
HAL Id: hal-02745295
https://hal.inria.fr/hal-02745295

Preprint submitted on 3 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning into metaheuristics: A survey and
taxonomy of data-driven metaheuristics

El-Ghazali Talbi

To cite this version:
El-Ghazali Talbi. Machine learning into metaheuristics: A survey and taxonomy of data-driven meta-
heuristics. 2020. �hal-02745295�

https://hal.inria.fr/hal-02745295
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Machine learning into metaheuristics: A survey and
taxonomy of data-driven metaheuristics

EL-GHAZALI TALBI, University of Lille

During the last years, research in applying machine learning (ML) to design efficient, effective and robust
metaheuristics became increasingly popular. Many of those data driven metaheuristics have generated high
quality results and represent state-of-the-art optimization algorithms. Although various appproaches have
been proposed, there is a lack of a comprehensive survey and taxonomy on this research topic. In this paper
we will investigate different opportunities for using ML into metaheuristics. We define uniformly the various
ways synergies which might be achieved. A detailed taxonomy is proposed according to the concerned search
component: target optimization problem, low-level and high-level components of metaheuristics. Our goal is
also to motivate researchers in optimization to include ideas from ML into metaheuristics. We identify some
open research issues in this topic which needs further in-depth investigations.

CCS Concepts: • Computing methodologies→ Search methodologies.

Additional Key Words and Phrases: Metaheuristics, Machine learning, Optimization, Data-driven metaheuris-
tics

ACM Reference Format:
El-Ghazali TALBI. 2020. Machine learning into metaheuristics: A survey and taxonomy of data-driven meta-
heuristics. ACM Comput. Surv. 00, 00, Article 00 (2020), 30 pages. https://doi.org/00

1 INTRODUCTION
In the last decades, metaheuristics have shown their efficiency in solving various complex opti-
mization problems in science and industry [195]. In general, metaheuristics do not use explicit
knowledge discovered during the search using advanced machine learning (ML) models. Meta-
heuristics generate a lot of data in the search process. The data can be static when it concerns
the target problem and instance features to solve. Moreover several dynamic data are generated
during the iterative search process: solutions in the decision and the objective spaces, sequence of
solutions or trajectories, successive populations of solutions, moves, recombinations, local optima,
elite solutions, bad solutions, etc. Thus ML can be helpful in analyzing these data to extract useful
knowledge. This knowledge will guide and enhance the search performance of metaheuristics and
make them “smarter” and “well informed”. Data-driven metaheuristics have been proven to be
advantageous in both convergence speed, solution quality and robustness.

In this paper, a survey of data-driven metaheuristics to solve difficult optimization problems
is presented. A taxonomy is also proposed in an attempt to provide a common terminology and
classification mechanisms. The goal of the general taxonomy given here is to provide a framework
to allow comparison of data-driven metaheuristics in a qualitative way. In addition, it is hoped

Author’s address: El-Ghazali TALBI, el-ghazali.talbi@univ-lille.fr, University of Lille, Polytech’Lille, Cité scientifique,
Villeneuve d’Ascq, 59655.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0360-0300/2020/00-ART00 $15.00
https://doi.org/00

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

https://doi.org/00
https://doi.org/00

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

00:2 El-Ghazali TALBI

that the categories and their relationships to each other have been chosen carefully enough to
indicate areas requiring research efforts as well as to help classify future work. We distinguish
three hierarchical ways to use ML in metaheuristics (Fig.1):

• Problem-level data-driven metaheuristics: ML can help in modeling the optimization
problem to solve (e.g. objective function, constraints). It can also assist landscape analysis
and the decomposition of the problem.

• Low-level data-driven metaheuristics: a metaheuristic is composed of different search
components. ML can drive any search component such as the initialization of solution(s), and
the search variation operators (e.g. neighborhoods in local search, mutation and crossover in
evolutionary algorithms). It may also be used to tune the various parameters of a metaheuris-
tic.

• High-level data-driven metaheuristics: this class of data-driven metaheuristics concerns
the selection and generation of metaheuristics, and the design of hybrid and parallel coopera-
tive metaheuristics.

- Landscape analysis
- Objective function
- Constraints
- Problem decomposition

- Initial solution(s)
- Variation operators design
- Variation operators selection
- Parameters tuning

- Metaheuristic selection
- Metaheuristic generation

 Data driven
metaheuristics

 Problem-level data
driven metaheuristics

 High-level data driven
 metaheuristics

 Low-level data driven
 metaheuristics

Offline data driven
 metaheuristics

Online data driven
 metaheuristics

Fig. 1. A general taxonomy of data-driven metaheuristics.

Other flat criteria are used in the taxonomy such as the learning time. In offline data-driven
metaheuristics, the ML process occurs a priori before starting to solve the problem. In online data
driven-metaheuristics, ML gather knowledge during the search while solving the problem.
The synergy between ML and optimization has received increasing attention. Most of the

related works basically focus on the use of optimization algorithms in solving ML problems
[24][192][126][42][51]. Indeedmost of theML problems can be formulated as optimization problems.
In the last decade there was a considerable interest in the use of ML into optimization. Very few
papers investigate the role ofML into exact optimization algorithms (e.g. branch and bound, dynamic
programming), constraint programming, and mathematical programming [20]. To our knowledge
there is no comprehensive survey which identifies in a unified way how ML can help the design of
metaheuristics. In some outdated surveys [100][42][234], the authors enumerate some data-driven
metaheuristics. In [33] the authors focus on dynamic combinatorial optimization problems. In [196],
we have proposed a taxonomy of hybrid metaheuristics, in which the combination of metaheuristics
with mathematical programming, constraint programming and ML has been addressed. In this

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:3

paper a more complete and general taxonomy of data-driven metaheuristics is proposed. More than
125 references have been analyzed according to our taxonomy. The unified taxonomy is kept as
small as possible by proceeding in a hierarchical way as long as possible; then a flat classification is
presented according to other criteria.

The paper is structured as follows. In section 2, the main concepts of metaheuristics and ML are
detailed in a general and unified way. Section 3 focuses on problem-level data-driven metaheuristics.
In section 4, low-level data-driven metaheuristics are presented, while in section 5 we describe
high-level data-driven metaheuristics. Finally, the last section presents the main conclusions and
identifies some research perspectives.

2 MAIN CONCEPTS
This section presents in a unified way the main concepts used for metaheuristics and machine
learning.

2.1 Metaheuristics
An optimization problem consists in searching the optimal solution(s) x∗ from a set of solutions
X which maximize (or minimize) an objective function f (x) while satisfying a set of constraints.
Metaheuristics represent a class of general-purpose heuristic algorithms that can be applied to any
optimization problem. Unlike exact methods, metaheuristics allow to tackle large scale problems by
delivering satisfactory solutions in a reasonable time. There is no guarantee to find global optimal
solutions or even bounded solutions. Metaheuristics have received more and more popularity in
the past 30 years. Indeed, their use in many applications shows their efficiency and effectiveness to
solve large and complex problems.

In the design of a metaheuristic, two contradictory criteria must be taken into account: exploration
of the search space (diversification), and exploitation of the best solutions found (intensification).
Promising regions are determined through the “good” solutions obtained. In intensification, the
promising regions are explored more throughly with the hope to find better solutions. In diversi-
fication, non explored regions must be visited to be sure that all regions of the search space are
evenly explored and that the search is not only confined to a reduced number of regions.

2.1.1 Single-solution based metaheuristics. Single-solution based metaheuristics (S-metaheuristics)
improve a single solution. They could be seen as “walks” through neighborhoods or search trajec-
tories through the search space of the target problem [195]. S-metaheuristics iteratively apply the
generation and replacement procedures from the current solution. In the generation phase, a set of
candidate solutions are generated from the current solution s . This set C(s) is generally obtained
by local transformations of the solution. In the replacement phase1, a selection is performed from
the candidate solution set C(s) to replace the current solution, i.e. a solution s ′ ∈ C(s) is selected
to be the new solution. This process iterates until a defined stopping criteria. The generation and
the replacement phases may be memoryless. In this case, the two procedures are based only on the
current solution. Otherwise, some history of the search stored in a memory can be used in the gen-
eration of the candidate list of solutions and the selection of the new solution. Popular examples of
such S-metaheuristics are local search, simulated annealing and tabu search. Algorithm1 illustrates
the high-level template of this family of metaheuristics. Their common search concepts are the
definition of the neighborhood structure and the generation of the initial solution.

1Also named transition rule, pivoting rule and selection strategy.

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

00:4 El-Ghazali TALBI

Algorithm 1 : High-level template of single-solution based metaheuristics
s = s0; /* Generation of the initial solution */
t = 0;
Repeat

/* Generate candidate solutions from st */
Generate(C(st));
/* Select a solution from C(st) to replace the current solution st */
st+1 = Select(C(st));
t = t + 1;

Until Stopping criteria satisfied
Output: Best solution found.

2.1.2 Population based metaheuristics. Population based metaheuristics (P-metaheuristics) could be
viewed as an iterative improvement of a population of solutions. P-metaheuristics start from an
initial population of solutions2. Then, they iteratively apply the generation of a new population
and the replacement of the current population. In the generation phase, a new population of
solutions is created. In the replacement phase, a selection is carried out from the current and
the new populations. This process iterates until a given stopping criteria. Popular examples of
P-metaheuristics are evolutionary algorithms, ant colony optimization, scatter search, differential
evolution, particle swarm optimization, bee colony and artificial immune systems. Algorithm 2
illustrates the high-level template of P-metaheuristics.

Algorithm 2 : High-level template of P-metaheuristics
P = P0; /* Generation of the initial population */
t = 0;
Repeat

Generate(P ′
t); /* Generation a new population */

Pt+1 = Replace-Population(Pt ∪ P ′
t); /* Select new population */

t = t+1;
Until Stopping criteria satisfied
Output: Best solution(s) found.

P-metaheuristics may be classified into two main categories:
• Evolutionary-based: in this category of P-metaheuristics, the solutions composing the pop-
ulation are selected and reproduced using variation operators (e.g. mutation, recombination3)
acting directly on their representations. A new solution is constructed from the different
attributes of solutions belonging to the current population. Evolutionary algorithms (EAs)
and scatter search (SS) represent well-known examples of this class of P-metaheuristics.

• Blackboard-based4: It is based on the idea that the solutions of the population participate
in the construction of a shared memory. This shared memory will be the main input in
generating the new population of solutions. Ant colonies and estimation of distribution
algorithms (EDA) belong to this class of P-metaheuristics. For the former, the shared memory

2Some P-metaheuristics such as ant colony optimization start from partial or empty solutions.
3Also called crossover and merge.
4A blackboard system is an artificial intelligence application based on the blackboard architectural model, where a shared
knowledge, the “blackboard”, is iteratively updated by a diverse group of agents [61].

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:5

is represented by the pheromone matrix while, in the latter strategy, it is represented by a
probabilistic learning model. For instance, in ant colonies, the generated solutions by past ants
will affect the generation of future ants via the pheromones. Then, the generated solutions
participate in updating the pheromones.

2.2 Machine learning
ML is one of the most salient research domain in artificial intelligence. ML has experienced an
important development in the last decade and has become a powerful analysis tool in a wide
range of applications related to big data. ML is the science of extracting useful and hidden patterns
from a training dataset considered composed of multiple examples. Various ML tasks can be used
depending on the desired outcome of the model. Usually a distinction is made between supervised,
semi-supervised and unsupervised learning. The most common ML tasks used in this paper are
(Fig. 2):

• Regression and classification: this is a supervisedML task in whichwe predict a predefined
category or class from a given set of attributes (continuous variables for regression and
discrete variables for classification) [8]. The following ML techniques are generally used for
solving this family of problems: Gaussian process, linear regression, K-nearest neighbors,
artificial neural networks (ANN), support vector machine (SVM), random forests, decision
trees, logistic regression, naive Bayes and deep learning.

• Clustering: this unsupervised ML task partitions the input data set into subsets (clusters),
so that data in each subset share common aspects [64]. The partitioning is often indicated
by a similarity measure defined by a distance. The main used techniques for clustering
are: hierarchical clustering, partitioning methods (e.g K-means, K-medoids, Mean-Shift),
grid based clustering (e.g. CLIQUE, Sting, Wave Cluster), model based clustering (e.g. EM,
COBWEB) and density based methods (e.g. DBSCAN, Optics, Denclue).

• Association rules: association rule mining is a procedure which is meant to find frequent
patterns, correlations, associations or causal structures from datasets found in various kinds
of databases [67]. One of the most efficient used methods are Apriori, FP-growth and Eclat.
Many measures of interestingness for rules have been proposed such as support, confidence,
conviction, leverage, and lift (i.e. interest).

• Feature selection: the feature selection task consists in reducing the number of attributes
(i.e. dimensionality of the dataset) [37]. It is an important task because selecting significant
features would help to build simpler models of better accuracy and can reduce overfitting. The
traditional techniques used for feature selection are: filter methods (e.g. Pearson’s correlation,
linear discriminant analysis (LDA), analysis of variance ANOVA, chi-square tests), wrapper
methods (e.g. forward selection, backward selection, recursive feature elimination), and
embedded methods (e.g. mRMR, Greedy).

• Reinforcement learning: reinforcement learning (RL) aims to learn optimal actions from a
finite set of available actions through continuously interacting with an unknown environment
[194]. The main components are: states, set of actions and rewards. From the current state, a
RL agent takes an action, changes to a new state and receives a reward. The reward determines
the quality of the carried action. RL is also referred to as approximate dynamic programming
[155]. The goal of the agent is to maximize the accumulation of rewards over time. The main
approaches for RL can be classified as follows:
– Model-free: the optimal control policy is learned without first learning an explicit model.
Such schemes include: policy search (e.g. metaheuristics, policy gradient) and value-function
based, related to dynamic programming principles (e.g. temporal fifference (TD) learning,

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

00:6 El-Ghazali TALBI

Q-learning [216], SARSA (State-Action-Reward-State-Action), DQN (Deep Q Network),
DDPG (Deep Deterministic Policy Gradient, MCTS (Monte Carlo Tree Search)).

– Model-based: conversely model-based algorithm uses a reduced number of interactions
with the real environment during the learning phase. Its aim is to construct a model based
on these interactions, and then use this model to simulate further episodes, not in the real
environment but by applying them to the constructed model and get the results from it.

Machine Learning

- Gaussian process
- Linear regression
- K-Nearest Neighbors
- Artificial neural networks
- Support vector machine
- Random forests
- Decision trees
- Logistic regression
- Naive Bayes
- Deep learning, ...

 Hierarchical
 clustering

 Partitioning
 methods

Model-based
 clustering

Density-based
 methods

Grid-based
clustering

Clustering Regression
Classification

Association rules

Reinforcement
 learning

Regularization
 techniques

 Filter
methods

Wrapper
methods

- LASSO
- Ridge

Feature selection

- Pearson’s
- LDA
- ANOVA
- Chi-Square

- Forward
- Backward
- Recursive

- STING
- CLIQUE
- Wave

- K-means
- K-medoids
- Clarans
- Mean-shift

- EM
- COBWEB

- DBSCAN
- OPTICS
- DENCLUE

- Diana
- Agnes
- BIRCH
- CURE

Model-free Model-based

Policy search Value function

- Q-learning
- TD learning
- SARSA
- Deep QN
- Deep DPG
- MCTS

- Metaheuristic
- Policy Gradient

- Apriori
- FP-growth
- Eclat

Fig. 2. Main machine learning tasks and associated methods.

3 PROBLEM-LEVEL DATA-DRIVEN METAHEURISTICS
In this class of data-driven metaheuristics, ML techniques are carried out on the optimization prob-
lem at hand. Knowledge is obtained by the analysis of the landscape of the problem using selected
features. Moreover, the problem model can be reformulated (e.g. objective function, constraints) or
decomposed for a more efficient and effective solving.

3.1 Landscape analysis
Exploratory landscape analysis represent a number of techniques used to extract knowledge on the
characteristics of a given optimization problem. The main questions for this scientific challenge
are:

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:7

• Which features? high-level features specified by human experts such as the level of mul-
timodality or separability have been introduced to reflect the problem characteristics [16].
Other properties based on expert knowledge can be used such as: global basin structure,
variable scaling, search space homogeneity, basin size homogeneity, global to local optima
contrast, and size of plateaus. Low-level features are automatically and numerically computed
to characterize the landscape of a given problem. The features can be grouped into five
classes related to: the characteristics of the distribution of the objective function values
(y-Distribution), the relative position of each objective value compared to the median of all
values (Levelset), meta-modeling of the initial data set (Meta-Model), the estimated degree of
convexity of the function (Convexity) as well as the assessment of multimodality by local
searches starting from the initial design points (Local Search) [127].

• Which goal? those features are important for the design of efficient metaheuristics and
understanding the behavior of the algorithms. This knowledge can be used for the selection
of the best suited metaheuristic to solve a given problem by predicting the characteristics
of the input instance [221][23]. It can also be used to tune the parameters of an algorithm
[14], predict its runtime for solving a given benchmark instance [90], and generating hard
benchmark instances [116].

• Which ML methods? many ML methods have been investigated to extract those features
such as: Bayesian networks [151], support vector regression [23], random forest [90], Gaussian
process [90], neural networks [189], regression trees [14], and ridge regression [221].

3.2 Data-driven objective function
Two different goals govern the use of ML in the objective function (Fig. 3):

• Improving the convergence: ML can help to transform the objective functions in order to
better guide the metaheuristic through the search space. Those learnable objective functions
include some knowledge extracted from the problem.

• Reducing the computational cost: it consists in approximating the objective function. The
approximation is evaluated much faster than the original function for expensive optimization
problems.

3.2.1 Learnable objective function. The main issue in this family of methods is to generate auto-
matically improved objective functions from exploiting some knowledge of the target optimization
problem and features extracted from states visited during the search process. Those learnable objec-
tive functions can help guiding the search to improve solutions. For instance, this is an important
issue for problems characterized by multimodality and neutrality. A representative of such an
approach is Guided Local Search (GLS) which modifies the objective function when trapped on
a local optima. The augmented objective function of the problem include a set of penalty terms
[210]. Whenever the S-metaheuristic gets caught in a local optima, the penalties are modified and
search is iterated to minimize the transformed objective function. The penalty gives the degree up
to which the solution features is constrained.

Some approaches to construct learnable objective functions using reinforcement learning have
been proposed. In [25], some features characterizing good solutions are defined for the given
problem. The objective function is predicted by analyzing search trajectories of local search meth-
ods. A TD(λ) family of temporal-difference reinforcement learning algorithms is used. The learned
evaluation function is then used to bias future search trajectories toward better solutions on the
same problem. Transfer learning has also been used to transfer previously learned evaluation
functions to new, similar optimization problems [66]. In [101], an inverse reinforcement learning

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

00:8 El-Ghazali TALBI

 Data driven
objective function

Learnable objective
 function

 Objective
approximation

 Similarity-based
 approximation

- Objective inheritance
- K-nearest neighbor
- Clustering Online approximation Offline approximation

Functional-based
 approximation

Surrogate assisted
 optimization

- Surrogate building
- Surrogate incorporation
- Surrogate update

- Kriging
- Radial Basis Function (RBF)
- Artificial Neural Network (ANN)
- Deep Gaussian process
- Deep neural network
- Support Vector Machine (SVM)
- Ensembles

Fig. 3. Data-driven objective function.

(IRL) approach is proposed to learn the objective function in robotic problems. The main idea is
to predict a suitable objective function given observations of optimal behavior. In many robotics
problems, it is significantly easier to provide demonstrations of optimal behavior than it is to design
an objective function that defines the required behavior. IRL is used to learn the observed behavior
using features of solutions selected by L1 regularization.

3.2.2 Objective approximation. Many optimization problems (e.g. engineering design) are con-
cerned by extremely expensive objective functions. Those problems are generally characterized
by black-box objective functions whose algebraic definitions are unknown (e.g. simulation based
optimization). However, metaheuristics need to carry out a huge number of function evaluation in
order to find good solutions. For such expensive optimization problems, the approximation of the
objective function is an interesting alternative for designing efficient data-driven metaheuristics.

ML approaches can be used to build approximate models of the objective function [94]. In this
context, previously evaluated solutions are learned by a ML approach to approximate the objective
function of new generated solutions. The main issue here is to obtain a “good” approximation in
terms of maximizing its quality and minimizing its computing time. Many questions arise in the
design of this scheme such as: which proportion of the visited solutions are evaluated using the
approximation, and at what time or in which component of the search algorithm the approximation
is used. Objective approximation methods can be classified into two families (Fig.3):

• Similarity-based approximation: can be seen as Lazy learners or memory based learners.
The most popular similarity-based approximation are objective inheritance, K-nearest neigh-
bor, and clustering techniques. Objective inheritancemethods5 are popular in P-metaheuristics.

5This scheme is also called fitness imitation or fitness inheritance.

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:9

In [188], the objective value of a new solution is computed as a linear weighted combina-
tion of the parents, in which the weights depend on similarity with the parents. In [29], a
resampling technique is combined with an average combination to solve noisy problems.
Other objective inheritance methods based on conditional probabilities tables and decision
trees are proposed in [149]. In the k-nearest neighbors method, the objective value of a
given solution is computed according to the k-nearest neighbors with known exact values
[233]. Similarity-based approximation can also be carried out by clustering algorithms. A
clustering algorithm is applied on a population of solutions to be evaluated. Each cluster
will have a representative solution. Only the solution that represents the cluster is evaluated
[162][106][97][226]. Then, the objective function of other solutions of the cluster is estimated
with respect to its associated representative. Different clustering techniques may be used
such as K-means and fuzzy C-means.

• Functional-based approximation: it consists in a new model of the objective function
being built. The model construction strategy is based on previous data obtained from the
original objective functions. ManyML algorithms have been investigated [94][13]: Polynomial
models (i.e. Response Surface) [74], Radial Basis Functions (RBF), Kriging (i.e. Gaussian
process) [28][107], Support Vector Machines (SVM) [186], Artificial Neural Networks (ANNs)
[86][193][70][83]. A recent approach consists to use an ensemble of surrogates in order
to improve the performance of the approximation [73]. Multiple criteria have to be used
to compare the various models: number of samples provided to build the model, number
of parameters of the model, quality of the approximation, cost of the model building, and
cost of the model inference. In offline approximation, the model is built before the search
starts, whereas in online approximation (i.e. surrogate assisted), the model is constructed
and improved during the search.

Some hybrid approaches combining similarity-based and functional-based approximations have
been proposed. An example of such a hybrid approache is a clustering approach applied in EAs in
which we split the population into several clusters and then construct an approximate model for
each cluster. Multiple approximate models are expected to use more local information about the
search space and fit the original objective function better than a single global model [36][150][221].

3.2.3 Surrogate-assisted metaheuristics. Surrogate-assisted optimization6 is a popular approach to
deal with the optimization of expensive problems [198]. These algorithms are iterative sampling
procedures relying on surrogate models (i.e. metamodels) of the considered objective and constraint
functionswhich are generally characterized by a negligible computational cost, in order to iteratively
determine and explore the most promising locations of the design space, thus simultaneously
refining the surrogate model and converging towards the problem optimum [95].

The main questions in designing surrogate-based metaheuristics are:
• Surrogate building: whichML approach is used to build the surrogate? Different approaches
are used in the literature: Random Forest, Polynomial models, Gaussian Process [237], Neural
Networks [211], radial basis functions [165], deep Gaussian processes [81], deep neural
networks. A recent trend is to use multiple surrogates (i.e. ensembles of metamodels) to
improve the accuracy of the surrogates [65].

• Surrogate incorporation: which solutions should be selected to be evaluated using the real
objective function or the surrogate? Evolution Control uses jointly surrogates and original
objective functions in a metaheuristic. The original objective functions are used to evaluate

6Also known as Bayesian Optimization

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

00:10 El-Ghazali TALBI

some/all solutions in some/all iterations, in a fixed or adaptive way [39]. In direct approxi-
mation, the approximated objective function replaces the original one in the whole search
process [188][177]. In the indirect approximation, the metaheuristic use the approximation
in some search operators (e.g. neighborhood, population initialization, crossover, mutation)
[161][92].

• Surrogate update: When and how the surrogate is updated? the surrogate can be updated in
a fixed (e.g. each iteration, given number of iterations) or an adaptive way (e.g. improvement
of solutions). Different infill criteria have been used for updating the surrogate: lower confi-
dence bound (LCB), upper confidence bound (UCB), probability of improvement, expected
improvement (EI) [230]. They are based on a tradeoff between exploration, by searching
where predicted variance is high and exploitation by searching where expected value is
minimized.

One of the most popular Bayesian Optimization algorithms is the “Efficient Global Optimization”
(EGO) algorithm [98]. It is based on Gaussian Process (GP) regression (also called Kriging). First, a
set of solutions are generated using Design of Experiments (DoE). Then, it consists in sampling
iteratively, using the prediction and uncertainty by the Gaussian model, the most promising solution
based on an infill sampling criterion. This point is evaluated using the real objective function and
the surrogate is updated using the new training set, and a new solution is sampled, and so on, until
a given stopping criterion is satisfied (Fig.4).

Add the most promising
solution in the data set

 Evaluation of the
real objective function

 Build the
 surrogate

Optimization of
the infill criteria

 Design of
experiments

Stopping
 criteria No

Yes

Fig. 4. The EGO Bayesian optimization algorithm.

3.3 Constraint handling
For a given problem, there are usually domain specific constraints that can be exploited to construct
efficient metaheuristics. The most popular constraint handling procedures in metaheuristics are the
penalization and the repairing procedures. Different data-driven constraint handling approaches
exist (Fig.5):

• Constraint approximation: the approximation strategies detailed in the previous section
for the objective functions may also applied to constraints. Surrogates for constraints have
been applied to problems with expensive black-box constraints [164][132]. VariousMLmodels
have been investigated such as: ANN [96], Kriging [206], RBF [166], and SVM [120]. Different
infill sampling criteria are used to deal with constrained global optimization problems (e.g.
expected improvement with Probability of Feasibility (PoF) [217], Expected Violation (EV),
Mean Constraint (MC)) [156]. The infill criteria aims to balance between exploitation and
exploration of the objective and all the constraint approximations [145].

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:11

 Data driven
 constraints

 Constraint
transformation

Surrogate assisted
 optimization

- Constraint surrogate building
- Constraint surrogate incorporation
- Constraint surrogate update

- Reinforcement learning
- Artificial Neural Network (ANN)
- Cultural algorithms, ...

 Constraint
 approximation

- Relaxation
- Agregation
- Adding

 Constraint
 repairing

Fig. 5. Data-driven constraints.

• Constraint transformation: in penalization strategies, adaptive strategies have been used
for switching from lower complexity surrogates to higher complexity models (e.g. SVM [184]).
For problems with many constraints, the search process will be very sensitive to accuracy of
the surrogates which are built on the agregation of objective function and constraints. Hence,
techniques that aggregate constraint’s surrogates to one or a few have been proposed [235].
Dealing with constraints for many real-world problems requires incorporating domain
knowledge into optimization algorithms. In the ART (Adaptive Reasoning Technique), a search
memory is used to learn the behavior of a greedy algorithm [146]. Some constraints are added
to the problem. Those constraints are generated from the non interesting visited solutions
according to the values associated to their decision variables. Similar to the tabu list strategy
in tabu search, those constraints are deleted after a given number of iterations. In [136], the
authors use constraints to incorporate domain knowledge into Bayesian networks. They
have formally proved that adding constraints reduces variance and improves generalization
for machine learning problems.

• Constraint repairing: some ML approaches have been used to design repairing procedures
for constraint handling. In [236], Reinforcement Learning TD(Λ) method and artificial neural
networks are applied to design efficient repairing procedures for scheduling problems. In
cultural algorithms, adaptive knowledge represented by belief cells (i.e. intervals) is used to
avoid infeasible regions and for promoting the exploration of feasible regions [93]. Different
constraint handling techniques can be effective during different steps of the search process.
ML could also be applied to the online selection of the best constraint handling technique.

3.4 Problem decomposition
ML approaches can be used in breaking large scale optimization problems into smaller subproblems.
Those subproblems are then solved more efficiently by metaheuristics. Problem decomposition
approaches can be carried out in both hierarchical and flat ways. Hierarchical decomposition is used
when the problem can be successively refined. Flat decomposition generates separate subproblems
that can be solve in a parallel way. Three types of decomposition strategies may be carried out:

• Data space decomposition: partitioning of data input space can be applied to decompose
the input space into subspaces. Metaheuristics are then used to solve simpler subproblems
associated each partition. Then, a global solution is built using partial final solutions. For

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

00:12 El-Ghazali TALBI

instance, in geographical problems such as vehicle routing [167][62][140] and covering [49],
clustering techniques exploiting the spatial properties can be applied to structure the set of
input nodes. Different clustering algorithms using geographical proximity have been used
such as K-means [72][68], density based clustering [62], and ANNs [154]. This approach
has been also applied to other families of problems such as scheduling [118][17], in which
clustering of jobs is carried out [3].
In stochastic and robust optimization, the clustering approach can also be applied for the
set of input scenario [44][182]. In [119], a hierarchical clustering approach is proposed to
select representative scenario clusters for a robust optimization in order to avoid redundant
simulations and improve robustness in uncertain environments. In [44], clustering has been
used to enhance a progressive hedging-based metaheuristic for a network design problem that
models demand uncertainty with scenario. The metaheuristic solves successive multi-scenario
subproblems associated to different clusters of scenario.

• Decision space decomposition: in this problem decomposition approach, the set of decision
variables is divided into several subsets in order to remove the inter-relationship between
subsets. The subproblems are assumed to be independent or loosely coupled. A popular
decomposition technique is time-based decomposition in which the time horizon is used as a
splitting criterion [110].
ML can also be used to fix some variables to certain values and then solve the reduced associ-
ated subproblem. The fixed variables are selected using some knowledge (e.g. elite solutions,
interdependance between variables). For instance, this approach is used in coevolutionary
algorithms for global optimization problems [123][85], and Benders decomposition for mixed
optimization problems (MIP) [207].

• Objective space decomposition: in multi-objective optimization problems, reducing the
number of objective is an important issue for the search efficiency. Indeed, the difficulties in
solving many-objective optimization problems are the inefficiency of dominance relations,
important computational cost and complexity in visualization of the objective space. Reducing
the number of objectives using ML approaches represents a popular approach to handle this
difficulty: offline reduction using Principle Component Analysis (PCA) [178] or online reduction
based on the clustering of the Pareto front [27][142]. In [27], an unsupervised clustering
algorithm is applied in the objective space at different iterations of the metaheuristic. For each
cluster, only representative objectives are selected to guide the search during next iterations.

4 ML IN LOW-LEVEL COMPONENTS OF METAHEURISTICS
Although the effectiveness of metaheuristics has been demonstrated in solving difficult and large-
size optimization problems in various areas, the design of the appropriate setting usually requires a
deep expert knowledge in order to obtain competitive results. Here, ML can be used to find good de-
signs for various search components or parameters of metaheuristics such as the initial solutions(s),
neighborhoods, variation operators, stopping criteria and various parameters associated.

4.1 Initial solution(s)
The most commonly used method in the generation of initial solution(s) is randomness. In general,
a population of random solutions is characterized by a bad quality and do not even ensure a good
diversification in the search space. ML-assisted initialization techniques can improve the solution
quality, reduce the computational costs, and improve the robustness in terms of the variation of
the solutions found [102]. Hence, ML has been applied in the initialization of solution(s) following
different methodologies (Fig.6):

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:13

 Data driven
initial solution(s)

 Generating initial
 solutions

 Fixing positions for
 diversification

- Opposition-based learning
- Interpolation techniques
- Artificial Neural networks
- Reinforcement learning, ...

- Experimental design
- Multi-armed bandits, ...

- Case-based reasoning
- Multi-label classification
- Association rules
- Convolution Neural Networks,...

Incorporating apriori
 knowledge for
 intensification

Fig. 6. Data-driven initial solution(s) initialization.

• Incorporating a priori knowledge for intensification: knowledge extracted from previ-
ous problems solving can be used to generate solutions which integrate “good” patterns. ML
can learn good properties of the obtained solutions and then help to generate good quality
initial solutions in promising regions of the search space. The general learning methodology
is shown in Figure 7. First, by selecting a set of training instances of the problem and obtaining
a set of elite solutions for this set. Then, some features of the elite set of solutions are found
using ML models. Finally, the obtained ML model is used to generate initial solutions for
a new problem instance. Defining features and similarity metrics for a given problem are
the main issues of this methodology. Such approaches have been proposed using case-based
reasoning in EAs [121], association rules and attribute-oriented induction in P-metaheuristics
[134], multi-label classification using decision trees [117], logistic regression [80][180] and
neural networks [157] in S-metaheuristics. Recently, some deep architectures for neural
networks have been explored. In [129], Convolution Neural Networks (CNNs) models learn
the optimal solution for the traveling salesman problem as an image and extract the patterns
(i.e. edges) to be included in a solution. This methodology can also be applied in solving
similar problems by applying transfer learning approaches. There is an opportunity to exploit
the structure of similar problems that have been already solved for which we have a lot of
knowledge.

• Fixing positions for diversification: diversification is an important issue in metaheuristics.
ML has been applied to improve diversification in P-metaheuristics by using for instance
orthogonal experimental design [114], and in iterative S-metaheuristics by using for instance
multi-armed bandits (epsilon-greedy Q-learning) [35]. Indeed, the problem of selecting a
region to explore can be defined as a multi-armed bandit: a reinforcement learning prob-
lem that exemplifies the exploration-exploitation tradeoff dilemma, in which each arm is
represented by a region of the search space [208].

• Generating initial solutions:ML can also help to generate “good” quality initial solution(s).
An example of such approaches are:
– Opposition-based learning: using a one-to-one mapping function in the decision space,
opposition-based learning (OBL) allows to obtain complementary solutions in order to
improve the convergence of the search process and the coverage of the search space.

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

00:14 El-Ghazali TALBI

- Association rules,
- Decision trees,
- Neural network,...

Training set of
 instances

Machine learning

Metaheuristic

Initial solution(s)
Intensification

New problem
 instance

Good solution(s)

(2)

(3)

Optimization
 method

Optimal or
sub-optimal
solutions

(1)

Features

Learning model

Elite solutions

Fig. 7. Extracting knowledge from the history of the search and its use into initial solutions for intensification.
(1) Selecting the training problem instances and obtaining the elite solutions (optimal or near-optimal
solutions). (2) ML is applied using the elite set of solutions and the selected features of instances. (3) The
extracted ML model will be used to generate the initial solutions(s) for solving a new problem instance.

Opposite solutions are generated during the initialization of a population using differ-
ent types of mapping functions: Type-I opposition, Type-I Quasi-opposition, Type-I Su-
per Opposition, Type-II opposition, Center-based sampling, Generalized OBL, and Quasi-
reflection OBL [172]. This methodology has been carried out in Differential Evolution (DE)
[5][202][159][214][18], Evolutionary Algorithms [224][53], Harmony Search [183][185],
and Particle Swarm Optimization (PSO) [213][212][187][69]. It has also been applied for
solving multi-objective optimization problems [113][122] and noisy problems [79].

– Artificial neural networks (ANN): different architectures of ANNs have been investi-
gated to generate good quality solution for optimization problems: Hopfield neural networks
(HNN) [223][197][218], Recurrent Neural Networks (RNN) [19][135], Pointer networks
[209], Self Organizing Map (SOM) [131][40].

– Interpolation techniques: from a given population of solutions, new solutions can be
generated using interpolation techniques such as quadratic interpolation [143][7]. Using
a quadratic interpolation of three solutions, a new solution lying at the minimum of the
quadratic curve crossing through the three solutions is obtained. It helps to improve the
convergence rate of the algorithms.

– Reinforcement learning (RL): RL can be seen as a greedy optimization approach in
which a complete solution is constructed by successive addition of decisions [104][103].
Recently, some deep architectures have been investigated such as Deep RL [125], and Deep
Q Network [215].

– Transfer learning: transfer learning has been expoited for the population initialization
in solving dynamic multi-objective optimization problems [91]. It allows to generate an
initial population by reusing past experience to speed up the search process.

4.2 Search operators design
This section deals with the application of ML into the design of search operators: constructive (i.e.
greedy) operators, unary operators (e.g. neighborhood in local search, mutation in EAs), binary

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:15

operators (e.g. crossover in EAs), indirect operators (e.g. probabilistic models in estimation of
distribution algorithms), intensification, and diversification search operators:

• Constructive operators: some metaheuristics such as Ant Colony Optimization and GRASP
use greedy operators to generate new solutions. Association rules and clustering (e.g.self-
organizing maps) have been used to extract patterns that are incorporated into greedy
procedures [170][45]. Reinforcement learning have been integrated into constructive opera-
tors, such as Q-learning in ant colony based optimization [54]. This approach is very popular
in solving control problems such as mobile robots [75]. Indeed reinforcement learning is a
natural framework for sequential learning in greedy procedures. This RL framework has
also been applied to many combinatorial optimization problems such as the maximum cut,
minimum vertex cover, and traveling salesman [104].

• Unary operators: one of the key issues in designing efficient unary operators is ensuring
that they search in the appropriate neighborhood. Two different issues have been addressed
using online learning:
– Size of the neighborhood: the size of the neighborhood can be learned online during
search; for instance the step size in Evolution strategies (ES) [179].

– Sampling of the neighborhood:MLmodels can be extracted from a set of good generated
solutions to guide the generation of the candidate neighbors. Other than applying a random
or complete generation of the neighborhood, a reduced set of candidate neighbors are
generated. This methodology has been applied to many metaheuristics such as EAs [176],
and VNS [199]. In [176], probabilistic models are learned from the population in EAs.
New solutions are generated by sampling the probabilistic model. In [201] a linkage tree
genetic algorithm based on hierarchical clustering is proposed. It allows to identify the
problem variables that have a high mutual information in a population of good solutions.
In the generation of new solutions, these linked variables determine the neighborhood
where the metaheuristic searches for better solutions by sampling values for these problem
variables from the current population. This neighborhood learning is guided by the linkage
hierarchical clustering found so far during the search.

• Binary operators: the knowledge extracted during the search can be incorporated into
binary operators such as recombination operators in EAs for the generation of new solutions
(Fig. 8). From a set of solutions (e.g. current population, elite solutions), some learning models
are extracted, that will participate in:
– Recombination of solutions: association rules [175], decision trees [99] are some exam-
ples of ML approaches that have been applied in the croosover operator in EAs. In [175],
an elite set of solutions is maintained by an EA. The frequent itemsets are discovered using
the Apriori algorithm of association rules. Then those frequent itemsets will guide the
crossover operator by a greedy procedure. In [128], a set of decision rules describing the
generated solutions are found, using the AQ learning algorithm. The extracted rules are
incorporated into the crossover operator.

– Selection of solutions: in general, the selection of solutions to be recombined is based
only on their qualities (e.g. roulette or tournament selection). The candidates for crossover
can be chosen using some distance measures. Hence, hierarchical clustering has been
proposed to select solutions in neighboring clusters [6][144]. Indeed, recombining only
neighboring solutions may improve the efficiency of crossover operators.

• Indirect operators: in blackboard-based metaheuristics (e.g. EDA), ML models are used to
generate new solutions: probabilistic models [148], Bayesian networks [152], incremental
learning [11], dependency trees [12], and Markov random fields [181]. Similarly, cultural

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

00:16 El-Ghazali TALBI

algorithms use good quality solutions to induce beliefs guiding the generation of solutions by
evolutionary operators [168]. Cultural evolution allows populations to learn and adapt faster
than biological evolution.

 - Elite solutions,
 - Current population,
 - Bad solutions,
 - ...

- Association rules,
- Classification,
- ...

History of the search
Machine learning

Search operators
 design

Data Models

Patterns

 Binary
operators

 Greedy
procedures

 Unary
operators

 Indirect
operators

Intensification
Diversification

- Constructive,
- Ant colonies
- GRASP, ...

- Association rules,
- Clustering,
- Reinforcement
 learning, ...

- Neighborhood
- Mutation, ...

- Estimation of
 distribution
 algorithms, ...

- Crossover, ...

- size of neighborhood
- sampling of
 neighborhooh, ...

- Selection of solutions
- Recombination of
 solutions

Fig. 8. Extracting knowledge from the search history and its use into search operators.

Other important search operators can be handled by ML:
• Intensification7: this approach uses a learning process to guide the underlyingmetaheuristic
toward good regions of the search space. It allows to make deeper search aroud promising
regions of the search space. The features of good solutions are extracted using online learning
such as clustering [153] and frequent itemsets using association rules [48][169]. Then a
deeper search is carried out around solutions characterized by those patterns.

• Diversification8: this approach uses a learning process to guide the underlyingmetaheuristic
toward unvisited regions of the search space. A learning component keeps track of all visited
solutions by storing some informations: spheres in the decision space [153], intervals for
decision variables [191], Self-Organizing Maps (SOM) [9], binary space-partitioning (BSP)
trees [228]. In order to guide the underlying metaheuristic toward unexplored regions, the
learning component generate solutions far away from the visited solutions.

4.2.1 Operator selection. In many metaheuristics there exists a lot of alternatives in terms of search
operators design: neighborhoods and more generally unary operators such as mutation in EAs,
and binary operators such as crossover in EAs. ML can be used for the selection of the best suited
search operator. Sequential learning approaches (e.g. reinforcement learning, multi-armed bandit)
are well suited for the selection of search operators [56].
Reinforcement learning has been applied to learn the optimal search operator based on the

performance of operators. The operator selection problem is formulated as reinforcement learning
problem. It is applied to learn optimal policies by maximizing the accumulated rewards. According
7i.e. exploitation
8i.e. exploration

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:17

to the calculatedQ function value of each candidate operator, an optimal operator can be selected to
maximize the learnedQ reward value. This approach has been used for various unary operators such
as mutation [231], and neighborhood selection in VNS (Variable Neighborhood Search) [1][55][109].
VNS integrate a set of different neighborhoods, which are explored in a predefined sequence. ML
approaches allows to select the most appropriate neighborhood at a given iteration.

Other sequential learning approaches have been proposed such asmulti-armed bandit for operator
selection in EA [47], and neighborhood selection in VNS [38], and adaptive pursuit algorithm [57].
Ensemble methods represent alternatives to sequential learning that have been investigated for this
task [124].

4.3 Parameter tuning
Many quantitative parameters compose metaheuristics. Quantitative parameters represent nu-
merical values to be initialized such as the probability of application of variation operators (e.g.
mutation, crossover) in EAs, the tabu list size in tabu search, and the velocity is particle swarm
optimization. The various parameters of metaheuristics have a significant impact on their efficiency
[50]. In general, metaheuristics designers tune the parameters by hand, guided by their experience
and some rules of thumb. Finding good parameter setting is a tedious and time-consuming task
[60].

There are a lot of similarities between the parameter tuning problem and problems faced in ML
[21] and Design of Experiments (DoE) [63]. Offline or static parameter tuning addresses the finding
of good parameters before the execution of a metaheuristic [89]. Online or dynamic parameter
tuning addresses the dynamic change of parameters during the search. A hybridization of both
approaches is generally required for finding satisfactory solutions.

4.3.1 Offline parameter tuning. There is no general optimal parameter setting for metaheuristics.
For any metaheuristic, an optimal parameter setting can vary considerably depending on the
problem, and even between instances of the same problem. Three main ML methodologies can be
applied:

• Unsupervised learning: unsupervised learning has been explored to improve the efficiency
of factorial experimental design for parameter tuning. Themain idea is to reduce the parameter
space in order to reduce the computational complexity: Design of Experiments (DoE) [43],
Taguchi fractional experimental design [2], fractional factorial design [76], correlation graph
decomposition [111]. This methodology can be described in an unified way by the following
three steps:
– Parameter selection: the main goal of this step is to select the significant parameters
which influence the performance of the metaheuristic. Given the input set of parameters,
the selection step tries to rank these parameters to determine the importance of parameters.
This step allows to reduce the parameters space to be explored by eliminating some non
significant parameters.

– Parameter space exploration: it consists in decomposing the parameter space in differ-
ent clusters. A model-based approximation (e.g. linear regression [43], response surface
[88][76], logistic regression [160], decision tree [15]) is built to find relationship between
the parameters and the objective function value. This step allows to find promising clusters
in the parameters space.

– Parameter space exploitation: in each cluster, an optimization process is applied to find
the best parameters. Any metaheuristic can be used for this step (e.g. local search [43],
evolutionary algorithms [111]).

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

00:18 El-Ghazali TALBI

• Supervised learning: optimal parameters setting may differ function of the problem in-
stances of the problem at hand. Supervised learning can be applied in order to predict the
best parameters value for a given instance of the problem. Each instance is characterized by
some features [163]. Two different steps can be considered (Fig.9):
– Training and learning: for different set of initial parameter values, a metaheuristic is
applied to generate solutions for a finite training set of problem instances. Then, the
obtained performance data are carried out by ML to build a model.

– Prediction: supervised ML is trained with the data from the first stage in order to give
recommendations for parameters for any new problem instance. ML is therefore used for
the recognition of good initial parameter settings for new problem instances. Parameters
values for new problem instances can be retrieved in real time using supervised learning,
once the training phase is carried out. Different models have been used such as artificial
neural networks (ANN) [52], Bayesian networks [147], linear regression [34], and SVM
[112].

• Surrogate-based optimization: parameters tuning can be formulated as an expensive opti-
mization problem, in which the decision variables are the parameters, and the objective func-
tion is the solution quality obtained by the optimization algorithm. Hence, surrogate-based
optimization techniques has been applied to reduce the complexity of the meta-optimization
process [219].

ML

Learning

 ML
Prediction

New instance
 to be solved

(a) Stage 1: Training and Learning

(b) Stage 2: Parameter retreival by Classification/Regression

Parameters

values

 Model

 - Problem
 instances
 - Parameters Performance

Metaheuristic

 - Problem
 instances
 - Parameters

Fig. 9. ML and parameter tuning: training, learning and prediction.

4.3.2 Online parameter tuning. In online tuning, the parameters are adapted during the search.
For instance, the initialization of the probability of application of a given search operator may
be adjusted adaptively by computing the progress of the last applications of the search operator
[203][82]. Hence, it becomes possible to determine the probabilities of application of a given
operator in an adaptive manner where the more efficient an operator is, the likelier is its application.
Knowledge extracted during the search may serve to dynamically change at run time the values of
parameters, using various learning methodologies:

• Sequential learning approach: the most popular online approach is sequential learning:
adaptive pursuit [200], multi-armed bandit [47], and reinforcement learning [59][4]. Multi-
armed bandit strategies treat each parameter as a separate arm and fix their probabilities by

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:19

learning the expected rewards [47]. Reinforcement learning uses feedback from the search to
define states and actions which represent parameters values [59].

• Classification/regression approach: classifiers (e.g. SVM [229]) or regression models [112]
can be used to predict effective parameters settings on the basis of the current status of the
search and problem/instance informations.

• Clustering approach: clustering approaches have also been applied. In [232], the distribu-
tion of the population in the search space is clustered at each iteration. Using the K-means
algorithm, the parameters are adapted according to the knowledge extracted from clusters.
Some rules based on the relative size of the cluster containing the best solution and the
one containing the worst solution are used to adapt the probabilities of the application of
variation operators in EAs.

5 ML IN HIGH-LEVEL COMPONENTS OF METAHEURISTICS
Metaheuristics can be seen as high-level algorithms composed of low-level search operators (e.g.
greedy versus iterative). On one hand, many metaheuristic families exist in the literature (e.g. EAs,
swarm intelligence, local search) and then various heuristics can be designed. On the other hand, for
a given optimization problem, a heuristic can be automatically generated by fixing a configuration
from the design space of low-level search operators. According to the nature of the design space
of metaheuristics, one can consider the metaheuristic selection problem for selecting existing
algorithms, and the metaheuristic generation problem for generating automatically algorithms
from the search components of existing ones (Fig.10).

Offline learning Online learning

Reinforcement
 learning

 Selection of
metaheuristics

 Generation of
metaheuristics

 Genetic
programming

Classification

Regression

Clustering

Fig. 10. ML in high-level components of metaheuristics.

5.1 Selection of metaheuristics
The design space of metaheuristics is very large. Moreover the steady development of new meta-
heuristics makes the selection of the best metaheuristic for a given problem or instance an important
challenge [108]. The algorithm selection involves selecting an algorithm from a given portfolio
of algorithms in order to take into account the varying performance of algorithms over a set of
instances and problems [171]. It is well-known that a global best metaheuristic for all optimization
problems does not exist. We have to accept that no single metaheuristic will produce the best per-
formance on all problems and instances [220]. One is especially interested in giving metaheuristic
recommendations for certain families of optimization problems which differ in the kind of exhibited
problem features.

The research literature on the algorithm selection problem show the efficiency of using ML
for the problem [22][26]. For the metaheuristic selection problem, one can distinguish between

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

00:20 El-Ghazali TALBI

offline and online learning. The advantage of online learning is an adaptive selection of algorithm,
whereas the cost for this additional effectiveness is an important overhead:

• Offline learning: the idea is to gather knowledge from a set of training instances by using
instance features, that will hopefully generalize to solve new instances. One can consider
three approaches for the metaheuristic selection problem:
– Classification: a multi-class classifier predict the best performing metaheuristic over
the k possible ones. A predictive model is trained on empirical performance data and
metaheiristics. Many supervised ML techniques can be used such as ANN [204][77][205],
Bayesian networks [78], nearest neighbors [71], support vector machines [84], decision
trees [41], logistic regression [158], ensembles [190], and deep neural networks [46].

– Regression: the performance of each metaheuristic is predicted via a regression model and
then selects the one with the best predicted performance. Several ML regression approaches
have been proposed: linear regression [115], support vector regression [23], and Lasso
regression [87].

– Clustering: it consists in clustering the problem instances in feature space, then selects the
best metaheuristic for each cluster and finally affects to each new instance the metaheuristic
associated with the instance’s predicted cluster.

• Online learning: the learning takes place during the search. For instance, this idea has
been widely explored in the hyper-heuristic framework [30]. The most used ML strategies
are mainly based on sequential learning. In a reinforcement learning formulation of the
problem, the metaheuristics represent actions, states correspond to solutions, and the value
function (i.e. reward) represents the performance of the metaheuristic, while the environment
is represented by the instance problem [173] (Fig.11). Most of the considered RL approaches
usually use only a single instance [133][31][141][222]. For a problem domain (i.e. set of
instances), the reward can be represented by the average performance over the set of instances.
The main issue of different RL algorithms (e.g. temporal difference learning [173]) is to
estimate the value functions.

Some hybrid approaches combining offline and online learning have been proposed [130]. By com-
bining metaheuristic portfolios and online selection, the goal is to develop a problem-independent
methodology with diverse problem solving capability.

 State
(Solution)

 Environment
(Problem instance)

 Action
(Metaheuristic
 selection)

 Next state
 (obtained
 solution)

 Reward
(Quality of solution)

Fig. 11. Online selection of a metaheuristic using a reinforcement learning approach.

5.2 Generation of metaheuristics
There are so many various characteristics of problem instances encountered in practice. An auto-
mated design of a metaheuristic can be performing well and cost effective for a given problem or
instance. The generated metaheuristic can produce better solutions than those obtained by human
created metaheuristics. Moreover, the automated process is less demanding on human time, and is

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:21

therefore appealing. One can find offline and online learning strategies for the automatic generation
of heuristics:

• Offline learning: Genetic programming (GP) is the most widely used approach for that pur-
pose [174][32][105]. The automated design of effective heuristics is carried out via evolution,
in which the heuristic is represented by a GP-tree. Other used methodologies for automati-
cally generating a new heuristic for a given problem/instance are based on apprenticeship
learning [10], Learning Classifier Systems (LCS) [138], ANN [139] and logistic regression
[137].

• Online learning: the most used online ML approach is the reinforcement learning (RL) to
generate greedy [58] and iterative metaheuristics [225]. In [225], deep RL using graph neural
networks (GNN) has been used to generate local search heuristics to solve SAT problems.
Local search has been formalized as Markov decision process (MDP). Generating a good
heuristic consists to find an optimal policy π which maximizes the expected accumulated
reward obtained by a local search algorithm. This methodology is also popular in swarm of
robots, for which at each iteration the best metaheuristic is generated to perform a given
number of predefined actions [227].

6 CONCLUSIONS AND PERSPECTIVES
The fields of ML and metaheuristics are increasingly intertwined. In this paper we have investigated
the different opportunities for applying ML into metaheuristics. We have defined in a unified way
the various synergies that may be achieved. A detailed taxonomy has been proposed according to
the concerned search component: target optimization problem, low-level and high-level search
components of metaheuristics. Many of those data-driven metaheuristics have generated high
quality results and represent state-of-the-art optimization algorithms. One has to keep the overhead
of learning low. Indeed, the integration of ML techniques in metaheuristics incurs additional costs
which have to be considered in the performance evaluation measures.

Research in designing metaheuristics using ML techniques is witnessed to have an important
impact in the future. We expect the interplay of metaheuristics and ML will increase. Indeed,
data-driven metaheuristics opens up a wealth of perspectives. From the optimization point of
view, investigating the integration of ML into exact optimization techniques (e.g. mathematical
programming, branch and bound, dynamic programming, constraint programming) is an important
research challenge. Solving more complex optimization problems such as multi-objective optimiza-
tion, dynamic optimization, optimization under uncertainty, and bi-level optimization, opens also
many other research issues.

From the machine learning perspective, the use of more sophisticated and modern ML techniques
such as deep learning models will represent an interesting alternative to solve more complex
problems. Transfer learning can help to reuse the past experience for speeding up the metaheuristic
search process for dynamic and cross-domain optimization problems. Indeed, integrating transfer
leaning in metaheuristics can improve performance and robustness in solving similar and evolving
problems and instances.

It could also be interesting to explore the design and implementation of parallel models for data-
driven metaheuristics. High-performance computing is evolving toward Exascale supercomputers
composed of millions of cores provided in heterogeneous devices mainly multi-core processors with
various architectures, GPU (Graphics Processing Units) accelerators and TPUs (Tensor Processing
Units) and other AI-dedicated ASICS (Application-Specific integrated Circuits). Finally, the coupling
of software frameworks dealing with the two classes of algorithms (i.e. metaheuristics and ML

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

00:22 El-Ghazali TALBI

algorithms) is an important issue for the future. This enables to reduce the complexity of developing
data-driven metaheuristics approaches and makes them increasingly popular.

REFERENCES
[1] [n.d.]. A variable neighborhood search algorithm with reinforcement learning for a real-life periodic vehicle routing

problem with time windows and open route. ([n. d.]).
[2] Belarmino Adenso-Diaz and Manuel Laguna. 2006. Fine-tuning of algorithms using fractional experimental designs

and local search. Operations research 54, 1 (2006), 99–114.
[3] M. Adibi and J. Shahrabi. 2014. A clustering-based modified variable neighborhood search algorithm for a dynamic

job shop scheduling problem. The International Journal of Advanced Manufacturing Technology 70 (02 2014).
[4] Arina Afanasyeva and Maxim Buzdalov. 2011. Choosing best fitness function with reinforcement learning. In 2011

10th International Conference on Machine Learning and Applications and Workshops, Vol. 2. 354–357.
[5] Morteza Alinia Ahandani. 2016. Opposition-based learning in the shuffled bidirectional differential evolution algorithm.

Swarm and Evolutionary Computation 26 (2016), 64–85.
[6] Oswin Aichholzer, Franz Aurenhammer, B Brandstatter, Thomas Ebner, Hannes Krasser, Ch Magele, M Muhlmann,

and W Renhart. 2002. Evolution strategy and hierarchical clustering. IEEE transactions on magnetics 38, 2 (2002),
1041–1044.

[7] M. Ali, M. Pant, and A. Abraham. 2013. Unconventional initialization methods for differential evolution. Appl. Math.
Comput. 219, 9 (2013), 4474–4494.

[8] Ethem Alpaydin. 2014. Introduction to machine learning. MIT press.
[9] Heni Ben Amor and Achim Rettinger. 2005. Intelligent exploration for genetic algorithms: using self-organizing maps

in evolutionary computation. In Proceedings of the 7th annual conference on Genetic and evolutionary computation.
1531–1538.

[10] S. Asta, E. Özcan, A. Parkes, and A. Etaner-Uyar. 2013. Generalizing hyper-heuristics via apprenticeship learning. In
European Conference on Evolutionary Computation in Combinatorial Optimization. 169–178.

[11] S. Baluja. 1994. Population-based incremental learning. amethod for integrating genetic search based function optimization
and competitive learning. Technical Report. Carnegie-Mellon Univ Pittsburgh Pa Dept Of Computer Science.

[12] Shumeet Baluja and Scott Davies. 1997. Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the
Structure of the Search Space. Technical Report. CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER
SCIENCE.

[13] Thomas Bartz-Beielstein, Bogdan Filipič, Peter Korošec, and El-Ghazali Talbi. 2020. High-Performance Simulation-Based
Optimization. Springer.

[14] T. Bartz-Beielstein and S. Markon. 2004. tuning search algorithms for real-life applications: regression tree based
approach. In CEC’2004 Congress on Evolutionary Computation. 1111–1118.

[15] Thomas Bartz-Beielstein, Konstantinos E Parsopoulos, and Michael N Vrahatis. 2004. Design and analysis of
optimization algorithms using computational statistics. Applied Numerical Analysis & Computational Mathematics 1,
2 (2004), 413–433.

[16] Thomas Bartz-Beielstein and Mike Preuß. 2014. Experimental analysis of optimization algorithms: Tuning and beyond.
In Theory and Principled Methods for the Design of Metaheuristics. Springer, 205–245.

[17] M. H. Bassett, J. F. Pekny, and G. V. Reklaitis. 1996. Decomposition techniques for the solution of large-scale scheduling
problems. AIChE Journal 42, 12 (1996), 3373–3387.

[18] M Basu. 2016. Quasi-oppositional differential evolution for optimal reactive power dispatch. International Journal of
Electrical Power & Energy Systems 78 (2016), 29–40.

[19] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. 2016. Neural combinatorial optimization
with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016).

[20] K. P. Bennett and E. Parrado-Hernández. 2006. The interplay of optimization and machine learning research. Journal
of Machine Learning Research 7, Jul (2006), 1265–1281.

[21] M. Birattari. 2009. Tuning metaheuristics: A machine learning perspective. Springer.
[22] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette, H. Hoos, F. Hutter, K. Leyton-Brown, and K.

Tierney. 2016. Aslib: A benchmark library for algorithm selection. Artificial Intelligence 237 (2016), 41–58.
[23] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß. 2012. Algorithm selection based on exploratory landscape anal-

ysis and cost-sensitive learning. In Proceedings of the 14th annual conference on Genetic and evolutionary computation.
313–320.

[24] Léon Bottou, Frank E Curtis, and Jorge Nocedal. 2018. Optimization methods for large-scale machine learning. Siam
Review 60, 2 (2018), 223–311.

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:23

[25] J. Boyan and A. W. Moore. 2000. Learning evaluation functions to improve optimization by local search. Journal of
Machine Learning Research 1, Nov (2000), 77–112.

[26] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. 2008. Metalearning: Applications to Data Mining.
[27] Mihaela Elena Breaban and Adrian Iftene. 2015. Dynamic Objective Sampling in Many-objective Optimization.

Procedia Computer Science 60 (2015), 178 – 187. Knowledge-Based and Intelligent Information & Engineering Systems
19th Annual Conference, KES-2015, Singapore, September 2015 Proceedings.

[28] Dirk Buche, Nicol N Schraudolph, and Petros Koumoutsakos. 2005. Accelerating evolutionary algorithms with
Gaussian process fitness function models. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 35, 2 (2005), 183–194.

[29] Lam T Bui, Hussein A Abbass, and Daryl Essam. 2005. Fitness inheritance for noisy evolutionary multi-objective
optimization. In Proceedings of the 7th annual conference on Genetic and evolutionary computation. ACM, 779–785.

[30] E. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu. 2013. Hyper-heuristics: A survey of the
state of the art. Journal of the Operational Research Society 64, 12 (2013), 1695–1724.

[31] E. Burke, G. Kendall, and E. Soubeiga. 2003. A tabu-search hyperheuristic for timetabling and rostering. Journal of
heuristics 9, 6 (2003), 451–470.

[32] Edmund K Burke, Matthew Hyde, Graham Kendall, and John Woodward. 2010. A genetic programming hyper-
heuristic approach for evolving 2-D strip packing heuristics. IEEE Transactions on Evolutionary Computation 14, 6
(2010), 942–958.

[33] Laura Calvet, Jésica de Armas, David Masip, and Angel A Juan. 2017. Learnheuristics: hybridizing metaheuristics
with machine learning for optimization with dynamic inputs. Open Mathematics 15, 1 (2017), 261–280.

[34] M. Caserta and E. Quiï¿½onez Rico. 2009. A cross entropy-Lagrangean hybrid algorithm for the multi-item capacitated
lot-sizing problem with setup times. Computers and Operations Research 36, 2 (2009), 530 – 548.

[35] D. Catteeuw, M. Drugan, and B. Manderick. Ljubljana, Slovenia, 2014. Guided Restarts Hill-Climbing. In PPSN’14
Parallel ProblemSolving from Nature. 313–320.

[36] D. Chafekar, L. Shi, K. Rasheed, and J. Xuan. 2005. Multiobjective GA Optimization Using Reduced Models. Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 35 (06 2005), 261–265.

[37] Girish Chandrashekar and Ferat Sahin. 2014. A survey on feature selection methods. Computers & Electrical
Engineering 40, 1 (2014), 16–28.

[38] Y. Chen, P. Cowling, F. Polack, and P. Mourdjis. 2016. A multi-arm bandit neighbourhood search for routing and
scheduling problems. (2016).

[39] T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen. 2019. A survey on handling computationally expensive
multiobjective optimization problems with evolutionary algorithms. Soft Computing 23, 9 (2019), 3137–3166.

[40] EM Cochrane and JE Beasley. 2003. The co-adaptive neural network approach to the Euclidean travelling salesman
problem. Neural Networks 16, 10 (2003), 1499–1525.

[41] D. J. Cook and R. C. Varnell. 1997. Maximizing the benefits of parallel search using machine learning. In AAAI/IAAI.
559–564.

[42] David Corne, Clarisse Dhaenens, and Laetitia Jourdan. 2012. Synergies between operations research and data mining:
The emerging use of multi-objective approaches. European Journal of Operational Research 221, 3 (2012), 469–479.

[43] Steven P Coy, Bruce L Golden, George C Runger, and Edward A Wasil. 2001. Using experimental design to find
effective parameter settings for heuristics. Journal of Heuristics 7, 1 (2001), 77–97.

[44] Teodor Gabriel Crainic, Mike Hewitt, and Walter Rei. 2014. Scenario grouping in a progressive hedging-based
meta-heuristic for stochastic network design. Computers & Operations Research 43 (2014), 90–99.

[45] J-C. Créput and A. Koukam. 2008. The memetic self-organizing map approach to the vehicle routing problem. Soft
Computing 12, 11 (2008), 1125–1141.

[46] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. 2017. End-to-end deep learning of optimization heuristics. In
2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT). 219–232.

[47] Luis DaCosta, Alvaro Fialho, Marc Schoenauer, and Michèle Sebag. 2008. Adaptive operator selection with dynamic
multi-armed bandits. In Proceedings of the 10th annual conference on Genetic and evolutionary computation. 913–920.

[48] FL Dalboni, LS Ochi, and LMA Drummond. 2003. On improving evolutionary algorithms by using data mining for
the oil collector vehicle routing problem. In International Network Optimization Conference. 182–188.

[49] M. R. de Holanda, A. Plastino, and U. dos Santos Souza. 2020. MineReduce for the minimum weight vertex cover
problem. In OLA’2020 Int. conf. on Optimization and Learning, Cadiz, Spain.

[50] Kenneth De Jong. 2007. Parameter setting in EAs: a 30 year perspective. In Parameter setting in evolutionary algorithms.
1–18.

[51] Clarisse Dhaenens and Laetitia Jourdan. 2016. Metaheuristics for big data. John Wiley & Sons.
[52] F. Dobslaw. 2010. A parameter tuning framework for metaheuristics based on design of experiments and artificial

neural networks. In International Conference on Computer Mathematics and Natural Computing.

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

00:24 El-Ghazali TALBI

[53] Xiaojian Dong, Song Yu, Zhijian Wu, and Zhangxing Chen. 2010. A hybrid parallel evolutionary algorithm based on
elite-subspace strategy and space transformation search. In High Performance Computing and Applications. Springer,
139–145.

[54] M. Dorigo and L. M. Gambardella. 1997. Ant colony system: a cooperative learning approach to the traveling salesman
problem. IEEE Transactions on evolutionary computation 1, 1 (1997), 53–66.

[55] J. dos Santos, J. D. de Melo, A. Neto, and D. Aloise. 2014. Reactive search strategies using reinforcement learning,
local search algorithms and variable neighborhood search. Expert Systems with Applications 41, 10 (2014), 4939–4949.

[56] M. Drugan. 2019. Reinforcement learning versus evolutionary computation: A survey on hybrid algorithms. Swarm
and evolutionary computation 44 (2019), 228–246.

[57] M. Drugan and E-G. Talbi. 2014. Adaptive Multi-operator MetaHeuristics for quadratic assignment problems. In
EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V. 149–163.

[58] G. Duflo, G. Danoy, E-G. Talbi, and P. Bouvry. 2020. Automated Design of Efficient Swarming Behaviours:a Q-Learning
Hyper-Heuristic Approach. In OLA’2020 Int. conf. on Optimization and Learning, Cadiz, Spain.

[59] AE Eiben, Mark Horvath, Wojtek Kowalczyk, and Martijn C Schut. 2006. Reinforcement learning for online control
of evolutionary algorithms. In International Workshop on Engineering Self-Organising Applications. 151–160.

[60] A. E. Eiben and S. K. Smit. 2011. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm
and Evolutionary Computation 1, 1 (2011), 19–31.

[61] R. S. Engelmore and A. Morgan. 1988. Blackboard Systems. Addison-Wesley.
[62] S. Erdoğan and E. Miller-Hooks. 2012. A green vehicle routing problem. Transportation Research Part E: Logistics and

Transportation Review 48, 1 (2012), 100–114.
[63] L. Eriksson, E. Johansson, N. Kettaneh-Wold, C. Wikström, and S. Wold. 2000. Design of experiments. Principles and

Applications, Learn ways AB, Stockholm (2000).
[64] Adil Fahad, Najlaa Alshatri, Zahir Tari, Abdullah Alamri, Ibrahim Khalil, Albert Y Zomaya, Sebti Foufou, and Abdelaziz

Bouras. 2014. A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Transactions on
Emerging Topics in Computing 2, 3 (2014), 267–279.

[65] C. Fan, B. Hou, J. Zheng, L. Xiao, and L. Yi. 2020. A surrogate-assisted particle swarm optimization using ensemble
learning for expensive problems with small sample datasets. Applied Soft Computing (2020), 106–142.

[66] L. Feng, Y. Ong, M. Lim, and I. W. Tsang. 2015. Memetic Search With Interdomain Learning: A Realization Between
CVRP and CARP. IEEE Transactions on Evolutionary Computation 19, 5 (2015), 644–658.

[67] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Bay Vo, Tin Truong Chi, Ji Zhang, and Hoai Bac Le. 2017. A survey of
itemset mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7, 4 (2017), e1207.

[68] S. Gao, Y. Wang, J. Cheng, Y. Inazumi, and Z. Tang. 2016. Ant colony optimization with clustering for solving the
dynamic location routing problem. Appl. Math. Comput. 285 (2016), 149–173.

[69] Wei-feng Gao, San-yang Liu, and Ling-ling Huang. 2012. Particle swarm optimization with chaotic opposition-based
population initialization and stochastic search technique. Communications in Nonlinear Science and Numerical
Simulation 17, 11 (2012), 4316–4327.

[70] António Gaspar-Cunha and Armando Vieira. 2004. A Hybrid Multi-Objective Evolutionary Algorithm Using an
Inverse Neural Network.. In Hybrid Metaheuristics. 25–30.

[71] C. Gebruers, A. Guerri, B. Hnich, and M. Milano. 2004. Making choices using structure at the instance level within a
case based reasoning framework. In International Conference on Integration of Artificial Intelligence (AI) and Operations
Research (OR) Techniques in Constraint Programming. 380–386.

[72] S. Geetha, G. Poonthalir, and P. Vanathi. 2009. Improved k-means algorithm for capacitated clustering problem.
INFOCOMP 8, 4 (2009), 52–59.

[73] Tushar Goel, Raphael T Haftka, Wei Shyy, and Nestor V Queipo. 2007. Ensemble of surrogates. Structural and
Multidisciplinary Optimization 33, 3 (2007), 199–216.

[74] Tushar Goel, Rajkumar Vaidyanathan, Raphael T Haftka, Wei Shyy, Nestor V Queipo, and Kevin Tucker. 2007.
Response surface approximation of Pareto optimal front in multi-objective optimization. Computer methods in applied
mechanics and engineering 196, 4-6 (2007), 879–893.

[75] P. Goyal, H. Malik, and R. Sharma. 2019. Application of evolutionary reinforcement learning (erl) approach in control
domain: A review. In Smart Innovations in Communication and Computational Sciences. 273–288.

[76] Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong. 2013. Real-world parameter tuning using factorial design with
parameter decomposition. In Advances in Metaheuristics. Springer, 37–59.

[77] J. Gupta, R. Sexton, and E. Tunc. 2000. Selecting scheduling heuristics using neural networks. INFORMS Journal on
Computing 12, 2 (2000), 150–162.

[78] Haipeng H. Guo. 2003. Algorithm selection for sorting and probabilistic inference: a machine learning-based approach.
Ph.D. Dissertation. Kensas State University.

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:25

[79] Lin Han and Xingshi He. 2007. A novel opposition-based particle swarm optimization for noisy problems. In Third
IEEE International Conference on Natural Computation (ICNC 2007), Vol. 3. 624–629.

[80] M. He, P. Kalmbach, A. Blenk, W. Kellerer, and S. Schmid. 2017. Algorithm-data driven optimization of adaptive
communication networks. In 2017 IEEE 25th International Conference on Network Protocols (ICNP). 1–6.

[81] Ali Hebbal, Loic Brevault, Mathieu Balesdent, El-Ghazali Talbi, and Nouredine Melab. 2019. Bayesian Optimization
using Deep Gaussian Processes. arXiv preprint arXiv:1905.03350 (2019).

[82] T-P. Hong, H-S. Wang, andW-C. Chen. 2000. Simultaneous applying multiple mutation operators in genetic algorithm.
Journal of Heuristics 6, 4 (2000), 439–455.

[83] Young-Seok Hong, Hungu Lee, and Min-Jea Tahk. 2003. Acceleration of the convergence speed of evolutionary
algorithms using multi-layer neural networks. Engineering Optimization 35, 1 (2003), 91–102.

[84] P. D. Hough and P. J. Williams. 2006. Modern Machine Learning for Automatic Optimization Algorithm Selection.
Technical Report. Sandia National Lab.(SNL-CA), Livermore, CA (United States).

[85] X-M. Hu, F-L. He, W-N. Chen, and J. Zhang. 2017. Cooperation coevolution with fast interdependency identification
for large scale optimization. Information Sciences 381 (2017), 142–160.

[86] J. Hunger and G. Huttner. [n.d.]. Optimization and analysis of force field parameters by combination of genetic
algorithms and neural networks. Journal of Computational Chemistry 20, 4 ([n. d.]), 455–471.

[87] F. Hutter, Y. Hamadi, H. Hoos, and K. Leyton-Brown. 2006. Performance prediction and automated tuning of
randomized and parametric algorithms. In International Conference on Principles and Practice of Constraint Programming.
Springer, 213–228.

[88] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-based optimization for general
algorithm configuration. In International Conference on Learning and Intelligent Optimization. 507–523.

[89] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009. ParamILS: an automatic algorithm
configuration framework. Journal of Artificial Intelligence Research 36 (2009), 267–306.

[90] Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. 2014. Algorithm runtime prediction: Methods &
evaluation. Artificial Intelligence 206 (2014), 79–111.

[91] M. Jiang, Z. Huang, L. Qiu, W. Huang, and G. G. Yen. 2018. Transfer Learning-Based Dynamic Multiobjective
Optimization Algorithms. IEEE Transactions on Evolutionary Computation 22, 4 (2018), 501–514.

[92] Xuan Jiang, Deepti Chafekar, and Khaled Rasheed. 2003. Constrained multi-objective ga optimization using reduced
models. In 2003 Genetic and Evolutionary Computation Conference. Workshop Program. 174–177.

[93] X. Jin and R. Reynolds. 1999. Using knowledge-based evolutionary computation to solve nonlinear constraint
optimization problems: a cultural algorithm approach. In Proceedings of the 1999 congress on evolutionary computation-
CEC’1999, Vol. 3. 1672–1678.

[94] Y. Jin. 2005. A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing 9, 1
(2005), 3–12.

[95] Y. Jin. 2011. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and
Evolutionary Computation 1 (06 2011), 61–70.

[96] Y. Jin, M. Olhofer, and B. Sendhoff. 2002. A framework for evolutionary optimization with approximate fitness
functions. IEEE Transactions on evolutionary computation 6, 5 (2002), 481–494.

[97] Y. Jin and B. Sendhoff. 2004. Reducing fitness evaluations using clustering techniques and neural network ensembles.
In Genetic and Evolutionary Computation GECCO’2004, LNCS No.3102. Springer, 688–699.

[98] Donald R Jones, Matthias Schonlau, and W. J. Welch. 1998. Efficient global optimization of expensive black-box
functions. Journal of Global optimization 13, 4 (1998), 455–492.

[99] Laetitia Jourdan, David Corne, Dragan Savic, and Godfrey Walters. 2005. Preliminary investigation of the learnable
evolution model for faster/better multiobjective water systems design. In International Conference on Evolutionary
Multi-Criterion Optimization. 841–855.

[100] L. Jourdan, C. Dhaenens, and E-G. Talbi. 2006. Using data mining techniques to help metaheuristics: A short survey.
In Hybrid Metaheuristics (HM’2006) (LNCS), Vol. 4030. Gran Canaria, Spain, 57–69.

[101] Mrinal Kalakrishnan, Peter Pastor, Ludovic Righetti, and Stefan Schaal. 2013. Learning objective functions for
manipulation. In 2013 IEEE International Conference on Robotics and Automation. 1331–1336.

[102] B. Kazimipour, X. Li, and A. Qin. 2014. A review of population initialization techniques for evolutionary algorithms.
In Evolutionary Computation (CEC), 2014 IEEE Congress on. 2585–2592.

[103] Harshad Khadilkar. 2018. A Scalable Reinforcement Learning Algorithm for Scheduling Railway Lines. IEEE
Transactions on Intelligent Transportation Systems 99 (2018), 1–11.

[104] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learning combinatorial optimization
algorithms over graphs. In Advances in Neural Information Processing Systems. 6348–6358.

[105] E. Kieffer, G. Danoy, M. Brust, P. Bouvry, and A. Nagih. 2019. Tackling large-scale and combinatorial bi-level problems
with a genetic programming hyper-heuristic. IEEE Transactions on Evolutionary Computation (2019).

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

00:26 El-Ghazali TALBI

[106] H-S. Kim and S-B. Cho. 2001. An efficient genetic algorithm with less fitness evaluation by clustering. In Congress on
Evolutionary Computation CEC’01. IEEE Press, 887–894.

[107] Joshua Knowles. 2006. ParEGO: a hybrid algorithmwith on-line landscape approximation for expensive multiobjective
optimization problems. IEEE Transactions on Evolutionary Computation 10, 1 (2006), 50–66.

[108] L. Kotthoff. 2016. Algorithm selection for combinatorial search problems: A survey. In Data Mining and Constraint
Programming. Springer, 149–190.

[109] P. Laborie and D. Godard. 2007. Self-adapting large neighborhood search: Application to single-mode scheduling
problems. Proceedings MISTA-07, Paris 8 (2007).

[110] W. Laesanklang and D. Landa-Silva. 2017. Decomposition techniques with mixed integer programming and heuristics
for home healthcare planning. Annals of operations research 256, 1 (2017), 93–127.

[111] Hoong Chuin LAU and Fei Xiao. 2009. Enhancing the speed and accuracy of automated parameter tuning in heuristic
design. (2009).

[112] Stefan Lessmann, Marco Caserta, and Idel Montalvo Arango. 2011. Tuning metaheuristics: A data mining based
approach for particle swarm optimization. Expert Systems with Applications 38, 10 (2011), 12826–12838.

[113] Shing Wa Leung, Xin Zhang, and Shiu Yin Yuen. 2012. Multiobjective differential evolution algorithm with opposition-
based parameter control. In 2012 IEEE Congress on Evolutionary Computation. 1–8.

[114] Y-W. Leung and Y. Wang. 2001. An orthogonal genetic algorithm with quantization for global numerical optimization.
IEEE Transactions on Evolutionary computation 5, 1 (2001), 41–53.

[115] K. Leyton-Brown, E. Nudelman, and Y. Shoham. 2002. Learning the empirical hardness of optimization problems:
The case of combinatorial auctions. In International Conference on Principles and Practice of Constraint Programming.
556–572.

[116] K. Leyton-Brown, E. Nudelman, and Y. Shoham. 2009. Empirical hardness models: Methodology and a case study on
combinatorial auctions. Journal of the ACM (JACM) 56, 4 (2009), 1–52.

[117] Xiaonan Li and Sigurdur Olafsson. 2005. Discovering dispatching rules using data mining. Journal of Scheduling 8, 6
(2005), 515–527.

[118] L. Liu and M. Dessouky. 2017. A decomposition based hybrid heuristic algorithm for the joint passenger and freight
train scheduling problem. Computers & Operations Research 87 (2017), 165–182.

[119] Zhe Liu and Fahim Forouzanfar. 2018. Ensemble clustering for efficient robust optimization of naturally fractured
reservoirs. Computational Geosciences 22, 1 (2018), 283–296.

[120] I. Loshchilov, M. Schoenauer, and M. Sebag. 2012. Self-adaptive surrogate-assisted covariance matrix adaptation
evolution strategy. In Proceedings of the 14th annual conference on Genetic and evolutionary computation. 321–328.

[121] S. Louis and J. McDonnell. 2004. Learning with case-injected genetic algorithms. IEEE Transactions on Evolutionary
Computation 8, 4 (2004), 316–328.

[122] Xiaoliang Ma, Fang Liu, Yutao Qi, Maoguo Gong, Minglei Yin, Lingling Li, Licheng Jiao, and Jianshe Wu. 2014.
MOEA/D with opposition-based learning for multiobjective optimization problem. Neurocomputing 146 (2014),
48–64.

[123] S. Mahdavi, S. Rahnamayan, and M. E. Shiri. 2018. Incremental cooperative coevolution for large-scale global
optimization. Soft Computing 22, 6 (2018), 2045–2064.

[124] R.Mallipeddi and P. N. Suganthan. 2010. Ensemble of constraint handling techniques. IEEE Transactions on Evolutionary
Computation 14, 4 (2010), 561–579.

[125] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016. Resource management with deep
reinforcement learning. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks. 50–56.

[126] S. Meisel and D. C. Mattfeld. 2007. Synergies of data mining and operations research. In System Sciences, 2007. HICSS
2007. 40th Annual Hawaii International Conference on. 56–56.

[127] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph. 2011. Exploratory landscape analysis.
In Proceedings of the 13th annual conference on Genetic and evolutionary computation. 829–836.

[128] R. S. Michalski. 2000. Learnable evolution model: Evolutionary processes guided by machine learning. Machine
Learning 38, 1 (2000), 9–40.

[129] Shoma Miki, Daisuke Yamamoto, and Hiroyuki Ebara. 2018. Applying Deep Learning and Reinforcement Learning to
Traveling Salesman Problem. In 2018 International Conference on Computing, Electronics & Communications Engineering
(iCCECE). 65–70.

[130] M. Mısır, S. Handoko, and H. C. Lau. 2015. OSCAR: Online selection of algorithm portfolios with case study on
memetic algorithms. In International Conference on Learning and Intelligent Optimization. 59–73.

[131] Abdolhamid Modares, Samerkae Somhom, and Takao Enkawa. 1999. A self-organizing neural network approach for
multiple traveling salesman and vehicle routing problems. International Transactions in Operational Research 6, 6
(1999), 591–606.

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:27

[132] J. Mueller and J. Woodbury. 2017. GOSAC: global optimization with surrogate approimation of constraints. Journal of
Global Optimization 69 (01 2017).

[133] Alexander Nareyek. 2003. Choosing search heuristics by non-stationary reinforcement learning. In Metaheuristics:
Computer decision-making. Springer, 523–544.

[134] M. M. Nasiri, S. Salesi, A. Rahbari, N. S. Meydani, and M. Abdollai. [n.d.]. A data mining approach for population-based
methods to solve the JSSP. Soft Computing ([n. d.]).

[135] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. 2018. Reinforcement learning for
solving the vehicle routing problem. In Advances in Neural Information Processing Systems. 9839–9849.

[136] R. S. Niculescu, T. Mitchell, and R. B. Rao. 2006. Bayesian network learning with parameter constraints. Journal of
machine learning research 7, Jul (2006), 1357–1383.

[137] J. Ortiz-Bayliss, H. Terashima-Marín, and S. Conant-Pablos. 2013. A supervised learning approach to construct
hyper-heuristics for constraint satisfaction. In Mexican Conference on Pattern Recognition. 284–293.

[138] J. Ortiz-Bayliss, H. Terashima-Marín, and S. Conant-Pablos. 2013. Using learning classifier systems to design selective
hyper-heuristics for constraint satisfaction problems. In Evolutionary Computation (CEC), 2013 IEEE Congress on.
2618–2625.

[139] J. Ortiz-Bayliss, H. Terashima-Marín, P. Ross, and S. Conant-Pablos. 2011. Evolution of neural networks topologies
and learning parameters to produce hyper-heuristics for constraint satisfaction problems. In Proceedings of the 13th
annual conference companion on Genetic and evolutionary computation. 261–262.

[140] A. Ostertag, K. Doerner, and R. Hartl. 2008. A variable neighborhood search integrated in the POPMUSIC framework
for solving large scale vehicle routing problems. In International Workshop on Hybrid Metaheuristics. 29–42.

[141] E. Özcan, M. Misir, G. Ochoa, and E. Burke. 2012. A Reinforcement Learning: Great-Deluge Hyper-Heuristic for
Examination Timetabling. In Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and
Trends. 34–55.

[142] Monalisa Pal, Sriparna Saha, and Sanghamitra Bandyopadhyay. 2018. DECOR: Differential Evolution using Clustering
based Objective Reduction for many-objective optimization. Information Sciences 423 (2018), 200 – 218.

[143] Millie Pant, Musrrat Ali, and Ved P Singh. 2009. Differential evolution using quadratic interpolation for initializing
the population. In 2009 IEEE International Advance Computing Conference. 375–380.

[144] So-Youn Park and Ju-Jang Lee. 2009. Improvement of a multi-objective differential evolution using clustering algorithm.
In 2009 IEEE International Symposium on Industrial Electronics. IEEE, 1213–1217.

[145] J. M. Parr, C. M. E. Holden, A. I. J. Forrester, and A. J. Keane. 2010. Review of efficient surrogate infill sampling criteria
with constraint handling.

[146] R. Patterson, E. Rolland, and H. Pirkul. 1999. A memory adaptive reasoning technique for solving the capacitated
minimum spanning tree problem. Journal of Heuristics 5 (1999), 159–180.

[147] Reyes Pavon, Fernando Diaz, Rosalia Laza, and Victoria Luzon. 2009. Automatic parameter tuning with a Bayesian
case-based reasoning system. A case of study. Expert Systems with Applications 36, 2, Part 2 (2009), 3407 – 3420.

[148] M. Pelikan, D. Goldberg, and F. Lobo. 2002. A survey of optimization by building and using probabilistic models.
Computational optimization and applications 21, 1 (2002), 5–20.

[149] Martin Pelikan and Kumara Sastry. 2004. Fitness inheritance in the Bayesian optimization algorithm. In Genetic and
Evolutionary Computation Conference. 48–59.

[150] M. Pelikan, K. Sastry, and D. Goldberg. 2005. Multiobjective hBOA, Clustering, and Scalability. GECCO 2005 - Genetic
and Evolutionary Computation Conference (03 2005).

[151] J. Pena, J. Lozano, and P. Larranaga. 2005. Globally Multimodal ProblemOptimization Via an Estimation of Distribution
Algorithm Based on Unsupervised Learning of Bayesian Networks. Evolutionary Computation 13 (03 2005), 43–66.

[152] J. Peña, J. Lozano, and P. Larrañaga. 2005. Globally multimodal problem optimization via an estimation of distribution
algorithm based on unsupervised learning of Bayesian networks. Evolutionary Computation 13, 1 (2005), 43–66.

[153] Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz. 2010. A search space cartography for guiding graph
coloring heuristics. Computers and Operations Research 37, 4 (2010), 769 – 778.

[154] J-Y. Potvin and S R. S. Thangiah. 2020. Vehicle Routing through Simulation. Fusion of Neural Networks, Fuzzy Systems
and Genetic Algorithms: Industrial Applications (2020).

[155] Warren B Powell. 2007. Approximate Dynamic Programming: Solving the curses of dimensionality. Vol. 703. John Wiley
& Sons.

[156] Rémy Priem, Nathalie Bartoli, and Youssef Diouane. 2019. On the Use of Upper Trust Bounds in Constrained Bayesian
Optimization Infill Criteria. In AIAA Aviation 2019 Forum. 2986.

[157] Paolo Priore, David de la Fuente, Javier Puente, and José Parreño. 2006. A comparison of machine-learning algorithms
for dynamic scheduling of flexible manufacturing systems. Engineering Applications of Artificial Intelligence 19, 3
(2006), 247–255.

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

00:28 El-Ghazali TALBI

[158] L. Pulina and A. Tacchella. 2007. A multi-engine solver for quantified boolean formulas. In International Conference
on Principles and Practice of Constraint Programming. 574–589.

[159] S. Rahnamayan, H. Tizhoosh, and M. Salama. 2008. Opposition-based differential evolution. IEEE Transactions on
Evolutionary computation 12, 1 (2008), 64–79.

[160] Iloneide CO Ramos, Marco César Goldbarg, Elizabeth G Goldbarg, and Adriao Duarte Dória Neto. 2005. Logistic
regression for parameter tuning on an evolutionary algorithm. In 2005 IEEE Congress on Evolutionary Computation,
Vol. 2. IEEE, 1061–1068.

[161] Khaled Rasheed and HaymHirsh. 2000. Informed operators: Speeding up genetic-algorithm-based design optimization
using reduced models. In Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation. 628–635.

[162] K. Rasheed, S. Vattam, and X. Ni. 2002. Comparison of methods for developing dynamic reduced models for design
optimization. In CEC’2002 Congress on Evolutionary Computation. 390–395.

[163] J. Rasku, T. Kärkkäinen, and N. Musliu. 2016. Feature extractors for describing vehicle routing problem instances.
OASICS; 50 (2016).

[164] Rommel G Regis. 2014. Constrained optimization by radial basis function interpolation for high-dimensional expensive
black-box problems with infeasible initial points. Engineering Optimization 46, 2 (2014), 218–243.

[165] Rommel G Regis. 2014. Evolutionary programming for high-dimensional constrained expensive black-box optimization
using radial basis functions. IEEE Transactions on Evolutionary Computation 18, 3 (2014), 326–347.

[166] Rommel G Regis and Christine A Shoemaker. 2004. Local function approximation in evolutionary algorithms for the
optimization of costly functions. IEEE transactions on evolutionary computation 8, 5 (2004), 490–505.

[167] M. Reimann, K. Doerner, and R. Hartl. 2004. D-ants: Savings Based Ants Divide and Conquer the Vehicle Routing
Problem. 31 (04 2004), 563–591.

[168] R. G. Reynolds, Z. Michalewicz, and B. Peng. 2005. Cultural algorithms: Computational modeling of how cultures
learn to solve problems- an engineering example. Cybernetics and Systems 36, 8 (2005), 753–771.

[169] Marcos Henrique Ribeiro, Alexandre Plastino, and Simone L Martins. 2006. Hybridization of GRASP metaheuristic
with data mining techniques. Journal of Mathematical Modelling and Algorithms 5, 1 (2006), 23–41.

[170] M. H. Ribeiro, V. Trindade, A. Plastino, and S. L. Martins. 2004. Hybridization of GRASP Metaheuristics with Data
Mining Techniques. In Hybrid Metaheuristics.

[171] J. R. Rice. 1976. The algorithm selection problem. Advances in Computers 15 (1976), 65–118.
[172] Nicolás Rojas-Morales, María-Cristina Riff Rojas, and Elizabeth Montero Ureta. 2017. A survey and classification of

opposition-based metaheuristics. Computers & Industrial Engineering 110 (2017), 424–435.
[173] Thomas Philip Runarsson. 2011. Learning heuristic policies–a reinforcement learning problem. In International

Conference on Learning and Intelligent Optimization. 423–432.
[174] N. Sabar, M. Ayob, G. Kendall, and R. Qu. 2015. Automatic design of a hyper-heuristic framework with gene expression

programming for combinatorial optimization problems. IEEE Trans. Evolutionary Computation 19, 3 (2015), 309–325.
[175] Haroldo G Santos, Luiz Satoru Ochi, Euler Horta Marinho, and Lúcia Maria de A Drummond. 2006. Combining an

evolutionary algorithm with data mining to solve a single-vehicle routing problem. Neurocomputing 70, 1-3 (2006),
70–77.

[176] Kumara Sastry and David E. Goldberg. 2004. Designing Competent Mutation Operators Via Probabilistic Model
Building of Neighborhoods. In Genetic and Evolutionary Computation – GECCO 2004, Kalyanmoy Deb (Ed.). 114–125.

[177] Kumara Sastry, David E Goldberg, and Martin Pelikan. 2001. Don’t evaluate, inherit. In Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation. 551–558.

[178] Dhish Kumar Saxena, João A. Duro, Ashutosh Tiwari, Kalyanmoy Deb, and Qingfu Zhang. 2013. Objective
Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms. Trans. Evol. Comp 17, 1 (2013), 77–99.

[179] Michèle Sebag, Marc Schoenauer, and Caroline Ravise. 1997. Inductive Learning of Mutation Step-Size in Evolutionary
Parameter Optimization. In Evolutionary Programming.

[180] Atif Shahzad and Nasser Mebarki. 2012. Data mining based job dispatching using hybrid simulation-optimization
approach for shop scheduling problem. Engineering Applications of Artificial Intelligence 25, 6 (2012), 1173–1181.

[181] S. Shakya and J. McCall. 2007. Optimization by estimation of distribution with DEUM framework based on Markov
random fields. International Journal of Automation and Computing 4, 3 (2007), 262–272.

[182] C. Shang and F. You. 2019. A data-driven robust optimization approach to scenario-based stochastic model predictive
control. Journal of Process Control 75 (2019), 24–39.

[183] G Shankar and V Mukherjee. 2016. Quasi oppositional harmony search algorithm based controller tuning for load
frequency control of multi-source multi-area power system. International Journal of Electrical Power & Energy Systems
75 (2016), 289–302.

[184] L. Shi and K. Rasheed. 2008. ASAGA: an adaptive surrogate-assisted genetic algorithm. In Proceedings of the 10th
annual conference on Genetic and evolutionary computation. 1049–1056.

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:29

[185] Chandan Kumar Shiva, G Shankar, and V Mukherjee. 2015. Automatic generation control of power system using a
novel quasi-oppositional harmony search algorithm. International Journal of Electrical Power & Energy Systems 73
(2015), 787–804.

[186] Yang Shiyou, Qing Liu, Junwei Lu, S.L. Ho, Guangzheng Ni, Peihong Ni, and Suming Xiong. 2009. Application of
Support Vector Machines to Accelerate the Solution Speed of Metaheuristic Algorithms. Magnetics, IEEE Transactions
on 45 (04 2009), 1502 – 1505.

[187] Tapas Si, Arunava De, and Anup Kumar Bhattacharjee. 2014. Particle swarm optimization with generalized opposi-
tion based learning in particle’s pbest position. In 2014 International Conference on Circuits, Power and Computing
Technologies [ICCPCT-2014]. 1662–1667.

[188] Robert E Smith, Bruce A Dike, and SA Stegmann. 1995. Fitness inheritance in genetic algorithms. In Proceedings of
the 1995 ACM symposium on Applied computing. 345–350.

[189] K. Smith-Miles and J. van Hemert. 2011. Discovering the suitability of optimisation algorithms by learning from
evolved instances. Annals of Mathematics and Artificial Intelligence 61, 2 (2011), 87–104.

[190] K. A. Smith-Miles. 2009. Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing
Surveys (CSUR) 41, 1 (2009), 1–25.

[191] Carlos Soza, Ricardo Landa Becerra, María Cristina Riff, and Carlos A Coello Coello. 2011. Solving timetabling
problems using a cultural algorithm. Applied Soft Computing 11, 1 (2011), 337–344.

[192] Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. 2012. Optimization for machine learning. Mit Press.
[193] Sanjay Srivastava, Bhupendra Pathak, and Kamal Srivastava. 2008. Neural network embedded multiobjective genetic

algorithm to solve non-linear time-cost tradeoff problems of project scheduling. Journal of scientific and industrial
research 67 (01 2008), 124.

[194] Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to reinforcement learning. Vol. 135.
[195] E-G. Talbi. 2009. Metaheuristics: from design to implementation. Wiley.
[196] El-Ghazali Talbi. 2016. Combining metaheuristics with mathematical programming, constraint programming and

machine learning. Annals of Operations Research 240, 1 (2016), 171–215.
[197] Kay Chen Tan, Huajin Tang, and Shuzhi Sam Ge. 2005. On parameter settings of Hopfield networks applied to

traveling salesman problems. IEEE Transactions on Circuits and Systems I: Regular Papers 52, 5 (2005), 994–1002.
[198] Y. Tenne and C-K. Goh. 2010. Computational intelligence in expensive optimization problems. Vol. 2. Springer Science

& Business Media.
[199] Simon Thevenin and Nicolas Zufferey. 2019. Learning Variable Neighborhood Search for a scheduling problem with

time windows and rejections. Discrete Applied Mathematics 261 (2019), 344–353.
[200] D. Thierens. 2005. An adaptive pursuit strategy for allocating operator probabilities. In Proceedings of the 7th annual

conference on Genetic and evolutionary computation. 1539–1546.
[201] Dirk Thierens and Peter A. N. Bosman. 2012. Learning the Neighborhood with the Linkage Tree Genetic Algorithm.

In Learning and Intelligent Optimization, Youssef Hamadi and Marc Schoenauer (Eds.). 491–496.
[202] Hamid R Tizhoosh, Mario Ventresca, and Shahryar Rahnamayan. 2008. Opposition-based computing. In Oppositional

Concepts in Computational Intelligence. Springer, 11–28.
[203] A. Tuson and P. Ross. 1998. Adapting operator settings in genetic algorithms. Evolutionary Computation 6, 2 (1998),

161–184.
[204] D. Tuzun,M. A.Magent, and L. I. Burke. 1997. Selection of vehicle routing heuristic using neural networks. International

Transactions in Operational Research 4, 3 (1997), 211–221.
[205] R. Tyasnurita, E. Özcan, and R. John. 2017. Learning heuristic selection using a time delay neural network for open

vehicle routing. In 2017 IEEE Congress on Evolutionary Computation (CEC). 1474–1481.
[206] Holger Ulmer, Felix Streichert, and Andreas Zell. 2003. Evolution strategies assisted by Gaussian processes with

improved preselection criterion. In The 2003 Congress on Evolutionary Computation, 2003. CEC’03., Vol. 1. 692–699.
[207] François Vanderbeck and Laurence A Wolsey. 2010. Reformulation and decomposition of integer programs. In 50

Years of Integer Programming 1958-2008. 431–502.
[208] Joannes Vermorel and Mehryar Mohri. 2005. Multi-armed bandit algorithms and empirical evaluation. In European

conference on machine learning. 437–448.
[209] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In Advances in Neural Information

Processing Systems. 2692–2700.
[210] Christos Voudouris and Edward PK Tsang. 2003. Guided local search. In Handbook of metaheuristics. 185–218.
[211] G Gary Wang and Songqing Shan. 2007. Review of metamodeling techniques in support of engineering design

optimization. Journal of Mechanical design 129, 4 (2007), 370–380.
[212] Hui Wang, Hui Li, Yong Liu, Changhe Li, and Sanyou Zeng. 2007. Opposition-based particle swarm algorithm with

Cauchy mutation. In 2007 IEEE Congress on Evolutionary Computation. 4750–4756.

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

00:30 El-Ghazali TALBI

[213] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, and M. Ventresca. 2011. Enhancing particle swarm optimization using
generalized opposition-based learning. Information Sciences 181, 20 (2011), 4699–4714.

[214] Jing Wang. 2015. Enhanced differential evolution with generalised opposition–based learning and orientation
neighbourhood mining. International Journal of Computing Science and Mathematics 6, 1 (2015), 49–58.

[215] Bernd Waschneck, André Reichstaller, Lenz Belzner, Thomas Altenmüller, Thomas Bauernhansl, Alexander Knapp,
and Andreas Kyek. 2018. Optimization of global production scheduling with deep reinforcement learning. Procedia
CIRP 72 (2018), 1264–1269.

[216] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning 8, 3-4 (1992), 279–292.
[217] William J. Welch and Matthias Schonlau. 1997. Computer experiments and global optimization.
[218] Ue-Pyng Wen, Kuen-Ming Lan, and Hsu-Shih Shih. 2009. A review of Hopfield neural networks for solving mathe-

matical programming problems. European Journal of Operational Research 198, 3 (2009), 675–687.
[219] MartinWistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2018. Scalable gaussian process-based transfer surrogates

for hyperparameter optimization. Machine Learning 107, 1 (2018), 43–78.
[220] D. Wolpert and W. Macready. 1997. No free lunch theorems for optimization. IEEE transactions on evolutionary

computation 1, 1 (1997), 67–82.
[221] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. 2008. SATzilla: portfolio-based algorithm selection for SAT. Journal

of artificial intelligence research 32 (2008), 565–606.
[222] Yuehua Xu, David Stern, and Horst Samulowitz. 2009. Learning adaptation to solve constraint satisfaction problems.

Proceedings of Learning and Intelligent Optimization (LION) (2009).
[223] T. Yalcinoz, B. J. Cory, and M. J. Short. 2001. Hopfield neural network approaches to economic dispatch problems. 23

(08 2001), 435–442.
[224] Samaneh Yazdani and Jamshid Shanbehzadeh. 2015. Balanced Cartesian Genetic Programming via migration and

opposition-based learning: application to symbolic regression. Genetic Programming and Evolvable Machines 16, 2
(2015), 133–150.

[225] E. Yolcu and B. Poczos. 2019. Learning Local Search Heuristics for Boolean Satisfiability. In Advances in Neural
Information Processing Systems. 7990–8001.

[226] Si-Ho Yoo and Sung-Bae Cho. 2004. Partially evaluated genetic algorithm based on fuzzy c-means algorithm. In
International Conference on Parallel Problem Solving from Nature. 440–449.

[227] S. Yu, A. Aleti, J. C. Barca, and A. Song. 2018. Hyper-heuristic online learning for self-assembling swarm robots. In
International Conference on Computational Science. 167–180.

[228] Shiu Yin Yuen and Chi Kin Chow. 2009. A genetic algorithm that adaptively mutates and never revisits. IEEE
transactions on evolutionary computation 13, 2 (2009), 454–472.

[229] M. Zennaki and A. Ech-Cherif. 2010. A new machine learning based approach for tuning metaheuristics for the
solution of hard combinatorial optimization problems. Journal of Applied Sciences(Faisalabad) 10, 18 (2010), 1991–2000.

[230] Dawei Zhan, Yuansheng Cheng, and Jun Liu. 2017. Expected improvement matrix-based infill criteria for expensive
multiobjective optimization. IEEE Transactions on Evolutionary Computation 21, 6 (2017), 956–975.

[231] H. Zhang and J. Lu. 2008. Adaptive evolutionary programming based on reinforcement learning. Information Sciences
178, 4 (2008), 971–984.

[232] J. Zhang, H. Chung, and W-L. Lo. 2007. Clustering-based adaptive crossover and mutation probabilities for genetic
algorithms. IEEE Transactions on Evolutionary Computation 11, 3 (2007), 326–335.

[233] Jianping Zhang, Yee-Sat Yim, and Junming Yang. 1997. Intelligent selection of instances for prediction functions in
lazy learning algorithms. In Lazy learning. 175–191.

[234] Jun Zhang, Zhi-hui Zhan, Ying Lin, Ni Chen, Yue-jiao Gong, Jing-hui Zhong, Henry SH Chung, Yun Li, and Yu-hui
Shi. 2011. Evolutionary computation meets machine learning: A survey. IEEE Computational Intelligence Magazine 6,
4 (2011), 68–75.

[235] Ke-Shi Zhang, Zhong-Hua Han, Zhong-Jian Gao, and Yuan Wang. 2019. Constraint aggregation for large number of
constraints in wing surrogate-based optimization. Structural and Multidisciplinary Optimization 59, 2 (2019), 421–438.

[236] Wei Zhang and Thomas G Dietterich. 1995. A reinforcement learning approach to job-shop scheduling. In IJCAI,
Vol. 95. 1114–1120.

[237] Zongzhao Zhou, Yew Ong, My Hanh Nguyen, and Dudy Lim. 2005. A study on polynomial regression and Gaussian
Process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm. 2005 IEEE Congress on
Evolutionary Computation, IEEE CEC 2005. Proceedings 3, 2832 – 2839 Vol. 3.

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

	Abstract
	1 Introduction
	2 Main concepts
	2.1 Metaheuristics
	2.2 Machine learning

	3 Problem-level data-driven metaheuristics
	3.1 Landscape analysis
	3.2 Data-driven objective function
	3.3 Constraint handling
	3.4 Problem decomposition

	4 ML in low-level components of metaheuristics
	4.1 Initial solution(s)
	4.2 Search operators design
	4.3 Parameter tuning

	5 ML in high-level components of metaheuristics
	5.1 Selection of metaheuristics
	5.2 Generation of metaheuristics

	6 Conclusions and perspectives
	References

