
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322387854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

23

Using Opposition-based Learning with Particle
Swarm Optimization and Barebones Differential

Evolution

Mahamed G.H. Omran
Gulf University for Science and Technology

Kuwait

1. Introduction

Particle swarm optimization (PSO) (Kennedy & Eberhart, 1995) and differential evolution
(DE) (Storn & Price, 1995) are two stochastic, population-based optimization methods,
which have been applied successfully to a wide range of problems as summarized in
Engelbrecht (2005) and Price et al. (2005).
A number of variations of both PSO and DE have been developed in the past decade to
improve the performance of these algorithms (Engelbrecht, 2005; Price et al. 2005). One class of
variations includes hybrids between PSO and DE, where the advantages of the two
approaches are combined. The barebones DE (BBDE) is a PSO-DE hybrid algorithm proposed
by Omran et al. (2007) which combines concepts from the barebones PSO (Kennedy 2003) and
the recombination operator of DE. The resulting algorithm eliminates the control parameters
of PSO and replaces the static DE control parameters with dynamically changing parameters
to produce an almost parameter-free, self-adaptive, optimization algorithm.
Recently, opposition-based learning (OBL) was proposed by Tizhoosh (2005) and was
successfully applied to several problems (Rahnamayan et al., 2008). The basic concept of
OBL is the consideration of an estimate and its corresponding opposite estimate
simultaneously to approximate the current candidate solution. Opposite numbers were used
by Rahnamayan et al. (2008) to enhance the performance of Differential Evolution. In
addition, Han and He (2007) and Wang et al. (2007) used OBL to improve the performance
of PSO. However, in both cases, several parameters were added to the PSO that are difficult
to tune. Wang et al. (2007) used OBL during swarm initialization and in each iteration with a
user-specified probability. In addition, Cauchy mutation is applied to the best particle to
avoid being trapping in local optima. Similarly, Han and He (2007) used OBL in the
initialization phase and also during each iteration. However, a constriction factor is used to
enhance the convergence speed.
In this chapter, OBL is used to improve the performance of PSO and BBDE without adding
any extra parameter. The performance of the proposed methods is investigated when
applied to several benchmark functions. The experiments conducted show that OBL
improves the performance of both PSO and BBDE.
The remainder of the chapter is organized as follows: PSO is summarized in Section 2. DE is
presented in Section 3. Section 4 provides an overview of BBDE. OBL is briefly reviewed in

www.intechopen.com

Particle Swarm Optimization

374

Section 5. The proposed methods are presented in Section 6. Section 7 presents and
discusses the results of the experiments. Finally, Section 8 concludes the chaper.

2. Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic, population-based optimization algorithm
modeled after the simulation of social behavior of bird flocks. In a PSO system, a swarm of
individuals (called particles) fly through the search space. Each particle represents a candidate
solution to the optimization problem. The position of a particle is influenced by the best position
visited by itself (i.e. its own experience) and the position of the best particle in its neighborhood
(i.e. the experience of neighboring particles). Particle position, xi, are adjusted using

)1()()1(++=+ ttt iii vxx (1)

where the velocity component, vi, represents the step size. For the basic PSO,

 vi, j(t +1) = wvi, j(t) +c1r1, j(t)(yi, j(t)− xi, j(t))+c2r2, j(t)(ˆ y j(t)− xi, j(t)) (2)

where w is the inertia weight (Shi & Eberhart, 1998), c1 and c2 are the acceleration
coefficients,

jr1,
, (0,1)~2, Ur j

, yi is the personal best position of particle i, and
iŷ is the

neighborhood best position of particle i.

The neighborhood best position
iŷ , of particle i depends on the neighborhood topology

used (Kennedy, 1999; Kenedy & Mendes, 2002). If a fully-connected topology is used, then

iŷ refers to the best position found by the entire swarm. That is,

 }{ { }0 1 0 1 s
ˆ (), (),..., () (()), (()),..., (())i sy (t) y t y t y t min f y t f y t f y t∈ = (3)

where s is the swarm size.
The resulting algorithm is referred to as the global best (gbest) PSO. A pseudo-code for PSO
is shown in Alg. 1.

for each particle i ∈ 1,...,s do

 Randomly initialize xi
 Set vi to zero
 Set yi = xi
endfor
Repeat

 for each particle i ∈ 1,...,s do
 Evaluate the fitness of particle i, f(xi)
 Update yi
 Update ŷ using equation (3)

 for each dimension j ∈ 1,...,Nd do
 Apply velocity update using equation (2)
 endloop

 Apply position update using equation (1)
 endloop
Until some convergence criteria is satisfied

Algorithm 1. General pseudo-code for PSO

www.intechopen.com

Using Opposition-based Learning with Particle Swarm Optimization
and Barebones Differential Evolution

375

Van den Bergh and Engelbrecht (2006) and Clerc and Kennedy (2002) proved that each
particle converges to a weighted average of its personal best and neighborhood best
position, that is,

21

ji,2ji,1

ji,
t cc

ŷcyc
tx

+

+
=

+∞→
)(lim

This theoretically derived behavior provides support for the barebones PSO developed by
Kennedy (2003). It replaces Eqs. 1 and 2 with

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=+)(-)(

2

)()(
)1(tŷty,

tŷty
Ntx jji,

jji,

ji,

Particle positions are therefore randomly selected from a Gaussian distribution with the
mean given as the weighted average of the personal best and global best positions, i.e. the

swarm attractor. Note that exploration is facilitated via the deviation, yi, j (t)- ŷ j (t) , which

approaches zero as t increases. In the limit, all particles will converge on the attractor point.
Kennedy (2003) also proposed an alternative version of the barebones PSO where Eqs. 1 and
2 are replaced with

⎪
⎩

⎪
⎨

⎧
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

=+

otherwise)(

0.5 (0,1) if)(-)(
2

)()(

)1(

ty

Utŷty,
tŷty

N
tx

ji,

jji,

jji,

ji,

Based on the above equation, there is a 50% chance that the j-th dimension of the particle
dimension changes to the corresponding personal best position. This version of PSO biases
towards exploiting personal best positions.

3. Differential Evolution

Differential evolution (DE) is an evolutionary algorithm proposed by Storn and Price (1995).
While DE shares similarities with other evolutionary algorithms (EA), it differs significantly
in the sense that distance and direction information from the current population is used to
guide the search process. DE uses the differences between randomly selected vectors
(individuals) as the source of random variations for a third vector (individual), referred to as
the target vector. Trial solutions are generated by adding weighted difference vectors to the
target vector. This process is referred to as the mutation operator where the target vector is
mutated. A recombination, or crossover step is then applied to produce an offspring which
is only accepted if it improves on the fitness of the parent individual.
The basic DE algorithm is described in more detail below with reference to the three
evolution operators: mutation, crossover, and selection.
Mutation: For each parent,)(tix , of generation t, a trial vector,)(tiv , is created by mutating

a target vector. The target vector,)(
3

tix , is randomly selected, with i ≠ i3. Then, two

www.intechopen.com

Particle Swarm Optimization

376

individuals)(
1

tix , and)(
2

tix are randomly selected with i1 ≠ i2 ≠ i3 ≠ i, and the difference

vector,
1i

x -
2i

x , is calculated. The trial vector is then calculated as

))(-)(()()(
213

ttFtt iiii xxxv += (4)

where the last term represents the mutation step size. In the above, F is a scale factor used to

control the amplification of the differential variation. Note that F ∈ (0, ∞).
Crossover: DE follows a discrete recombination approach where elements from the parent

vector,)(tix , are combined with elements from the trial vector,)(tiv , to produce the

offspring,)(tiμ . Using the binomial crossover,

µij (t) =
v ij (t) if U (0,1) <P or j = rr

x ij (t) otherwise

⎧
⎨
⎩

where j = 1, ..., Nd refers to a specific dimension, Nd is the number of genes (parameters) of a
single chromosome, and r ~ U(1,…, Nd). In the above, pr is the probability of reproduction

(with pr ∈ [0, 1]).
Thus, each offspring is a stochastic linear combination of three randomly chosen individuals
when U(0, 1) < pr; otherwise the offspring inherits directly from the parent. Even when pr =
0, at least one of the parameters of the offspring will differ from the parent (forced by the
condition j = r).
Selection: DE evolution implements a very simple selection procedure. The generated

offspring,)(tiμ , replaces the parent,)(tix , only if the fitness of the offspring is better than

that of the parent.

4. Barebones Differential Evolution

Both PSO and DE have their strengths and weaknesses. PSO has the advantage that formal
proofs exist to show that particles will converge to a single attractor. The barebones PSO
utilizes this information by sampling candidate solutions, normally distributed around the
formally derived attractor point. Additionally, the barebones PSO has no parameters to be
tuned. On the other hand, DE has the advantage of not being biased towards any prior
defined distribution for sampling mutational step sizes and its selection operator follows a
hill-climbing process. Mutational step sizes are determined as differences between
individuals in the current population. One of the problems which both PSO and DE share is
that control parameters need to be optimized for each new problem.

The barebones DE combines the strengths of both the barebones PSO and DE to form a
new, efficient hybrid optimization algorithm. For the barebones DE, position updates are
done as follows:

⎩
⎨
⎧ >×+

=
otherwise)(

 1) (0, if))(-)(()(
)(212

ty

pUtxtxrtp
tx

j,i

rj,ij,ij,ji,

ji,

3

 (5)

www.intechopen.com

Using Opposition-based Learning with Particle Swarm Optimization
and Barebones Differential Evolution

377

where

)())(1()()()(11 tŷtrtytrtp ji,j,ji,j,ji, −+= (6)

with i1, i2, i3~ U(1,…,s), i1 ≠ i2 ≠ i,
jr1,
, (0,1)~2, Ur j

 and pr is the probability of

recombination.

Referring to Eq. 6, pi (t) represents the particle attractor as a stochastic weighted average of

personal best and global best positions, borrowing from the barebones PSO (Kennedy 2003).
Referring to Eq. 5, the mutation operator of DE is used to explore around the current

attractor,
 pi (t) , by adding a difference vector to the attractor. Crossover is done with a

randomly selected personal best,
3i

y , as these personal bests represent a memory of best

solutions found by individuals since the start of the search process. Also note that the scale
factor is a random variable. Using the position update in Eq. 6, for a proportion of (1- pr) of

the updates, information from a randomly selected personal best,
3i

y , is used (facilitating

exploitation), while for a proportion of pr of the updates step sizes are mutations of the
attractor point, pi (facilitating exploration). Mutation step sizes are based on the difference

vector between randomly selected particles,
1i

x and
2i

x . Using the above, the BBDE

achieves a good balance between exploration and exploitation. It should also be noted that
the exploitation of personal best positions does not focus on a specific position. The personal

best position,
3i

y , is randomly selected for each application of the position update.

5. Opposition-based Learning

Opposition-based learning (OBL) was first proposed by Tizhoosh (2005) and was
successfully applied to several problems (Rahnamayan et al., 2008). Opposite numbers are
defined as follows:

Let x ∈[a,b], then the opposite number x’ is defined as

x' = a + b − x

The above definition can be extended to higher dimensions as follows:

Let ()1 2 n, , ,P x x xA be an n-dimensional vector, where xi ∈[ai,bi] and i=1, 2, …, n. The

opposite vector of P is defined by ()1 2, , , nP x x x′ ′ ′ ′A where

x i

' = ai + bi − x i

6. Proposed Methods

In this chapter, OBL is used to enhance the performance of PSO and BBDE without adding
any extra parameter. Two variants are proposed as follows:

www.intechopen.com

Particle Swarm Optimization

378

6.1 Improved PSO (iPSO)

An improved version of PSO is proposed such that in each iteration the particle with the
lowest fitness, xb, is replaced by its opposite (the anti-particle) as follows,

xb,j = LBj + UBj – xb,j

where xb,j∈[LBj, UBj], j=1,2,…,Nd and Nd is the dimension of the problem.
The velocity and personal experience of the anti-particle are reset. The global best solution is
also updated. A pseudo-code for iPSO is shown in Alg. 2.
The rationale behind this approach is the basic idea of opposition-based learning: if we
begin with a random guess, which is very far away from the existing solution, let say in
worst case it is in the opposite location, then we should look in the opposite direction. In our
case, the guess that is “very far away from the existing solution” is the particle with the
lowest fitness.
The main difference between iPSO on one side and the approaches proposed by Han and
He (2007) and Wang et al. (2007) on the other side, is that we did not introduce any extra
parameter to the original PSO. In addition, iPSO uses only OBL to enhance the performance
of PSO while (Han & He, 2007; Wang et al. 2007) use OBL combined with other techniques
(e.g. Cauchy mutation).

for each particle i ∈ 1,...,s do

 for each dimension j ∈ 1,...,Nd do

 xi,j = LBj + rj× (UBj – LBj)

 endloop

endfor

for each particle i ∈ 1,...,s do

 Set vi to zero

 Set yi = xi

endfor

Repeat

 for each particle i ∈ 1,...,s do

 Evaluate the fitness of particle i, f(xi)

 Update yi

 Update ŷ using equation (3)

 for each dimension j ∈ 1,...,Nd do

 Apply velocity update using Eq. (2)

 endloop

 Apply position update using equation (1)

 endloop

Let xb be the particle with the lowest fitness

for each dimension j ∈ 1,...,Nd do

 xb,j = LBj + UBj – xb,j

endloop

vb = 0

yb = xb

if f(xb) < f(ŷ)

 ŷ = xb

endif

Until some convergence criteria is satisfied

Algorithm 2. General pseudo-code for iPSO

www.intechopen.com

Using Opposition-based Learning with Particle Swarm Optimization
and Barebones Differential Evolution

379

6.2 Improved BBDE (iBBDE)

Similar to iPSO, BBDE is modified such that in each iteration the particle with the lowest
fitness, xb, is replaced by its opposite. The personal experience of the anti-particle is also
reset. The global best solution is updated.

7. Experimental Results

This section compares the performance of the proposed methods with that of gbest PSO and
BBDE discussed in Section 2 and 4, respectively. For the PSO algorithms, w = 0.72 and c1 = c2
= 1.49. These values have been shown to provide very good results (van den Berg, 2002). In
addition s = 50 for all methods. All functions were implemented in 30 dimensions.
The following functions have been used to compare the performance of the different
approaches. These benchmark functions provide a balance of unimodal, multimodal,
separable and non-separable functions.
For each of these functions, the goal is to find the global minimizer, formally defined as

Given f: dNℜ å ℜ

find dNℜ∈∗
x such that dN

ff ℜ∈∀≤∗ x xx),()(

The following functions were used:
A. Sphere function, defined as

∑
=

=
dN

i

ixf
1

2)(x

where 0=∗
x and 0)(=∗

xf for 100100 ≤≤− ix .

B. Rosenbrock function, defined as

f (x) = 100 x i − x i−1

2()
2

+ x i−1 − 1()2()
i=1

N d −1

∑

where)111(,,, …=∗
x and 0)(=∗

xf for −2 ≤ x i ≤ 2 .

C. Rotated hyper-ellipsoid function, defined as

∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dN

i

i

j

jxf
1

2

1

)(x

where 0=∗
x and 0)(=∗xf for 100100 ≤≤− ix .

D. Rastrigin function, defined as

www.intechopen.com

Particle Swarm Optimization

380

()∑
=

+−=
dN

i

ii xxf
1

2 10)π2cos(10)(x

where 0=∗
x and 0)(=∗

xf for 125125 .x. i ≤≤− .

E. Ackley's function, defined as

f (x) = −20exp -0.2
1

30
xi

2

i=1

Nd

∑
⎛

⎝
⎜

⎞

⎠
⎟

−exp
1

30
cos(2πxi)

i=1

Nd

∑
⎛

⎝ ⎜
⎞

⎠ ⎟
+ 20 + e

where 0=∗x and 0)(=∗
xf for 3232 ≤≤− ix .

F. Griewank function, defined as

1cos
4000

1
)(

1 1

2 +⎟
⎠
⎞

⎜
⎝
⎛

−= ∑ ∏
= =

d dN

i

N

i

i
i

i

x
xf x

where 0=∗
x and 0)(=∗

xf for 600600 ≤≤− ix .

G. Salomon function, defined as

f (x) = −cos 2π x i

2

i=1

Nd

∑
⎛

⎝ ⎜
⎞

⎠ ⎟
+ 0.1 x i

2

i=1

Nd

∑ +1

where 0=∗
x and 0)(=∗

xf for 100100 ≤≤− ix .

Sphere, Rosenbrock and Rotated hyper-ellipsoid are unimodal, while Rastrigin, Ackley,
Griewank and Salomon are difficult multimodal functions where the number of local
optima increases exponentially with the problem dimension.
The results reported in this section are averages and standard deviations over 30
simulations. In order to have a fair comparison, each simulation was allowed to run for
50,000 evaluations of the objective function.
Table 1 summarizes the results obtained by applying the two PSO approaches to the
benchmark functions. In general, the results show that iPSO performed better than (or equal
to) gbest PSO. Figure 1 illustrates results for selected functions. The figure shows that iPSO
generally reached good solutions faster than PSO. Similarly, Table 2 shows that iBBDE
generally outperformed BBDE. Figure 2 illustrates results for selected functions. Thus,
Tables 1 and 2 suggest that using the simple idea of replacing the worst particle is the main
reason for improving the performance of PSO and BBDE. In additon, we can conclude that

www.intechopen.com

Using Opposition-based Learning with Particle Swarm Optimization
and Barebones Differential Evolution

381

opposition-based learning improved the performance of both PSO and BBDE without
requiring any extra parameter.

 PSO iPSO

Sphere 0(0) 0(0)

Rosenbrock
22.191441
(1.741527)

20.645323
(0.426212)

Rotated hyper-
ellipsoid

2.021006
(1.675313)

0.355572
(0.890755)

Rastrigin
48.487584
(14.599249)

27.460845
(11.966896)

Ackley
1.096863
(0.953266)

0(0)

Griewank
0.015806
(0.022757)

0.006163
(0.009966)

Salomon
0.446540
(0.122428)

0.113207
(0.034575)

Table 1. Mean and standard deviation (±SD) of the function optimization results

 BBDE iBBDE

Sphere 0(0) 0(0)

Rosenbrock
25.826400
(0.216660)

25.942146
(0.209437)

Rotated hyper-
ellipsoid

15.409460
(20.873456)

0.905987
(1.199178)

Rastrigin
34.761833
(28.598884)

0(0)

Ackley 0(0) 0(0)

Griewank
0.000329
(0.001800)

0(0)

Salomon
0.166540
(0.047946)

0.149917
(0.050826)

Table 2. Mean and standard deviation (±SD) of the function optimization results

www.intechopen.com

Particle Swarm Optimization

382

Figure 1. Performance Comparison of PSO and iPSO when applied to selected functions

7. Conclusion

Opposition-based learning was used in this chapter to improve the performance of PSO and
BBDE. Two opposition-based variants were proposed (namely, iPSO and iBBDE). The iPSO
and iBBDE algorithms replace the least-fit particle with its anti-particle. The results show
that, in general, iPSO and iBBDE outperformed PSO and BBDE, respectively. In addition,
the results show that using OBL enhances the performance of PSO and BBDE without
requiring additional parameters. The ideas introduced in this chapter could also be used
with any PSO/BBDE variant.
Future research will investigate the effect of noise on the performance of the proposed
approaches. Furthermore, a scalability study will be conducted. Finally, applying the
proposed approaches to real-world problem will be investigated.

www.intechopen.com

Using Opposition-based Learning with Particle Swarm Optimization
and Barebones Differential Evolution

383

Figure 2. Performance Comparison of BBDE and iBBDE when applied to selected functions

8. References

Clerc, M. & Kennedy, J. (2002). The Particle Swarm-Explosion, Stability, and Convergence in
a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation,
Vol. 6, No. 1, pp. 58-73.

Engelbrecht, A. (2005). Fundamentals of Computational Swarm Intelligence, Wiley & Sons.
Han, L. & He, X. (2007). A novel Opposition-based Particle Swarm Optimization for Noisy

Problems. Proceedings of the Third International Conference on Natural Computation,
IEEE Press, Vol. 3, pp. 624 – 629.

www.intechopen.com

Particle Swarm Optimization

384

Kennedy, J. (1999). Small Worlds and Mega-Minds: Effects of Neighborhood Topology on
Particle Swarm Performance. Proceedings of the IEEE Congress on Evolutionary
Computation, Vol. 3, pp. 1931-1938.

Kennedy, J. (2003). Bare Bones Particle Swarms. Proceedings of the IEEE Swarm Intelligence
Symposium, pp. 80-87.

Kennedy, J. & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of the IEEE
International Joint Conference on Neural Networks, pp. 1942-1948.

Kennedy, J. & Mendes, R. (2002). Population Structure and Particle Performance. Proceedings
of the IEEE Congress on Evolutionary Computation, pp. 1671-1676, IEEE Press.

Omran, M., Engelbrecht, A. & Salman, A. (2007). Differential evolution based on particle
swarm optimization. Proceedings of the IEEE Swarm Intelligence Symposium, pp. 112-
119.

Price, K.; Storn, R. & Lampinen, J. (2005). Differential Evolution: A Practical Approach to Global
Optimization, Springer.

Rahnamayan, S.; Tizhoosh, H. & Salama, M. (2008). Opposite-based Differential Evolution.
IEEE Trans. On Evolutionary Computation, Vol. 12, No. 1, pp. 107-125.

Shi, Y. & Eberhart, R. (1998). A Modified Particle Swarm Optimizer. Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 69-73.

Storn, R. & Price, K. (1995). Differential evolution - A Simple and efficient adaptive scheme
for global optimization over continuous spaces. Technical Report TR-95-012,
International Computer Science Institute.

Tizhoosh, H. (2005). Opposition-based Learning: A New Scheme for Machine Intelligence.
Proceedings Int. Conf. Comput. Intell. Modeling Control and Autom, Vol. I, pp. 695-701.

van den Bergh, F. (2002). An Analysis of Particle Swarm Optimizers. PhD thesis, Department
of Computer Science, University of Pretoria, Pretoria, South Africa, 2002.

van den Bergh, F. & Engelbrecht, A. (2006). A Study of Particle Swarm Optimization Particle
Trajectories. Information Sciences, Vol. 176, No. 8, pp. 937-971.

Wang, H.; Liu, Y.; Zeng, S.; Li, H. & Li, C. (2007). Opposition-based Particle Swarm
Algorithm with Cauchy Mutation. Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 4750-4756.

www.intechopen.com

Particle Swarm Optimization

Edited by Aleksandar Lazinica

ISBN 978-953-7619-48-0

Hard cover, 476 pages

Publisher InTech

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the

social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation

techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions

and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such

as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by

following the current optimum particles. This book represents the contributions of the top researchers in this

field and will serve as a valuable tool for professionals in this interdisciplinary field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mahamed G.H. Omran (2009). Using Opposition-based Learning with Particle Swarm Optimization and

Barebones Differential Evolution, Particle Swarm Optimization, Aleksandar Lazinica (Ed.), ISBN: 978-953-

7619-48-0, InTech, Available from:

http://www.intechopen.com/books/particle_swarm_optimization/using_opposition-

based_learning_with_particle_swarm_optimization_and_barebones_differential_evolutio

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

