43,170 research outputs found

    A model-free control strategy for an experimental greenhouse with an application to fault accommodation

    Full text link
    Writing down mathematical models of agricultural greenhouses and regulating them via advanced controllers are challenging tasks since strong perturbations, like meteorological variations, have to be taken into account. This is why we are developing here a new model-free control approach and the corresponding intelligent controllers, where the need of a good model disappears. This setting, which has been introduced quite recently and is easy to implement, is already successful in many engineering domains. Tests on a concrete greenhouse and comparisons with Boolean controllers are reported. They not only demonstrate an excellent climate control, where the reference may be modified in a straightforward way, but also an efficient fault accommodation with respect to the actuators

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning

    Full text link
    The operation of groups of heavy-duty vehicles (HDVs) at a small inter-vehicular distance (known as platoon) allows to lower the overall aerodynamic drag and, therefore, to reduce fuel consumption and greenhouse gas emissions. However, due to the large mass and limited engine power of HDVs, slopes have a significant impact on the feasible and optimal speed profiles that each vehicle can and should follow. Therefore maintaining a short inter-vehicular distance as required by platooning without coordination between vehicles can often result in inefficient or even unfeasible trajectories. In this paper we propose a two-layer control architecture for HDV platooning aimed to safely and fuel-efficiently coordinate the vehicles in the platoon. Here, the layers are responsible for the inclusion of preview information on road topography and the real-time control of the vehicles, respectively. Within this architecture, dynamic programming is used to compute the fuel-optimal speed profile for the entire platoon and a distributed model predictive control framework is developed for the real-time control of the vehicles. The effectiveness of the proposed controller is analyzed by means of simulations of several realistic scenarios that suggest a possible fuel saving of up to 12% for the follower vehicles compared to the use of standard platoon controllers.Comment: 16 pages, 16 figures, submitted to journa

    A Novel Root-Knot Nematode Resistance QTL on Chromosome Vu01 in Cowpea.

    Get PDF
    The root-knot nematode (RKN) species Meloidogyne incognita and M. javanica cause substantial root system damage and suppress yield of susceptible cowpea cultivars. The narrow-based genetic resistance conferred by the Rk gene, present in some commercial cultivars, is not effective against Rk-virulent populations found in several cowpea production areas. The dynamics of virulence within RKN populations require a broadening of the genetic base of resistance in elite cowpea cultivars. As part of this goal, F1 and F2 populations from the cross CB46-Null (susceptible) x FN-2-9-04 (resistant) were phenotyped for M. javanica induced root-galling (RG) and egg-mass production (EM) in controlled growth chamber and greenhouse infection assays. In addition, F[Formula: see text] families of the same cross were phenotyped for RG on field sites infested with Rk-avirulent M. incognita and M. javanica The response of F1 to RG and EM indicated that resistance to RKN in FN-2-9-04 is partially dominant, as supported by the degree of dominance in the F2 and F[Formula: see text] populations. Two QTL associated with both RG and EM resistance were detected on chromosomes Vu01 and Vu04. The QTL on Vu01 was most effective against aggressive M. javanica, whereas both QTL were effective against avirulent M. incognita Allelism tests with CB46 x FN-2-9-04 progeny indicated that these parents share the same RKN resistance locus on Vu04, but the strong, broad-based resistance in FN-2-9-04 is conferred by the additive effect of the novel resistance QTL on Vu01. This novel resistance in FN-2-9-04 is an important resource for broadening RKN resistance in elite cowpea cultivars

    Crop management in greenhouses: adapting the growth conditions to the plant needs or adapting the plant to the growth conditions?

    Get PDF
    Strategies for improving greenhouse crop production should target both developing advanced technological systems and designing improved plants. Based on greenhouse experiments, crop models and biotechnological tools, this paper will discuss the physiology of plant-greenhouse interactions. It is discussed how these interactions can be applied to control the production process at Northern and Mediterranean climatic conditions. Absorption of light by the leaves is important for maximum crop photosynthesis. For this, it is important to have plants that develop as fast as possible a sufficient leaf area index. The question is: what leaf area index is needed for optimal crop performance? Most of the light is absorbed by the upper part of the canopy. Can we improve the light distribution in the canopy and, moreover, does this increases yield or quality? Virtual plant models may help to address this question. In some cases removal of older leaves can improve yield, while in other cases removal of young leaves may accomplish the same objective. In summer time the light transmission of the greenhouse is often reduced by growers to avoid plant stress. However, in several cases this stress is only an indirect effect of light, because other growth factors (e.g. temperature, humidity) tend to be suboptimal. In Northern countries CO2 supply is commonly used. The introduction of semi-closed greenhouses allows to maintain high CO2 concentrations all year round. In Mediterranean countries, a large yield increase is still feasible by CO2 supply. Optimum growth conditions means that there is a good balance among different climate conditions. The source/sink ratio of a crop (ratio between production and demand of assimilates) often reflects whether these conditions are balanced. Variation in the source/sink balance affects formation and abortion of organs, product quality and production fluctuations. Some examples are shown on temperature control based on the source/sink balance of a crop. Drought and salinity may limit production especially in the Mediterranean. Morphological and metabolic traits, with known genetic bases, can be functionally altered to test current hypotheses on plant-environment interactions and eventually design a greenhouse plant. Reasonably, such a plant should have specific shoot vs. root developmental patterns, efficient water and nutrient uptake systems as well as other specific features that have not been sufficiently explored. Elucidation of the complex plant-greenhouse interactions would establish a physiological basis to improve both product quality and resource use efficiency in greenhous
    • …
    corecore