6 research outputs found

    Transitional Particle Swarm Optimization

    Get PDF
    A new variation of particle swarm optimization (PSO) termed as transitional PSO (T-PSO) is proposed here. T-PSO attempts to improve PSO via its iteration strategy. Traditionally, PSO adopts either the synchronous or the asynchronous iteration strategy. Both of these iteration strategies have their own strengths and weaknesses. The synchronous strategy has reputation of better exploitation while asynchronous strategy is stronger in exploration. The particles of T-PSO start with asynchronous update to encourage more exploration at the start of the search. If no better solution is found for a number of iteration, the iteration strategy is changed to synchronous update to allow fine tuning by the particles. The results show that T-PSO is ranked better than the traditional PSOs

    A single-machine scheduling problem with multiple unavailability constraints: A mathematical model and an enhanced variable neighborhood search approach

    Get PDF
    AbstractThis research focuses on a scheduling problem with multiple unavailability periods and distinct due dates. The objective is to minimize the sum of maximum earliness and tardiness of jobs. In order to optimize the problem exactly a mathematical model is proposed. However due to computational difficulties for large instances of the considered problem a modified variable neighborhood search (VNS) is developed. In basic VNS, the searching process to achieve to global optimum or near global optimum solution is totally random, and it is known as one of the weaknesses of this algorithm. To tackle this weakness, a VNS algorithm is combined with a knowledge module. In the proposed VNS, knowledge module extracts the knowledge of good solution and save them in memory and feed it back to the algorithm during the search process. Computational results show that the proposed algorithm is efficient and effective

    Improved scheme of e-mail spam classification using meta-heuristics feature selection and support vector machine

    Get PDF
    With the technological revolution in the 21st century, time and distance of communication are decreased by using electronic mail (e-mail). Furthermore, the growing use of e-mail has led to the emergence and further growth problems caused by unsolicited bulk e-mails, commonly referred to as spam e-mail. Many of the existing supervised algorithms like the Support Vector Machine (SVM) were developed to stop the spam e-mail. However, the problem of dealing with large data and high dimensionality of feature space can lead to high execution-time and low accuracy of spam e-mail classification. Nowadays, removing the irrelevant and redundant features beside finding the optimal (or near-optimal) subset of features significantly influences the performance of spam e-mail classification; this has become one of the important challenges. Therefore, in order to optimize spam e-mail classification accuracy, dimensional reduction issues need to be solved. Feature selection schemes become very important in order to reduce the dimensionality through selecting a proper subset feature to facilitate the classification process. The objective of this study is to investigate and improve schemes to reduce the execution time and increase the accuracy of spam e-mail classification. The methodology of this study comprises of four schemes: one-way ANOVA f-test, Binary Differential Evolution (BDE), Opposition Differential Evolution (ODE) and Opposition Particle Swarm Optimization (OPSO), and combination of Differential Evolution (DE) and Particle Swarm Optimization (PSO). The four schemes were used to improve the spam e-mail classification accuracy. The classification accuracy of the proposed schemes were 95.05% with population size of 50 and 1000 number of iterations in 20 runs and 41 features. The experiment of the proposed schemes were carried out using spambase and spamassassin benchmark dataset to evaluate the feasibility of proposed schemes. The experimental findings demonstrate that the improved schemes were able to efficiently reduce the number of features as well as improving the e-mail classification accuracy

    Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics

    Get PDF
    During the last years, research in applying machine learning (ML) to design efficient, effective and robust metaheuristics became increasingly popular. Many of those data driven metaheuristics have generated high quality results and represent state-of-the-art optimization algorithms. Although various appproaches have been proposed, there is a lack of a comprehensive survey and taxonomy on this research topic. In this paper we will investigate different opportunities for using ML into metaheuristics. We define uniformly the various ways synergies which might be achieved. A detailed taxonomy is proposed according to the concerned search component: target optimization problem, low-level and high-level components of metaheuristics. Our goal is also to motivate researchers in optimization to include ideas from ML into metaheuristics. We identify some open research issues in this topic which needs further in-depth investigations

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field
    corecore