSR, AODV and DYMO). In addition, the performance of the proposed system over OLSR has been compared to two recent structured P2P over MANET systems (MA-SP2P and E-SP2P) that adopted OLSR as the routing protocol. The results show that better performance can be achieved using OneHopOverlay4MANET

    SIP servlets-based service provisioning in MANETs

    Get PDF
    Mobile Ad-hoc NETworks (MANETs) are a part of the fourth generation networks vision. They are new wireless networks having transient mobile nodes with no need for a pre-installed infrastructure. They are of utmost interest for the future networks owing to their flexibility, effortlessness of deployment and related low cost. They come in two flavours: standalone MANETs and integrated with the conventional 3G network. Providing value-added services is the core concept of several paradigms and has been extensively studied in legacy network. However, providing such services in MANETs is a challenging process. Indeed, MANETs are known for their heterogeneous devices, limited resources, dynamic topology and frequent disconnections/connections. New SIP based solutions for signalling and media handling in these networks are emerging. Furthermore, SIP is the primary protocol for 3G networks. Therefore, SIP servlets become a promising paradigm for service provisioning in MANETs. This thesis addresses the service provisioning aspects in both standalone MANETs and integrated 3G/MANETs. The SIP servlets framework is considered as the starting point while Multihop Cellular Networks (MCNs), the widely studied networks, are used as an example of integrated 3G/MANETs. Background information is provided, architectures requirements are derived and related work is reviewed. A novel business model is proposed for service provision in standalone MANETs. The business model defines the business roles and the relationship and interfaces between them. We also propose a service invocation and execution architecture implementing the business model. The solution is based on overlay network and a distribution scheme of the SIP servlets engine. The overlay network enables self-organization and self-recovery to take into account MANETs characteristics. As for the integrated 3G/MANETs we propose high level architectural alternatives for service provisioning in MCNs. We identify the most interesting alternatives from the network operator point of view and proposed a detailed and concrete architecture for the promising alternative. Overall architecture, functional entities and procedures are presented. During this work, we built prototypes as proof-of-concept and made preliminary performance measurements, used SPIN as protocol validation tool and adopted OPNET for simulation. The results show that we can provide services in MANETs as we do in conventional networks with reasonable performance

    Cross-layer Peer-to-Peer Computing in Mobile Ad Hoc Networks

    Get PDF
    The future information society is expected to rely heavily on wireless technology. Mobile access to the Internet is steadily gaining ground, and could easily end up exceeding the number of connections from the fixed infrastructure. Picking just one example, ad hoc networking is a new paradigm of wireless communication for mobile devices. Initially, ad hoc networking targeted at military applications as well as stretching the access to the Internet beyond one wireless hop. As a matter of fact, it is now expected to be employed in a variety of civilian applications. For this reason, the issue of how to make these systems working efficiently keeps the ad hoc research community active on topics ranging from wireless technologies to networking and application systems. In contrast to traditional wire-line and wireless networks, ad hoc networks are expected to operate in an environment in which some or all the nodes are mobile, and might suddenly disappear from, or show up in, the network. The lack of any centralized point, leads to the necessity of distributing application services and responsibilities to all available nodes in the network, making the task of developing and deploying application a hard task, and highlighting the necessity of suitable middleware platforms. This thesis studies the properties and performance of peer-to-peer overlay management algorithms, employing them as communication layers in data sharing oriented middleware platforms. The work primarily develops from the observation that efficient overlays have to be aware of the physical network topology, in order to reduce (or avoid) negative impacts of application layer traffic on the network functioning. We argue that cross-layer cooperation between overlay management algorithms and the underlying layer-3 status and protocols, represents a viable alternative to engineer effective decentralized communication layers, or eventually re-engineer existing ones to foster the interconnection of ad hoc networks with Internet infrastructures. The presented approach is twofold. Firstly, we present an innovative network stack component that supports, at an OS level, the realization of cross-layer protocol interactions. Secondly, we exploit cross-layering to optimize overlay management algorithms in unstructured, structured, and publish/subscribe platforms
    corecore