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1. Introduction    

Particle swarm optimization (PSO) (Kennedy & Eberhart, 1995) and differential evolution 
(DE) (Storn & Price, 1995) are two stochastic, population-based optimization methods, 
which have been applied successfully to a wide range of problems as summarized in 
Engelbrecht (2005) and Price et al. (2005). 
A number of variations of both PSO and DE have been developed in the past decade to 
improve the performance of these algorithms (Engelbrecht, 2005; Price et al. 2005). One class of 
variations includes hybrids between PSO and DE, where the advantages of the two 
approaches are combined. The barebones DE (BBDE) is a PSO-DE hybrid algorithm proposed 
by Omran et al. (2007) which combines concepts from the barebones PSO (Kennedy 2003) and 
the recombination operator of DE. The resulting algorithm eliminates the control parameters 
of PSO and replaces the static DE control parameters with dynamically changing parameters 
to produce an almost parameter-free, self-adaptive, optimization algorithm. 
Recently, opposition-based learning (OBL) was proposed by Tizhoosh (2005) and was 
successfully applied to several problems (Rahnamayan et al., 2008). The basic concept of 
OBL is the consideration of an estimate and its corresponding opposite estimate 
simultaneously to approximate the current candidate solution. Opposite numbers were used 
by Rahnamayan et al. (2008) to enhance the performance of Differential Evolution. In 
addition, Han and He (2007) and Wang et al. (2007) used OBL to improve the performance 
of PSO. However, in both cases, several parameters were added to the PSO that are difficult 
to tune. Wang et al. (2007) used OBL during swarm initialization and in each iteration with a 
user-specified probability. In addition, Cauchy mutation is applied to the best particle to 
avoid being trapping in local optima. Similarly, Han and He (2007) used OBL in the 
initialization phase and also during each iteration. However, a constriction factor is used to 
enhance the convergence speed.  
In this chapter, OBL is used to improve the performance of PSO and BBDE without adding 
any extra parameter. The performance of the proposed methods is investigated when 
applied to several benchmark functions. The experiments conducted show that OBL 
improves the performance of both PSO and BBDE. 
The remainder of the chapter is organized as follows: PSO is summarized in Section 2. DE is 
presented in Section 3. Section 4 provides an overview of BBDE. OBL is briefly reviewed in 
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Section 5. The proposed methods are presented in Section 6. Section 7 presents and 
discusses the results of the experiments. Finally, Section 8 concludes the chaper. 

2. Particle Swarm Optimization 

Particle swarm optimization (PSO) is a stochastic, population-based optimization algorithm 
modeled after the simulation of social behavior of bird flocks. In a PSO system, a swarm of 
individuals (called particles) fly through the search space. Each particle represents a candidate 
solution to the optimization problem. The position of a particle is influenced by the best position 
visited by itself (i.e. its own experience) and the position of the best particle in its neighborhood 
(i.e. the experience of neighboring particles). Particle position, xi, are adjusted using 

 )1()()1( ++=+ ttt iii vxx  (1) 

where the velocity component, vi, represents the step size. For the basic PSO, 

 vi, j(t +1) = wvi, j(t) +c1r1, j(t)(yi, j(t)− xi, j(t))+c2r2, j(t)(ˆ y j(t)− xi, j(t)) (2) 

where w is the inertia weight (Shi & Eberhart, 1998), c1 and c2 are the acceleration 
coefficients, 

jr1,
, (0,1)~2, Ur j

, yi is the personal best position of particle i, and 
iŷ  is the 

neighborhood best position of particle i. 

The neighborhood best position 
iŷ , of particle i depends on the neighborhood topology 

used (Kennedy, 1999; Kenedy & Mendes, 2002). If a fully-connected topology is used, then 

iŷ  refers to the best position found by the entire swarm. That is, 

 }{ { }0 1 0 1 s
ˆ ( ), ( ),..., ( ) ( ( )), ( ( )),..., ( ( ))i sy (t) y t y t y t min f y t f y t f y t∈ =  (3) 

where s is the swarm size. 
The resulting algorithm is referred to as the global best (gbest) PSO. A pseudo-code for PSO 
is shown in Alg. 1. 

for each particle i ∈ 1,...,s do 

   Randomly initialize xi 
   Set vi to zero 
   Set yi = xi 
endfor 
Repeat 

   for each particle i ∈ 1,...,s do 
      Evaluate the fitness of particle i, f(xi) 
      Update yi  
      Update ŷ  using equation (3) 

      for each dimension  j ∈ 1,...,Nd do 
         Apply velocity update using equation (2) 
      endloop 

      Apply position update using equation (1) 
   endloop 
Until some convergence criteria is satisfied 

Algorithm 1. General pseudo-code for PSO 
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Van den Bergh and Engelbrecht (2006) and Clerc and Kennedy (2002) proved that each 
particle converges to a weighted average of its personal best and neighborhood best 
position, that is, 

21
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This theoretically derived behavior provides support for the barebones PSO developed by 
Kennedy (2003). It replaces Eqs. 1 and 2 with 
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Particle positions are therefore randomly selected from a Gaussian distribution with the 
mean given as the weighted average of the personal best and global best positions, i.e. the 

swarm attractor. Note that exploration is facilitated via the deviation, yi, j (t )- ŷ j ( t ) , which 

approaches zero as t increases. In the limit, all particles will converge on the attractor point. 
Kennedy (2003) also proposed an alternative version of the barebones PSO where Eqs. 1 and 
2  are replaced with 
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Utŷty,
tŷty
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Based on the above equation, there is a 50% chance that the j-th dimension of the particle 
dimension changes to the corresponding personal best position. This version of PSO biases 
towards exploiting personal best positions. 

3. Differential Evolution 

Differential evolution (DE) is an evolutionary algorithm proposed by Storn and Price (1995). 
While DE shares similarities with other evolutionary algorithms (EA), it differs significantly 
in the sense that distance and direction information from the current population is used to 
guide the search process. DE uses the differences between randomly selected vectors 
(individuals) as the source of random variations for a third vector (individual), referred to as 
the target vector. Trial solutions are generated by adding weighted difference vectors to the 
target vector. This process is referred to as the mutation operator where the target vector is 
mutated. A recombination, or crossover step is then applied to produce an offspring which 
is only accepted if it improves on the fitness of the parent individual.  
The basic DE algorithm is described in more detail below with reference to the three 
evolution operators: mutation, crossover, and selection. 
Mutation: For each parent, )(tix , of generation t, a trial vector, )(tiv , is created by mutating 

a target vector. The target vector, )(
3

tix , is randomly selected, with i ≠ i3. Then, two 
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individuals )(
1

tix , and )(
2

tix  are randomly selected with i1 ≠ i2 ≠ i3 ≠ i, and the difference 

vector, 
1i

x  - 
2i

x , is calculated. The trial vector is then calculated as   

 ))(-)(()()(
213

ttFtt iiii xxxv +=  (4) 

where the last term represents the mutation step size. In the above, F is a scale factor used to 

control the amplification of the differential variation. Note that F ∈ (0, ∞). 
Crossover: DE follows a discrete recombination approach where elements from the parent 

vector, )(tix , are combined with elements from the trial vector, )(tiv , to produce the 

offspring, )(tiμ . Using the binomial  crossover, 

µij ( t ) =
v ij (t ) if U (0,1) <P or j = rr

x ij (t ) otherwise

⎧ 
⎨ 
⎩ 

 

where j = 1, ..., Nd refers to a specific dimension, Nd is the number of genes (parameters) of a 
single chromosome, and r ~ U(1,…, Nd). In the above, pr is the probability of reproduction 

(with pr ∈ [0, 1]). 
Thus, each offspring is a stochastic linear combination of three randomly chosen individuals 
when U(0, 1) < pr; otherwise the offspring inherits directly from the parent. Even when pr = 
0, at least one of the parameters of the offspring will differ from the parent (forced by the 
condition j = r). 
Selection: DE evolution implements a very simple selection procedure. The generated 

offspring, )(tiμ , replaces the parent, )(tix , only if the fitness of the offspring is better than 

that of the parent. 

4. Barebones Differential Evolution 

Both PSO and DE have their strengths and weaknesses. PSO has the advantage that formal 
proofs exist to show that particles will converge to a single attractor. The barebones PSO 
utilizes this information by sampling candidate solutions, normally distributed around the 
formally derived attractor point. Additionally, the barebones PSO has no parameters to be 
tuned. On the other hand, DE has the advantage of not being biased towards any prior 
defined distribution for sampling mutational step sizes and its selection operator follows a 
hill-climbing process. Mutational step sizes are determined as differences between 
individuals in the current population. One of the problems which both PSO and DE share is 
that control parameters need to be optimized for each new problem. 

The barebones DE combines the strengths of both the barebones PSO and DE to form a 
new, efficient hybrid optimization algorithm. For the barebones DE, position updates are 
done as follows:  

 

⎩
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where 

 )())(1()()()( 11 tŷtrtytrtp ji,j,ji,j,ji, −+=  (6) 

with i1, i2, i3~ U(1,…,s), i1 ≠ i2 ≠ i, 
jr1,
, (0,1)~2, Ur j

 and pr is the probability of 

recombination. 

Referring to Eq. 6, pi ( t )  represents the particle attractor as a stochastic weighted average of 

personal best and global best positions, borrowing from the barebones PSO (Kennedy 2003). 
Referring to Eq. 5, the mutation operator of DE is used to explore around the current 

attractor, 
 pi ( t ) , by adding a difference vector to the attractor. Crossover is done with a 

randomly selected personal best, 
3i

y , as these personal bests represent a memory of best 

solutions found by individuals since the start of the search process. Also note that the scale 
factor is a random variable. Using the position update in Eq. 6, for a proportion of (1- pr) of 

the updates, information from a randomly selected personal best, 
3i

y , is used (facilitating 

exploitation), while for a proportion of pr of the updates step sizes are mutations of the 
attractor point, pi (facilitating exploration). Mutation step sizes are based on the difference 

vector between randomly selected particles, 
1i

x  and 
2i

x . Using the above, the BBDE 

achieves a good balance between exploration and exploitation. It should also be noted that 
the exploitation of personal best positions does not focus on a specific position. The personal 

best position, 
3i

y , is randomly selected for each application of the position update. 

5. Opposition-based Learning 

Opposition-based learning (OBL) was first proposed by Tizhoosh (2005) and was 
successfully applied to several problems (Rahnamayan et al., 2008). Opposite numbers are 
defined as follows: 

Let x ∈[a,b], then the opposite number x’ is defined as 

x' = a + b − x  

The above definition can be extended to higher dimensions as follows: 

Let ( )1 2 n, , ,P x x xA  be an n-dimensional vector, where xi ∈[ai,bi] and i=1, 2, …, n. The 

opposite vector of P is defined by ( )1 2, , , nP x x x′ ′ ′ ′A  where 

x i

' = ai + bi − x i  

6. Proposed Methods 

In this chapter, OBL is used to enhance the performance of PSO and BBDE without adding 
any extra parameter. Two variants are proposed as follows: 
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6.1 Improved PSO (iPSO) 

An improved version of PSO is proposed such that in each iteration the particle with the 
lowest fitness, xb, is replaced by its opposite (the anti-particle) as follows, 

xb,j = LBj + UBj – xb,j 

where xb,j∈[LBj, UBj], j=1,2,…,Nd and Nd is the dimension of the problem. 
The velocity and personal experience of the anti-particle are reset. The global best solution is 
also updated. A pseudo-code for iPSO is shown in Alg. 2.  
The rationale behind this approach is the basic idea of opposition-based learning: if we 
begin with a random guess, which is very far away from the existing solution, let say in 
worst case it is in the opposite location, then we should look in the opposite direction. In our 
case, the guess that is “very far away from the existing solution” is the particle with the 
lowest fitness. 
The main difference between iPSO on one side and the approaches proposed by Han and 
He (2007) and Wang et al. (2007) on the other side, is that we did not introduce any extra 
parameter to the original PSO. In addition, iPSO uses only OBL to enhance the performance 
of PSO while (Han & He, 2007; Wang et al. 2007) use OBL combined with other techniques 
(e.g. Cauchy mutation). 

 

 

for each particle i ∈ 1,...,s do 

 for each dimension  j ∈ 1,...,Nd do 

      xi,j = LBj + rj× (UBj – LBj) 

   endloop 

endfor 

for each particle i ∈ 1,...,s do 

   Set vi to zero 

   Set yi = xi 

endfor 

Repeat 

   for each particle i ∈ 1,...,s do 

      Evaluate the fitness of particle i, f(xi) 

      Update yi  

      Update ŷ  using equation (3) 

      for each dimension  j ∈ 1,...,Nd do 

         Apply velocity update using Eq. (2) 

      endloop 

      Apply position update using equation (1) 

   endloop 

Let xb be the particle with the lowest fitness 

for each dimension  j ∈ 1,...,Nd do 

   xb,j = LBj + UBj – xb,j 

endloop 

vb = 0 

yb = xb 

if f(xb) < f( ŷ )   

 ŷ  = xb 

endif 

Until some convergence criteria is satisfied 

Algorithm 2. General pseudo-code for iPSO 
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6.2 Improved BBDE (iBBDE) 

Similar to iPSO, BBDE is modified such that in each iteration the particle with the lowest 
fitness, xb, is replaced by its opposite. The personal experience of the anti-particle is also 
reset. The global best solution is updated.  

7. Experimental Results 

This section compares the performance of the proposed methods with that of gbest PSO and 
BBDE discussed in Section 2 and 4, respectively. For the PSO algorithms, w = 0.72 and c1 = c2 
= 1.49. These values have been shown to provide very good results (van den Berg, 2002). In 
addition s = 50 for all methods. All functions were implemented in 30 dimensions. 
The following functions have been used to compare the performance of the different 
approaches. These benchmark functions provide a balance of unimodal, multimodal, 
separable and non-separable functions. 
For each of these functions, the goal is to find the global minimizer, formally defined as 

Given f: dNℜ  å ℜ 

find dNℜ∈∗
x  such that dN

ff ℜ∈∀≤∗  x xx  ),()(   

The following functions were used: 
A. Sphere function, defined as 

∑
=

=
dN

i

ixf
1

2)(x  

where 0=∗
x  and 0 )( =∗

xf  for 100100 ≤≤− ix . 

B. Rosenbrock function, defined as 

f (x) = 100 x i − x i−1

2( )
2

+ x i−1 − 1( )2( )
i=1

N d −1

∑    

where )111( ,,, …=∗
x  and 0 )( =∗

xf  for −2 ≤ x i ≤ 2 . 

C. Rotated hyper-ellipsoid function, defined as 

∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dN

i

i

j

jxf
1

2

1

)(x  

where 0=∗
x  and 0 )( =∗xf  for 100100 ≤≤− ix . 

D. Rastrigin function, defined as 
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( )∑
=

+−=
dN

i

ii xxf
1

2 10)π2cos(10)(x     

where 0=∗
x  and 0 )( =∗

xf  for 125125 .x. i ≤≤− . 

E. Ackley's function, defined as 

f (x) = −20exp -0.2
1

30
xi

2

i=1

Nd

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−exp
1

30
cos(2πxi)

i=1

Nd

∑
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
+ 20 + e

   

where 0=∗x  and 0 )( =∗
xf  for 3232 ≤≤− ix . 

F. Griewank function, defined as 

1cos
4000

1
)(

1 1

2 +⎟
⎠
⎞

⎜
⎝
⎛
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= =

d dN

i

N

i

i
i

i

x
xf x    

where 0=∗
x  and 0 )( =∗

xf  for 600600 ≤≤− ix . 

G. Salomon function, defined as 

f (x) = −cos 2π x i

2

i=1

Nd

∑
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
+ 0.1 x i

2

i=1

Nd

∑ +1 

where 0=∗
x  and 0 )( =∗

xf  for 100100 ≤≤− ix . 

Sphere, Rosenbrock and Rotated hyper-ellipsoid are unimodal, while Rastrigin, Ackley, 
Griewank and Salomon are difficult multimodal functions where the number of local 
optima increases exponentially with the problem dimension.  
The results reported in this section are averages and standard deviations over 30 
simulations. In order to have a fair comparison, each simulation was allowed to run for 
50,000 evaluations of the objective function. 
Table 1 summarizes the results obtained by applying the two PSO approaches to the 
benchmark functions. In general, the results show that iPSO performed better than (or equal 
to) gbest PSO. Figure 1 illustrates results for selected functions. The figure shows that iPSO 
generally reached good solutions faster than PSO. Similarly, Table 2 shows that iBBDE 
generally outperformed BBDE. Figure 2 illustrates results for selected functions. Thus, 
Tables 1 and 2 suggest that using the simple idea of replacing the worst particle is the main 
reason for improving the performance of PSO and BBDE. In additon, we can conclude that 
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opposition-based learning improved the performance of both PSO and BBDE without 
requiring any extra parameter. 

 PSO  iPSO 

Sphere 0(0) 0(0) 

Rosenbrock 
22.191441 
(1.741527) 

20.645323 
(0.426212) 

Rotated hyper-
ellipsoid 

2.021006 
(1.675313) 

0.355572 
(0.890755) 

Rastrigin 
48.487584 
(14.599249) 

27.460845 
(11.966896) 

Ackley 
1.096863 
(0.953266) 

0(0) 

Griewank 
0.015806 
(0.022757) 

0.006163 
(0.009966) 

Salomon 
0.446540 
(0.122428) 

0.113207 
(0.034575) 

Table 1. Mean and standard deviation (±SD) of the function optimization results 

 BBDE iBBDE 

Sphere 0(0) 0(0) 

Rosenbrock 
25.826400 
(0.216660) 

25.942146 
(0.209437) 

Rotated hyper-
ellipsoid 

15.409460 
(20.873456) 

0.905987 
(1.199178) 

Rastrigin 
34.761833 
(28.598884) 

0(0) 

Ackley 0(0) 0(0) 

Griewank 
0.000329 
(0.001800) 

0(0) 

Salomon 
0.166540 
(0.047946) 

0.149917 
(0.050826) 

Table 2. Mean and standard deviation (±SD) of the function optimization results 
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Figure 1. Performance Comparison of PSO and iPSO when applied to selected functions 

7. Conclusion 

Opposition-based learning was used in this chapter to improve the performance of PSO and 
BBDE. Two opposition-based variants were proposed (namely, iPSO and iBBDE). The iPSO 
and iBBDE algorithms replace the least-fit particle with its anti-particle. The results show 
that, in general, iPSO and iBBDE outperformed PSO and BBDE, respectively. In addition, 
the results show that using OBL enhances the performance of PSO and BBDE without 
requiring additional parameters. The ideas introduced in this chapter could also be used 
with any PSO/BBDE variant. 
Future research will investigate the effect of noise on the performance of the proposed 
approaches. Furthermore, a scalability study will be conducted. Finally, applying the 
proposed approaches to real-world problem will be investigated. 

www.intechopen.com



Using Opposition-based Learning with Particle Swarm Optimization  
and Barebones Differential Evolution 

 

383 

  

  

Figure 2. Performance Comparison of BBDE and iBBDE when applied to selected functions 
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