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Abstract

Previous endeavors in positron annihilation spectroscopy (PAS) at AFIT have resulted in
the design and characterization of a second-generation three-dimensional positron
annihilation momentum spectroscopy system (3DPAMSS) which combines two-
dimensional angular correlation of annihilation radiation (2D ACAR) and coincident
Doppler broadening of annihilation radiation (CDBAR) in order to measure electron
momentum distributions in samples and thus characterize material defects. The focus of
this particular research is to nondestructively measure negative defects in the crystal
lattice of copper-doped, silver-doped, and undoped lithium tetraborate by 3SDPAMSS
spectroscopy using a Na-22 source and two high-purity germanium (HPGe) position-
resolvable strip detectors. Lithium tetraborate is a candidate material for novel neutron
detectors and characterizing its crystal structure is necessary to fully understand its
properties. Several angular deviation and differential energy features are noted, which are
translated to potential electron momentum distribution features and crystal defect

characteristics.
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THREE DIMENSIONAL POSITRON ANNIHILATION MOMENTUM
SPECTROSCOPY OF LITHIUM TETRABORATE CRYSTALS

. Introduction

1.1 Background and Motivation

The underlying goal of this research is to structurally analyze candidate nuclear
detection materials using simultaneous two-dimensional angular correlation of
annihilation radiation (2-D ACAR) and coincident Doppler broadening of annihilation
radiation (CDBAR). This work will enable materials negative defect analysis and will
complement other characterization methods such as X-ray fluorescence (XRF),
cathodoluminescence, thermoluminescence, and surface Raman spectroscopy.

Analyzing and characterizing the atomic structural defects of materials is of vital
importance to the Air Force and to all materials engineering processes. For materials
which undergo nuclear reactions, the ability to analyze effects of nuclear reactions in
particular nuclear materials preparations efficiently and thoroughly opens new doors for
nuclear safety and surety, material effectiveness, and component reliability. Lithium
tetraborate is a novel candidate material for neutron detection. Its crystal defects in
available preparations must be properly characterized in order to fully understand its
properties and confirm its usefulness as a luminescent neutron detection material [1].

Positron annihilation spectroscopy is an innovative and unique method to
investigate the atomic and electronic structure of materials. With significant modification
it could also be applied to look at millisecond timescale radiation effects. Using both 2-D

ACAR and CDBAR simultaneously is a relatively new way of taking advantage of the



properties of the positron in order to provide more insight into material microstructure. A
practical implementation of this technique was developed at AFIT by Williams and
Burggraf [2],[3].

After the introduction, first previous work is discussed. Then positron theory and
solid-state crystal lattice structure is given some attention. Afterwards, equipment used in
the experiment and the procedure used to mount samples, pump down the chamber, and
collect data are explored. Then, data analysis techniques are covered. Finally, works cited

in this paper are listed and diagrams and code discussed throughout the paper are listed.

1.2 Positron Physics and Chemistry

The positron (e*) is the antiparticle of the electron (¢7) and the two annihilate
when they come together. The positron is an exotic particle, not commonly found in
nature because of its short lifetime, which is created during positive beta decay. The
positron is antimatter, the antithesis of the electron (the antielectron) which, in pair
production, is formed with an electron from a gamma having energy greater than their
summed rest masses. The positron is equal in mass to the electron (511 keV), but
opposite in charge (positive rather than negative). When annihilation occurs, an electron
and positron vanish usually forming two oppositely directed 511 keV photons. A single
detector will show the presence of a 511 keV gamma photon, half of the mass energy of
the electron-positron pair prior to annihilation.

In positron annihilation, two particles having mass are converted into gamma
photons, which have energy and momentum, but no mass. Normally, two gamma

particles are ejected in opposite directions (180 degrees from each other in the center of



mass reference frame) in order to conserve angular momentum, although there is a very
small probability that three gammas are emitted (annihilation into three gammas is less
than 1% of the two-gamma rate [4]).

The bound state of a positron and electron is called a positronium (Ps) atom,
which has two ground states: orthopositronium, in which the particle spins are parallel,
having an average lifetime of 140 ns; and parapositronium, in which the particle spins are
antiparallel, having an average lifetime of 120 ps. As a positron travels in matter, it
undergoes scattering events which cause it to lose energy until it finally thermalizes,
diffuses, localizes around an atom or lattice site, and eventually it annihilates with an
electron near that location. Because of the positive charge of a positron, when it enters a
crystal lattice site it tends to localize in areas with lower positive charge density such as a
vacancy or void — areas where nuclei are not present. For this reason, positrons are used
for investigating negative defects in materials. Figure 1 depicts how the positron behaves

as it enters a crystal lattice.

Thermalization of positron upon entering the solid

$_.000000
. 000 00)0:...
" 000000
Tt Q02000
w2 000000

Trapping of positron in vacancy defects

Figure 1: Behavior of the positron as it enters a crystal lattice. Positrons tend to become
trapped at vacancy defects. Reproduced with permission from [5].



Upon encountering the surface of a solid, the positron may backscatter. If not,
implantation occurs, after which the positron quickly thermalizes by conduction
electron scattering, including plasmon and electron-hole pair excitations, and finally by
phonon scattering. The time scale for thermalization is roughly 10 ps [6]. Since the
probability of annihilation is small unless the velocity of the positron relative to that of
the electrons is low, the positron may penetrate somewhat deeply: typical implantation
depths range from a few Angstroms to a few microns. The positrons then diffuse
through the crystal lattice; typical diffusion lengths in relatively defect-free materials
are on the order of 1000 Angstroms [6]. During diffusion the positrons may undergo
free annihilation (~100 ps), or encounter an open-volume defect in which trapping and
subsequent annihilation (~200-400 ps) may occur. When defects are present, the
positron lifetime tends to increase and the diffusion length tends to decrease as

compared to a defect-free sample [6].

1.3 Sources of Positrons

The majority of beta decays which occur in nature are negative, meaning they
generate a B~ particle, an energetic electron. Reactions which involve positive beta decay
are less common, but they do occur, typically in isotopes resulting from proton
irradiation. Figure 2 below lists the more common reactions which generate a B* particle,
an energetic positron. In addition to a positron, positive beta decay generates a neutrino

as well (negative beta decay generates an antineutrino).



1. p+ 1B =11IC +n(Er=2.76 MeV)
1C = 1B + ¢* (112 = 20 min.)

2. p+13C= BN+n(Er=3McV)
BN = 13C + ¢t (12 = 10 min.)

3. p+ 15N = 150 + n (E1 = 3.53 McV)
150 = I5N + ¢* (¢} = 2.03 min.)

4, p+ 170 = 17F + n (E1 = 3.55 MeV)
ITF = 17Q + ¢t (119 = 66 sec.)

5. p + 180 = I8F + n (E1 = 2.45 MeV)
18F=> 180 +et (‘I:];g =1.87 hr.)

6. p+ I9F = Ne + n (ET=4.03 MeV)
9Ne = 19F + ¢t (1172 = 18 sec.)

7 p +26Mg = 26A1 + n (ET = 5.01 MeV)
20A] = 26Mg + e* (11,2 = 6.5 sec.)

8. p+22N = 22Na +n
22Na = 22Ne + et (11 = 2.6 years.)

Figure 2: List of typical reactions in nature in which positive beta particles
are emitted. Reproduced with permission from [7].

Reaction number eight in Figure 2 above shows that **Na (sodium-22) naturally
beta decays with a characteristic positron, with a half-life of 2.6 years. This radioactive
isotope is a very common source for positrons in a laboratory environment. Figure 3

below outlines the specific decay mechanism of the ’Na isotope.
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Figure 3: Radioactive decay of ?Na. Reproduced with permission from [8].

22Na undergoes positive beta decay, ejecting a positron which has a rest mass-energy of
511 keV, and a neutrino. The maximum overall energy of reaction is 546 keV. Very
quickly after this positive beta emission (3.7 picoseconds) gamma of energy 1.275 MeV
is emitted 99.9% of the time (0.1 % of the time 2Na decays directly to ?Ne without
converting to an excited state, and the 1.275 MeV gamma is not emitted). Because of the
closeness in time in which these two particles are emitted, the 1.275 MeV gamma is
referred to as the ‘birth’ gamma, detection of which signifies the birth of the positron. A
typical gamma detector spectrum of *Na will show a large characteristic peak at

511 keV, which represents the annihilation gammas being produced. Positrons do not
travel very far in air (most are absorbed in less than a meter) before annihilating with an
electron and producing annihilation gamma photons. A second peak will also be present
at 1.275 MeV, representing the birth gamma. At energies lower than 511 keV the

spectrum will show a Compton continuum along with a characteristic Compton edge.

1.4 Positron Annihilation Spectroscopy

Positron annihilation spectroscopy (PAS) is an investigative microscopic

analytical technique which provides information about a material’s crystal lattice



structure. PAS employs the detection of gamma radiation emitted following annihilation
of slow (thermalized) positrons in sample materials. The spatial and energy distributions
of this gamma radiation provide information about the sample material’s structure and
bulk properties [9]. Negative crystal lattice defects can be effectively studied in a sample
solid material using PAS.

The most basic of PAS techniques, lifetime spectroscopy, is a PAS technique
which utilizes the variation in positron lifetime within a material to provide information
about the material’s electron density throughout its bulk. PAS techniques used to measure
the electron-positron (e” - ") pair’s momentum prior to annihilation have been well-
documented in literature, with the most common being ACAR and DBAR. In momentum
PAS, the angular deviation and energy differential spectral patterns produced from
annihilation radiation provide information about electron momentum distributions and
the chemical environment of a material’s crystal lattice, which in turn provides
information about the material’s microscopic structure. Momentum PAS techniques yield
more information about the chemical environment (e.g., chemical bonds, lattice structure
and defects, electron shell structure and interaction, and potentially oxidation state) of a
substance than do lifetime techniques, which simply yield information on electron
density. In general with PAS, positrons tend to annihilate more readily with electrons in
the outer shells of the atoms of a lattice (e.g. valence electrons) and have a lower
probability to penetrate down into the inner shells of lattice atoms (e.g. core electrons).
Valence electrons will have less overall momentum than core electrons: core electrons

will cause larger deviations in ACAR and DBAR spectra than valence electrons.



1.4.1 Lifetime Spectroscopy

Positron annihilation lifetime spectroscopy (PALS) is a method in which one
analyzes the lifetime of positrons interacting inside materials. The positron lifetime t at a
particular annihilation site is determined by the local electron density. The positron
lifetime will be longer in regions of a material where electron density is lower and shorter
where electron density is higher. The positron has a higher probability to encounter an
electron in areas of higher electron density, and will have a higher tendency to annihilate
more quickly in such areas. The inverse of lifetime, the annihilation rate A, is directly
proportional to site electron density. The birth of the positron in ?Na is accompanied by
simultaneous emission of a 1.275 MeV gamma particle, which serves as the birth signal
for lifetime measurements. The death signal is the 511 keV gamma which comes from
positron annihilation. The difference between these two timing measurements yields the
lifetime of the positron. Although some recent advancements have been made in the areas
of position-sensitive lifetime spectroscopy, lifetime spectroscopy is not applied in this
work, only momentum techniques are employed.

1.4.2 Angular Correlation of Annihilation Radiation

A momentum PAS technique, angular correlation of annihilation radiation
(ACAR) measures the angular deviation between annihilation gamma photons. The
purpose of ACAR is to understand thermalization and momentum transfer of positrons
and positronium (Ps) in matter. The main application of ACAR is the study of the
electron structure of the bulk solid. In the center-of-mass (COM) frame of reference of
the positron and electron pair, the gammas created from annihilation leave the site of

annihilation with identical energy and in opposite direction. However, in the lab frame,



this is not the case: the expected 180-degree emission angle between the two gammas is
slightly deviated. Because of the relativistic transformation from the COM frame into the
lab frame, 8, # 6, (where 6,and 6,are the angles of each emitted gamma with respect to
a common reference axis). Measurement of the deviation from colinearity yields
information about the momentum of the annihilating electron-positron pair prior to
annihilation (particularly its momentum in the direction transverse to y emission). From
this angular deviation measurement, knowledge of the structural properties of the sample
material in which the annihilation occurred can be inferred. The total momentum of the
electron-positron pair can be assumed to be simply that of the electron, since the
momentum of the positron is very low in comparison to that of the electron (after the
positron thermalizes to 0.2-0.3 eV; a valence electron would have a binding energy on the
order of 10s of eV and this would increase to 100s of eV closer to the core). The
momentum of the positron can be largely ignored. Equation 1 shows how the angular
deviation relates to electron momentum in the direction perpendicular to gamma

emission:

_b
Ao= mc (1)

Where:
A6 = Angular deviation between annihilation gammas
p. = Electron momentum perpendicular to gamma emission
m = Mass of an electron (9.11 x 10°*! kg)
c = Speed of light (3 x10° m/s)



One-dimensional (1D) ACAR makes use of two detectors and attenuating blocks
with slits (‘long slit geometry’ [9]) in them to allow annihilation gammas to interact only
in one dimension. One detector setup is held stationary while the second setup is rotated
around the axis centered at the sample. This provides angular correlation in one
dimension.

Two-dimensional (2D) ACAR requires the use of two position-sensitive detectors
such as an array of discrete scintillator-photomultiplier tube (PMT) detectors, multiwire
proportional counters, position-sensitive phototubes, or Anger cameras [9]. The
interaction of a gamma with the scintillator causes light to be produced which is
subsequently detected and amplified by the PMT. The spatial location of events is
determined by the electronics and software of the system [9]. 2D ACAR results in a two-
dimensional measurement of the electron momentum distribution in the plane
perpendicular to propagation of the annihilation gammas. The results from each detector
are combined in order to correlate them.

1.4.3 Doppler Broadening of Annihilation Radiation

Doppler broadening of annihilation radiation (DBAR) is a momentum PAS
technique which measures the difference in energy between annihilation gamma photons.
DBAR involves accounting for energy resolution of full-energy events in positron
annihilation spectra. The broadening of the full-energy peak yields information on the
momentum of the electron-positron pair just prior to annihilation (again, assumed to be
simply the momentum of the electron) and subsequently information about the electron
momentum distribution within the sample. In the center-of-mass (COM) frame of

reference of the electron-positron pair, the gammas created from annihilation leave the
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site of annihilation with identical energy. However, in the laboratory frame, this is not the
case. Instead of having each gamma at 511 keV, one is detected at an energy slightly
higher than 511 keV and the other slightly lower. The shift in energy detected, AE,,, is a
result of the initial electron momentum in the laboratory reference frame. Doppler
broadening results from the bunching up of the gamma photons (when treated as waves)
in one direction and the spreading out of these in the other direction. The peak about 511
keV will be broadened in the spectrum as a result. Equation 2 demonstrates how the
difference in energy relates to electron momentum in the direction parallel to gamma

emission:

AE =P )

Where:
AE = Shift in energy of 511 keV line
¢ = Speed of light (3 x 10° m/s)
P = Electron momentum parallel to gamma emission

DBAR can be performed using either one detector or two, since all that is
required is information about the width of the full-energy peak. Two-detector DBAR is
much more accurate than is one-detector: if a second Ge detector is employed an
improvement of two or more orders of magnitude in background reduction is possible [9].
In addition to a reduction in background, the resolution is greatly improved. Application
of the coincidence DBAR (CDBAR) technique yields a one-dimensional measurement of

the e-e* momentum prior to annihilation in a direction parallel to gamma propagation.
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Using two detectors this can be done simultaneously to detect only events occurring in

coincidence.

1.5 Solid State Materials

1.5.1 Crystal Lattice Structure and Defects

An ideal crystalline solid contains atoms which “are tightly bound to one another
in a regular periodic lattice by very strong attractive forces [10].” Neighboring atoms are
close enough together that their external electron distributions overlap and interact. The
atoms are essentially in contact with one another. The density of such matter is very high
compared to that of gaseous matter, as an example. Such condensed matter brings with it
its own set of physical considerations. In single crystal materials, the crystal is grown
with a repeating lattice pattern from a seed to a maximum extent beyond which the
crystal could break, cleave, or become polycrystalline.

Many solids do not conform to the ideal model, however. “Lattice imperfections
such as lattice vacancies and extra interstitial atoms may be present, along with other
defects in the regular periodic structure of the crystal [10].” These microscopic lattice
defects can affect the various macroscopic properties of the overall crystal, such as its
mechanical, optical, thermal, electrical, and magnetic properties. Figure 4 demonstrates
several of the possible crystal lattice defects that may be present in a solid-state material.
Because of their positive charge, positrons tend to migrate towards the negative defects
listed in green—voids and vacancies, which are areas absent of electropositive nuclei

(and also areas of decreased electron density). Positrons can become trapped in such
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negative defects, meaning that they would live longer in these areas and annihilation

photons would have a higher tendency to originate from electrons around these areas.
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Figure 4: Survey of various crystal lattice defects. Positrons tend towards the negative defects
listed in green. Reproduced with permission from [11].

1.5.2 X-ray Irradiation Effects on Crystal Lattice Structure

The crystal lattice structure of a substance may already have defects present.
However, introducing various forms of radiation into the substance can create further
defects, e.g. by exciting electrons or dislodging atoms.

X-rays are a short-wavelength form of electromagnetic radiation. X-ray radiation
is lightly ionizing, highly penetrating, and leaves no activity in the material irradiated

[12]. X-ray photons do not directly cause impurities in a crystal lattice. However, they
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can “indirectly cause impurity production through chemical bond breakage [13]” which
results from excitation of electrons within the atoms of the substance. X-ray photons

ionize indirectly, and may cause rare atom displacements via the Compton Effect.

1.6 Lithium Tetraborate (LTB)

Lithium tetraborate (Li,B4O7, known as LTB) is a material which appears as a
cloudy, glass-like, solid-state, crystalline substance. LTB has a relatively high
conductivity and occurs as white hydroscopic monoclinic crystals. LTB is of interest in
that it has the potential to be a novel neutron detection material [1]. LTB is a borated salt.
Boron occurs naturally with 20% *°B and 80% 'B. Because of the high cross-section of
198 for capturing neutrons, having large natural-abundance boron content produces
neutron sensitivity. Characterizing this material will help determine its usefulness as a
state-of-the-art neutron detector.

LTB doped with an optically active element (e.g. Ag, Cu) could be used as
scintillation material, which is useful for radiation detection. It is also a candidate for
high-sensitivity thermoluminescence dosimetry applications. Figure 5 shows a diagram of
the basic structural component of the crystal lattice of LTB, and Figure 6 shows how this

basic unit is repeated across the entire lattice.
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Figure 5: Basic structural component of the Li,B,O- crystal lattice (left) and a unit cell of

Figure 6: Four (B,Oo)" units comprising the LTB crystal lattice. Left image is when
viewed along the c axis and right image is when viewed along the b axis [14].

Figure 7 below shows an image of a sample of LTB.

Figure 7: Lithium tetraborate sample demonstrating its physical characteristics.
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There are large numbers of lithium and compensating oxygen vacancies in the pure LTB
crystals [1]. Positrons should localize in the region of the lithium vacancy and on
adjacent oxygen atoms in pure LTB. Cu and Ag dopants are near enough to polarize the
positron distribution, so that higher angular momenta ACAR features are expected versus
the virgin crystal. Cu and Ag dopants will change the layout of the lithium, boron, and
oxygen atoms in the crystal lattice of LTB, thus affecting its properties. These dopants
can create defects otherwise not present in the virgin material and have the potential to
create defects that are easily observed using PAS. The ability to distinguish between
various dopants and a virgin sample has great potential.

1.6.1 Copper-doped Lithium Tetraborate

Copper-doped LTB is prepared by doping regular LTB with relatively low levels
of Cu in order to create Cu impurities within the crystal structure. The Cu doping can
cause LTB to acquire properties desirable of a scintillating material. Cu is significantly
higher Z in atomic number than any of the constituents of LTB (Li, B, or O), meaning
that ACAR and DBAR spectra measured from this sample should show some higher
momentum features versus the undoped sample, although the low doping levels means
that the Cu is present in widely dispersed, low concentrations. Higher Z elements contain
electrons with higher momentum towards the core of the atom than do lower Z elements.

Known defects in Cu:LTB include the following: Cu?*-Active and Cu?*-V,; that
both trap holes (3d° charge states); electron centers that are Cu(0) (3d*° 4s®) charge states,
which are believed to be interstitial copper ions; and Cu?*-Active and the Cu(0), which

are both X-ray radiation induced defects [14]. Corradi et al. characterized the Cu**
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trapped hole center by performing a complete angular dependence study [15]. The hole
center was modeled as an S = 1/2 hole trapped on a Cu ion substituting for a Li ion and
stabilized by a neighboring Li vacancy, thus creating a Cu®* hole center, referred to as the
Cu**-V/;hole center. This seems to be an interesting trap for function of the copper-
doped LTB material as a neutron detector. The Cu?*-V; hole center is always present—
X-rays are not required to populate it. Performing electron paramagnetic resonance (EPR)
on the material yields a signal of significant magnitude from the Cu®*-V/|; hole center
without X-ray exposure.

PAS is not likely sufficient to detect Cu?*-Active and Cu(0) defects. Because the
positron is attracted to negative or dipolar sites, the Cu?*-V,; defect is anticipated to be
detected by PAS in Cu:LTB. Therefore, PAS may provide complementary information to
EPR in order to analyze defects relevant to effectiveness of preparations of Cu:LTB for
neutron detection.

1.6.2 Silver-doped Lithium Tetraborate

As with Cu:LTB, doping the LTB crystal during its growth with relatively low
levels of Ag introduces impurities in the crystal lattice. These substitutions and vacancies
cause the properties of the LTB to be altered. Silver-doped LTB has been characterized
using other investigative methods (EPR and ENDOR [14], etc.) and also promises to be a
good candidate for behaving as a scintillating detector. Again, the Ag is significantly
higher Z than Li, B, and O, meaning it should produce higher electron momentum
features in ACAR and DBAR, although the low doping levels once again mean the Ag is

widely dispersed in low concentrations.
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The Ag:LTB crystal used in this experiment was grown by the Czochralski
technique at the Institute of Physical Optics (L'viv, Ukraine), where silver was an as-
grown ingredient, meaning that it was not diffused after crystal growth [16]. The crystal
contains both interstitial Ag” ions and Ag” ions substituting for Li* ions. A particular
defect of interest is the silver electron center that appears in EPR spectra centered at 338
mT. One interesting quality is that there are no Ag®* centers prior to x-ray irradiation
[14], so therefore irradiated Ag:LTB may be more interesting to investigate first as
opposed to annealed. The silver ion can act as both an electron and hole trap. The silver
electron center is paired with the silver hole center. Positrons entering the lattice will

most likely be attracted to the Ag when it is acting as a hole trap.
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Il. Literature Review

2.1 Previous research at AFIT

2.1.1 2D Momentum Distributions and Feshbach Resonances

Two-dimensional momenta measurements were successfully demonstrated along
with initial investigation into detection of Feshbach resonances [17] by Maj. Paul
Adamson. Feshbach resonances are bound states which occur when the coupling between
an internal degree of freedom and reaction coordinates goes away. This coupling can lead
to dissociation of the chemical bond. The opposite of a Feshbach resonance is a shape
resonance. Future endeavors in this work will build upon these findings. The
incorporation of a low-energy positron beam system made by First Point Scientific, Inc.
and setup and characterized by Capt. Stephen Jimenez [18] will help while investigating
these phenomena by greatly reducing experiment times.

2.1.2 3D Positron Annihilation Momentum Measurements (3DPAMMS) of 6H

SiC

Lt. Col. Christopher Williams used PAS to measure 3-D momenta of the ground
electronic states in crystalline 6H SiC before and after irradiation with 24 MeV O** ions
to implant oxygen atoms in the lattice. 2-D ACAR and coincidence DBAR spectra were
measured and analyzed. A novel technique was illustrated for analyzing 3D momentum
datasets in which the parallel momentum component, p (obtained from the coincidence
DBAR measurement) was selected for annihilation events that possess a particular
perpendicular momentum component, pl, observed in the 2D ACAR spectrum. Figure 8
shows the 2-D ACAR Spectrum for O-ion irradiated 6H SiC from Williams [2], [3]. This

shows the correlation of annihilation radiation momentum in two dimensions. The four
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noticeable features represent Si-C bonds in the crystal lattice. The O-ion implantation
affected the direction of the momentum significantly.

Figure 9 shows CDBAR results for O-ion irradiated 6H SiC from Williams [2],
[3]. This shows the Doppler broadened momentum lineshape and the 3D momentum
lineshape, which is the lineshape which results from constraining the momentum using

the 2D ACAR spectral features.
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Figure 8: 2-D ACAR Spectrum for O-ion irradiated 6H SiC from Williams [2],
[3]. This shows the correlation of annihilation radiation momentum in two
dimensions.
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Figure 9: Coincidence DBAR (CDBAR) Results for O-ion irradiated 6H SiC from
Williams [2], [3]. This shows the 3D momentum lineshape and Doppler broadened
momentum lineshape.

2.1.3 3D Positron Annihilation Spectroscopy System (3DPASS)

Design and characterization of the 3DPASS, a unique PAS system based on the
novel technique developed by Lt. Col. Christopher Williams, using a low energy positron
beam (<50 eV) was accomplished by Capt. Stephen Jimenez [18]. The components of the
beam system were designed, assembled, and characterized and but connection with the
test chamber was not completed for use to test materials. A low-activity ’Na source was
used inside the test chamber (instead of the positron beam) to calibrate and characterize
the system using virgin copper as a sample material. Virgin copper is a standard sample
for aligning, testing, and characterizing momentum PAS systems because its ACAR and

DBAR spectral features are well-known. This characterization and calibration
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demonstrated the ability of the system to perform accurate measurements and prepared it
for experimentation with additional samples.

2.1.4 EPR and ENDOR Studies of Point Defects in Lithium Tetraborate

Maj. Douglas Buchanan successfully identified several important point defects in
various samples of virgin and transition metal-doped LTB using electron paramagnetic
resonance (EPR), a spectroscopy technique for measuring materials with unpaired
electrons, and electron-nuclear double resonance (ENDOR), a method described as EPR-
detected nuclear magnetic resonance (NMR) which makes use of electron-nuclear
hyperfine couplings [14]. The defects identified are useful in characterizing the structure
and behavior of LTB, especially when it is doped with materials which add scintillating

properties. The defects identified are used as a starting point for this work.

2.2 Positron work done at other institutions

Although not an overly common research topic in the field of nuclear science,
work with positrons is slowly gaining more attention throughout the community. Much of
the work in this field was performed several decades ago, with several materials being
adequately characterized by means of PAS. However, work in this field became
somewhat less common once the limits of technology seemed to be reached. More
recently, advancements in detector technology along with the improved ability to
interpret ACAR and DBAR results concurrently with results from other measurement
techniques have allowed scientists the ability to revisit momentum PAS techniques. Work
done by researchers such as A.C. Kruseman [19], investigating specific materials with

defects while using some of the newer technology available to perform both ACAR and

22



DBAR calculations, has laid a good foundation for positron science. The work done by
A. Baranowski et al. to design and characterize a new system for Doppler-broadened
spectroscopy [20] showed the use of two-detector DBAR which reduced the background
and allowed an energy resolution of 1.1 keV. Work designing, fabricating, and using a
low-energy positron beam and trap to control positrons for use in PAS studies was
accomplished by R. Greaves and C. Surko [21],[22]. The positron beam present at AFIT
is modeled after this work. The foundations of the ideas used in the 3DPASS was based
off of much of this previous work, with it being used as a springboard into trying novel

techniques to make use of positrons as a means of characterizing materials.
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I1l. Experimental Equipment

3.1 Double-Sided Strip Detectors (DSSDs)

The system incorporates two large high-purity germanium double-sided strip
detectors (HPGe DSSDs). They are identified as Detector 0 and Detector 1. These
detectors each have individual HPGe strips laid next to each other such that one face has
16 strips aligned vertically (AC side) and the other face has 16 strips aligned horizontally
(DC side), creating a 16 x 16 matrix for spatially resolvable radiation detection of gamma
particles. The names AC and DC are simply a naming convention. Figure 10 shows a

picture of the DSSD, as mounted on a specially-designed translatable stage.

Figure 10: Picture of one of the Double-Sided Strip Detectors (DSSDs), made by
PhDs Co., showing mechanical cooling system, translatable stage, and channel
connections.
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Two rubber padding sheets, each 1/8-in thick, were cut to size and inserted in
between the DSSD and the stage on which it was mounted in order to attempt a reduction
in vibrations throughout the detector through dampening. These vibrations degrade the
minimum-achievable resolution of the crystals. Several lead bricks were placed in various
locations around the stage as an attempt to help in dampening vibrations and reducing
some of the radiation background.

For the DSSD, a larger detection matrix is actually present when subpixel
interpolation is taken into account—for example, with 5 substrips per pixel, this would
make an 80 x 80 matrix, useful for accurate determination of spatial charge deposition.
The HPGe crystal provides the capability of achieving the energy resolution sufficient for
CDBAR measurements (1.6 keV FWHM resolution), and the DSSD design takes
advantage of subpixel interpolation methods which provide the spatial resolution required
for 2D-ACAR and combined 3D-PAMMs.

3.1.1 DSSD Efficiency Calculations

Knowledge of the efficiency of each pixel and subpixel is necessary for proper
characterization of the DSSDs and for properly interpreting data collected by them. For
ACAR calculations, the subpixel efficiency directly affects the ability to spatially resolve
locations of radiation events on the face of the detector, which affects the ability to detect
small spatial variations necessary for an accurate ACAR spectrum. Figure 11 shows the
original efficiency matrix of the DSSD as calculated by Williams et al. [3]. This map
represents the long-term behavior of the DSSD. Clearly the most efficient part of each
intrinsic pixel is its center. In other words, the subpixels located in the center of each

pixel are more efficient at detecting incident radiation than the outer subpixels, because

25



of gaps in between strips on both the AC and DC sides. The strips themselves are 4.75
mm wide, and there is 0.25 mm of gap space in between each strip. A relative or
normalized matrix can be developed which records the ability of each subpixel to detect
radiation relative to the center subpixels, which can then be used to correct datasets for

this decreased ability of outer subpixels to detect radiation as efficiently.
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Figure 11: Original Efficiency Matrix of the DSSD as calculated by Williams [3].
Blue indicates low efficiency and red high efficiency.

Using a Mathematica code written by Maj. Angelo Bonavita, which is listed in
Appendix C, new subpixel efficiency calculations were performed for the DSSDs. A %Sr
source, which produces a 514 keV gamma very close to the desired 511 keV annihilation
gamma, was placed 18 inches from each detector face for a period of eight hours per
detector. After importing subpixel data already filtered for 2-strip simultaneous
occurrence and for energy (514 £10 keV) in the Matlab parser, this Mathematica code

bins the data into a matrix of pixels and then a matrix of subpixels. It then calculates the
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mean efficiency and resolution across the detector with associated standard deviations.
The extreme outer pixels have artifacts because of the lack of sufficient adjacent transient
charge for subpixel interpolation on the outer edges, and therefore these can be discarded
to give a more accurate result. Figure 12 below shows the contour mapping of counts
detected across each detector in this experiment. The highest contours appear in the
center of the pixels, which are 300 counts and higher. The contours decrease by 100
counts for each contour while moving away from the pixel centers. This map makes use
of the subpixel data and the axes are labeled by subpixel location, making use of a 5x5
subpixel matrix within each pixel. The subpixel efficiency is clearly not uniform over the
entire detector face for this dataset, although the general tendency is that each pixel
appears to have the highest efficiency in or near the center. These maps would tend
towards the calculated average efficiency matrix if the source was left for longer time
periods (on the order of days). However, because of the shortened nature of this dataset a
large relative error is introduced between pixels. The total number of counts in Detector O
was 492,586 with 2786 the maximum in any one pixel; for Detector 1 the total was

483,695 with 2441 the maximum in any one pixel.
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Figure 12: Subpixel mapping of counts detected using a 5x5 subpixel matrix in each pixel for each detector.
Deep purple represents zero counts, and the contour value increases by 100 counts for each time the color
gets brighter. The maximum contour in the center of some of the pixels is a 300 count contour line.
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Figure 13: Subpixel efficiency contour plot for each detector, reported as percent values. Horizontal and
vertical axes are labeled by pixel number.
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Figure 13 shows a contour plot of efficiency values for the two detectors using the
same subpixel data from the Sr-85 8-hour runs. These values, labeled by pixel location,
are expressed as the percent of particles detected in each location versus the number of
particles incident upon that location (intrinsic efficiency). Clearly, the overall efficiency
of these detectors is relatively low because of the nature of germanium and relatively
small thickness (~1 cm) of the sensitive area of the detector. However, their ability to
spatially resolve in an efficient manner is invaluable for ACAR. Specifically, for Detector
0 the average efficiency across the entire detector face is 0.670 £ 0.309%. The average
efficiency with data from the outer two strips of each direction removed (such that strips
1,2, 15, and 16 are removed from both the AC and DC sides for a ‘dense’ efficiency to
correct for spurious data on the edges which results from the subpixel interpolation) is
0.847 = 0.042%. For Detector 1, the average efficiency across the entire face was 0.665 +
0.284% and the ‘dense’ average efficiency, calculated as above, was 0.809 + 0.023%.
Therefore, the efficiency appears to be essentially the same (uniform), within counting
error, across the central pixels in each detector.

3.1.2 DSSD Resolution Calculations

Investigating the subpixel resolution across the face of each detector is important
for knowing about both the capabilities and potential issues of the detectors. Specifically,
for DBAR, the ability for the detector to distinguish between energy peaks which are
very close together is vital. Again using the Mathematica code written by Maj. Angelo
Bonavita (Appendix C), subpixel resolution calculations for the DSSDs were performed.

Figure 14 demonstrates a contour plot of resolution values expressed as full-width at half-
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maximum (FWHM) in keV for each detector, also calculated using the subpixel data

acquired during the 8-hr runs with the Sr-85 source.

Detector 0 Reso]uﬂon as FWHM [keV]
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Figure 14: Resolution contour plot for each detector, reported as FWHM in keV. Horizontal and vertical
axes are labeled by pixel number.

The resolution values reported for detector 1 are fairly uniform, although being

somewhat larger than what is expected for this type of detector. Alternatively, there is a

noticeable spike in the resolution values for several of the AC (vertical) strips on Detector

0 where the resolution is degraded as compared with the rest of the detector. This

degradation in resolution capability could be indicative of a few of the AC strips being

faulty or improperly connected, but is more likely due to the vibrational coupling of the

strips with the mechanical cooling motor. This decrease in resolution for Detector 0 will

negatively affect the results of the experiment, particularly for DBAR calculations. The

average FWHM across all of Detector 0 was 1.631 + 0.615 keV and the average across

the ‘dense’ detector face with 2 outer strips removed on all four sides was 1.827 + 0.252
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keV, somewhat higher. For Detector 1, the average FWHM across all strips was 1.643 +
0.540 keV and across the ‘dense’ face was 1.769 & 0.088 keV. Therefore, the average

resolution across the detectors was largely the same between the two detectors.

3.2 Electronics

A novel electronics package called Spect72 is used which provides for accurate
and timely digital data gathering all in one convenient, low-footprint unit. The Spect72
interface box contains all necessary electronics for data gathering. It has the ability to
receive 72 separate input signals. Its built-in digital electronics convert analog to digital
in order to provide for spectral analysis. The associated Imager software allows for
efficient data analysis with the ability to test and monitor each strip and to save multiple
data types for each strip from each run. There is an autocalibrate feature for easy
calibration of energy peaks. Figure 15 below shows a picture of the Spect72 with all 64

detector channels connected. The highest 8 channels of the Spect72 are unused.
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Figure 15: Spect72 digital data acquisition system.

The Spect72 has a motherboard with nine daughter boards. The inputs from each
of the 72 separate input channels are distributed evenly across the daughter boards (8
channels per daughter board). Each daughter board has a 12-bit analog-to-digital
converter (ADC) and two field-programmable gate arrays (FPGAS). The motherboard has
a 20 ns clock cycle, meaning that the shortest measureable timing window between
events in multiple strips is 20 ns.

The DSSDs themselves contain preamplifiers which condition the waveforms
from the strips before they are amplified and sent to the Spect72. Separate power
controller boxes are used to turn the preamp power on and off, control the high voltage
(HV) bias, and other settings on the DSSDs. The HV bias setting used in this work was
-600 V for each detector, a negative voltage bias. The preamp power must be energized

prior to HV being applied.
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3.3 Vacuum System

3.3.1 Vacuum Chamber

The vacuum chamber used in this experiment is a medium-sized chamber made
from stainless steel by MDC Corporation. Air is evacuated from the chamber in order to
reduce contamination in the signal from annihilations occurring with the air. This is
important since there is about a 0.5 cm gap in between the source and the sample. This
gap is necessary because of the requirement to shield the source and not the sample from
the detectors. In its current configuration, it is able to pump down to around 5 x 10 Torr
and maintain that pressure indefinitely with the vacuum pump in continuous operation.
Falling in the high-vacuum (HV) range, this pressure is the highest vacuum achievable
for this setup because of some of the bolts and nuts being old, stripped, and/or overused,
the presence of a rubber gasket in the flange where the manipulator controls are
connected; the use of large quantities of lead inside the chamber which outgases and
contaminates chamber surfaces easily; and a lack of enough bolts to completely fill every
single flange hole when sealing the chamber. When these problems are corrected or
alleviated the chamber could achieve a lower pressure, which will be necessary for beam
use. The beam section will be at around 10 Torr or lower, and this difference in multiple
orders of magnitude would make beam operation impossible.

The target chamber contains multiple openings of different sizes designed to
provide access points for experimental processes, measuring and monitoring equipment,
and internal access. The two main openings, which are sealed by custom-made 8-in. steel
conflat flanges during normal operation, are located with their centers along the detector

axis of the setup on opposite sides of the chamber. These circular flanges have most of
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the steel in their immediate centers (3-4 cm diameter) bored away except for a relatively
thin (2-3 mm thickness) portion so that desired annihilation gammas may pass through
relatively uninhibited while maintaining a vacuum seal on the system. On the side of the
chamber closest to the positron beam is a grouping of five 4.5-in. circular openings which
are oriented at different angles with respect to the center of the chamber. Four of these
are sealed with thick glass flanges for observing the inside while maintaining pressure
inside the chamber, while the fifth one has a gate valve and the vacuum pump connected
to it. Of the 4.5-in openings on the beam side, the one which lies along the beam axis of
the setup (directly perpendicular to the detector axis), is the opening that will be used to
connect the positron beam to the target vacuum chamber. A 61.2 cm-long tube with a
solenoid coil surrounding it and a separate bellows connector will bring the beam and the
target chamber together so that the entire system may be under high vacuum, around the
same pressure. The remaining openings (either 2.5 in or 4.5 in) are either sealed with a
steel flange, a glass flange for observation, or a flange which connects the two vacuum
pressure gauge instruments. The chamber allows the possibility of connecting an ion
pump as well, which would further reduce the pressure. Figure 16 shows a picture of the

vacuum chamber with the layout of the axes overlaid.
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Figure 16: Vacuum Chamber with axes overlaid [18].

3.3.2 Vacuum Pump

The Pfeiffer HiCube HiPace 80 Eco pump (see Appendix D), was used to pump
down the vacuum chamber. It is a turbopump made in Germany, and typically operates at
1500 Hz. In order to get up to full speed and maintain pump-down, the vacuum chamber
must be able to sustain a pressure of at most 1 x 10 Torr. If the pump does not achieve
at least 1200 Hz within a few minutes, it will automatically shutdown to prevent
overwork. If it cannot cycle up further to 1500 Hz after a significantly longer period of
time it will likewise turn off. The pump was connected to the chamber via a manual gate
valve, which has a hand crank used to open and close the valve. If the chamber could
maintain a pressure over an extended period of time, this valve would be used to seal off

the chamber and thus the pump could be removed. This was not achieved in this work, as
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the pressure would increase by a few orders of magnitude not long after the pump was
turned off. Ultimately, under ideal circumstances in the volume to be pumped down, this
pump is capable of achieving 10™* Torr minimum pressure. The pump and the manner in

which it was connected to the vacuum chamber are shown in Figure 17.

Figure 17: Picture of the Pfeiffer HiCube HiPace 80 Eco turbopump and its
connection to the vacuum chamber using a mechanical gate valve.

3.3.3 Vacuum Gauge

The vacuum gauge monitoring unit used in this experiment was the Varian XGS-
600 (see Appendix D). This unit was used with two separate gauge instruments attached
into the vacuum chamber in customized flange connections. First, the ConvecTorr P-type
thermocouple vacuum gauge (referred to as CNV1), was used for monitoring the higher
range of pressures while pumping down from atmosphere (760 Torr) to 1.0 x 10 Torr,

which is the lower limit of this gauge. Second, the IMG-300 inverted magnetron gauge
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(referred to as IMG1) was used for the lower range of pressures ranging from 1.0 x 10
to 1.0 x 10™ Torr. The two gauges were connected to the monitoring unit with cables and
could be activated and deactivated independently, although the lower range gauge should
not be turned on while the pressure is too high as it could cause damage.

3.3.4 Manipulator Rod

The vacuum chamber has an attached manipulator rod which can precisely
position a sample inside the chamber using four dimensions: X, Y, Z, and rotation angle
0. For this experiment, X is taken to mean the beam axis, or the axis which runs parallel
with the positron beam; Y is taken to mean the vertical axis, or the axis which runs
perpendicular to the optics table on which the experiment is mounted; Z is taken to mean
the detector axis, or the axis which runs perpendicular to the detector faces (from one
detector through the sample to the other detector); and 0 is taken to be the rotation angle
of the sample around the vertical axis.

This manipulator rod can be controlled from outside the top of the chamber, even
while the chamber maintains its vacuum pressure inside. It appears to be made from steel
or a similar substance. Throughout the course of this work it was decided to use lead to
shield the manipulator rod from the detectors so stray positrons finding their way into the
rod and subsequently annihilating would not contaminate the signal. Unfortunately, this
was not done for the Cu-doped sample, which was the first to be tested; it was only done

for the virgin and the Ag-doped samples, which were tested later.
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3.4 Radioactive Sources

3.4.1 %sr

For energy and efficiency calibrations in PAS the radioactive isotope 2°Sr
(strontium-85) works well because it naturally produces a 514 keV gamma particle,
which is very close in energy to the 511 keV annihilation gamma photon. It produces
these gammas without also producing beta particles, which allows for less radiation
interference and exposure. For this experiment a 100.8 pCi nominal ®Sr source assayed
in July 2012 and made by Isotope Products Laboratories as number 1613-11 was used
(Appendix D). A planchette source, this source contains a rather small radioactive portion
inside a larger plastic disk and is labeled on the surface of the disk. The disk itself is 2.5
cm in diameter and 5 mm thick. This %Sr source was used in performing the energy
calibration with the two HPGe DSSDs over a 24 hour period. It was used again with each
DSSD individually once the energy calibration was applied in order to perform the
efficiency calibration over an 8-hour period for each detector. The source was placed 18
inches from each detector face on a platform during the efficiency calibration runs.

3.4.2 ®Na

22Na, as a natural source of positrons through positive beta emission, was used to
passively project positrons onto the samples tested in this experiment. Several ?Na
sources were available, but the one used throughout data collection was a 1.0 mCi
nominal #*Na source, assayed on 10 January 2012, designated B0O09 (Appendix D).
Produced by North American Scientific, this was the strongest available *’Na source for

the passive annihilation source-sample configuration. Over the course of data gathering,
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this source ranged from 760-780 uCi in actual activity. Figure 3 shows an image of the

B009 #Na capsule source, extended from its tungsten container.

Figure 18: 1.0 mCi ?Na B009 capsule source used in this experiment. The
radioactive portion is a small disk located at the end of the copper capsule, under
a thin titanium film, in the foreground.

Additional sources were available and are listed in Appendix D. All three of the
sources with lower activity than the 1.0 mCi nominal source were determined to be too
weak for reasonable counting times and therefore not used. Sources B0O09 and B0O08 were
both capsule sources, with the active portion a small, thin disk with a hollow center under
a thin 10 um titanium foil on one end of a larger copper, cylindrical, bullet-shaped
capsule. The capsule itself was 3.2 cm long and 2.5 cm in diameter. The fact that the
strongest source was in this configuration drove the redesign of the source-sample
mounting piece. Sources 115163 and 115162 were both a thin film disk design with large
diameters. Since these disks resembled planchettes, they could have easily been mounted

in the original source-sample holder, but they were far too weak.
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One additional ?Na source available was the Cu Standard Source (CuSS): this
contained 23.3 uCi of “NaCl solution on two identical Cu samples placed in a sandwich
configuration; this was assayed on 18 Jan 2012 [18] and was originally used to properly
align the sample between the two detectors. However, it was determined that this source
was too weak to be of any use in this work. Additionally, although the pieces of copper in
the CuSS were pure, they could not be used with the stronger 1.0 mCi #*Na source for
alignment because the CuSS was sealed with a plastic laminate. Betas would tend to
annihilate with the plastic before penetrating to the Cu inside. Alignment was performed

using a piece of copper cut from a Cu gasket instead.

3.5 Shielding

The primary material used for shielding was lead. This material is dense enough
to block gamma radiation of the kind present (511 keV and 1.275 MeV gammas) with
relatively low thickness of material. In previous work on this system [18], a configuration
of thin sheets of malleable, layered lead which were folded to wrap around the original
source-sample configuration whilst hanging from the manipulator rod, were positioned in
such a manner that they blocked most of the radiation originating in the positron source
from the detectors but allowed radiation originating in the sample material to pass to the
detectors relatively unabated. Through system characterization it was determined that the
total thickness of the layered lead on either side of the source was insufficient to
completely block annihilation radiation origination from within the source itself, and

therefore an improved configuration was adopted.
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In this work, a lab jack was placed inside the vacuum chamber and allowed to sit
on the floor of the chamber. It was raised up to the appropriate level and smaller lead
bricks were placed on the lab jack and around the source/sample holder in such a manner
that the newer source could adequately be blocked while the annihilation gammas
originating from the sample were allowed to freely pass to the detectors. The lead bricks
were 3 in X 2 in x 1 in. Placing three of these depth-wise on either side of the source
allowed 3 inches total of lead shielding on each side. The characterization performed in
[18] showed that 3 in of lead is sufficient to block the 511 keVV gamma and the
1.275 MeV gamma. Additional bricks were used to shield gammas coming from the
manipulator rod and the copper sample support wire. Another brick was placed width-
wise on its side to provide shielding in the direction where the lab worker would most
commonly be. In addition to removing contamination of the spectral signal, the lead
serves to lessen exposure in the immediate area of the chamber. One potential issue with
the lead in this configuration is that it is not angled along the direction moving radially
away from the sample. It simply is flat, which could reduce the amount of coincident
gammas detected on the lower portions of the detector faces or could even potentially

reduce some of the higher angular deviations seen in the data.
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IVV. Experimental Procedure
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Figure 19: Overhead layout of the three-dimensional positron annihilation momentum spectroscopy
(3DPAMS) experiment.

4.1 Source-Sample Configuration

The system can be used by placing the source right next to the sample in the
source-sample configuration. In this way, annihilation is passively accomplished. The
annihilation rate of positrons within the sample, and therefore the full-energy coincident
event count rate, depends upon source strength. Figure 20 below shows the layout of the

source-sample configuration in more detail.
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Figure 20: Source-Sample Configuration, adapted from [18].

Originally a source-sample holder was designed out of plastic which hung from
the manipulator rod such that a planchette source could be inserted at a 45 degree angle to
a flat sample. This holder allowed the source to be shielded from the detectors by lead
which hung over it while allowing the sample to be in direct line with the centerline of
the two detector faces and unshielded. This holder is described in [18].

The flat sample would be exactly parallel to the detectors faces so that if it were a
crystal cut at a known plane, that plane would be what was visible to the detectors. It has
been proven that the crystallographic orientation of the sample can affect the location of
momenta features in samples [18].

Because of the size and shape of the newer, stronger 1.0 mCi nominal ??Na
source, the source-sample holder required a redesign for this work. The limiting factors
of the redesign included: the cylindrical, bullet-like shape of the source; the source’s
width and height; the fact that the source contained its radioactive portion in a thin disk
on one end so that the most intense point would be directly over that end; and the fact that

the source needed to be shielded by sufficient amounts of lead. An image of the new
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source-sample holder, made from aluminum and fabricated by the AFIT machine shop, is

shown in Figure 21.

Figure 21: Newly designed source-sample mount fabricated by the AFIT machine
shop.

This new source-sample holder needed to have the sample on the opposite side of the
manipulator rod as compared with the older plastic holder because of the limits in the
horizontal (beam) axis and the width of the source. This holder pushes the lower limits of
the vertical axis of the rod because of the necessity to have the source located below the
sample for ease of shielding. The holder would extend even further downward to allow
more room for movement in the negative vertical axis direction except that the lab jack
on which the lead bricks are supported can only move so far downward. The sample is
hung directly over the source at a 45-degree angle in order to maximize the surface area

of the sample being exposed to the source and the surface area of the sample being
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presented to the detector faces simultaneously. The sample is hung over the source using
a combination of two types of wire. A thicker, 1/16” diameter (AWG 14), stiff copper
support wire attached to the base of the mount comes up roughly 5 in and then bends over
at a 90 degree angle towards the center of the mount. Another bend allows it to provide a
mounting hook directly over the center of the source below, in the center of the mount’s
base. A very thin, easily bendable but sturdy insulated electrical wire (0.5 mm diameter)
is hung from this mounting hook and the sample itself is taped to the end of the thin wire.
A second alternative for the copper support wire would be to attach it directly to the
manipulator rod at the proper height, but this method was not used due to difficulty in
proper sample alignment.

The simplicity of this first-iteration design for the new source means that while
the source and sample are at 45 degrees to one another, the sample is at 45 degrees with
respect to the detector faces and therefore for thin crystal samples cut at known planes,
the exact plane being presented to the faces is not precisely known. This plane could be
guessed knowing that the sample has been rotated 45 degrees from a known plane in one
of two directions, but the exact plane would be unknown. A further iteration of this
design would require that the holder be designed to accommodate mounting the source at
a 45 degree angle with respect to the horizontal axis and the sample straight up and down
(along the vertical). This would allow the 45 degree angle between the source and
sample to be maintained while keeping the known crystal face parallel to the detector

faces.
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4.3 Mounting a Sample

The older source-sample holder allowed relatively quick source and sample
insertion, requiring removal of only one of the mid-sized 6 in flanges for access to the
holder mounted inside the chamber. The mount could be left on the manipulator rod and
simply rotated around for access to each of the two insertion points — one for the source
and the other for the sample. The sample would always be at the same location in
reference to the manipulator rod. The rod would then be set at the proper location using
the controls at the top of the chamber to ensure that the sample is correctly aligned. Then
the folded lead sheets would be placed over the source side of the mount, although it was
proven that the amount of lead that could be mounted in this fashion was insufficient to
completely block all gammas originating from within the source [18]. This process would
take about 20-30 minutes to complete a sample exchange if the chamber was sealed and
pumped down to start with. This doesn’t include the extra time required to reseal the
chamber with a new gasket and pump it down to the necessary pressure.

The newer aluminum source-sample holder requires a significantly longer amount
of time to mount a sample properly. Sample exchange takes more on the order of 2 to 2.5
hours, starting from a sealed system and not including time to reseal and pump down
again. Because of the design constraints with the larger source and the use of additional
lead shielding, more work is necessary for a sample exchange. One of the larger, 8 in
conflat flanges must be removed. The lead bricks surrounding the source must be
carefully removed, and the lab jack lowered and pushed aside. After carefully removing
the source and securing it inside its Tungsten holder for safety in order to minimize

exposure time while working, a 9/32-in Allen wrench is used to remove the aluminum
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source-sample mount with the sample still attached. The old sample is carefully removed
from the wire. For the new sample, a new thin hanging wire is used. Its end is bent and
folded into an accordion shape for maximum surface area and then double-sided tape is
used to secure the back of the sample crystal to the accordion-shaped end of the hanging
wire. Great care must be used to ensure that the sample itself completely blocks all
mounting items from the source below—neither the double-sided tape nor the hanging
wire may extrude beyond the perimeter of the sample. Other PAS experiments have used
different methods to ensure that the signal is not contaminated by annihilation gammas
originating in the mounting material or source. For example, an experiment performed by
A.C. Kruseman [19] showed the use of small sticks to mount the sample, with the source
hanging above the sample and the sticks below the sample. In Kruseman’s work
everything but the sample was shielded from the detectors by large quantities of solid
lead inside the chamber, angled for gamma emission swath allowance. The sample is
thick enough (~2-3 mm) so that it shields the sticks from the positrons incident from the
source.

Continuing in this work, the sample and hanging wire are attached to the copper
support wire. Having drawn an extended 45 degree angle on paper using a protractor, the
sample wire is bent so that the sample perfectly aligns with the 45 degree line as

compared to the horizontal. Figure 22 shows this process.
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Figure 22: Aligning the sample at a precise 45 degree angle with respect to the
base of the mount.

All samples in this work were mounted with the top of the sample rotated towards
Detector 1 and the bottom rotated towards Detector 0. The sample was hung using a
careful process to ensure proper sample positioning, with the sample center being a
specified distance from the bottom mount shelf and also from the edge of where the
manipulator rod would be. This was done since the wire was bendable and part of it was
replaced each time a sample was exchanged. With known values on the manipulator rod
and known distances of the sample center from parts of the holder, the sample’s precise
location would be known in each run and could be adjusted if need be for proper
alignment. The sample would end up being directly over the center of the source, and
about 0.5 cm above it.

The aluminum mount with the sample attached would then be reattached to the

manipulator rod. The lab jack would be moved into place after placing the source back on
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the screw which held it in place on the center of the aluminum mount shelf. The lead
bricks would be placed in their appropriate locations and the lab jack would be raised to
the correct height to shield the source, but not the sample. A visual check would be done
to ensure basic qualitative sample and lead brick alignment. After this rather lengthy
exchange process, then the chamber could finally be resealed with a new gasket and

pumped down. Only with processed data can one truly tell the exact sample alignment.

4.2 Energy Calibration

Prior to any actual data collection taking place, the entire system must be run in
its normal configuration using the ®°Sr source in order to calibrate the detectors for
energy. Because of manufacturing processes, environmental and background influences,
electronics and software processes, power fluctuations, and equipment connections, there
is potential for the detectors to become improperly calibrated. Each strip in each detector
has the potential to see incident particles of identical energies in a different manner, so
they will most likely report different energy values for a source of a single known energy.
This is corrected using an energy calibration. The 514-keV gamma produced by 2°Sr is
close enough in energy to the desired 511 keV gamma that the calibration at that energy
is correct for the desired energy.

The %Sr source was placed inside the vacuum chamber, in the source-sample
holder where the sample would normally go. A 24-hr data set was taken with both
detectors simultaneously, which showed many of the 64 total strips with energy peaks
deviated from 514 keV, although some of the strips were precisely on 514 keV. The

typical deviation was around £6 keV. The autocalibrate feature was then used in Imager
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to correct each strip individually by inputting guesses for base to height ratio and FWHM
of the peak along with values for the minimum number of counts to consider in the peak.
After correcting all 64 channels, the complete settings file and a separate calibration file
were saved for this configuration. The calibration file itself is a text file which records
correction values for each channel of the spectrum and converts those values to keV. In
all subsequent data collection runs, these settings and calibration files were applied prior
to beginning each run. Figure 23 shows how the 32 strips from Detector 1 all clearly
report the peak at 511 keV correctly for 24 hours worth of actual data from one of the

samples due to application of the energy calibration.

Figure 23: Energy calibration for each strip of Detector 1 at 511 keV.

4.3 Efficiency Calibration

Upon achieving a correct energy calibration, the next step was to acquire data for
an efficiency calibration, again using the ®Sr source. Ideally, this would be done over a
sufficiently long period of time (on the order of the same amount of time for measuring
an actual sample, 10-18 days or so) with the source in the same position as the sample
would be inside the chamber and on the source-sample mount. Time constraints required

this process to be accomplished by placing the ®Sr source in front of each detector
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individually at a significantly closer distance. Since radiation fields fall off quickly with
distance, moving the source closer to each detector increased the exposure rate and solid
angle at the expense of getting precisely correct efficiency data for the eventual location
of the sample.

The data taken using ®°Sr for the efficiency calibration was the same data used for
the DSSD efficiency calculation discussed earlier. This was done with data collection
taking place for both detectors, but the code used to process the data sorted through it so
that data was correctly attributed to its location of occurrence. The Matlab efficiency
correction code entitled ThreeDPASSEfficiencyCalc, written by Capt. Stephen Jimenez
(listed in Appendix C) was used to read in all 2-strip events from these data runs after file
parsing. This code then generated pixel-normalized efficiency matrices for each detector
based on the locations of the 2-strip events. These matrices were saved for later
application in the combined ACAR and DBAR calculations. Figure 24 below shows the
normalized efficiency values determined for each subpixel by the
ThreeDPASSEfficiencyCalc routine for the two 8-hour ®°Sr datasets combined into one
large dataset. In this work, there were three main ways in which the data for LTB samples
were later corrected for efficiency: using a pixel-normalized subpixel efficiency
correction, a detector-normalized average subpixel efficiency correction, and the average
subpixel efficiency values calculated by Lt. Col. Christopher Williams [3].

The first method, the pixel-normalized efficiency correction (specific to each
pixel), made use of the matrices as calculated from the ThreeDPASSEfficiencyCalc

routine. In this method, the subpixel containing the maximum number of counts in each
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Figure 24: Individual detector response from efficiency calibration run. These datasets were used to
generate the efficiency correction matrices which were later applied during the ACAR and DBAR
calculations.

pixel is assigned a normalized value of one, and the other subpixels in that pixel are
assigned values based on the ratio of number of counts in each of those subpixels as
compared to the maximum number of counts in that pixel. In this method, each pixel is
treated individually to account for differences between pixels. The resulting normalized
matrix correction is used to ‘boost,” or compensate for, the subpixels with low efficiency
for better analyzing datasets with sample materials by normalizing counts detected in
datasets by the efficiency correction. Because of the limited nature of the calibration run
with ®Sr (imperfect statistics over only 8-hour runs), the pixels across each detector face
yield very different patterns, and this results in a rather noisy correction with high error
due to variability between pixels.

The second method, the detector-normalized average subpixel efficiency

correction, made use of the number of counts in each subpixel for a particular detector
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from the ®°Sr data in order to calculate an average subpixel efficiency matrix for all pixels
in that detector. Because of the relatively uniform efficiency across the central portions of
each detector face, as was calculated in subsection 3.1.1, one can take the counts in a
particular subpixel and average it with all the other count values from subpixels in the
same location across all pixels in a particular detector, and then have an average count
value in that subpixel. This is done for all 25 subpixels, and then the average count values
in this 5x5 matrix are normalized such that the highest number in the central subpixel is
assigned a value of one and the others are given ratio values as compared to this central
average count value. Then, this averaged normalized matrix can be used across all the
pixels, assuming all pixels will be the same across the detector. This tends to reduce error
in the correction by compensating for the statistical uncertainty in the limited ®Sr data
runs, but at the same time the error associated with each subpixel is propagated across the
entire detector face. Figure 25 shows the average subpixel efficiency correction matrices

for each detector, calculated using data from the ®Sr efficiency calibration runs.

Detector O Detector 1
0.02 | 0.18 | 0.22 | 0.17 | 0.02 0.02 | 0.16 | 0.18 | 0.15 | 0.01
0.06 | 0.78 | 0.95 | 0.72 | 0.05 0.04 | 0.75 | 091 | 0.69 | 0.03
0.06 | 0.83 1 0:77 || 0.05 0.04 | 0.82 1 0.77 | 0.03
0.05 | 0.71 | 0.88 | 0.64 | 0.04 0.04 | 0.70 | 0.87 | 0.64 | 0.03
0.02 | 0.18 | 0.22 | 0.16 | 0.02 0.02 | 0.15 | 0.17 | 0.14 | 0.01

Figure 25: Average relative subpixel values calculated for each detector using efficiency calibration
data.
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The third method used for generating a correction for efficiency was applying the
same average subpixel efficiency correction matrix calculated by Lt. Col. Christopher
Williams for the original PhDs Co. DSSD [3]. Figure 26 below shows this matrix. This
method, although proven to be effective in previous work, is less reliable here because it
does not make use of the ®Sr data collected with these particular DSSDs in this particular

configuration, but is useful for comparison.

1.00
- 0.90
0.80
0.70
0.60

Figure 26: Subpixel average relative efficiency for the PhDs DSSD determined by
Williams [3].

4.4 System Alignment with Copper Sample

The sample itself must be properly aligned such that its center is directly in line
with the centerline of the two detector faces which extends along the detector axis. At
first the sample is placed roughly in the center of the chamber by looking from the
approximate center of one detector face and looking through the opening of one end of
the vacuum chamber (with the 8-in conflat flanges off) to see how well the sample sits in
relation to the approximate center of the 8-in openings (utilizing the concept of
perspective). Then the sample is adjusted as necessary. Figure 27 shows a picture of how
this alignment appears. This is useful to get an idea of how the sample ultimately sits

inside the vacuum chamber.
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Figure 27: Performing a visual alignment of the sample in relation with the
chamber openings and detectors.

Afterwards a distance-measuring laser is used to get a more accurate reading. The
laser is placed with one end in the approximate center of one detector face and it is shot
through the approximate visual center of the chamber to the approximate center of the
opposite detector face in order to see if it passes through or hits the sample. The laser is
also used to gain knowledge of distances from each detector face to the sample location
(manipulator rod) to ensure the distances are equal on each side. The sample is then
adjusted accordingly. A more accurate way to ensuring alignment using the laser beam
would be to shoot the beam down the center line and place the sample holder at four

separate (X, Y) locations, making a square in totality, around four of the limiting corners
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of the laser beam. The manipulator settings for each location are noted. The exact
location for placement along the centerline is known to be within those four locations.
The two 8-in openings of the chamber would have saran wrap on them with a hole or
marked circle in the precisely measured center for the beam to pass through on either end.
This particular ‘square’ method was not used in this work; only the visual perspective
method with a laser for verification was used for aligning the sample. However, this
‘square’ method was used in [16] to initially align the detectors with the chamber, and
this work made use of the same sample-detector alignment.

Once the approximate visual method is complete for getting a general alignment,
a more precise technique is used for getting a perfect alignment. Previously, gathering
data with the CuSS was performed to see exactly where the center of the sample was
located. This is possible since virgin Cu ACAR spectrum is well known: Cu has its most
intense ACAR peak exactly at the center of an ACAR spectrum, meaning that the
majority of annihilation radiation coming from within the Cu has no angular deviation
between the two gamma particles. Cu is a commonly available material in the lab and is
easy to work with. The nature of the new source required a new Cu piece to be used: a
roughly 1cm x 1 cm piece was cut using a low-velocity diamond saw from a used copper
vacuum gasket. The piece was a keystone shape due to the circular nature of the gasket.
This piece was put in place in the same configuration as a sample, hanging above the
positron capsule source and data sets were recorded. The larger size and thickness of this
Cu sample made it easy to generate large numbers of coincident events in a short time
period for quick processing and subsequent realignment. An initial 24 hour data set was

taken, showing misalignment by about 10 mm towards the beam in the X (beam)

56



direction and 2 mm downwards towards the optics table in the Y (vertical) direction,
which was largely consistent with the misalignment that had been seen in the Cu:LTB
sample (shown later graphically in the Cu:LTB results section), which had been
measured already prior to using this Cu gasket piece to confirm the misalignment. This
was followed by a three hour data set with the sample moved by 2 inches along the beam
axis closer towards the beam. The newer set clearly showed a better alignment, such that
the sample was moved an additional 0.3 in towards the beam and then a 22-hr data set
was taken to verify proper alignment. When the Cu sample was properly centered, the
exact manipulator settings were recorded, as well as the exact distances from the bottom
shelf of the mount to the center of the sample and from the edge of the manipulator rod to
the center of the sample. In this way, the exact location of the sample for proper
alignment would be known and could be consistently applied.

The first sample measured, the Cu:LTB, was taken without properly aligning the
sample beforehand. Moving this sample slightly in the X or Y directions did not seem to
change the ACAR spectrum at all. This was most likely due to not moving the sample
significantly enough to affect a change in the data output. The decision to use the Cu
gasket piece to align was made after learning this. Moving the Cu gasket piece by a
significant amount did in fact change the ACAR spectrum and the location of
annihilation gammas on the detector faces significantly. Knowledge of the proper center
location meant that samples measured subsequently (pure LTB and Ag:LTB) were

measured in the correct location.
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The alignment of the sample can also be corrected in the software, if the amount
of sample misalignment is known. The correction factor is simply hardcoded in so that

the spectrum is centered.

4.5 Vacuum Pumpdown

Due largely to the small 0.5 cm gap between the source and the sample, in which
stray annihilations with air could occur which would contaminate the signal, the air was
evacuated from the chamber. Air throughout the entirety of the chamber would reduce the
efficiency of the system overall.

During pump down of the vacuum chamber after inserting a new sample, great
care was taken in making sure new copper gaskets are used and that the bolts securing the
conflat flanges in place were tightened as much and as evenly as possible so that leaks in
the system are minimized. During pump-downs, the motor would have to be run for a
while and then restarted several times in order to evacuate the large quantity of air from
the relatively large chamber before lower pressures necessary for pump operation could
be achieved. Having numerous lead bricks inside the chamber leads to possible
outgassing and spread of particulate inside the chamber, which the pump must deal with.
The largest concern when pumping down over several pump cycles was ensuring that the
bearing in the pump motor did not increase in temperature higher than 48-50 degrees
Celsius, as this would cause damage to the bearing. The motor temperature itself was of
less concern than the bearing temperature. Since the target chamber was inherently leaky
and not as clean as it could be inside, this would cause the pump to overwork itself trying

to pump down, which would require it to be restarted. If the bearing temperature
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increased too much, the pump would be left alone for several minutes to allow the
bearing to cool down before attempting to pump down again. After an iterative process of
tightening the nuts on the flanges, attempting to pump down, and repeating, the
maximum number of cycles per second that the pump motor could reach would
continually increase until it was able to reach the necessary 1500 Hz. From this point the
bearing temperature was monitored to ensure it was not gradually increasing, but instead
was gradually decreasing. Then the motor could be left unattended. Typically after a
sample exchange, this pump down process was an additional 3-4 hours. The pressure was
typically in the range of 10 Torr right after achieving a stable pump down, and after 12
hours was in the range of 10 Torr. As long as the pump was left on throughout data

collection, this pressure could be maintained indefinitely.

4.6 Data Collection

4.6.1 Digital Data Acquisition

The PhDs Co. DSSDs and accompanying Spect72 and Imager processing
software operate on the principle of taking individual analog pulse signals from the strips
themselves and converting them into digital data which can then be stored, displayed, and
analyzed as desired. The waveforms coming from the strips of the DSSDs are digitized
according to user-defined settings in Imager. The software is used to program the FPGAs
and record information from the individual channels based on the time integral of the
detector pulses.

The Spect72 data acquisition unit is connected to a laptop via USB which

contains Imager software that is specifically designed to control the data acquisition
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process with this setup. This software records and optionally parses the data collected
from the Spect72. The Spect72 system can capture data as events or as waveforms,
providing the user with several options. The user can request the collection of all data
events, all events within an energy range, or all events coincident with collection from
multiple strips. There are three ways to save data from a data run: first, as energy-filtered
data files; second, as raw event files; and third, as raw data files. For the purposes of this
experiment, only the raw event files were of use. The energy-filtered data was not
sufficient enough nor was it filtered in the manner necessary for combined ACAR and
DBAR, and the raw data files were too large and encompassing to be of any use—they
were too general and not specific enough by event. The raw event file gave information
most useful, where it reports energy-specific charging events resulting from radiation and
their associated location and timing. The specific format of the raw event file is clearly
explained in [18].

Data files can become very large, into the hundreds of megabytes and even
gigabytes, requiring the user to parse the data down to only the most important
information. In the data parsing system devised by Capt. Stephen Jimenez, first only
events from the raw event file which were coincident on either 2 or 4 strips
simultaneously are extracted using a stream editor command in a UNIX bash shell. The
reduced file is then parsed further and analyzed using Matlab.

4.6.2 Data File Parsing

After data has been acquired with the system, the next action is to use a bash
script (listed in Appendix B) which reduces the raw event files to only events which

occur in either two strips at once for the purposes of efficiency calculations or four strips
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at once for ACAR and DBAR calculations. This process quickly eliminates useless
excess data. Events which occur in two strips are useful for yielding a position of
interaction with both an AC and a DC strip for a full-energy event in one detector. This is
sufficient to provide information about detector efficiency, but does not contain anything
about events coincident in both detectors. Events which occur in four strips are the only
events known to be coincident for certain assuming the charge deposition occurred in one
AC and one DC strip in each detector exactly. For the samples measured in this work, a
24-hr dataset (around 3.6-3.8 GB) typically took about 5 to 10 minutes to run through the
bash script.

After selecting events only in 2 or 4 strips depending on the desired information,
the resulting file is run through a Matlab parsing code (Appendix B) which parses the
coincident events by energy by using a window around the annihilation photon energy of
511 keV. For this work the window used was 511 + 12 keV, which was more than
enough to capture all useful events. All of the energy peaks analyzed were actually
constrained within 511 + 8 keV, but a bit more was added to the window as a buffer. For
the samples measured in this work, a 24-hr dataset (around 3.6-3.8 GB) typically took
about 2.5 to 3 hours to run through this Matlab parser. The large file sizes required the
system RAM to be used at its maximum capacity; the computer resorted to memory
swapping during this process, where it would continually switch back and forth between
using the system RAM and space on the hard disk. The resulting file is then run through
either the efficiency/resolution calculator if one is characterizing the detector or through a
series of codes which provide ACAR/DBAR information and apply a subpixel efficiency

correction. The code used for the alternative ACAR analysis written by Maj. Angelo
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Bonavita parses and processes data in a similar manner, but is able to run through a
dataset significantly faster (24 hrs of data processed in around 10 minutes).

4.6.3 Subpixel Interpolation

The Imager software does present a 2D colormap of radiation interactions across
the detector face (rotated at 90 degrees counterclockwise from reality due to what is most
likely a programming error) on the main screen according to what appears to usea 7 x 7
subpixel array in each pixel for presenting the data. However, this does not suffice. The
parsing code mentioned above reads the data in and determines which subpixel each
event occurred in based on a user-defined number of substrips per strip for it to use. The
way in which the data acquisition software assigns locations to charge events makes use
of a proprietary figure of merit (FOM), which is proportional to the area of the HPGe
strip on which charge deposition occurred. Equation 3 below shows how the subpixel
position number is calculated using the FOMs of the strips adjacent to the strip in

question.

FOM
N =N “I'N + succ 3
sp subsperpix chan FOM + FOM ( )

succ pred

Where:
N,, = Subpixel position number

N psperpic = NUmber of substrips per pixel
N,., = Channel/strip number
FOM ., = Figure of Merit for predecessor strip
FOM,,. = Figure of Merit for successor strip
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The successor strip is defined as the strip adjacent to and higher in number than the strip
in question. The predecessor strip is defined as the strip adjacent to and lower in number
than the strip in question. The strips run from 0-15 for the DC side and 16-31 for the AC
side. Table 1 below shows the channel numbers (Spect72) and subpixel designations
(DSSDs) assigned for the setup used in this research. All data collected was parsed using
a 5 x 5 subpixel array in each pixel, which was shown in [3] to be the best array to use for

maximum subpixel resolution without losing information.

Table 1: Channel number and subpixel designations

Detector Side Channels Subpixels
1 DC 0-15 1-80
1 AC 16-31 81-160
0 DC 32-47 161-240
0 AC 48-63 241-320

Using 5 substrips per strip means that across all 16 strips on the detector face, there are a

total of 80 substrips per detector side.
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4.6.4 Subpixel Efficiency / Resolution Calculation

The subpixel efficiency was calculated in the Matlab efficiency correction by
making use of a simple solid angle concept, assuming that radiation was directly incident
upon each pixel at an angle normal to the surface, in order to calculate the intrinsic
efficiency of each pixel and therefore subpixels. Equation 4 shows this solid angle

calculation:

W2

Q= 5
4rd

(4)

Where:
w = Width of a pixel (4.75 mm)
d = Distance from sample to detector face
Q = Solid angle subtended by a pixel
This equation is exactly correct for a pixel on the centerline from the sample to
the detector face, and is a reasonable approximation for the other pixels on the face.
However, to get a more exact calculation, one must use Equation 5 to calculate the solid

angle subtended by pixels off the centerline, which is how the Mathematica efficiency

calculation (written by Maj. Angelo Bonavita) works:

o d
" a7 (g + W (-8)-05) + (m-8)-05)’)

QoffCL =

()

Where:
Q. = Solid angle subtended by a pixel off the centerline
Q.. = Solid angle subtended by a pixel on the centerline

d = Distance from sample to detector face (2.0 m)
g = Gap in between pixels (0.25 mm)

w = Width of a pixel (4.75 mm)

n = AC strip number of the pixel
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m = DC strip number of the pixel

This equation takes into account the fact that with a 16 x 16 matrix, the centerline falls in
between pixels 8 and 9 in either direction.

The subpixel resolution calculation was performed simply by binning a particular
full-energy peak, and searching for the energy values on either side of the peak energy
value which fall close to the half value of the peak maximum number of counts. In this

way, the FWHM for energy events in each subpixel was calculated.
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V. Data Analysis and Results

5.1 2D ACAR and CDBAR Calculation

After the raw event files for each data run for each sample are filtered by energy and
coincidence and they are subpixel-interpolated, the resulting Matlab matrix file (.mat)
may be used to perform the 2D ACAR and CDBAR calculation. A raw data version is
also created, which is not subpixel-interpolated. This can be used to gain a general
understanding of the dataset but will not provide adequate information for ACAR and
DBAR calculations. Appendix C contains the Matlab code named ThreeDPASSCalc3
which performs the calculation and applies the subpixel efficiency correction. The basic
functionality of the code is as follows: first, the 4-strip event subpixel data from the
parsing code is loaded; second, the events found in the outer pixels (outer two strips) of
either detector are removed; third, relative efficiencies (based on one of the three
efficiency correction methods) are assigned to each event based on subpixel location;
fourth, the deviation from colinearity in vertical and beam axes is calculated; fifth, the
energies of the events in both detectors are binned and correlated; and lastly, the raw and
relative-efficiency-corrected histograms for 2D-ACAR and CDBAR are calculated and
plotted. Actual counts are divided by relative efficiency values based on their location
within the pixel and possibly, depending on the type of correction used, within the
detector, in order to compensate for low efficiency subpixels on the edges of pixels.

This code, originally written by Capt. Stephen Jimenez, required extensive
debugging because Detector 1 was rotated by 180 degrees around the vertical axis for this
research. The code was originally written with the AC side of Detector 0 and the DC side

of Detector 1 facing inwards, but since the AC sides of the DSSDs seem to have better
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efficiency than the DC sides, Detector 1 was rotated such that its AC side faced inwards
and DC side outwards. This, along with the fact that some of the cables connecting the
various channels to the Spect72 were swapped around, led to the debugging necessity.
The ACAR calculation makes use of the small angle approximation when calculating the
angular deviation. An alternative plotting approach for ACAR, developed by Maj.

Angelo Bonavita in Mathematica, was also applied.

5.2 Results for Virgin Lithium Tetraborate

The virgin, undoped, single-crystal LTB sample tested in this work was a
relatively large piece cut from a larger circular crystal manufactured by New Light which
was cut along the (001) plane. The sample had been cut from a larger, originally circular
crystal