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Machine learning into metaheuristics: A survey and
taxonomy of data-driven metaheuristics

EL-GHAZALI TALBI, University of Lille

During the last years, research in applying machine learning (ML) to design efficient, effective and robust
metaheuristics became increasingly popular. Many of those data driven metaheuristics have generated high
quality results and represent state-of-the-art optimization algorithms. Although various appproaches have
been proposed, there is a lack of a comprehensive survey and taxonomy on this research topic. In this paper
we will investigate different opportunities for using ML into metaheuristics. We define uniformly the various
ways synergies which might be achieved. A detailed taxonomy is proposed according to the concerned search
component: target optimization problem, low-level and high-level components of metaheuristics. Our goal is
also to motivate researchers in optimization to include ideas from ML into metaheuristics. We identify some
open research issues in this topic which needs further in-depth investigations.

CCS Concepts: • Computing methodologies→ Search methodologies.

Additional Key Words and Phrases: Metaheuristics, Machine learning, Optimization, Data-driven metaheuris-
tics
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1 INTRODUCTION
In the last decades, metaheuristics have shown their efficiency in solving various complex opti-
mization problems in science and industry [195]. In general, metaheuristics do not use explicit
knowledge discovered during the search using advanced machine learning (ML) models. Meta-
heuristics generate a lot of data in the search process. The data can be static when it concerns
the target problem and instance features to solve. Moreover several dynamic data are generated
during the iterative search process: solutions in the decision and the objective spaces, sequence of
solutions or trajectories, successive populations of solutions, moves, recombinations, local optima,
elite solutions, bad solutions, etc. Thus ML can be helpful in analyzing these data to extract useful
knowledge. This knowledge will guide and enhance the search performance of metaheuristics and
make them “smarter” and “well informed”. Data-driven metaheuristics have been proven to be
advantageous in both convergence speed, solution quality and robustness.

In this paper, a survey of data-driven metaheuristics to solve difficult optimization problems
is presented. A taxonomy is also proposed in an attempt to provide a common terminology and
classification mechanisms. The goal of the general taxonomy given here is to provide a framework
to allow comparison of data-driven metaheuristics in a qualitative way. In addition, it is hoped
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that the categories and their relationships to each other have been chosen carefully enough to
indicate areas requiring research efforts as well as to help classify future work. We distinguish
three hierarchical ways to use ML in metaheuristics (Fig.1):

• Problem-level data-driven metaheuristics: ML can help in modeling the optimization
problem to solve (e.g. objective function, constraints). It can also assist landscape analysis
and the decomposition of the problem.

• Low-level data-driven metaheuristics: a metaheuristic is composed of different search
components. ML can drive any search component such as the initialization of solution(s), and
the search variation operators (e.g. neighborhoods in local search, mutation and crossover in
evolutionary algorithms). It may also be used to tune the various parameters of a metaheuris-
tic.

• High-level data-driven metaheuristics: this class of data-driven metaheuristics concerns
the selection and generation of metaheuristics, and the design of hybrid and parallel coopera-
tive metaheuristics.

- Landscape analysis
- Objective function
- Constraints
- Problem decomposition

- Initial solution(s)
- Variation operators design
- Variation operators selection
- Parameters tuning

- Metaheuristic selection
- Metaheuristic generation

  Data driven 
metaheuristics

  Problem-level data
driven metaheuristics

   High-level data driven 
        metaheuristics 

   Low-level data driven 
       metaheuristics 

Offline data driven
   metaheuristics

Online data driven
   metaheuristics

Fig. 1. A general taxonomy of data-driven metaheuristics.

Other flat criteria are used in the taxonomy such as the learning time. In offline data-driven
metaheuristics, the ML process occurs a priori before starting to solve the problem. In online data
driven-metaheuristics, ML gather knowledge during the search while solving the problem.
The synergy between ML and optimization has received increasing attention. Most of the

related works basically focus on the use of optimization algorithms in solving ML problems
[24][192][126][42][51]. Indeedmost of theML problems can be formulated as optimization problems.
In the last decade there was a considerable interest in the use of ML into optimization. Very few
papers investigate the role ofML into exact optimization algorithms (e.g. branch and bound, dynamic
programming), constraint programming, and mathematical programming [20]. To our knowledge
there is no comprehensive survey which identifies in a unified way how ML can help the design of
metaheuristics. In some outdated surveys [100][42][234], the authors enumerate some data-driven
metaheuristics. In [33] the authors focus on dynamic combinatorial optimization problems. In [196],
we have proposed a taxonomy of hybrid metaheuristics, in which the combination of metaheuristics
with mathematical programming, constraint programming and ML has been addressed. In this
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paper a more complete and general taxonomy of data-driven metaheuristics is proposed. More than
125 references have been analyzed according to our taxonomy. The unified taxonomy is kept as
small as possible by proceeding in a hierarchical way as long as possible; then a flat classification is
presented according to other criteria.

The paper is structured as follows. In section 2, the main concepts of metaheuristics and ML are
detailed in a general and unified way. Section 3 focuses on problem-level data-driven metaheuristics.
In section 4, low-level data-driven metaheuristics are presented, while in section 5 we describe
high-level data-driven metaheuristics. Finally, the last section presents the main conclusions and
identifies some research perspectives.

2 MAIN CONCEPTS
This section presents in a unified way the main concepts used for metaheuristics and machine
learning.

2.1 Metaheuristics
An optimization problem consists in searching the optimal solution(s) x∗ from a set of solutions
X which maximize (or minimize) an objective function f (x) while satisfying a set of constraints.
Metaheuristics represent a class of general-purpose heuristic algorithms that can be applied to any
optimization problem. Unlike exact methods, metaheuristics allow to tackle large scale problems by
delivering satisfactory solutions in a reasonable time. There is no guarantee to find global optimal
solutions or even bounded solutions. Metaheuristics have received more and more popularity in
the past 30 years. Indeed, their use in many applications shows their efficiency and effectiveness to
solve large and complex problems.

In the design of a metaheuristic, two contradictory criteria must be taken into account: exploration
of the search space (diversification), and exploitation of the best solutions found (intensification).
Promising regions are determined through the “good” solutions obtained. In intensification, the
promising regions are explored more throughly with the hope to find better solutions. In diversi-
fication, non explored regions must be visited to be sure that all regions of the search space are
evenly explored and that the search is not only confined to a reduced number of regions.

2.1.1 Single-solution based metaheuristics. Single-solution based metaheuristics (S-metaheuristics)
improve a single solution. They could be seen as “walks” through neighborhoods or search trajec-
tories through the search space of the target problem [195]. S-metaheuristics iteratively apply the
generation and replacement procedures from the current solution. In the generation phase, a set of
candidate solutions are generated from the current solution s . This set C(s) is generally obtained
by local transformations of the solution. In the replacement phase1, a selection is performed from
the candidate solution set C(s) to replace the current solution, i.e. a solution s ′ ∈ C(s) is selected
to be the new solution. This process iterates until a defined stopping criteria. The generation and
the replacement phases may be memoryless. In this case, the two procedures are based only on the
current solution. Otherwise, some history of the search stored in a memory can be used in the gen-
eration of the candidate list of solutions and the selection of the new solution. Popular examples of
such S-metaheuristics are local search, simulated annealing and tabu search. Algorithm1 illustrates
the high-level template of this family of metaheuristics. Their common search concepts are the
definition of the neighborhood structure and the generation of the initial solution.

1Also named transition rule, pivoting rule and selection strategy.
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Algorithm 1 : High-level template of single-solution based metaheuristics
s = s0; /* Generation of the initial solution */
t = 0;
Repeat

/* Generate candidate solutions from st */
Generate(C(st ));
/* Select a solution from C(st ) to replace the current solution st */
st+1 = Select(C(st ));
t = t + 1;

Until Stopping criteria satisfied
Output: Best solution found.

2.1.2 Population based metaheuristics. Population based metaheuristics (P-metaheuristics) could be
viewed as an iterative improvement of a population of solutions. P-metaheuristics start from an
initial population of solutions2. Then, they iteratively apply the generation of a new population
and the replacement of the current population. In the generation phase, a new population of
solutions is created. In the replacement phase, a selection is carried out from the current and
the new populations. This process iterates until a given stopping criteria. Popular examples of
P-metaheuristics are evolutionary algorithms, ant colony optimization, scatter search, differential
evolution, particle swarm optimization, bee colony and artificial immune systems. Algorithm 2
illustrates the high-level template of P-metaheuristics.

Algorithm 2 : High-level template of P-metaheuristics
P = P0; /* Generation of the initial population */
t = 0;
Repeat

Generate(P ′
t ); /* Generation a new population */

Pt+1 = Replace-Population(Pt ∪ P ′
t ); /* Select new population */

t = t+1;
Until Stopping criteria satisfied
Output: Best solution(s) found.

P-metaheuristics may be classified into two main categories:
• Evolutionary-based: in this category of P-metaheuristics, the solutions composing the pop-
ulation are selected and reproduced using variation operators (e.g. mutation, recombination3)
acting directly on their representations. A new solution is constructed from the different
attributes of solutions belonging to the current population. Evolutionary algorithms (EAs)
and scatter search (SS) represent well-known examples of this class of P-metaheuristics.

• Blackboard-based4: It is based on the idea that the solutions of the population participate
in the construction of a shared memory. This shared memory will be the main input in
generating the new population of solutions. Ant colonies and estimation of distribution
algorithms (EDA) belong to this class of P-metaheuristics. For the former, the shared memory

2Some P-metaheuristics such as ant colony optimization start from partial or empty solutions.
3Also called crossover and merge.
4A blackboard system is an artificial intelligence application based on the blackboard architectural model, where a shared
knowledge, the “blackboard”, is iteratively updated by a diverse group of agents [61].
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is represented by the pheromone matrix while, in the latter strategy, it is represented by a
probabilistic learning model. For instance, in ant colonies, the generated solutions by past ants
will affect the generation of future ants via the pheromones. Then, the generated solutions
participate in updating the pheromones.

2.2 Machine learning
ML is one of the most salient research domain in artificial intelligence. ML has experienced an
important development in the last decade and has become a powerful analysis tool in a wide
range of applications related to big data. ML is the science of extracting useful and hidden patterns
from a training dataset considered composed of multiple examples. Various ML tasks can be used
depending on the desired outcome of the model. Usually a distinction is made between supervised,
semi-supervised and unsupervised learning. The most common ML tasks used in this paper are
(Fig. 2):

• Regression and classification: this is a supervisedML task in whichwe predict a predefined
category or class from a given set of attributes (continuous variables for regression and
discrete variables for classification) [8]. The following ML techniques are generally used for
solving this family of problems: Gaussian process, linear regression, K-nearest neighbors,
artificial neural networks (ANN), support vector machine (SVM), random forests, decision
trees, logistic regression, naive Bayes and deep learning.

• Clustering: this unsupervised ML task partitions the input data set into subsets (clusters),
so that data in each subset share common aspects [64]. The partitioning is often indicated
by a similarity measure defined by a distance. The main used techniques for clustering
are: hierarchical clustering, partitioning methods (e.g K-means, K-medoids, Mean-Shift),
grid based clustering (e.g. CLIQUE, Sting, Wave Cluster), model based clustering (e.g. EM,
COBWEB) and density based methods (e.g. DBSCAN, Optics, Denclue).

• Association rules: association rule mining is a procedure which is meant to find frequent
patterns, correlations, associations or causal structures from datasets found in various kinds
of databases [67]. One of the most efficient used methods are Apriori, FP-growth and Eclat.
Many measures of interestingness for rules have been proposed such as support, confidence,
conviction, leverage, and lift (i.e. interest).

• Feature selection: the feature selection task consists in reducing the number of attributes
(i.e. dimensionality of the dataset) [37]. It is an important task because selecting significant
features would help to build simpler models of better accuracy and can reduce overfitting. The
traditional techniques used for feature selection are: filter methods (e.g. Pearson’s correlation,
linear discriminant analysis (LDA), analysis of variance ANOVA, chi-square tests), wrapper
methods (e.g. forward selection, backward selection, recursive feature elimination), and
embedded methods (e.g. mRMR, Greedy).

• Reinforcement learning: reinforcement learning (RL) aims to learn optimal actions from a
finite set of available actions through continuously interacting with an unknown environment
[194]. The main components are: states, set of actions and rewards. From the current state, a
RL agent takes an action, changes to a new state and receives a reward. The reward determines
the quality of the carried action. RL is also referred to as approximate dynamic programming
[155]. The goal of the agent is to maximize the accumulation of rewards over time. The main
approaches for RL can be classified as follows:
– Model-free: the optimal control policy is learned without first learning an explicit model.
Such schemes include: policy search (e.g. metaheuristics, policy gradient) and value-function
based, related to dynamic programming principles (e.g. temporal fifference (TD) learning,

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

00:6 El-Ghazali TALBI

Q-learning [216], SARSA (State-Action-Reward-State-Action), DQN (Deep Q Network),
DDPG (Deep Deterministic Policy Gradient, MCTS (Monte Carlo Tree Search)).

– Model-based: conversely model-based algorithm uses a reduced number of interactions
with the real environment during the learning phase. Its aim is to construct a model based
on these interactions, and then use this model to simulate further episodes, not in the real
environment but by applying them to the constructed model and get the results from it.

Machine Learning

- Gaussian process
- Linear regression
- K-Nearest Neighbors
- Artificial neural networks
- Support vector machine
- Random forests
- Decision trees
- Logistic regression
- Naive Bayes
- Deep learning, ...

 Hierarchical 
   clustering

 Partitioning
  methods

Model-based
  clustering

Density-based
   methods

Grid-based 
clustering

Clustering Regression
Classification

Association rules

Reinforcement
   learning

Regularization 
   techniques

  Filter
methods

Wrapper
methods

- LASSO
- Ridge

Feature selection

- Pearson’s
- LDA
- ANOVA
- Chi-Square

- Forward
- Backward
- Recursive

- STING
- CLIQUE
- Wave

- K-means
- K-medoids
- Clarans
- Mean-shift

- EM
- COBWEB

- DBSCAN
- OPTICS
- DENCLUE

- Diana
- Agnes
- BIRCH
- CURE

Model-free Model-based

Policy search  Value function

- Q-learning
- TD learning
- SARSA
- Deep QN
- Deep DPG
- MCTS

- Metaheuristic
- Policy Gradient

- Apriori
- FP-growth
- Eclat

Fig. 2. Main machine learning tasks and associated methods.

3 PROBLEM-LEVEL DATA-DRIVEN METAHEURISTICS
In this class of data-driven metaheuristics, ML techniques are carried out on the optimization prob-
lem at hand. Knowledge is obtained by the analysis of the landscape of the problem using selected
features. Moreover, the problem model can be reformulated (e.g. objective function, constraints) or
decomposed for a more efficient and effective solving.

3.1 Landscape analysis
Exploratory landscape analysis represent a number of techniques used to extract knowledge on the
characteristics of a given optimization problem. The main questions for this scientific challenge
are:

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.
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• Which features? high-level features specified by human experts such as the level of mul-
timodality or separability have been introduced to reflect the problem characteristics [16].
Other properties based on expert knowledge can be used such as: global basin structure,
variable scaling, search space homogeneity, basin size homogeneity, global to local optima
contrast, and size of plateaus. Low-level features are automatically and numerically computed
to characterize the landscape of a given problem. The features can be grouped into five
classes related to: the characteristics of the distribution of the objective function values
(y-Distribution), the relative position of each objective value compared to the median of all
values (Levelset), meta-modeling of the initial data set (Meta-Model), the estimated degree of
convexity of the function (Convexity) as well as the assessment of multimodality by local
searches starting from the initial design points (Local Search) [127].

• Which goal? those features are important for the design of efficient metaheuristics and
understanding the behavior of the algorithms. This knowledge can be used for the selection
of the best suited metaheuristic to solve a given problem by predicting the characteristics
of the input instance [221][23]. It can also be used to tune the parameters of an algorithm
[14], predict its runtime for solving a given benchmark instance [90], and generating hard
benchmark instances [116].

• Which ML methods? many ML methods have been investigated to extract those features
such as: Bayesian networks [151], support vector regression [23], random forest [90], Gaussian
process [90], neural networks [189], regression trees [14], and ridge regression [221].

3.2 Data-driven objective function
Two different goals govern the use of ML in the objective function (Fig. 3):

• Improving the convergence: ML can help to transform the objective functions in order to
better guide the metaheuristic through the search space. Those learnable objective functions
include some knowledge extracted from the problem.

• Reducing the computational cost: it consists in approximating the objective function. The
approximation is evaluated much faster than the original function for expensive optimization
problems.

3.2.1 Learnable objective function. The main issue in this family of methods is to generate auto-
matically improved objective functions from exploiting some knowledge of the target optimization
problem and features extracted from states visited during the search process. Those learnable objec-
tive functions can help guiding the search to improve solutions. For instance, this is an important
issue for problems characterized by multimodality and neutrality. A representative of such an
approach is Guided Local Search (GLS) which modifies the objective function when trapped on
a local optima. The augmented objective function of the problem include a set of penalty terms
[210]. Whenever the S-metaheuristic gets caught in a local optima, the penalties are modified and
search is iterated to minimize the transformed objective function. The penalty gives the degree up
to which the solution features is constrained.

Some approaches to construct learnable objective functions using reinforcement learning have
been proposed. In [25], some features characterizing good solutions are defined for the given
problem. The objective function is predicted by analyzing search trajectories of local search meth-
ods. A TD(λ) family of temporal-difference reinforcement learning algorithms is used. The learned
evaluation function is then used to bias future search trajectories toward better solutions on the
same problem. Transfer learning has also been used to transfer previously learned evaluation
functions to new, similar optimization problems [66]. In [101], an inverse reinforcement learning

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.
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    Data driven 
objective function

Learnable objective
        function

   Objective 
approximation 

   Similarity-based
    approximation 

- Objective inheritance
- K-nearest neighbor
- Clustering Online approximation Offline approximation 

Functional-based
  approximation 

Surrogate assisted
    optimization 

- Surrogate building
- Surrogate incorporation
- Surrogate update

- Kriging
- Radial Basis Function (RBF)
- Artificial Neural Network (ANN)
- Deep Gaussian process
- Deep neural network
-  Support Vector Machine (SVM)
- Ensembles

Fig. 3. Data-driven objective function.

(IRL) approach is proposed to learn the objective function in robotic problems. The main idea is
to predict a suitable objective function given observations of optimal behavior. In many robotics
problems, it is significantly easier to provide demonstrations of optimal behavior than it is to design
an objective function that defines the required behavior. IRL is used to learn the observed behavior
using features of solutions selected by L1 regularization.

3.2.2 Objective approximation. Many optimization problems (e.g. engineering design) are con-
cerned by extremely expensive objective functions. Those problems are generally characterized
by black-box objective functions whose algebraic definitions are unknown (e.g. simulation based
optimization). However, metaheuristics need to carry out a huge number of function evaluation in
order to find good solutions. For such expensive optimization problems, the approximation of the
objective function is an interesting alternative for designing efficient data-driven metaheuristics.

ML approaches can be used to build approximate models of the objective function [94]. In this
context, previously evaluated solutions are learned by a ML approach to approximate the objective
function of new generated solutions. The main issue here is to obtain a “good” approximation in
terms of maximizing its quality and minimizing its computing time. Many questions arise in the
design of this scheme such as: which proportion of the visited solutions are evaluated using the
approximation, and at what time or in which component of the search algorithm the approximation
is used. Objective approximation methods can be classified into two families (Fig.3):

• Similarity-based approximation: can be seen as Lazy learners or memory based learners.
The most popular similarity-based approximation are objective inheritance, K-nearest neigh-
bor, and clustering techniques. Objective inheritancemethods5 are popular in P-metaheuristics.

5This scheme is also called fitness imitation or fitness inheritance.
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In [188], the objective value of a new solution is computed as a linear weighted combina-
tion of the parents, in which the weights depend on similarity with the parents. In [29], a
resampling technique is combined with an average combination to solve noisy problems.
Other objective inheritance methods based on conditional probabilities tables and decision
trees are proposed in [149]. In the k-nearest neighbors method, the objective value of a
given solution is computed according to the k-nearest neighbors with known exact values
[233]. Similarity-based approximation can also be carried out by clustering algorithms. A
clustering algorithm is applied on a population of solutions to be evaluated. Each cluster
will have a representative solution. Only the solution that represents the cluster is evaluated
[162][106][97][226]. Then, the objective function of other solutions of the cluster is estimated
with respect to its associated representative. Different clustering techniques may be used
such as K-means and fuzzy C-means.

• Functional-based approximation: it consists in a new model of the objective function
being built. The model construction strategy is based on previous data obtained from the
original objective functions. ManyML algorithms have been investigated [94][13]: Polynomial
models (i.e. Response Surface) [74], Radial Basis Functions (RBF), Kriging (i.e. Gaussian
process) [28][107], Support Vector Machines (SVM) [186], Artificial Neural Networks (ANNs)
[86][193][70][83]. A recent approach consists to use an ensemble of surrogates in order
to improve the performance of the approximation [73]. Multiple criteria have to be used
to compare the various models: number of samples provided to build the model, number
of parameters of the model, quality of the approximation, cost of the model building, and
cost of the model inference. In offline approximation, the model is built before the search
starts, whereas in online approximation (i.e. surrogate assisted), the model is constructed
and improved during the search.

Some hybrid approaches combining similarity-based and functional-based approximations have
been proposed. An example of such a hybrid approache is a clustering approach applied in EAs in
which we split the population into several clusters and then construct an approximate model for
each cluster. Multiple approximate models are expected to use more local information about the
search space and fit the original objective function better than a single global model [36][150][221].

3.2.3 Surrogate-assisted metaheuristics. Surrogate-assisted optimization6 is a popular approach to
deal with the optimization of expensive problems [198]. These algorithms are iterative sampling
procedures relying on surrogate models (i.e. metamodels) of the considered objective and constraint
functionswhich are generally characterized by a negligible computational cost, in order to iteratively
determine and explore the most promising locations of the design space, thus simultaneously
refining the surrogate model and converging towards the problem optimum [95].

The main questions in designing surrogate-based metaheuristics are:
• Surrogate building: whichML approach is used to build the surrogate? Different approaches
are used in the literature: Random Forest, Polynomial models, Gaussian Process [237], Neural
Networks [211], radial basis functions [165], deep Gaussian processes [81], deep neural
networks. A recent trend is to use multiple surrogates (i.e. ensembles of metamodels) to
improve the accuracy of the surrogates [65].

• Surrogate incorporation: which solutions should be selected to be evaluated using the real
objective function or the surrogate? Evolution Control uses jointly surrogates and original
objective functions in a metaheuristic. The original objective functions are used to evaluate

6Also known as Bayesian Optimization
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some/all solutions in some/all iterations, in a fixed or adaptive way [39]. In direct approxi-
mation, the approximated objective function replaces the original one in the whole search
process [188][177]. In the indirect approximation, the metaheuristic use the approximation
in some search operators (e.g. neighborhood, population initialization, crossover, mutation)
[161][92].

• Surrogate update: When and how the surrogate is updated? the surrogate can be updated in
a fixed (e.g. each iteration, given number of iterations) or an adaptive way (e.g. improvement
of solutions). Different infill criteria have been used for updating the surrogate: lower confi-
dence bound (LCB), upper confidence bound (UCB), probability of improvement, expected
improvement (EI) [230]. They are based on a tradeoff between exploration, by searching
where predicted variance is high and exploitation by searching where expected value is
minimized.

One of the most popular Bayesian Optimization algorithms is the “Efficient Global Optimization”
(EGO) algorithm [98]. It is based on Gaussian Process (GP) regression (also called Kriging). First, a
set of solutions are generated using Design of Experiments (DoE). Then, it consists in sampling
iteratively, using the prediction and uncertainty by the Gaussian model, the most promising solution
based on an infill sampling criterion. This point is evaluated using the real objective function and
the surrogate is updated using the new training set, and a new solution is sampled, and so on, until
a given stopping criterion is satisfied (Fig.4).

Add the most promising
solution in the data set

    Evaluation of the
real objective function

 Build the
 surrogate

Optimization of
the infill criteria

  Design of
experiments

Stopping
 criteria No

Yes

Fig. 4. The EGO Bayesian optimization algorithm.

3.3 Constraint handling
For a given problem, there are usually domain specific constraints that can be exploited to construct
efficient metaheuristics. The most popular constraint handling procedures in metaheuristics are the
penalization and the repairing procedures. Different data-driven constraint handling approaches
exist (Fig.5):

• Constraint approximation: the approximation strategies detailed in the previous section
for the objective functions may also applied to constraints. Surrogates for constraints have
been applied to problems with expensive black-box constraints [164][132]. VariousMLmodels
have been investigated such as: ANN [96], Kriging [206], RBF [166], and SVM [120]. Different
infill sampling criteria are used to deal with constrained global optimization problems (e.g.
expected improvement with Probability of Feasibility (PoF) [217], Expected Violation (EV),
Mean Constraint (MC)) [156]. The infill criteria aims to balance between exploitation and
exploration of the objective and all the constraint approximations [145].
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    Data driven 
    constraints

   Constraint
transformation

Surrogate assisted
    optimization 

- Constraint surrogate building
- Constraint surrogate incorporation
- Constraint surrogate update

- Reinforcement learning
- Artificial Neural Network (ANN)
- Cultural algorithms, ...

    Constraint
  approximation

- Relaxation
- Agregation
- Adding

   Constraint
    repairing

Fig. 5. Data-driven constraints.

• Constraint transformation: in penalization strategies, adaptive strategies have been used
for switching from lower complexity surrogates to higher complexity models (e.g. SVM [184]).
For problems with many constraints, the search process will be very sensitive to accuracy of
the surrogates which are built on the agregation of objective function and constraints. Hence,
techniques that aggregate constraint’s surrogates to one or a few have been proposed [235].
Dealing with constraints for many real-world problems requires incorporating domain
knowledge into optimization algorithms. In the ART (Adaptive Reasoning Technique), a search
memory is used to learn the behavior of a greedy algorithm [146]. Some constraints are added
to the problem. Those constraints are generated from the non interesting visited solutions
according to the values associated to their decision variables. Similar to the tabu list strategy
in tabu search, those constraints are deleted after a given number of iterations. In [136], the
authors use constraints to incorporate domain knowledge into Bayesian networks. They
have formally proved that adding constraints reduces variance and improves generalization
for machine learning problems.

• Constraint repairing: some ML approaches have been used to design repairing procedures
for constraint handling. In [236], Reinforcement Learning TD(Λ) method and artificial neural
networks are applied to design efficient repairing procedures for scheduling problems. In
cultural algorithms, adaptive knowledge represented by belief cells (i.e. intervals) is used to
avoid infeasible regions and for promoting the exploration of feasible regions [93]. Different
constraint handling techniques can be effective during different steps of the search process.
ML could also be applied to the online selection of the best constraint handling technique.

3.4 Problem decomposition
ML approaches can be used in breaking large scale optimization problems into smaller subproblems.
Those subproblems are then solved more efficiently by metaheuristics. Problem decomposition
approaches can be carried out in both hierarchical and flat ways. Hierarchical decomposition is used
when the problem can be successively refined. Flat decomposition generates separate subproblems
that can be solve in a parallel way. Three types of decomposition strategies may be carried out:

• Data space decomposition: partitioning of data input space can be applied to decompose
the input space into subspaces. Metaheuristics are then used to solve simpler subproblems
associated each partition. Then, a global solution is built using partial final solutions. For

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

00:12 El-Ghazali TALBI

instance, in geographical problems such as vehicle routing [167][62][140] and covering [49],
clustering techniques exploiting the spatial properties can be applied to structure the set of
input nodes. Different clustering algorithms using geographical proximity have been used
such as K-means [72][68], density based clustering [62], and ANNs [154]. This approach
has been also applied to other families of problems such as scheduling [118][17], in which
clustering of jobs is carried out [3].
In stochastic and robust optimization, the clustering approach can also be applied for the
set of input scenario [44][182]. In [119], a hierarchical clustering approach is proposed to
select representative scenario clusters for a robust optimization in order to avoid redundant
simulations and improve robustness in uncertain environments. In [44], clustering has been
used to enhance a progressive hedging-based metaheuristic for a network design problem that
models demand uncertainty with scenario. The metaheuristic solves successive multi-scenario
subproblems associated to different clusters of scenario.

• Decision space decomposition: in this problem decomposition approach, the set of decision
variables is divided into several subsets in order to remove the inter-relationship between
subsets. The subproblems are assumed to be independent or loosely coupled. A popular
decomposition technique is time-based decomposition in which the time horizon is used as a
splitting criterion [110].
ML can also be used to fix some variables to certain values and then solve the reduced associ-
ated subproblem. The fixed variables are selected using some knowledge (e.g. elite solutions,
interdependance between variables). For instance, this approach is used in coevolutionary
algorithms for global optimization problems [123][85], and Benders decomposition for mixed
optimization problems (MIP) [207].

• Objective space decomposition: in multi-objective optimization problems, reducing the
number of objective is an important issue for the search efficiency. Indeed, the difficulties in
solving many-objective optimization problems are the inefficiency of dominance relations,
important computational cost and complexity in visualization of the objective space. Reducing
the number of objectives using ML approaches represents a popular approach to handle this
difficulty: offline reduction using Principle Component Analysis (PCA) [178] or online reduction
based on the clustering of the Pareto front [27][142]. In [27], an unsupervised clustering
algorithm is applied in the objective space at different iterations of the metaheuristic. For each
cluster, only representative objectives are selected to guide the search during next iterations.

4 ML IN LOW-LEVEL COMPONENTS OF METAHEURISTICS
Although the effectiveness of metaheuristics has been demonstrated in solving difficult and large-
size optimization problems in various areas, the design of the appropriate setting usually requires a
deep expert knowledge in order to obtain competitive results. Here, ML can be used to find good de-
signs for various search components or parameters of metaheuristics such as the initial solutions(s),
neighborhoods, variation operators, stopping criteria and various parameters associated.

4.1 Initial solution(s)
The most commonly used method in the generation of initial solution(s) is randomness. In general,
a population of random solutions is characterized by a bad quality and do not even ensure a good
diversification in the search space. ML-assisted initialization techniques can improve the solution
quality, reduce the computational costs, and improve the robustness in terms of the variation of
the solutions found [102]. Hence, ML has been applied in the initialization of solution(s) following
different methodologies (Fig.6):
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  Data driven 
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   Generating initial
        solutions 
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      diversification 

- Opposition-based learning
- Interpolation techniques
- Artificial Neural networks
- Reinforcement learning, ...

- Experimental design
- Multi-armed bandits, ...

- Case-based reasoning
- Multi-label classification
- Association rules
- Convolution Neural Networks,...

Incorporating apriori
    knowledge for 
    intensification

Fig. 6. Data-driven initial solution(s) initialization.

• Incorporating a priori knowledge for intensification: knowledge extracted from previ-
ous problems solving can be used to generate solutions which integrate “good” patterns. ML
can learn good properties of the obtained solutions and then help to generate good quality
initial solutions in promising regions of the search space. The general learning methodology
is shown in Figure 7. First, by selecting a set of training instances of the problem and obtaining
a set of elite solutions for this set. Then, some features of the elite set of solutions are found
using ML models. Finally, the obtained ML model is used to generate initial solutions for
a new problem instance. Defining features and similarity metrics for a given problem are
the main issues of this methodology. Such approaches have been proposed using case-based
reasoning in EAs [121], association rules and attribute-oriented induction in P-metaheuristics
[134], multi-label classification using decision trees [117], logistic regression [80][180] and
neural networks [157] in S-metaheuristics. Recently, some deep architectures for neural
networks have been explored. In [129], Convolution Neural Networks (CNNs) models learn
the optimal solution for the traveling salesman problem as an image and extract the patterns
(i.e. edges) to be included in a solution. This methodology can also be applied in solving
similar problems by applying transfer learning approaches. There is an opportunity to exploit
the structure of similar problems that have been already solved for which we have a lot of
knowledge.

• Fixing positions for diversification: diversification is an important issue in metaheuristics.
ML has been applied to improve diversification in P-metaheuristics by using for instance
orthogonal experimental design [114], and in iterative S-metaheuristics by using for instance
multi-armed bandits (epsilon-greedy Q-learning) [35]. Indeed, the problem of selecting a
region to explore can be defined as a multi-armed bandit: a reinforcement learning prob-
lem that exemplifies the exploration-exploitation tradeoff dilemma, in which each arm is
represented by a region of the search space [208].

• Generating initial solutions:ML can also help to generate “good” quality initial solution(s).
An example of such approaches are:
– Opposition-based learning: using a one-to-one mapping function in the decision space,
opposition-based learning (OBL) allows to obtain complementary solutions in order to
improve the convergence of the search process and the coverage of the search space.
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- Association rules,
- Decision trees,
- Neural network,... 

Training set of 
   instances

Machine learning

Metaheuristic

Initial solution(s)
Intensification

New problem
    instance

Good solution(s)

(2)

(3)

Optimization 
    method

Optimal or 
sub-optimal 
solutions

(1)

Features

Learning model

Elite solutions

Fig. 7. Extracting knowledge from the history of the search and its use into initial solutions for intensification.
(1) Selecting the training problem instances and obtaining the elite solutions (optimal or near-optimal
solutions). (2) ML is applied using the elite set of solutions and the selected features of instances. (3) The
extracted ML model will be used to generate the initial solutions(s) for solving a new problem instance.

Opposite solutions are generated during the initialization of a population using differ-
ent types of mapping functions: Type-I opposition, Type-I Quasi-opposition, Type-I Su-
per Opposition, Type-II opposition, Center-based sampling, Generalized OBL, and Quasi-
reflection OBL [172]. This methodology has been carried out in Differential Evolution (DE)
[5][202][159][214][18], Evolutionary Algorithms [224][53], Harmony Search [183][185],
and Particle Swarm Optimization (PSO) [213][212][187][69]. It has also been applied for
solving multi-objective optimization problems [113][122] and noisy problems [79].

– Artificial neural networks (ANN): different architectures of ANNs have been investi-
gated to generate good quality solution for optimization problems: Hopfield neural networks
(HNN) [223][197][218], Recurrent Neural Networks (RNN) [19][135], Pointer networks
[209], Self Organizing Map (SOM) [131][40].

– Interpolation techniques: from a given population of solutions, new solutions can be
generated using interpolation techniques such as quadratic interpolation [143][7]. Using
a quadratic interpolation of three solutions, a new solution lying at the minimum of the
quadratic curve crossing through the three solutions is obtained. It helps to improve the
convergence rate of the algorithms.

– Reinforcement learning (RL): RL can be seen as a greedy optimization approach in
which a complete solution is constructed by successive addition of decisions [104][103].
Recently, some deep architectures have been investigated such as Deep RL [125], and Deep
Q Network [215].

– Transfer learning: transfer learning has been expoited for the population initialization
in solving dynamic multi-objective optimization problems [91]. It allows to generate an
initial population by reusing past experience to speed up the search process.

4.2 Search operators design
This section deals with the application of ML into the design of search operators: constructive (i.e.
greedy) operators, unary operators (e.g. neighborhood in local search, mutation in EAs), binary
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operators (e.g. crossover in EAs), indirect operators (e.g. probabilistic models in estimation of
distribution algorithms), intensification, and diversification search operators:

• Constructive operators: some metaheuristics such as Ant Colony Optimization and GRASP
use greedy operators to generate new solutions. Association rules and clustering (e.g.self-
organizing maps) have been used to extract patterns that are incorporated into greedy
procedures [170][45]. Reinforcement learning have been integrated into constructive opera-
tors, such as Q-learning in ant colony based optimization [54]. This approach is very popular
in solving control problems such as mobile robots [75]. Indeed reinforcement learning is a
natural framework for sequential learning in greedy procedures. This RL framework has
also been applied to many combinatorial optimization problems such as the maximum cut,
minimum vertex cover, and traveling salesman [104].

• Unary operators: one of the key issues in designing efficient unary operators is ensuring
that they search in the appropriate neighborhood. Two different issues have been addressed
using online learning:
– Size of the neighborhood: the size of the neighborhood can be learned online during
search; for instance the step size in Evolution strategies (ES) [179].

– Sampling of the neighborhood:MLmodels can be extracted from a set of good generated
solutions to guide the generation of the candidate neighbors. Other than applying a random
or complete generation of the neighborhood, a reduced set of candidate neighbors are
generated. This methodology has been applied to many metaheuristics such as EAs [176],
and VNS [199]. In [176], probabilistic models are learned from the population in EAs.
New solutions are generated by sampling the probabilistic model. In [201] a linkage tree
genetic algorithm based on hierarchical clustering is proposed. It allows to identify the
problem variables that have a high mutual information in a population of good solutions.
In the generation of new solutions, these linked variables determine the neighborhood
where the metaheuristic searches for better solutions by sampling values for these problem
variables from the current population. This neighborhood learning is guided by the linkage
hierarchical clustering found so far during the search.

• Binary operators: the knowledge extracted during the search can be incorporated into
binary operators such as recombination operators in EAs for the generation of new solutions
(Fig. 8). From a set of solutions (e.g. current population, elite solutions), some learning models
are extracted, that will participate in:
– Recombination of solutions: association rules [175], decision trees [99] are some exam-
ples of ML approaches that have been applied in the croosover operator in EAs. In [175],
an elite set of solutions is maintained by an EA. The frequent itemsets are discovered using
the Apriori algorithm of association rules. Then those frequent itemsets will guide the
crossover operator by a greedy procedure. In [128], a set of decision rules describing the
generated solutions are found, using the AQ learning algorithm. The extracted rules are
incorporated into the crossover operator.

– Selection of solutions: in general, the selection of solutions to be recombined is based
only on their qualities (e.g. roulette or tournament selection). The candidates for crossover
can be chosen using some distance measures. Hence, hierarchical clustering has been
proposed to select solutions in neighboring clusters [6][144]. Indeed, recombining only
neighboring solutions may improve the efficiency of crossover operators.

• Indirect operators: in blackboard-based metaheuristics (e.g. EDA), ML models are used to
generate new solutions: probabilistic models [148], Bayesian networks [152], incremental
learning [11], dependency trees [12], and Markov random fields [181]. Similarly, cultural
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algorithms use good quality solutions to induce beliefs guiding the generation of solutions by
evolutionary operators [168]. Cultural evolution allows populations to learn and adapt faster
than biological evolution.

  

 - Elite solutions,
 - Current population,
 - Bad solutions,
 - ...

- Association rules,
- Classification,
- ... 

History of the search
Machine learning

Search operators
         design

Data Models

Patterns

  Binary
operators

  Greedy
procedures

  Unary 
operators

 Indirect
operators

Intensification
Diversification

- Constructive,
- Ant colonies
- GRASP, ...

- Association rules,
- Clustering,
- Reinforcement 
  learning, ...

- Neighborhood
- Mutation, ...

- Estimation of 
  distribution
  algorithms, ...

- Crossover, ...

- size of neighborhood
- sampling of 
  neighborhooh, ...

- Selection of solutions
- Recombination of
  solutions

Fig. 8. Extracting knowledge from the search history and its use into search operators.

Other important search operators can be handled by ML:
• Intensification7: this approach uses a learning process to guide the underlyingmetaheuristic
toward good regions of the search space. It allows to make deeper search aroud promising
regions of the search space. The features of good solutions are extracted using online learning
such as clustering [153] and frequent itemsets using association rules [48][169]. Then a
deeper search is carried out around solutions characterized by those patterns.

• Diversification8: this approach uses a learning process to guide the underlyingmetaheuristic
toward unvisited regions of the search space. A learning component keeps track of all visited
solutions by storing some informations: spheres in the decision space [153], intervals for
decision variables [191], Self-Organizing Maps (SOM) [9], binary space-partitioning (BSP)
trees [228]. In order to guide the underlying metaheuristic toward unexplored regions, the
learning component generate solutions far away from the visited solutions.

4.2.1 Operator selection. In many metaheuristics there exists a lot of alternatives in terms of search
operators design: neighborhoods and more generally unary operators such as mutation in EAs,
and binary operators such as crossover in EAs. ML can be used for the selection of the best suited
search operator. Sequential learning approaches (e.g. reinforcement learning, multi-armed bandit)
are well suited for the selection of search operators [56].
Reinforcement learning has been applied to learn the optimal search operator based on the

performance of operators. The operator selection problem is formulated as reinforcement learning
problem. It is applied to learn optimal policies by maximizing the accumulated rewards. According
7i.e. exploitation
8i.e. exploration
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to the calculatedQ function value of each candidate operator, an optimal operator can be selected to
maximize the learnedQ reward value. This approach has been used for various unary operators such
as mutation [231], and neighborhood selection in VNS (Variable Neighborhood Search) [1][55][109].
VNS integrate a set of different neighborhoods, which are explored in a predefined sequence. ML
approaches allows to select the most appropriate neighborhood at a given iteration.

Other sequential learning approaches have been proposed such asmulti-armed bandit for operator
selection in EA [47], and neighborhood selection in VNS [38], and adaptive pursuit algorithm [57].
Ensemble methods represent alternatives to sequential learning that have been investigated for this
task [124].

4.3 Parameter tuning
Many quantitative parameters compose metaheuristics. Quantitative parameters represent nu-
merical values to be initialized such as the probability of application of variation operators (e.g.
mutation, crossover) in EAs, the tabu list size in tabu search, and the velocity is particle swarm
optimization. The various parameters of metaheuristics have a significant impact on their efficiency
[50]. In general, metaheuristics designers tune the parameters by hand, guided by their experience
and some rules of thumb. Finding good parameter setting is a tedious and time-consuming task
[60].

There are a lot of similarities between the parameter tuning problem and problems faced in ML
[21] and Design of Experiments (DoE) [63]. Offline or static parameter tuning addresses the finding
of good parameters before the execution of a metaheuristic [89]. Online or dynamic parameter
tuning addresses the dynamic change of parameters during the search. A hybridization of both
approaches is generally required for finding satisfactory solutions.

4.3.1 Offline parameter tuning. There is no general optimal parameter setting for metaheuristics.
For any metaheuristic, an optimal parameter setting can vary considerably depending on the
problem, and even between instances of the same problem. Three main ML methodologies can be
applied:

• Unsupervised learning: unsupervised learning has been explored to improve the efficiency
of factorial experimental design for parameter tuning. Themain idea is to reduce the parameter
space in order to reduce the computational complexity: Design of Experiments (DoE) [43],
Taguchi fractional experimental design [2], fractional factorial design [76], correlation graph
decomposition [111]. This methodology can be described in an unified way by the following
three steps:
– Parameter selection: the main goal of this step is to select the significant parameters
which influence the performance of the metaheuristic. Given the input set of parameters,
the selection step tries to rank these parameters to determine the importance of parameters.
This step allows to reduce the parameters space to be explored by eliminating some non
significant parameters.

– Parameter space exploration: it consists in decomposing the parameter space in differ-
ent clusters. A model-based approximation (e.g. linear regression [43], response surface
[88][76], logistic regression [160], decision tree [15]) is built to find relationship between
the parameters and the objective function value. This step allows to find promising clusters
in the parameters space.

– Parameter space exploitation: in each cluster, an optimization process is applied to find
the best parameters. Any metaheuristic can be used for this step (e.g. local search [43],
evolutionary algorithms [111]).
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• Supervised learning: optimal parameters setting may differ function of the problem in-
stances of the problem at hand. Supervised learning can be applied in order to predict the
best parameters value for a given instance of the problem. Each instance is characterized by
some features [163]. Two different steps can be considered (Fig.9):
– Training and learning: for different set of initial parameter values, a metaheuristic is
applied to generate solutions for a finite training set of problem instances. Then, the
obtained performance data are carried out by ML to build a model.

– Prediction: supervised ML is trained with the data from the first stage in order to give
recommendations for parameters for any new problem instance. ML is therefore used for
the recognition of good initial parameter settings for new problem instances. Parameters
values for new problem instances can be retrieved in real time using supervised learning,
once the training phase is carried out. Different models have been used such as artificial
neural networks (ANN) [52], Bayesian networks [147], linear regression [34], and SVM
[112].

• Surrogate-based optimization: parameters tuning can be formulated as an expensive opti-
mization problem, in which the decision variables are the parameters, and the objective func-
tion is the solution quality obtained by the optimization algorithm. Hence, surrogate-based
optimization techniques has been applied to reduce the complexity of the meta-optimization
process [219].

ML

Learning

    ML
Prediction

New instance
 to be solved

(a) Stage 1: Training and Learning

(b) Stage 2: Parameter retreival by Classification/Regression

Parameters

values

  Model

  - Problem
    instances
 - Parameters Performance

Metaheuristic

  - Problem
    instances
 - Parameters

Fig. 9. ML and parameter tuning: training, learning and prediction.

4.3.2 Online parameter tuning. In online tuning, the parameters are adapted during the search.
For instance, the initialization of the probability of application of a given search operator may
be adjusted adaptively by computing the progress of the last applications of the search operator
[203][82]. Hence, it becomes possible to determine the probabilities of application of a given
operator in an adaptive manner where the more efficient an operator is, the likelier is its application.
Knowledge extracted during the search may serve to dynamically change at run time the values of
parameters, using various learning methodologies:

• Sequential learning approach: the most popular online approach is sequential learning:
adaptive pursuit [200], multi-armed bandit [47], and reinforcement learning [59][4]. Multi-
armed bandit strategies treat each parameter as a separate arm and fix their probabilities by

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics00:19

learning the expected rewards [47]. Reinforcement learning uses feedback from the search to
define states and actions which represent parameters values [59].

• Classification/regression approach: classifiers (e.g. SVM [229]) or regression models [112]
can be used to predict effective parameters settings on the basis of the current status of the
search and problem/instance informations.

• Clustering approach: clustering approaches have also been applied. In [232], the distribu-
tion of the population in the search space is clustered at each iteration. Using the K-means
algorithm, the parameters are adapted according to the knowledge extracted from clusters.
Some rules based on the relative size of the cluster containing the best solution and the
one containing the worst solution are used to adapt the probabilities of the application of
variation operators in EAs.

5 ML IN HIGH-LEVEL COMPONENTS OF METAHEURISTICS
Metaheuristics can be seen as high-level algorithms composed of low-level search operators (e.g.
greedy versus iterative). On one hand, many metaheuristic families exist in the literature (e.g. EAs,
swarm intelligence, local search) and then various heuristics can be designed. On the other hand, for
a given optimization problem, a heuristic can be automatically generated by fixing a configuration
from the design space of low-level search operators. According to the nature of the design space
of metaheuristics, one can consider the metaheuristic selection problem for selecting existing
algorithms, and the metaheuristic generation problem for generating automatically algorithms
from the search components of existing ones (Fig.10).

Offline learning Online learning

Reinforcement
    learning

  Selection of
metaheuristics

 Generation of
metaheuristics

    Genetic 
programming

Classification

Regression

Clustering

Fig. 10. ML in high-level components of metaheuristics.

5.1 Selection of metaheuristics
The design space of metaheuristics is very large. Moreover the steady development of new meta-
heuristics makes the selection of the best metaheuristic for a given problem or instance an important
challenge [108]. The algorithm selection involves selecting an algorithm from a given portfolio
of algorithms in order to take into account the varying performance of algorithms over a set of
instances and problems [171]. It is well-known that a global best metaheuristic for all optimization
problems does not exist. We have to accept that no single metaheuristic will produce the best per-
formance on all problems and instances [220]. One is especially interested in giving metaheuristic
recommendations for certain families of optimization problems which differ in the kind of exhibited
problem features.

The research literature on the algorithm selection problem show the efficiency of using ML
for the problem [22][26]. For the metaheuristic selection problem, one can distinguish between
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offline and online learning. The advantage of online learning is an adaptive selection of algorithm,
whereas the cost for this additional effectiveness is an important overhead:

• Offline learning: the idea is to gather knowledge from a set of training instances by using
instance features, that will hopefully generalize to solve new instances. One can consider
three approaches for the metaheuristic selection problem:
– Classification: a multi-class classifier predict the best performing metaheuristic over
the k possible ones. A predictive model is trained on empirical performance data and
metaheiristics. Many supervised ML techniques can be used such as ANN [204][77][205],
Bayesian networks [78], nearest neighbors [71], support vector machines [84], decision
trees [41], logistic regression [158], ensembles [190], and deep neural networks [46].

– Regression: the performance of each metaheuristic is predicted via a regression model and
then selects the one with the best predicted performance. Several ML regression approaches
have been proposed: linear regression [115], support vector regression [23], and Lasso
regression [87].

– Clustering: it consists in clustering the problem instances in feature space, then selects the
best metaheuristic for each cluster and finally affects to each new instance the metaheuristic
associated with the instance’s predicted cluster.

• Online learning: the learning takes place during the search. For instance, this idea has
been widely explored in the hyper-heuristic framework [30]. The most used ML strategies
are mainly based on sequential learning. In a reinforcement learning formulation of the
problem, the metaheuristics represent actions, states correspond to solutions, and the value
function (i.e. reward) represents the performance of the metaheuristic, while the environment
is represented by the instance problem [173] (Fig.11). Most of the considered RL approaches
usually use only a single instance [133][31][141][222]. For a problem domain (i.e. set of
instances), the reward can be represented by the average performance over the set of instances.
The main issue of different RL algorithms (e.g. temporal difference learning [173]) is to
estimate the value functions.

Some hybrid approaches combining offline and online learning have been proposed [130]. By com-
bining metaheuristic portfolios and online selection, the goal is to develop a problem-independent
methodology with diverse problem solving capability.

   State
(Solution)

     Environment
(Problem instance)

   Action
(Metaheuristic
   selection)

   Next state
   (obtained
    solution)

       Reward
(Quality of solution)

Fig. 11. Online selection of a metaheuristic using a reinforcement learning approach.

5.2 Generation of metaheuristics
There are so many various characteristics of problem instances encountered in practice. An auto-
mated design of a metaheuristic can be performing well and cost effective for a given problem or
instance. The generated metaheuristic can produce better solutions than those obtained by human
created metaheuristics. Moreover, the automated process is less demanding on human time, and is
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therefore appealing. One can find offline and online learning strategies for the automatic generation
of heuristics:

• Offline learning: Genetic programming (GP) is the most widely used approach for that pur-
pose [174][32][105]. The automated design of effective heuristics is carried out via evolution,
in which the heuristic is represented by a GP-tree. Other used methodologies for automati-
cally generating a new heuristic for a given problem/instance are based on apprenticeship
learning [10], Learning Classifier Systems (LCS) [138], ANN [139] and logistic regression
[137].

• Online learning: the most used online ML approach is the reinforcement learning (RL) to
generate greedy [58] and iterative metaheuristics [225]. In [225], deep RL using graph neural
networks (GNN) has been used to generate local search heuristics to solve SAT problems.
Local search has been formalized as Markov decision process (MDP). Generating a good
heuristic consists to find an optimal policy π which maximizes the expected accumulated
reward obtained by a local search algorithm. This methodology is also popular in swarm of
robots, for which at each iteration the best metaheuristic is generated to perform a given
number of predefined actions [227].

6 CONCLUSIONS AND PERSPECTIVES
The fields of ML and metaheuristics are increasingly intertwined. In this paper we have investigated
the different opportunities for applying ML into metaheuristics. We have defined in a unified way
the various synergies that may be achieved. A detailed taxonomy has been proposed according to
the concerned search component: target optimization problem, low-level and high-level search
components of metaheuristics. Many of those data-driven metaheuristics have generated high
quality results and represent state-of-the-art optimization algorithms. One has to keep the overhead
of learning low. Indeed, the integration of ML techniques in metaheuristics incurs additional costs
which have to be considered in the performance evaluation measures.

Research in designing metaheuristics using ML techniques is witnessed to have an important
impact in the future. We expect the interplay of metaheuristics and ML will increase. Indeed,
data-driven metaheuristics opens up a wealth of perspectives. From the optimization point of
view, investigating the integration of ML into exact optimization techniques (e.g. mathematical
programming, branch and bound, dynamic programming, constraint programming) is an important
research challenge. Solving more complex optimization problems such as multi-objective optimiza-
tion, dynamic optimization, optimization under uncertainty, and bi-level optimization, opens also
many other research issues.

From the machine learning perspective, the use of more sophisticated and modern ML techniques
such as deep learning models will represent an interesting alternative to solve more complex
problems. Transfer learning can help to reuse the past experience for speeding up the metaheuristic
search process for dynamic and cross-domain optimization problems. Indeed, integrating transfer
leaning in metaheuristics can improve performance and robustness in solving similar and evolving
problems and instances.

It could also be interesting to explore the design and implementation of parallel models for data-
driven metaheuristics. High-performance computing is evolving toward Exascale supercomputers
composed of millions of cores provided in heterogeneous devices mainly multi-core processors with
various architectures, GPU (Graphics Processing Units) accelerators and TPUs (Tensor Processing
Units) and other AI-dedicated ASICS (Application-Specific integrated Circuits). Finally, the coupling
of software frameworks dealing with the two classes of algorithms (i.e. metaheuristics and ML
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algorithms) is an important issue for the future. This enables to reduce the complexity of developing
data-driven metaheuristics approaches and makes them increasingly popular.
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