3,214 research outputs found

    TECHNIQUES AND INSTRUMENTATION FOR PHASED ARRAY CALIBRATION

    Get PDF
    Active phased arrays suffer the inherent problem of excitation errors, i.e., incorrect phase and amplitude excitation of the antenna elements. Excitation errors degrade critical performance parameters since they increase sidelobe level and reduce antenna gain and beam pointing accuracy. To ensure the correct operation of the array, it is necessary to quantify and compensate the phase and amplitude errors of each antenna element. The compensation is accomplished by calibrating the phased array radar. Calibration challenges include the quantification and compensation of errors initially, as well as maintenance of the calibration state once the system is fielded. This dissertation presents research on improving the calibration of the active phased array front-end for radar systems. A combination of custom-made instrumentation with initial and in-situ calibration techniques is proposed to calibrate an active array test-bed. The test-bed consists of an 8×\times8 elements C-band array, and was developed in collaboration with NCAR-EOL to provide software and hardware features that enable the proposed calibration schemes. Different calibration techniques were experimentally tested. First, an initial calibration technique for phased array prototypes is proposed. The technique employs a planar NF scanner to sample the excitation of each antenna element, and also to scan the embedded element antenna patterns of the prototype. The novelty of the approach is that it combines the collected excitation data with the scanned embedded elements to allow the prediction of both the co- and cross-polar pattern components of the array. On the other hand, to explore techniques that do not rely on external equipment and use built-in feedback mechanisms instead, mutual coupling-based calibration is reviewed and implemented. Two techniques were tested: an initial type, proposed by Bekers et al., and a proposed in-situ type, conceived specifically for analog architectures, to track errors during fielded operation. It was found that mutual coupling calibration techniques are excellent options for in-situ applications, with a root mean squared error (RMSE) in phase and amplitude of 0.75^\circ and 0.12 dB, respectively. Whereas, for initial type calibration, the tested mutual coupling-based technique yields a RMSE of 2.5^\circ and \geq 1 dB, respectively, which is not accurate enough to replace conventional park and probe for initial calibration of small arrays. Finally, to complement calibration theory, the required calibration instrumentation is reviewed, and more importantly, a novel scanner, designed exclusively for phased array front-end characterization, is introduced

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

    Three Dimensional Positron Annihilation Momentum Spectroscopy of Lithium Tetraborate Crystals

    Get PDF
    Previous endeavors in positron annihilation spectroscopy (PAS) at AFIT have resulted in the design and characterization of a second-generation three-dimensional positron annihilation momentum spectroscopy system (3DPAMSS) which combines two-dimensional angular correlation of annihilation radiation (2D ACAR) and coincident Doppler broadening of annihilation radiation (CDBAR) in order to measure electron momentum distributions in samples and thus characterize material defects. The focus of this particular research is to nondestructively measure negative defects in the crystal lattice of copper-doped, silver-doped, and undoped lithium tetraborate by 3DPAMSS spectroscopy using a Na-22 source and two high-purity germanium (HPGe) position-resolvable strip detectors. Lithium tetraborate is a candidate material for novel neutron detectors and characterizing its crystal structure is necessary to fully understand its properties. Several angular deviation and differential energy features are noted, which are translated to potential electron momentum distribution features and crystal defect characteristics

    Challenges in flexible microsystem manufacturing : fabrication, robotic assembly, control, and packaging.

    Get PDF
    Microsystems have been investigated with renewed interest for the last three decades because of the emerging development of microelectromechanical system (MEMS) technology and the advancement of nanotechnology. The applications of microrobots and distributed sensors have the potential to revolutionize micro and nano manufacturing and have other important health applications for drug delivery and minimal invasive surgery. A class of microrobots studied in this thesis, such as the Solid Articulated Four Axis Microrobot (sAFAM) are driven by MEMS actuators, transmissions, and end-effectors realized by 3-Dimensional MEMS assembly. Another class of microrobots studied here, like those competing in the annual IEEE Mobile Microrobot Challenge event (MMC) are untethered and driven by external fields, such as magnetic fields generated by a focused permanent magnet. A third class of microsystems studied in this thesis includes distributed MEMS pressure sensors for robotic skin applications that are manufactured in the cleanroom and packaged in our lab. In this thesis, we discuss typical challenges associated with the fabrication, robotic assembly and packaging of these microsystems. For sAFAM we discuss challenges arising from pick and place manipulation under microscopic closed-loop control, as well as bonding and attachment of silicon MEMS microparts. For MMC, we discuss challenges arising from cooperative manipulation of microparts that advance the capabilities of magnetic micro-agents. Custom microrobotic hardware configured and demonstrated during this research (such as the NeXus microassembly station) include micro-positioners, microscopes, and controllers driven via LabVIEW. Finally, we also discuss challenges arising in distributed sensor manufacturing. We describe sensor fabrication steps using clean-room techniques on Kapton flexible substrates, and present results of lamination, interconnection and testing of such sensors are presented

    The Virtual Robotics Laboratory

    Full text link

    Desenvolvimento de um sistema automatizado para ensaios mecânicos

    Get PDF
    Nowadays, predict or characterize material's behaviour are arduous tasks which involve performing repetitive tests using different testing machines and sensors (internal, such as load cells, and externals, such as cameras that measure deformations). When performed manually, they result in inaccurate data, due to the repeatability of the process. However, these handling specimen tasks could be performed automatically using traditional robotic manipulators, and creating systems based on automatic mechanical testing. Consequently, the precision of the testing results increases, as well as the automatism of the processes and the test's throughput. Some commercial products are already available on the market, but these options are offered in complete systems and cannot adapt themselves to existing equipment or retrofit systems. In this work, it is created a communication infrastructure between the equipment to be included in the automatic system designed. The whole process is managing the interface communication between devices and, consequently, composing the automatic material testing routine. This requires implementing several changes in the testing machine selected aiming to increase its degree of automation and, consequently, allow further integration in the fully automatic testing procedure. Additionally, a visual perception system is created using a specimen tray randomly positioned on a setup, which includes a camera and robotic manipulator that is automatically operating the traditional specimen handling of testing. The calibration methods are accomplished using ROS framework and the final system achieved operates in automatic mode, handling specimens from the tray prototype (designed for this work) to a fixed position previously taught to the manipulator, which represents the exact feeding position in machine tests.Atualmente, prever ou caracterizar o comportamento dos materiais é uma tarefa demasiado laboriosa que envolve a realização de muitos testes repetitivos utilizando diferentes tipos de máquinas de ensaio, sensores internos (células de carga para medir forças) e externos (câmaras que medem deformações). Estes ensaios, quando executados manualmente por um operador, originam erros de imprecisão devido á repetibilidade do processo. No entanto, estas tarefas podem ser adaptadas a recursos automáticos, tirando partido da fiabilidade dos manipuladores robóticos e, aumentando assim, a precisão e quantidade de ensaios realizados no mesmo espaço de tempo. Algumas soluções comerciais já existem no mercado, porém, estas são oferecidas de forma integral que não permitem facilmente a integração de uma nova estacão (equipamento) ou o uso de uma máquina de ensaios standard mais antiga. Neste trabalho é criada uma estrutura de comunicação entre os equipamentos que permite a interface e, consequentemente, a reprodução automática de um sistema para ensaios mecânicos numa máquina tradicional de carregamento uniaxial. Para tal, um conjunto de alterações numa máquina de ensaios é sugerido visando aumentar o seu grau de automação e, consequentemente, contribuindo para a integração num sistema de ensaios totalmente automático. Adicionalmente, é criado um sistema de perceção visual (com as devidas calibrações em ROS) capaz proceder á manipulação de provetes a partir de um tabuleiro (posicionado aleatoriamente no espaço) e cujas manobras são operadas por um manipulador robótico e respetiva câmara instalados. Como resultado, o sistema executa o manuseamento automático de provetes para uma posição fixa que representa o local de abastecimento das máquinas de ensaios.Mestrado em Engenharia de Automação Industria

    Large volume artefact for calibration of multi-sensor projected fringe systems

    Get PDF
    Fringe projection is a commonly used optical technique for measuring the shapes of objects with dimensions of up to about 1 m across. There are however many instances in the aerospace and automotive industries where it would be desirable to extend the benefits of the technique (e.g., high temporal and spatial sampling rates, non-contacting measurements) to much larger measurement volumes. This thesis describes a process that has been developed to allow the creation of a large global measurement volume from two or more independent shape measurement systems. A new 3-D large volume calibration artefact, together with a hexapod positioning stage, have been designed and manufactured to allow calibration of volumes of up to 3 x 1 x 1 m3. The artefact was built from carbon fibre composite tubes, chrome steel spheres, and mild steel end caps with rare earth rod magnets. The major advantage over other commonly used artefacts is the dimensionally stable relationship between features spanning multiple individual measurement volumes, thereby allowing calibration of several scanners within a global coordinate system, even when they have non-overlapping fields of view. The calibration artefact is modular, providing the scalability needed to address still larger measurement volumes and volumes of different geometries. Both it and the translation stage are easy to transport and to assemble on site. The artefact also provides traceabitity for calibration through independent measurements on a mechanical CMM. The dimensions of the assembled artefact have been found to be consistent with those of the individual tube lengths, demonstrating that gravitational distortion corrections are not needed for the artefact size considered here. Deformations due to thermal and hygral effects have also been experimentally quantified. The thesis describes the complete calibration procedure: large volume calibration artefact design, manufacture and testing; initial estimation of the sensor geometry parameters; processing of the calibration data from manually selected regions-of-interest (ROI) of the artefact features; artefact pose estimation; automated control point selection, and finally bundle adjustment. An accuracy of one part in 17 000 of the global measurement volume diagonal was achieved and verified

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 182, July 1978

    Get PDF
    This bibliography lists 165 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1978

    Design and Development of Sensor Integrated Robotic Hand

    Get PDF
    Most of the automated systems using robots as agents do use few sensors according to the need. However, there are situations where the tasks carried out by the end-effector, or for that matter by the robot hand needs multiple sensors. The hand, to make the best use of these sensors, and behave autonomously, requires a set of appropriate types of sensors which could be integrated in proper manners. The present research work aims at developing a sensor integrated robot hand that can collect information related to the assigned tasks, assimilate there correctly and then do task action as appropriate. The process of development involves selection of sensors of right types and of right specification, locating then at proper places in the hand, checking their functionality individually and calibrating them for the envisaged process. Since the sensors need to be integrated so that they perform in the desired manner collectively, an integration platform is created using NI PXIe-1082. A set of algorithm is developed for achieving the integrated model. The entire process is first modelled and simulated off line for possible modification in order to ensure that all the sensors do contribute towards the autonomy of the hand for desired activity. This work also involves design of a two-fingered gripper. The design is made in such a way that it is capable of carrying out the desired tasks and can accommodate all the sensors within its fold. The developed sensor integrated hand has been put to work and its performance test has been carried out. This hand can be very useful for part assembly work in industries for any shape of part with a limit on the size of the part in mind. The broad aim is to design, model simulate and develop an advanced robotic hand. Sensors for pick up contacts pressure, force, torque, position, surface profile shape using suitable sensing elements in a robot hand are to be introduced. The hand is a complex structure with large number of degrees of freedom and has multiple sensing capabilities apart from the associated sensing assistance from other organs. The present work is envisaged to add multiple sensors to a two-fingered robotic hand having motion capabilities and constraints similar to the human hand. There has been a good amount of research and development in this field during the last two decades a lot remains to be explored and achieved. The objective of the proposed work is to design, simulate and develop a sensor integrated robotic hand. Its potential applications can be proposed for industrial environments and in healthcare field. The industrial applications include electronic assembly tasks, lighter inspection tasks, etc. Application in healthcare could be in the areas of rehabilitation and assistive techniques. The work also aims to establish the requirement of the robotic hand for the target application areas, to identify the suitable kinds and model of sensors that can be integrated on hand control system. Functioning of motors in the robotic hand and integration of appropriate sensors for the desired motion is explained for the control of the various elements of the hand. Additional sensors, capable of collecting external information and information about the object for manipulation is explored. Processes are designed using various software and hardware tools such as mathematical computation MATLAB, OpenCV library and LabVIEW 2013 DAQ system as applicable, validated theoretically and finally implemented to develop an intelligent robotic hand. The multiple smart sensors are installed on a standard six degree-of-freedom industrial robot KAWASAKI RS06L articulated manipulator, with the two-finger pneumatic SHUNK robotic hand or designed prototype and robot control programs are integrated in such a manner that allows easy application of grasping in an industrial pick-and-place operation where the characteristics of the object can vary or are unknown. The effectiveness of the actual recommended structure is usually proven simply by experiments using calibration involving sensors and manipulator. The dissertation concludes with a summary of the contribution and the scope of further work

    User Intent Detection and Control of a Soft Poly-Limb

    Get PDF
    abstract: This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users. This wearable system equips the user with an additional limb made of soft materials that can be controlled to produce complex three-dimensional motion in space, like its biological counterparts with hydrostatic muscles. Similar to the elephant trunk, the SPL is able to manipulate objects using various end effectors, such as suction adhesion or a soft grasper, and can also wrap its entire length around objects for manipulation. User control of the limb is demonstrated using multiple user intent detection modalities. Further, the performance of the SPL studied by testing its capability to interact safely and closely around a user through a spatial mobility test. Finally, the limb’s ability to assist the user is explored through multitasking scenarios and pick and place tests with varying mounting locations of the arm around the user’s body. The results of these assessments demonstrate the SPL’s ability to safely interact with the user while exhibiting promising performance in assisting the user with a wide variety of tasks, in both work and general living scenarios.Dissertation/ThesisMasters Thesis Biomedical Engineering 201
    corecore