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Abstract

Active phased arrays suffer the inherent problem of excitation errors, i.e.,

incorrect phase and amplitude excitation of the antenna elements. Excitation

errors degrade critical performance parameters since they increase sidelobe

level and reduce antenna gain and beam pointing accuracy. To ensure the

correct operation of the array, it is necessary to quantify and compensate

the phase and amplitude errors of each antenna element. The compensation

is accomplished by calibrating the phased array radar. Calibration challenges

include the quantification and compensation of errors initially, as well as main-

tenance of the calibration state once the system is fielded. This dissertation

presents research on improving the calibration of the active phased array front-

end for radar systems. A combination of custom-made instrumentation with

initial and in-situ calibration techniques is proposed to calibrate an active ar-

ray test-bed. The test-bed consists of an 8×8 elements C-band array, and was

developed in collaboration with NCAR-EOL to provide software and hardware

features that enable the proposed calibration schemes.

Different calibration techniques were experimentally tested. First, an ini-

tial calibration technique for phased array prototypes is proposed. The tech-

nique employs a planar NF scanner to sample the excitation of each antenna

element, and also to scan the embedded element antenna patterns of the proto-

type. The novelty of the approach is that it combines the collected excitation

data with the scanned embedded elements to allow the prediction of both the

co- and cross-polar pattern components of the array. On the other hand, to

explore techniques that do not rely on external equipment and use built-in

feedback mechanisms instead, mutual coupling-based calibration is reviewed

and implemented. Two techniques were tested: an initial type, proposed by

xiii



Bekers et al., and a proposed in-situ type, conceived specifically for analog ar-

chitectures, to track errors during fielded operation. It was found that mutual

coupling calibration techniques are excellent options for in-situ applications,

with a root mean squared error (RMSE) in phase and amplitude of 0.75◦ and

0.12 dB, respectively. Whereas, for initial type calibration, the tested mu-

tual coupling-based technique yields a RMSE of 2.5◦ and ≥ 1 dB, respectively,

which is not accurate enough to replace conventional park and probe for initial

calibration of small arrays. Finally, to complement calibration theory, the re-

quired calibration instrumentation is reviewed, and more importantly, a novel

scanner, designed exclusively for phased array front-end characterization, is

introduced.

xiv



1 Introduction

1.1 Problem Statement

Phased array antennas are formed by a set of antenna elements that are

coherently excited to obtain a desired beam pattern [1]. Their most important

advantage is the possibility of producing a directive beam in a target direction

by carefully choosing the phase excitation of each antenna element. More-

over, by electronically controlling the excitation of the antenna elements, it is

possible to quickly steer the beam radiated by the array. This capability is

especially attractive for radar applications, which is the motivation for modern

radar systems to incorporate this technology.

Also, it is known that phased arrays suffer from inevitable excitation er-

rors [2, 3, 4]. These errors occur due to hardware imperfections, as improper

fabrication of the transmission lines and/or active components will result in

deviations in the length of the electrical paths from their ideal value. The

deviations cause the antenna elements to be fed with incorrect phase and

amplitude values, adversely affecting the antenna pattern of the array. Fur-

thermore, imperfections in the antenna aperture may cause aberrations in the

patterns produced by an antenna element. Critical performance parameters

such as side lobe level, antenna gain, and beam pointing accuracy are degraded

as a result [5]. Therefore, it is necessary to assess and, when possible, correct

the excitation and antenna element pattern errors perturbing the array.

The procedure that quantifies the excitation of an array is known as “cal-

ibration” [6]. The goal is to estimate the realized phase shift and gain of each

antenna element with respect to each other, and then reconfigure the excitation

hardware to a proper set of values. The literature regarding calibration is vast
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and varied, and there is no universally accepted calibration technique. The

criterion to select one technique over another depends upon the array archi-

tecture and size, and the available instrumentation setup. Moreover, sampling

only excitation errors may not suffice to ensure a thorough assessment of the

array performance; ultimately, it is necessary to evaluate the resulting beam

pattern. As a consequence, from the point of view of the test engineer, it is

crucial to define a basic guideline that specifies the necessary steps in order

to assess the performance of a phased array, considering both excitation and

antenna patterns

In addition, any calibration procedure implies the employment of special-

ized hardware to serve as a feedback mechanism that enables the output signals

of the system to be sampled. The most common instrumentation for this pur-

pose is an antenna test range, which consists of a robotic antenna or probe

positioning system, and a vector network analyzer (VNA), typically enclosed

in an anechoic chamber [7]. Although antenna ranges mainly function to scan

antenna patterns, they can be repurposed to allow excitation sampling as well.

However, there are certain disadvantages associated with their employment;

for instance, since they are not primarily defined for calibration, they require

software and/or hardware modifications to comply with calibration require-

ments. Also, because they are sizable and massive, they are not an option

for calibration once the phased array system has been deployed. Two issues

arise from these disadvantages. First, specialized instrumentation for phased

array characterization is limited and needs to be further developed. Second,

calibration during deployed operation represents a technological challenge that

can not be solved by employing typical antenna ranges.

In this context, this study focuses on the fundamentals of phased array
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calibration. It attempts to define guidelines on how to collect and process the

data required to assess the performance of phased arrays. Also, it reviews the

current state-of-the-art calibration hardware and introduces a novel robotic

tool dedicated to phased array calibration, with improved and unique features

that are key for a full characterization. Lastly, it investigates the limitations

of current on-site calibration mechanisms, and proposes an in-situ type cali-

bration technique. More importantly, all of the aforementioned objectives are

tested and verified by experimental methods.

1.2 Motivation

Challenging projects are currently in development to construct the new

generation of radar applications, and the phased array antenna has been cho-

sen as their backbone. A notable example is the multifunction phased array

radar (MPAR) initiative that aims to merge the current capabilities of aircraft

surveillance and weather observation in the United States into a single net-

work of novel phased array radars [8]. The endeavor has been undertaken by

the National Weather Service (NWS) and the Federal Aviation Administration

(FAA), who have joined efforts to define the MPAR requirements. A critical

requirement is dual polarization capability [9, 10], which is much needed for

hydrometeor classification in weather observations. However, dual polarized

phased array radar for weather applications is a relatively new technology,

with only a few previous publications [11, 12]. Thus, it requires more research

on the subject to evolve into a more mature stage, and eventually, be suitable

for the MPAR project.

Dual polarization capability on phased array radars is indeed a technology

challenge; Zrnic and Doviak, and Wang and Chandrasekar [13, 14] summarized
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an extensive list of performance requirements, and among them is the need

for an isolation of -35 dB or better between polarizations. This requirement

translates into a very low cross-polarization of the antenna aperture. For this

tight tolerance, and others, the NWS requested the Massachusetts Institute of

Technology Lincoln Labs (MIT-LL) to cooperate on an advanced technology

demonstrator (ATD) [15, 16]. The ATD serves as a prototype to further

study the dual polarized performance of phased array radars, including both

front-end and back-end. Recently, Conway et al. [17] summarized the ATD

evolution, and emphasized calibration efforts to tune the system. The ATD

antenna panel plus front-end have been exhaustively tested on a custom made

5 m × 5 m NF chamber as part of this effort, as shown in Figure 1.1. The

test efforts on the ATD described by Conway et al. represent an excellent

example of the need for calibration of phased array radars, and it is especially

important when assessing the polarization purity of dual polarized radars.

Figure 1.1: ATD antenna panel located on a custom made NF test chamber.
Source: [17]

Another ambitious project is the development of a novel airborne phased
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array radar (APAR) for weather observations [18]. The idea has been con-

ceived by the Earth Observing Laboratoary (EOL) hosted at the National

Center for Atmospheric Research (NCAR) and basically consists in mounting

a dual polarized phased array radar, and a set of other sensors, on a research

airplane to perform 3D wind and microphysical measurements. The proposal

is illustrated in Figure 1.2. In this case, an integrated sidelobe level (ISL) of

≤ -65 dB is required [19], which is intended to be realized by amplitude taper

of the array aperture in both receive and transmit modes. It is in the inter-

est of NCAR-EOL to perform calibration and characterization of their phased

array radar to ensure that the sidelobe levels are within the required levels.

Moreover, due to the use of solid state high power amplifiers (HPAs) plus

attenuators for phased array applications, a taper will generate an unwanted

heat dissipation gradient across the antenna aperture, which may affect the

radiation pattern of the array. It is understood then that heat distribution

over the aperture is a concern, and it must be taken into consideration while

characterizing a phased array.

As part of the APAR project, NCAR has built a line replaceable unit

(LRU) prototype, consisting of an 8×8 active phased array, used to investi-

gate the calibration requirements for the upcoming APAR project. The goals

of the study are to define the steps to perform a complete assessment of the

radiation patterns of the LRU, and to explore techniques that allow monitor-

ing and correction of excitation errors during flight operation. To accomplish

these goals NCAR has teamed up with the Phased Array Antenna Research

and Development (PAARD) group hosted at the Advanced Radar Research

Center (ARRC), which has lent its vast phased array expertise, together with

its antenna ranges, to perform pattern measurements of the LRU. This col-
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Figure 1.2: Proposed phased array radar arrangement of APAR. Source: [18]

laboration is one of the main motivations of this dissertation, which seeks

to fulfill the research objective defined by the NCAR-EOL/PAARD-ARRC

collaboration.

On the other hand, for the mmWave frequency spectrum, the upcoming

fifth generation (5G) of communication technology has found phased array

antennas to be a feasible option to satisfy its technical demands [20]. As

a consequence, a great number of devices for mobile communication started

to implement phased array technology, e.g., massive multiple input multiple

output (MIMO) systems [21]. In addition, the automotive industry is also

venturing into the implementation of mmWave phased array radars aiming

to improve safety [22], and, ultimately, advance towards the longed-for self-

driving capability. As a result, both industries are dedicated to developing

a multitude of phased array prototypes, which, as in the case of MPAR and

APAR, also require performance assessment and calibration.
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1.3 Research Scope

The main motivation of this work is to provide guidelines on how to per-

form measurements to test phased array radar prototypes for the APAR and

MPAR initiatives. Taking this into consideration, the proposed research aims

to explore characterization and calibration techniques for phased array radars,

and evaluate their implementation on prototypes.

The first step to accomplish this goal is to define suitable antenna measure-

ment instrumentation to carry out the measurements. This requires reviewing

the state-of-the-art of antenna ranges, and identifying the configuration that

offers more benefits for phased array calibration. Moreover, as an effort to

prepare for future phased array prototype testing, a novel automated tool is

proposed. The proposed tool, named “RF Scanner”, is based on an articu-

lated robotic manipulator that has a suite of sensors attached onto its end.

The sensor suite allows for RF sampling, surface inspection and thermal imag-

ing of the antenna aperture. The robotic manipulator and sensor suite are

placed inside an environmental chamber that enables control of the ambient

temperature and humidity under which the tests are executed.

Once the equipment has been introduced, it is possible to direct attention

to the calibration procedure. This study covers the complete calibration of a

phased array, which includes initial calibration (exhaustive testing immediately

after manufacture) and in-situ calibration (monitoring the current state of

the array during fielded operation). The LRU prototype provided by NCAR

is used as the device under test (DUT). Different calibration techniques are

implemented on it, and their performances are evaluated.

For the initial calibration case, a measurement approach is needed that will

allow a complete assessment of the performance of the phased array prototype.
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The approach should detail all the necessary data to be collected to fully

describe the antenna patterns synthesized by the LRU, and it should serve

as a guide for initial calibration. Since antenna patterns are required for

complete characterization, the measurement approach must also define the

suitable antenna range configuration to perform it.

Next, to achieve in-situ calibration, it is necessary to explore testing in-

struments that do not rely on external equipment, i.e., the instrumentation

should be built into the phased array system itself, and thus it can be per-

formed regardless the deployment location. Consequently, this work applied

mutual coupling-based calibration techniques, experimentally with the goal of

evaluating the effectiveness of this feedback mechanism to estimate the excita-

tion errors between antenna elements. More importantly, in order to comply

with the constraints imposed by the LRU hardware, a hybrid technique was

formulated by combining two other techniques. The propose hybrid mutual

coupling technique provides a procedure to monitor the excitation of the active

elements with respect to its initial state, obtained by a previous calibration

effort.

Apart from the useful excitation estimation obtained from the mutual

coupling-based techniques, it was also found that the raw data from mutual

coupling data is extremely useful for quick diagnosis of element malfunction.

In fact, the data collected using this mechanism not only detects element mal-

function, but it also identifies its cause. Thus, this work describes a rationale

ultimately leading to the identification of failed hardware components.
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1.4 Contribution

This work focuses on the practice of measuring active phased arrays for

performance assessment and excitation correction. It first describes the in-

strumentation required to measure the beam antenna patterns and excitation

values of each antenna element. Then, different phased array calibration tech-

niques are reviewed, tested, and experimentally validated. More importantly,

improvements over the current state-of-the-art of instrumentation and calibra-

tion techniques were also proposed and demonstrated. These contributions are

listed as follows:

• Propose and build a novel robotic phased array calibration tool, with

environment temperature control and thermal imaging capabilities.

• Propose and experimentally validate a complete measurement procedure

for performance assessment of phased array prototypes.

• Experimentally test a mutual coupling-based calibration technique that

has only being validated by means of computer assisted simulations.

• Propose and experimentally validate a hybrid mutual coupling-based

calibration technique for on-site monitoring of element excitation.

• Describe a methodology to diagnose hardware component failure using

mutual coupling measurements.

A notable contribution of this work is the advancement of mutual coupling-

based calibration techniques. The experiments conducted of this type of cal-

ibration provide valuable insights related to performance, such as estimation

accuracy and feasibility depending on the hardware on which it is implemented.

The techniques are discriminated in initial and in-situ types, and their corre-

sponding accuracy is experimentally obtained in terms of root mean squared

errors of phase and amplitude. Their feasibility is investigated under the
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presence of edge effects. To the knowledge of the author, there are no prior

publications that have experimentally tested the techniques implemented in

this work.

Furthermore, the implemented in-situ type technique is a novel hybrid

mutual coupling-based technique proposed by the author. It is conceived to

provide fast and accurate phase and amplitude error tracking during field

operation of phased arrays with analog beamformers. A main advantage of

this technique is that it uses the active antenna elements themselves to perform

the measurements, while at the same time being unaffected by edge effects.

Results demonstrate that this technique provides better estimations than the

initial type technique, which was also implemented.

During the experiments employing the aforementioned techniques, failure

cases were detected. Failed antenna elements provide wrong data for cali-

bration, and they compromise the estimations. For this reason, this work

introduces a rationale capable of detecting failed antenna elements and iden-

tifying the hardware component that caused failure using mutual coupling

measurements. This offers two advantages: first, since it is possible to quickly

determine the health of the antenna elements, an antenna element found to

be damaged may be excluded from calibration tests. Second, because the mu-

tual coupling data contains information about the cause of the failure, the

technique reduces failure diagnosis time and reduces the number of extra tests

required to identify the failure cause.

To complement the presented mutual coupling techniques, and to offer a

beginning-to-end solution for phased array calibration, improvements over cur-

rent instrumentation and conventional techniques are also presented. For the

instrumentation, a novel flexible scanner, based on a robotic arm manipulator,
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is built and preliminarily tested. The scanner is designed specifically for the

purpose of characterizing the performance of phased array prototypes. The

scanner has the unique capability of allowing testing under different operation

temperatures and scan geometries.

Finally, a complete step-by-step procedure on how to initially calibrate and

verify correct operation is proposed and implemented. The procedure employs

a NF planar scanner to perform both the park and probe calibration technique

and scan antenna pattern measurements. The novelty of the proposed tech-

nique is that it combines the collected data of the TR modules, obtained by

park and probe, and combines the data with the embedded element antenna

patterns scanned by the scanner to calculate the resulting antenna array pat-

tern. In other words, by exhaustive measurements of the antenna under test,

enough information is obtained to predict any possible antenna beam pattern

the prototype may synthesize.

1.5 Dissertation Overview

This dissertation is divided into five additional. Chapter 2 reviews the fun-

damentals of phased arrays and their calibration. It also uses an analytically

simulated uncalibrated phased array pattern to illustrate the “misalignment”

problem. Finally, a summary of the state-of-the-art of the calibration tech-

niques is presented. Chapter 3 presents the instrumentation required for an-

tenna measurements, including the equipment employed for the experiments

performed in the next chapters. In addition, it also presents the novel robotic

scanner designed specifically for calibration.

Chapters 4 focuses on calibration experiments using instrumentation ex-

ternal to the phased array system. It introduces the proposed methodology for
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a complete initial calibration, and discusses the results of its implementation

on the LRU using a planar NF antenna range. By contrast, Chapter 5 is dedi-

cated to calibration techniques based on mutual coupling measurements, so it

studies techniques that do not require external equipment. Initial and in-situ

techniques are implemented on the LRU, and its misalignment estimations are

compared to the results obtained from the more reliable calibration technique

discussed in Chapter 4. In addition, it also describes how the raw mutual

coupling data can be ingeniously analyzed to identify damaged components.

Finally, Chapter 6 summarizes the findings from each experiment, and

presents the conclusions. Afterward, as a complement, the appendixes include

technical details about NF planar measurements, including a list of abbrevia-

tions used in this dissertation.
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2 Fundamentals of Phased Array Antennas and Cali-

bration

2.1 Phased Array Antennas

2.1.1 Definition

A phased array antenna is a collection of antennas that are coherently

excited in order to synthesize an antenna pattern. Each antenna of the array

is denominated an antenna element. If the antenna elements are excited with

a set of carefully chosen phase values, the main beam of the realized pattern

can be steered to a target angular coordinate.

Antenna

Beamformer

Figure 2.1: Basic architecture of the front-end of an active phased array an-
tenna.

Figure 2.1 shows the basic components of an electronically steered phased

array with analog beamformer. Each antenna element is connected to two vari-

able microwave components, a phase shifter (PS) and an attenuator (ATT).
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The phase shifter allows modification of the phase of the signal fed to the

antenna element, while the attenuator, as the name indicates, attenuates the

signal, changing its amplitude. The combined effect of both hardware compo-

nents is equivalent to a multiplication of the signal by a complex weight de-

fined by the configuration of both components. The phase is often controlled

to define the steering angle, whereas the amplitude chosen tapers the aperture

excitation of the array, which can reduce the sidelobe level (SLL). Finally, the

feed network that excites the antenna elements is called the beamformer, which

in the case of Figure 2.1, is of analog architecture. All the signals are added in

complex domain on the beamformer, and the result is a single complex signal

combining the effects of all elements.

2.1.2 Pattern Synthesis Equation

Lets examine the simple case of an N -element array in a linear or planar

arrangement. The radiation pattern of the complete array is equal to the

superposition of all radiated fields from each antenna element. If fn(θ, φ)

represents the far field (FF) pattern of the nth antenna element, with origin

in the center of the antenna element, as a function of the observation angles

in spherical coordinates θ and φ, then the array radiation pattern will be

equal to the sum of the complex values of fn(θ, φ) for all N patterns, with a

phase-correction consideration due to the spatial offset given by the position

of the element with respect to the phase center. This can be mathematically

expressed [23] as

fa(θ, φ) =
N∑
n=1

fn(θ, φ)e−jkr̂·rn , (2.1)
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where fa(θ, φ) is the pattern of the array, k = 2π/λ is the wavenumber, λ is

the wavelength, r̂ is the unit vector in the θ and φ direction, defined as

r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ, (2.2)

and finally, rn is the position vector of the center of the nth element from

the phase origin of the array. The phase correction term is given by ejkr̂·rn .

Boldfaced notation indicates a vector quantity.

If the possibility of manipulating the phase and amplitude of the excitation

of the individual elements is added, each fn(θ, φ) pattern will be multiplied by

a complex gain wn. Consequently, (2.1) can be updated to

fa(θ, φ) =
N∑
n=1

fn(θ, φ)wne−jkr̂·rn , (2.3)

where,

wn = Ane
jψn , (2.4)

wn is the complex weight assigned to the nth element, An is the amplitude

attenuation, and ψn corresponds to the phase shift. In an analog active phased

array, this weight is often realized by the phase shifter and attenuator in the

TR module of the nth element.

In the array calibration context, the excitation values wn can be seen as

the actuators that allow the user to compensate the errors introduced by the

RF components of the system. As will be seen during the description of the

calibration techniques, the phased array calibration focuses on determining

the excitation values that would yield the desired array pattern.
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2.2 The Misalignment Problem

If the phase shift and amplitude applied to the excitation of the active

antenna elements of a phased array antenna are incorrect, then the array is

“misaligned”. Misalignment has a detrimental effect over the resulting beam

pattern, and can degrade performance parameters such as SLL, gain, and beam

point accuracy [5].

The excitation errors that cause the misalignment are categorized as ran-

dom or systematic [3]. Random errors are related to manufacturing tolerances,

component aging, and non-uniform transmission line lengths, which translate

into independent phase and amplitude excitation errors between elements. On

the other hand, systematic errors are highly correlated, and they present some

sort of pattern, e.g., periodic errors due to quantization, often produced by

employing digital phase shifters or attenuators. In addition, the adverse im-

pact of systematic errors is often far greater than the impact of random ones.

For this reason, it is desired that calibration remove systematiic errors such

that an array will be affected only by random errors post calibration.

To illustrate the effect of excitation errors, and the difference between the

impact from random and systematic types, a simulation of array patterns is

used. The simulated array geometry is a 64×64-elements planar array. It has

a square lattice employing a d = λ/2 separation distance between elements.

The antenna elements are assumed to have an isolated pattern of fn = cos θ,

similar to infinitesimal ideal dipoles. The beam is pointed at -45◦ in azimuth,

and a Chebyshev taper of -40 dB is applied.

First, the expected pattern for this array configuration is simulated using

(2.1). Afterwards, two misalignment cases are simulated, one perturbed by

random errors, and the other by systematic errors. For the random errors
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case, the phase and amplitude of all elements were given an error with gaussian

distribution, as depicted in the top left part of Figure 2.2.(a). The root mean

squared error (RMSE) in phase is 10◦, and in amplitude is 1 dB. By contrast,

for the systematic error case, it was assumed that the antenna elements located

on the same column have equal excitation errors. Still, the errors added to

the columns for the systematic case had the same values as the ones for the

random case, 10◦ and 1 dB.

The results of the three cases are shown in Figure 2.2. The figure shows

a comparison of the effect of each error case to the expected case. Figure

2.2.(a) illustrates that the SLL is most affected, whereas the gain and beam

pointing show no noticeable change. For the random errors case, the obtained

maximum SLL exceeds by ≈ 4 dB the target SLL of -40 dB (indicated by

the horizontal red dashed line). By contrast, for a systematic error, of the

same RMSE order, the obtained SLL exceeds the target level by more than

10 dB, a much worse outcome. On the other hand, the 2D patterns seem to

indicate that the systematic error case, shown in Figure 2.2.(b).(iii), has better

results than the random case, shown in Figure 2.2.(b).(ii). Indeed, the pattern

shape is better for the former case, however, the systematic nature of the error

adversely affected certain areas of the pattern more than others, causing more

errors on a critical performance parameter, the SLL. The simulation clearly

demonstrates that systematic errors are more serious than random ones.

2.2.1 Impact of Excitation Errors on Beam Patterns

After calibration and misalignment compensation are performed, the array

should be affected by random errors only. Thus, it is important to link the

levels of phase and amplitude random errors to corresponding maximum tol-

17



Random Errors

Systematic Errors

(i) Expected (ii) With random errors (iii) With systematic errors

(a)

(b)

Figure 2.2: Example of the impact of random and systematic errors on the
pattern of a phased array. The random error has a gaussian distribution with
a RMSE of 10◦ in phase, and 1 dB amplitude, whereas the systematic case
assumes the same excitation error on elements that belong to the same column.
(a) Elevation and azimuth cuts. (b) 2D antenna patterns.

erable errors in performance parameters, i.e., correlate random error levels to

pattern deterioration. The phased array handbooks authored by Mailloux [1]

and by Hansen [24] present a complete survey of the effects of random errors

on the antenna pattern. This dissertation uses the theory compiled in the
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aforementioned references to exemplify the misalignment effects on sidelobe

levels, antenna directivity, and beam accuracy.

Before proceeding, it is important to define the magnitudes that will quan-

tify the excitations errors so that they may serve as a metric to link mis-

alignment error levels to their corresponding effect on the array pattern. The

literature defines the root mean squared error for phase, σΨ, and amplitude,

σδ, to be their metrics, and they are calculated as

σΨ =

√√√√ 1
N

N∑
n=1
|ψn − ψT

n |2, (2.5)

and,

σδ =

√√√√ 1
N

N∑
n=1

(
|An − AT

n |
AT
n

)2

, (2.6)

respectively. N is the total number of elements of the array, ψn is the excitation

phase of the nth antenna element, ψT
n is the target phase excitation for the

nth element. In the same manner, An and AT are the realized and target

amplitudes of the nth element. Also, the amplitude error can be approximated

in dB using [1],

σdBδ = 20 log10(1 + σδ) ≈ 8.68σδ. (2.7)

1 - Sidelobe Level

SLL is the performance parameter of a phased array beam pattern most

susceptible to misalignments. Thus, the maximum tolerable misalignment

level is often defined according to SLL requirements. A method to calculate

the achievable SLL given certain σΨ and σδ error values, has been proposed by

Hsiao [5]. Hsiao acknowledged that the realized SLL on a phased array will be

higher than the target SLL value, ST , due to the unavoidable effect of random
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errors. As a consequence, he proposed that a target SLL will be achieved by

exciting the array for a lower SLL, called the designed sidelobe level, or Sd.

In this manner, when the errors inevitably increase the realized SLL, they will

reach the ST value. For this, Hsiao statistically predicts the σΨ and σδ errors

allowed to not exceed Sd versus the ratio Sd/ST , for a probability p.

( (

Figure 2.3: Normalized error level vs. the ratio between the designed SLL, Sd,
and the target SLL, ST . Source: Adapted from [1].

The approach by Hsiao is better described by examining its results repro-

duced in Figure 2.3. The abscissa of the plot, representing the ratio Sd/ST , is

always negative because Sd is deliberately chosen to be lower than ST to com-

pensate for the random errors effect. The ordinate represents the normalized

error, given by the following:

1
2(σ2

Ψ + σ2
δ )

STgA
, (2.8)

where gA is called the directivity of the ideal pattern with isotropic element

patterns [1]. The term σΨ should be given in radians, and σδ should be dimen-

sionless. Each of the curves plotted in the figure represents the probability of
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the peak SLL not exceeding ST .

The value of gA for a linear array is calculated using

gA =
∑N
n (An)2

(∑N
n A

2
n)
, (2.9)

For a large planar array it can be calculated as

gA = πgAx gAy, (2.10)

where gAx and gAy are the directivities of linear arrays with lengths equal to

the number of columns and rows of the planar array, respectively. Because the

directivity gA is dependent on the aperture illumination, which is defined by

the taper used to yield the target SLL, gA is a function of ST .

The trade-offs between the involved parameters are interpreted by reading

the curves. For instance, the lower the Sd is defined, the higher the errors that

are admissible. This is analogous to moving to the right on the plot, which

makes the normalized error greater, and thus, resulting in a higher tolerable

error. Also, for a high probability of not exceeding Sd, the tolerances are

tightened, which is clearly indicated by the different probability curves that

yield a lower normalized error for higher probability values.

The challenge from the point of view of the array designer is to keep errors

low, so the designed SLL is closer in value to the target one. This is because

the lower the defined Sd, the more taper should be added to the elements,

which translates to a more inefficient power aperture distribution.

To further illustrate the relation between random misalignment errors and

the SLL, the expected SLL for the example shown in the previous section

(2.2.1) is calculated, and the process is summarized in Table 2.1. Hsiao’s
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Table 2.1: Calculation of the necessary Sd/ST ratio to obtain a target SLL
ST for a given σΨ and σδ error level. The antenna is a planar square phased
array of 64×64 elements, using a Chebyshev taper to achieve Sd.

Magnitude Symbol Value/Unit
RMSE phase σΨ 0.175 rad (10◦)
RMSE amplitude σδ 0.115 (1 dB)
Target SLL ST -40 dB
Probability p 0.98
Ideal linear array directivity gAx = gAy 17.045 dB
Ideal array directivity gA 39 dB
Denominator factor STgA -1 dB
Normalized error

1
2 (σ2

Ψ+σ2
δ )

ST gA(ST ) 0.028
SLL ratio (Figure 2.3) Sd/ST ≈ -4 dB

curves indicated that for the 64×64 array example of Figure 2.2, a combined

error of 10◦ and 1 dB will require a Sd/ST ratio of ≈ −4 dB. This means that,

in order to ensure a peak SLL of -40 dB, the designed SLL should be 4 dB

less, i.e., Sd = −44 dB. Moreover, this result should not be a surprise, as it

was found in Figure 2.2 that, for the same error level, the peak SLL is 4 dB

higher than expected. Hence, both studies suggest defining Sd to be 4 dB less

than ST , which equals -40 dB.

2 - Beam Pointing

The beam pointing accuracy is the difference between the desired and re-

alized angular location of the beam peak. It is possible to predict the beam

pointing RMSE, σθ, for an equally-spaced linear array of Nlin elements, using

[24],

σ2
θ = (σ2

Ψ + σ2
δ )
∑Nlin/2
−Nlin/2(AT

n )2k2d2n2(∑Nlin/2
−Nlin/2A

T
nk

2d2n2
)2 , (2.11)
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where AT
n is the amplitude of the nth element, k is the propagation constant,

and d is the separation between elments. If the linear array is also uniformly

excited, and large enough, N > 10, (2.11) can be simplified [25] to

σθ =
2
√

3(σ2
Ψ + σ2

δ )
kd cos θ0N

3/2
lin

. (2.12)

Where cos θ0 is an extra term added to model the effect of steering the beam

θ◦0 off boresight.

For a square array, of dimensions N = Nlin ×Nlin, it can be assumed that

σΨ is the same as in (2.12) but averaged
√
Nlin times [25], i.e., for a square

uniformly excited array, the beam pointing error is,

σθ =
2
√

3(σ2
Ψ + σ2

δ )
kd cos θ0N2

lin

. (2.13)

For all equations, σΨ should be given in radians, and σδ should be dimen-

sionless. As a result, σθ is given in rad.

Expressions (2.11), (2.12) and (2.13) indicate that σθ decreases with the

number of elements in the array. Thus, the larger the array the less sensitive

its beam pointing accuracy is in the presence of random errors. This behavior

is accentuated in the case of a square array.

It is possible to calculate the σθ for the example shown in Figure 2.2 using

Figure 2.13 by assuming the array is uniformly excited. As before, the errors

are defined as 10◦ and 1 dB, and the beam is steered at θ0 = 45◦. The resultant

σθ is 4.6◦ × 10−3, which is approximately half the value of the often tolerable

error of 0.01◦ [18]. The reason for this is that the array is large enough that

the error is reduced by averaging. However, if the array was linear, the error

would have been increased
√
Nlin = 8 times to 0.037◦, which is a large enough

error to be considered. These results are summarized in Table 2.2.
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Table 2.2: Calculation of the beam pointing accuracy for a given σΨ and σδ
error level.

Magnitude Symbol Value/Unit
Number of elements Nx ×Ny 64× 64 1×64

RMSE phase σΨ 0.175 rad (10◦)
RMSE amplitude σδ 0.115 (1 dB)
Target θ angle θ0 45◦

Beam point accuracy σθ 4.6◦ × 10−3 0.037◦

Table 2.3: Calculation of the directivity variation for a given σΨ and σδ error
level.

Magnitude Symbol Value/Unit
RMSE phase σΨ 0.175 rad (10◦)
RMSE amplitude σδ 0.115 (1 dB)
Directivity variation (2.14) D/D0 -0.19 dB

3 - Directivity

Skolnik [26] proposed that the directivity change may be calculated as

D

Do

= 1
1 + σ2

Ψ + σ2
δ

, (2.14)

where D0 is the original directivity of the antenna, i.e., the directivity expected

for an array without random errors. D is the directivity resulting from errors

affecting the antenna elements. Furthermore, as in the previous equations, σΨ

should be given in radians, and σδ should be dimensionless.

The change in directivity due to random errors is independent of the array

size, and often its variation is almost negligible. For instance, continuing with

the 64×64 example from Figure 2.2, an error of 10◦ and 1 dB will result in a

variation of only 0.19 dB, as calculated in Table 2.3.
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2.3 Calibration of Phased Array Antennas

As previously noted, misalignment errors affect the realized beam antenna

pattern on a phased array. Moreover, it was illustrated that misalignment

greatly increase the SLL, and it also adversely affected the beam pointing

accuracy and directivity. These problems are accentuated if the error dis-

tribution is systematic instead of random. Undoubtedly, the misalignment

problem can compromise the performance of a phased array-based system, so

this problem needs to be addressed by the test engineer. This is the context

in which phased array calibration originated.

Calibration of a phased array attempts to quantify misalignment in order

to characterize the excitation error distribution. In addition, when actuation

mechanisms, e.g., phase shifters and attenuators, are available, calibration

serves to compensate for the measured errors.

The concept of calibration of phased arrays will be introduced by discussing

the following general calibration procedure:

1. Quantify the differences in terms of amplitude and phase between the

different elements of the array (misalignment).

2. Perform measurements for transmit and receive modes.

3. Repeat previous steps for all frequencies and operating temperatures of

interest.

4. When TR modules (phase shifters and attenuators) are are available

in the front-end of the array, repeat the calibration for each state of

attenuation and phase shift combination.

5. Select a suitable configuration of phase and amplitude values based on

the measured results.

6. Monitor and update the resulting calibration periodically according to
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the current state of the system.

Step 1 refers to the main goal of phased array calibration, determining the

misalignment between antenna elements, while steps 2-4 cover several other

parameters that must be considered. Electronically steered phased arrays

are composed of active microwave components that invalidate the reciprocity

theorem. As a result, a transmit path is not necessarily the same as its cor-

responding receive path, and thus both paths must be tested. Also, the ex-

citation errors are a function of the temperature and frequency of operation.

For this reason, tests must be repeated to cover the expected temperature and

frequency ranges of operation.

Step 4 concerns internal errors of the hardware associated with the TR

modules. For example, the performance of phase shifters is not ideal because

they incorrectly add an amplitude variation in the process of producing a phase

shift [27]. This is inversely the case for attenuators, which add an unwanted

phase shift while changing the amplitude. Step 4 suggests testing all possible

combinations of phase and amplitude configurations in order to acknowledge

the imperfections of the hardware.

Once the errors are known, step 5 explains that they must be compensated

for using the sampled data. The compensation is realized through the TR

module of the array, and consists of choosing a phase and amplitude configu-

ration that is close in value to the previously defined target excitation.

The last step introduces the concept of monitoring or tracking the state

of the array. Component aging and external factors, such as the tempera-

ture of operation, may introduce variations in the expected function of the

TR modules or antenna aperture. Therefore, it is not enough to perform a

calibration once, before the equipment is in operation. It is just as important
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to periodically test if the calibration performed is holding.

The compensation part of the calibration procedure (step 5) is relatively

simple. Once the errors are known, the user can simply choose a configuration

more similar to the target one. However, the first part of the procedure,

to quantify the misalignment errors, is not straightforward and represents

an engineering challenge because it depends on both the uniqueness of the

phased array hardware and on the available instrumentation to perform the

measurements. In order to illustrate this problem, and simultaneously present

several solutions for different cases, the current state-of-the-art on this topic

is reviewed.

2.4 State-of-the-Art

The literature regarding phased array calibration is vast and diverse, and it

encompasses several cases of ingenious procedures on how to sample and isolate

the excitation errors of various array architectures and configurations. How-

ever, although extensive, the literature is scattered among a number of differ-

ent works. Thus, readers interested in the topic are forced to study techniques

from different sources in order to produce an overview of it, drawing their own

conclusions. In this context, this work reviews the current state-of-the-art on

phased array calibration, in an attempt to compile current challenges.

In its most simple form, the standard calibration technique, called “park

and probe” [28], consists of using a Cartesian robotic manipulator to position

an antenna probe in front of an antenna element of the array, and then sample

the radiated field of the element. The procedure is repeated until all ele-

ments of the array are sampled. The collected data is then, compared and the

differences in amplitude and phase between the elements can be calculated.
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However, this technique is not universal, and is limited by implicit require-

ments. For instance, in order to sample only one element each time, the rest

should be terminated to their corresponding matching load, which requires an

extra hardware feature that allows the element to be switched between enabled

and terminated states. Moreover, a robotic scanner is a bulky system that is

not always available when the array is deployed for operation.

These limitations illustrate the difficulties encountered when a phased ar-

ray system must be tested. The difficulties are related to the uniqueness of

the hardware that must be tested and the required instrumentation to sample

it. Since phased array systems have a wide variety of applications and con-

figurations, e.g., from satellite space borne applications [29], to ground-based,

fully digital radar for weather observations [30], several different techniques

have been conceived to cover all these cases. In the interest of making this

high number of solutions more accessible, they may be grouped under differ-

ent categories. Thus, for a given application, the suitable solution could be

determined by identifying the categories compatible with the application, and

then choosing the technique common to all of them.

Before starting the review, two previous works that serve as introductions

to the topic are worth mentioning. The first is authored by Fulton [31], which

offers a review of the most relevant techniques, with a special focus on digi-

tal architecture technology, and the second by Şeker [32], which presents the

fundamentals of calibration.

2.4.1 Initial and In-situ Calibration

Tthe most important criterion to consider in phased array calibration is if

it can be performed during operation. Sarcione et al. [33] documented that,
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for a complete calibration of a phased array radar, two procedures are needed:

(1) initial calibration - exhaustively testing the equipment under controlled

environmental conditions, and (2) in-situ calibration - monitoring the state

of the array while in operation to ensure that the system holds its intended

configuration [31]. Initial techniques are accurate, thought time consuming,

and may require specialized instrumentation. By contrast, in-situ techniques

must be fast, and performed under unknown external conditions.

Another calibration categorization classifies techniques according to the

type of feedback mechanism employed, namely, whether or not feedback is

external or built-in. External feedback relies upon instrumentation extrinsic

to the system, whereas built-in feedback concerns a mechanism designed from

the start to be part of the system. External types are almost exclusively

implemented on initial type calibrations, due to the difficulty of installing

external instrumentation once the system has been deployed. On the other

hand, built-in mechanisms are particularly convenient for in-situ applications

because the hardware is self-contained and already integrated into the system

when deployed. Nevertheless, built-in mechanisms may also be suitable for ini-

tial calibration applications, provided these mechanisms are accurate enough

to calculate the misalignment between the elements.

2.4.2 External Calibration

External types of calibration procedure are performed using near field (NF)

and far field (FF) instrumentation, and thus, they can be classified into NF and

FF. An example of a NF type is the aforementioned park and probe technique

[28, 33, 34, 35, 36], which relies on a NF scanner to move the probe along the

array to test all elements, see Figure 1.1.(a) for an illustration. Section 4.2.1
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provides a detailed description of this fundamental technique. Moreover, as

already described, because the performance of the TR modules is not ideal,

an attempt to set the excitation to a target phase may also incur an unwanted

amplitude variation, and vice-versa. As a result, in addition to considering the

misalignment between elements, the error added by the imperfect operation

of TR modules must also be taken into account [27, 37, 38].

FF types, depicted in Figure 2.4.(a), which utilize FF calibration towers

to test the array [39, 40, 41, 42, 43] offer both advantages and disadvantages

in comparison with NF types. The advantage of performing measurements at

FF distances is that the sampled field is the same as that which will reach the

target antenna or object. However, the signal is highly attenuated due to the

long range, resulting in poor signal-to-noise (SNR) levels. In NF ranges, SNR

levels are much higher. Assumptions must be made in order to correlate the

sampled field in NF range to its corresponding value in FF. Further discussion

about instrumentation and phased array measurements is summarized in the

literature [44, 34].

2.4.3 Built-In Calibration

Built-in types can be categorized according to two main types of feedback

mechanisms, specialized hardware or mutual coupling (MC ). The specialized

hardware type involves incorporating into the phased array architecture a feed-

back mechanism whose main purpose is testing the antenna elements. For

example, Herd [45] included a closed loop feed network to inject a pilot signal

into the elements, and, in a similar fashion, Lee et al. [46] added a transmis-

sion line signal injector embedded at the radiating aperture. Both mechanisms

aim to introduce a known signal through the front-end of the array to detect
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Figure 2.4: Diagrams of different calibration techniques.

errors, as shown in Figure 2.4.(b). In addition, another example using special-

ized added hardware relies on an on-board NF probe fixed in the NF region

of the aperture of satellites [47, 48, 49].

In contrast to the specialized hardware approaches, MC-based calibration

cleverly employs the inherent mutual coupling between antenna elements to
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test the array using the active elements themselves as test probes, Figure

2.4.(c). The pioneer of this approach is Aumann [50], who noticed that the

mutual coupling between antenna elements can be used as the feedback mech-

anism to sample the radiation characteristics of their neighbor elements. By

quantifying this effect it is possible to estimate the performance of the ar-

ray and use this information to calibrate it. Coupling between neighboring

elements is measured by sending a signal from one element and receiving

with another. For digital arrays this capability is built-in in its architecture.

However, for an analog architecture, it is necessary to have two independent

beamformers, one for transmit and another for receive, to enable simultaneous

transmission from one element and reception with another.

Because both the transmission and reception networks of an array are sus-

ceptible to errors, it is necessary to use data processing algorithms to isolate

transmission errors from reception errors. Additionally, because the number of

possible element pairs that can be tested is very large, and increases with the

number of elements in the array, a MC-based technique must unambiguously

define which element pairs should be tested. The literature offers different ap-

proaches that focus on these two considerations, i.e., data processing and pair

selection [51, 52, 32]. A noteworthy example has been presented by Bekers et

al.[53], which presents a mathematical approach that is capable of processing

as many coupling measurements as are available, resulting in a more accurate

estimator than its predecessors.

The MC approach originally proposed by Aumann relies on the assumption

that coupling between elements is the same as long as the pairs of elements have

a similar geometrical disposition, e.g., the two couplings between an element

and its left and right neighbors are the same. This assumption holds only
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when the array is large. But for small arrays, the discontinuities occasioned by

the edges render the assumption invalid.. To avoid this assumption, another

approach for MC measurements has been proposed by Agrawal and Jablon

[54]. The technique can be described as a “before/after” concept. First, MC

samples of the calibrated system are performed and stored as a “before” state.

Next, when the system is deployed, the “after” state is sampled. The errors

are obtained by comparing both states. To perform the MC measurements,

Agrawal and Jablon suggest using embedded elements for the sole purpose

of testing the antenna elements. Examples of this approach are presented in

[23, 33], which combine the MC technique for in-situ calibration purposes with

the park and probe technique for initial calibration.

To this point the cases studied have been suitable for analog architectures,

without mention of digital architectures. Nevertheless, MC-based calibration

techniques are particularly convenient for the latter since an MC sampling ca-

pability is inherent to them. Proof of this is the work of Fulton [55], who con-

ceived a robust before/after MC approach to calibrate digital arrays without

using embedded elements. Moreover, Mitchell [56] proposed a full calibration

of digital arrays by combining the work by Beckers et al.[53], for initial calibra-

tion, with the before/after approach from Fulton [55], for in-situ applications.

2.4.4 Encoded Calibration

A great portion of the methods cited above require the tested elements

to be excited while the rest are terminated to their corresponding matching

load. However, since this possibility is not always guaranteed, arrays must

be tested while multiple elements are active. Under these circumstances, the

signal sampled is the combination of the signals proceeding from the active
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elements, which represents a problem to the test engineer, who must isolate

them in order to compute the misalignment. A solution to this issue is to

manipulate the phase of the antenna elements, and in some cases also the

magnitude, according to a certain “encoding” technique. A mathematical

algorithm is then used to decode the individual signals from the combined

sample, as shown in Figure 2.4.(d).

Techniques that apply to this type of phase manipulation can be cate-

gorized as encoded. One of the oldest encoded techniques documented was

proposed by Mano and Katagi [57] in 1982. The proposed technique is called

rotation of the electric vector (REV), and consists of sampling power only

measurements while cycling the phase shifter of an antenna element. Then,

by using vector algebra it is possible isolate the field vector of the cycled ele-

ment. It was conceived for cases when it is not possible to sample the signal

of a single element, and when phase information about the sampled signals

is not available. A discussion about the associated error of the technique is

presented in [58], a faster version based on Fourier transforms is introduced in

[59], and an improved version that considers the excitation error introduced

by a digital phased shifter is shown in [60]. Other cases similar to the REV

can be found in [39, 61, 62, 63].

An alternative approach to REV that also uses a phase encoding algorithm

is proposed by Silverstein [64, 65]. He devised a remote calibration technique

that toggles the phase configuration of the antenna elements following an or-

thogonal code. The technique is compatible with both analog and digital

architectures. In addition, several variations from this approach have been

proposed [66, 67, 68, 69, 70, 71].

Finally, Table 2.4 summarizes the references cited in this review. The table
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Table 2.4: Summary of the state-of-the-art of calibration techniques, catego-
rized in (Ini)tial, (I)n-(S)itu, (Ext)ernal, (B)uilt-(I)n, NF, FF, (Dir)ect sample,
(Enc)oded, MC, and, (Dig)ital.

Ref. Note Ini I-S Ext B-I NF FF Dir Enc MC Dig
[28] PP x x x x
[35] PP x x x x
[33] PP/Embedded x x x x x x x
[36] PP x x x x
[34] PAA measurements x x x x x
[27] TR modules direct x x x
[38] TR modules direct x x x
[37] TR module characterization x x x
[39] REV x x x x x
[41] Improved REV x x x x x
[40] Adaptive nulling x x x x x
[42] Cylindrical array/Polarimetric x x x x
[47] On-board probe x x x x
[45] Closed loop feed network x x x x
[46] Signal injector x x x
[49] On-board probe/Deformation x x x x
[48] On-board probe/Deformation x x x x
[50] MC-based x x x x
[52] MC-based x x x x
[51] MC-based x x x x
[32] Review of Cal/MC/PP x x x x x x x x
[53] MC-based high accuracy x x x x x
[54] Embedded - Before/After x x x
[23] PP/ MC-based Before/After x x x x x x
[55] Before/After x x x x
[56] MC-based for Digital x x x x x
[57] REV/Power only x x x x x x
[58] REV/Power only x x x x
[59] REV/Power only x x x x
[60] REV/Power only x x x x
[61] REV and NF x x x x x x
[62] REV/Power only x x x x
[44] Review of hardware x x x x x
[64] Orthogonal coding x x x x x
[65] Orthogonal coding x x x x x
[67] Validation of orthogonal coding x x x x x
[69] Phase coding x x x x x x

is meant to be used as a guide that points to a technique compatible with the

categories presented by the review.
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2.4.5 Pseudo Calibration

Other approaches worthy of mention have attempted to improve the perfor-

mance of the array without necessarily calculating excitation errors. Because

these cannot be catalogued as true calibration techniques, they may be de-

scribed as pseudo calibration.

One of the first phased array diagnostic techniques was documented by

Ransom and Mittra in 1970 [72], who proposed a theory of scanning an array

using a NF scanner, and then, by taking advantage of Fourier transform prop-

erties, computing the fields distribution on its aperture. By visual inspection

of the fields distribution, one could identify if an element is defective and not

working properly. Later, this technique was formulated and experimentally

validated by [73]. This primitive procedure is limited to only detecting defec-

tive components, and it does not provide information about the excitation of

each element. Hence, it cannot be considered a true calibration technique.

Another approach to correct for array imperfections arises in the case of

small arrays. Since this type of array is not large enough, mutual coupling

affects each element differently, precluding proper beamforming. To compen-

sate for this problem, the literature [74, 75] rrecommends assuming that the

pattern of a small array is the weighted sum of the ideal element pattern

plus added perturbation due to MC effects. Then, it derives a compensation

complex weight matrix to correct this effect.

2.5 Chapter Summary

This chapter focused on the fundamentals of phased array antennas and

their calibration.It started by defining phased array antennas, indicating their

main components, and presenting the analytical formulation to obtain result-
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ing patterns. Next, it described the motivation behind the study of phased

array calibration techniques by illustrating the adverse effects of the excita-

tion misalignment problem. Excitation errors can be systematic or random,

and the adverse effect of systematic errors are worst than of random errors.

Calibration methods were described to quantify the errors and correct them

such that, after calibration, only random errors must remain. Moreover, a

quantitative description of how random errors affect the realized pattern of an

array was provided.

With the goal of giving the reader an overview of the current challenges

in phased array calibration, an extensive review of the state-of-the-art was

presented. The review revealed several different approaches, conceived for a

wide variety of system and instrumentation setups. As a consequence, it was

proposed to categorize each approach under different criteria. As a result, the

review was divided into initial vs. in-situ types, as well as external versus

built-in feedback instruments, NF versus FF measurements, and specialized

signal injection loops versus mutual coupling samples. All of these categories

were briefly described and exemplified through proper citation. Finally, to

offer the reader a tool to easily identify a technique according to the previous

criteria, a summary of the state-of-the-art was presented in Table 2.4.
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3 Instrumentation for Phased Array Antenna Charac-

terization and Calibration

3.1 Introduction

This chapter discusses the instrumentation necessary to perform phased

array measurements and calibration. It starts by reviewing the current-state-

of-the-art of antenna measurement ranges used to test phased arrays. The

reviewed scanners and instrumentation include: the commercial 150 cm × 150

cm NF planar scanner located at the Radar Innovations Laboratory (RIL),

which was used to perform phased array calibration experiments (Chapter 4);

the custom-made calibration 60 cm × 60 cm scanner designed by NCAR-EOL

to characterize small phased array prototypes, which was used to perform the

experiments in Chapter 5; and cases exemplifying the new trend of implement-

ing articulated robotic manipulators for RF and antenna measurements.

In addition, a novel microwave instrumentation concept, the denominated

RF Scanner, is introduced. The RF Scanner is a tool conceived specifically

for phased array characterization and calibration. It has the capability to

test phased arrays under different temperature conditions, inspect the surface

of the antenna using image processing, and perform RF measurements of its

elements.

3.2 State-of-the-Art

An overview of antenna measurements for phased array antennas can be

found in the literature [44, 34]. As with any other antenna, a phased array

antenna may be measured with the help of a NF or FF test range, but often a

NF planar range is preferred since its probe positioning capability allows for
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testing each antenna element at boresight, which is much needed to determine

the health of each element [35]. In addition, array antennas often have planar

apertures to synthesize narrow pencil-shaped beams, the type of configuration

for which planar scanners are designed to test [76].

An example of a commercial NF range, compatible with phased array mea-

surements, is shown in Figure 3.1. The case illustrated is an 8×8 phased array

antenna prepared to be tested by the NF planar scanner of the RIL. This setup

is the same used in Chapter 4 to fully calibrate and measure antenna patterns

of the 8×8 dual polarized phased array prototype.

The main component of the antenna range is the Cartesian robotic ma-

nipulator. This particular manipulator allows four degrees of freedom: three

of them allow linear movements in the x−, y− and z−axes, and the fourth

one is a rotational joint connected to the probe mount that allows polarization

control. In this manner, the three linear actuators allow positioning the probe

anywhere within a 2D rectangular plane, and the rotational joint allows the

probe to orient itself according to the polarization of the antenna under test

(AUT). Thus, the rotational joint can control horizontal (H) or vertical (V)

testing. The maximum allowed scan window, in x− and y− is 150 cm × 150

cm.

The antenna probe is often a standard open-ended waveguide (OEWG)

antenna of dimensions compatible with the frequency test. The manipulator

and AUT sit inside an anechoic chamber that both isolates the inside from

external RF signals, and prevents unwanted reflections from the surroundings

to interfere with the measurements by means of microwave absorbers.

This setup is suitable for receiving measurements of the AUT. For transmit

mode extra features are required [77]]. For instance, most phased array trans-
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Figure 3.1: Planar NF test range inside an anechoic chamber, located at the
Radar Innovations Laboratory, The University of Oklahoma.

mit microwave paths include high power amplifiers that allow pulsed operation

exclusively. Thus, the instrumentation, e.g., the vector network analyzer, must

be compatible with pulsed measurements. Moreover, if the AUT is large and

has high power capabilities, an especially high-power-graded absorber must be

used to cover the chamber due to fire risk.

A disadvantage of a commercial NF scanner is its high price. Further, com-

mercial NF chambers are designed specifically for measuring antenna patterns,

not for phased array calibration. However, if the required functionality is only

to perform a park and probe test, then it is possible to build a custom-made

calibration scanner that is both simpler and more affordable than a commercial

NF scanner. Proof of this is the Cartesian scanner developed by NCAR-EOL,

shown in Figure 3.2.

The scanner consists of a Cartesian manipulator with the same degrees

of freedom as the commercial scanner shown in Figure 3.1. The scanner is
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Figure 3.2: Cartesian scanner devised for calibration of the LRU. Left: Ren-
dered design of the scanner, showing its components. Right: Picture of the
scanner, located at the National Center for Atmospheric Research-Earth Ob-
serving Laboratory. Source: courtesy of Pei-sang Tsai.

embedded within a metallic box lined with microwave absorbers, and within

which the AUT is mounted. The main purpose of the scanner is to perform

park and probe measurements to the Linear Replaceable Unit (LRU) being

developed by NCAR-EOL. For this, a program written in LabView is used

to coordinate the movement of the actuators, configure the TR modules of

the AUT, and the control the RF instrumentation. The maximum scanning

window for this setup is only 60 cm × 60 cm, approximately a third of the

area covered by the commercial option.

Indeed, the reduced size of the Cartesian scanner makes it unsuitable to

perform full NF scans to obtain antenna patterns. However, it is an out-

standing tool to explore calibration issues on phased array prototypes. This

tool was instrumental in providing a ground truth for evaluating the mutual

coupling-based calibration techniques detailed in Section 5.

Both of the examples introduced above are suitable for S-, C- and X-

bands. However, for antennas on the mmWave band, the instrumentation is
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not compatible. Frequency extender modules are commonly required to reach

frequency bands above 25 GHz. Moreover, at such frequencies the size factor of

the transmission lines is reduced, and components like RF cables, connectors

and antenna probes also reduce in size, and become incompatible with lower

frequency applications.

The reduced size associated with mmWave wavelengths leading to a re-

duced antenna scanner size actually offers opportunities for new approaches

to antenna measurement. The shorter distances involved in mmWave allow

the employment of articulated robotics. These are more versatile manipula-

tors and work within limited workspace. For instance, the National Institute

of Standards and Technology (NIST) took advantage of the size reduction

and developed the configurable robotic millimeter-wave antenna (CROMMA)

facility [78, 79] shown in Figure 3.3.

Figure 3.3: The CROMMA facility. It employs an articulated robotic manip-
ulator in conjunction with an extremely accurate AUT positioner to perform
antenna measurements at mmWave. Source: [80].

CROMMA consists of a mmWave antenna scanner based on an articulated
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robotic manipulator. The robotic manipulator is in charge of positioning the

antenna probe. Another robotic manipulator, a remarkably accurate hexapod,

is used to setup the AUT. Finally, a laser tracker is implemented to improve the

positioning accuracy of both manipulators. The positioning accuracy of the

robotic manipulator is 70 µm. For NF scans, the minimum required accuracy

[81], σpos, is

σpos = λ

50 . (3.1)

The maximum frequency allowed under this condition is ≈ 85 GHz. However,

by adding the laser tracker as position feedback, the positioning can be im-

proved to an impressive σpos < 25 µm, enabling devices at frequencies of up

to 300 GHz to be tested.

An articulated configuration for the robotic manipulator was chosen over a

Cartesian one because it allows movement with six degrees of freedom. Hence,

by having the robotic manipulator position the antenna probe, it is possible

to perform planar, cylindrical, spherical, and indeed any arbitrary scan path.

This configuration is more flexible and convenient than traditional test config-

urations that require a specific positioner for each scan configuration. Similar

work, with more modest accuracy, has been proposed by [82, 83].

The ARRC has also explored the use of robotic manipulators, and has

implemented a compact robotic arm to test radome attenuation for weather

radar applications [84, 85]. The instrument consists of a reflectometer at-

tached to a robotic arm; the setup is located inside the protective radome of

a radar, as shown in Figure 3.4. The reflectometer captures the energy re-

flected back by the radome and its surroundings. By applying time-domain

gating, the reflections from the radome are discriminated and isolated from
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clutter. A robotic arm is employed to carry the reflectometer according to

a semi-spherical scan. Although this is not a direct antenna measurement

application, it is an excellent example of the use of articulated robotics for

automation of RF measurements.

Figure 3.4: Weather radar radome attenuation scanner, developed by the
ARRC. Source: [85].

3.3 6-axis Robotic RF Scanner

Literature regarding instrumentation specific to phased array calibration is

lacking. Most existing techniques suggest using a common NF planar scanner

to perform the park and probe technique [28, 35], or using built-in equipment,

as reviewed in the previous chapter. However, when information about the

performance of an array under different temperature conditions is necessary,

a standard NF scanner cannot offer a complete characterization of the phased

array aperture. Moreover, a NF planar scanner is limited to calibration of only

planar phased arrays, whereas, if more degrees of freedom were available, as
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in the case of the CROMMA [79], conformal arrays could also be calibrated.

In this context, the ARRC have been developing an automated robotic

solution for phased array calibration [86, 87]. An articulated robotic manip-

ulator is used to carry an arrangement of sensors to efficiently characterize a

phased array-based system using the park and probe technique. This particu-

lar system was designed to be flexible and support different types of antenna

shapes, including planar and conformal. Moreover, the proposed tool also

allows testing within a range of 0-50 ◦C, and a closed loop probe-element

alignment mechanism.

3.3.1 System Description

A block diagram depicting the components of the scanner and their ar-

rangement is shown in Figure 3.5. The core of the scanner is an articulated

robotic manipulator in charge of positioning tasks. A sensor suite is attached

at the end of the manipulator. The sensor suite consists of a mechanical struc-

ture upon which most of the sensors are mounted. Its main function is to

support the sensors and their wiring, and to provide them with the appropri-

ate conditions for operation. The AUT is located immediately in front of the

robotic manipulator to enable the manipulator to freely move the sensor suite

over the AUT. Furthermore, a microwave amplifier or attenuators might be

added to condition the signal to suitable power levels. All of these components

sit inside an environmental chamber that controls the operation temperature

at which the tests are performed.

The sensors selected to perform data acquisition are a High Definition (HD)

camera, an antenna probe, and a thermal imaging camera, all of them mounted

on the sensor suite. The HD camera, which is capable of digitally processing
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Figure 3.5: Block diagram of the RF scanner illustrating its main components.
Source: [86]

images, is used to locate the exact center of the antenna elements. The antenna

probe samples the electric fields in front of the antenna elements. Finally,

the thermal camera snaps thermal pictures of the temperature distribution
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on the surface of the antenna array. This sensor and actuator arrangement

allows the automated tool to perform repeatable measurements of the radiation

characteristics of all antenna elements over a range of 0 to 50 ◦C operation

temperatures.

A picture of the RF scanner is shown in Figure 3.6. The robotic arm

selected is the UR10 model from Universal Robots [88]. The arm is rated as a

collaborative type, i.e., it is safe for a person to be around while in operation.

This manipulator is capable of 100 µm position accuracy, which, according to

(3.1), allows NF scans of up to 60 GHz. However, the current VNA and wiring

hardware are rated to a maximum frequency of 18 GHz.

In addition, the robotic arm has a reach ratio of 1.3 m, but once the sen-

sors are mounted on it, the scanner can only cover a plane of 80 cm × 80 cm.

As a consequence, although the scanner is capable of performing NF to FF

rasters, the limited planar scan window size is not convenient for devices of

low frequency. It may be possible to extend the NF raster area by implement-

ing non-canonical scans, e.g., scans that are neither spherical, cylindrical nor

planar, as proposed by [89], but this is beyond the scope of this research, and

is suggested for future research.

A detailed description on how the system operates as well as an explanation

of the interaction among the sensors it implements is given next.

3.3.2 Proposed Operation

The scanner operation procedure is summarized using the flow diagram in

Figure 3.7. As shown in the figure diagram, the procedure starts by setting

up the test temperature, which is controlled by the environmental chamber.

The temperature value is defined by the operation conditions of the phased
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Figure 3.6: Picture of the RF scanner sitting inside the RIL at The University
of Oklahoma. Source: [86]

array-based system. The interior of the chamber, containing the robot, AUT,

instrumentation, and wiring, is kept under constant temperature by the auto-

mated action of the chamber. The scanner halts for an interval of at least 3

hours to allow the components to reach thermal equilibrium with their environ-

ment, ensuring in this manner that all components be at the test temperature.

Once the temperature is uniform inside the chamber, the scanner proceeds

to position the probe at boresight of the antenna element to be sampled. In

principle, if the robotic manipulator reference system is precisely aligned with

the reference system of the AUT, then positioning the robot at the front of the

antenna element should be easily achieved by a command to move the robot to

a predefined set of coordinates. However, manufacturing errors and mechanical

obstacles may preclude the alignment of the AUT and manipulator, which will

cause the probe to be off-center of the antenna element.

Moreover, temperature variations may change the relative position of the
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Figure 3.7: Flow diagram explaining the scanner operation during phased
array system characterization. The complete procedure collects sufficient data
to represent the radiation characteristics of the antenna array, that will be
further processed to calibrate its antenna patterns.

AUT with respect to the manipulator, introducing yet more offsets between

the probe position and the boresight of the antenna element. As a result, the
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HD camera is used as a feedback sensor to ensure the correct positioning of

the probe.

To accomplish this task, the HD camera inspects the surface of the antenna

and uses real-time machine vision algorithms to recognize a fiducial image

indicating the center of the element, as shown here in Figure 3.8.(b). After

recognition the scanner will command the robot to correct its position, and

use the camera another time to check the current state. The process iterates

until a user-predefined error tolerance has been attained, which indicates that

the probe is finally aligned.

Figure 3.8: Proposed capabilities of the RF Scanner. (a) 3×3 phased array
employed as antenna probe. (b) Recognize fiducial patterns marking the lo-
cation of an antenna element. (c) Thermal image of the surface of an AUT.
(d) Examples of the phase and amplitude of the S21 parameters between the
AUT and antenna probe under different temperatures. Source: [86]

The following step is the RF characterization stage. The objective is to

sample the fields radiated by a specific antenna element, using the probe and

the VNA. Additionally, depending on the frequency range of operation and in-

ternal circuitry of the AUT, signal conditioning components such as amplifiers

and attenuators might be necessary. First, the array controller should config-
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ure the excitation of the antenna element according to a predefined sequence

of excitation states to be tested. Second, the scanner will order the VNA to

perform an S-parameters measurement. Figure 3.8.(d) shows an example of

these measurements. The results will be stored on the main computer, and

later processed for array calibration. These steps will be repeated according

to the number of excitation states defined in the test sequence.

After concluding the radiation sampling the thermal camera is used to snap

a thermal image of the surface area of the array. The image contains valuable

information about the heat distribution along the antenna array, and can also

be used as a feedback of the temperature equilibrium dwelling period. Figure

3.8.(c) shows the thermal image of the surface of a 3×3 phased array antenna.

Afterwards, the procedure will be repeated for the remaining antenna ele-

ments to be sampled. This includes applying the positioning feedback loop for

the position of the next element, and sampling its RF characteristics in the

same way the scanner did for the previous element. At the end of this stage

the complete array has been scanned and the collected data is sufficient for

calibration purposes. Nevertheless, the data is only representative of the array

performance under the temperature at which it was tested. The above detailed

procedure will be fully replicated, but for another operative test temperature,

until the full characterization of the array is achieved.

3.4 Chapter Summary

This chapter reviewed current technology used for antenna measurements.

It revealed that the most common antenna range for calibration is the NF pla-

nar scanner, which is suitable for performing park and probe tests. Moreover,

it also presented the new trend of involving articulated robotic manipulators,
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with several degrees of freedom, in antenna measurements in general. The

multiple degrees of freedom on this type of manipulator allows a single setup

to implement various scan strategies.

A novel tool for phased array calibration has also been presented. The RF

scanner is capable of testing the performance of phased arrays under different

temperature conditions, from 0-50 ◦C, since all the equipment is enclosed in

an environmental chamber. It is also capable, of performing park and probe

tests on planar or conformal phased arrays, at frequencies up to 18 GHz. It

is equipped with an HD camera for identifying the center of each antenna

element, and can snap thermal pictures of the surface of the antenna aperture.
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4 Near Field Calibration for Phased Array Antennas

4.1 Introduction

During the development of a phased array radar, the designers must ensure

that the scan capability of the antenna is acceptable. It is common then to

manufacture antenna prototypes, and test them using antenna test ranges

[90, 91]. The measurement of the antenna patterns of a phased array is an

extensive endeavor since the array is able to produce an infinite number of

beams, depending on the combination of phase shift and amplitude excitations

applied to its antenna elements. Furthermore, in some cases the prototype

is a linear replaceable unit (LRU) that includes the front-end of the radar

system, which is composed of the antenna, antenna feed, TR modules, and

beam former. The large number of hardware components on a LRU makes

it prone to phase and amplitude excitation errors, i.e., the complex weight

excitations on each antenna element are affected by errors.A characterization of

the phased array system, also known as initial calibration, must be performed

to compensate for these introduced errors to quantify these “misalignments”.

In this context, the goal of this chapter is to propose, test, and validate a

complete initial calibration procedure for performance assessment of phased

array radar prototypes.

The most attractive capability of phased array antennas in radar applica-

tions is to electronically steer their beam, which allows fast scans and render

mechanical pedestals unnecessary. Thus, the main objective of the perfor-

mance assessment of phased array antennas is to evaluate the beams steered

at each target observation position. As a result, the most basic assessment

procedure will require scanning the beam-steered patterns of the antenna un-
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der test (AUT). This can be accomplished by direct or indirect measurements.

The direct measurement of beam-steered patterns, as its names indicates, con-

sists of directly scanning the patterns when the array is fully active. On the

other hand, indirect measurements can be obtained by synthesis of the em-

bedded element patterns, i.e., the pattern of an active element while the other

elements are match terminated [92]. The embedded element patterns act as a

base from which any other beam pattern can be synthesized. An example of

this can be found in [67].

The indirect approach has the advantage that any other beam could be

synthesized using a finite set of base patterns, and it may be the only alterna-

tive when the combined power level of the full active array is too high to be

managed by the available instrumentation. This, was described in [93] which

proposed measuring small subarray clusters instead of the full array to reduce

the total radiated power. Of course, the decision to use a direct or indirect

approach depends on the number of active elements in the array, making the

indirect approach more attractive when the number of elements is not high.

In any case, a complete procedure for performance assessment should include

both approaches.

Moreover, when the AUT includes TR modules, the misalignment errors

due to hardware imperfections must be quantified so they can be compen-

sated for using the capabilities of the available TR modules. The conventional

method for sampling misalignment errors is to use an antenna probe to test

each antenna element separately. This method, often called “park and probe”

[94], was first introduced by [28], and consists of using a robotic scanner to au-

tomatically position the probe at boresight of each element, and then sampling

its excitation, while the rest of the elements are match terminated. Thus, the

54



process of defining a complete characterization procedure requires addressing

the misalignment issue. For this reason, an initial calibration of the phased

array system should not only be dedicated to capturing beam-steered patterns,

but should also include a characterization technique, such as park and probe,

that quantifies the misalignment errors.

To this point an initial calibration must include: characterizing the array

hardware, scanning the embedded elements of each active element, and finally

scanning the realized beam-steered patterns. Note that, by collecting the exci-

tation data of each element, as well as having the embedded element patterns,

the performance of the array in essence has been completely defined. Any pat-

tern that can be produced by the array is only a weighted sum of embedded

element patterns [95], and hence, if both the excitations and embedded pat-

terns are known, then any beam can be accurately predicted. This approach

is different from previous ones because in the past prediction was only based

either on the excitation data, or on the embedded elements.

As a result, it is proposed that a complete initial calibration technique

must include the following: characterizing the excitation hardware and using

the result to correct for misalignment; scanning the embedded element patterns

of the active elements; using the collected data to predict the beam patterns of

interest; and finally, directly scanning these defined patterns. In this manner,

the user will have complete knowledge of the steering capabilities of the system.

In order to support the proposed procedure the LRU test-bed developped

by NCAR-EOL has been experimentally tested according to the defined guide-

lines of the procedure. The case study demonstrates the benefits of following

the procedure, and it also serves as an example of how to implement it.

The chapter is arranged as follows. The proposed procedure is introduced
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in Section 4.2. The instrumentation and description of the LRU used for the

case study are presented in 4.3.1. The procedure and results of the experiments

performed are discussed in sections 4.3.2 and 4.4, respectively. Lastly, the

validation of the pattern prediction technique is demonstrated in 4.4.4. For

more information about the procedure, the reader can refer to [96], which is a

previous publication of the author regarding this theory.

4.2 Theory

The main objective of the proposed initial calibration is to define what data

should be collected, and how it has to be processed to produce results that

allow the phased array radar designer to evaluate the prototype under test.

This technique is intended to be seen as a guide, describing the complete set of

tests required to perform a thorough characterization of a phased array-based

system.

Each test is described as a stage of the initial calibration. The tests are

detailed in the following subsections.

4.2.1 Excitation Characterization

The excitation of each active element, also known as its complex weight,

corresponds to its phase and amplitude configuration. In a phased array,

the phase and amplitude of its elements are actuated by means of a phase

shifter and attenuator, respectively. These components often present non-

ideal behavior that, for instance, forces the phase shifter to change not only

the phase of a signal, but also its amplitude. The same can be said of an

attenuator, which adds an unaccounted phase shift to a signal which was

supposed to be modified in amplitude only. These effects cause difficult proper
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beam synthesis, since the resultant pattern is affected by such excitation errors.

Hence, the errors due to the excitation components must be measured.

Moreover, transmission lines, the beamformer, and the antenna feed may

have fabrication errors as well, causing the electrical paths of the antenna

elements to be different. The result is that different antenna elements have

different excitation gains. These errors between antenna elements should also

be quantified.

For this reason, the first step of the initial calibration is to implement a

characterization technique that can test each antenna element to measure the

differences among them, and that can also sample the different phase shift

and attenuation combinations to capture the non-ideal behavior of the phase

shifter and attenuators. An example of a valid characterization technique is

the widely-used “park and probe” technique, described next.

4.2.2 Park and Probe Technique

The theory of the park and probe technique described in this work is based

on the excellent description offered by Şeker [32]. Figure 4.1 presents a diagram

of the traditional park and probe calibration technique of a N -elements array

antenna. The figure shows an antenna probe being positioned in front of the

nth antenna element, while the other antenna elements are terminated to their

corresponding transmission line impedance. It also displays the TR modules

attached to the antenna elements, which are in charge of conditioning the

transmit and receive signals going through the antennas. The figure completely

describes the path of a signal being transmitted or received by either the probe

or the antenna element.

Any measurement performed between the nth antenna element and the
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Figure 4.1: Coupling diagram for calibration measurements in arrays with
analog beamformer networks, using an external antenna probe. Test the nth
element in receive.

probe, i.e., transmit with the probe and receive with the antenna element, and

vice-versa, can be viewed as the signals received by the probe, rn,p, and the

signal received by the antenna element, Rn,p. From Figure 4.1 one can formu-

late an equation that represents the signal received by the antenna element

as

Rn,p(wrn) = krnw
r
nCn,pkpTp, (4.1)

where Rn,p is the signal transmitted from the probe and received by the nth

antenna element, krn is the unknown error due to effects of the receive module,

wrn is the complex excitation weight in receive mode set by the user for the nth

element, Cn,p is the coupling between the probe and the nth antenna element,

kp represents losses due to the probe, and finally, Tp is the signal transmitted

from the probe to the nth element. The term kn lumps together the effect of

the active component as well as the effect of the transmission lines, antenna,
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and analog beamformer.

Likewise, the signal received by the probe is expressed as,

rp,n(wtn) = kpCn,pw
t
nk

t
nT. (4.2)

where rp,n is the signal transmitted from the nth antenna element and received

by the probe, ktn is the unknown error due to effects of the transmit path, wtn
is the complex excitation weight in transmit mode set by the user for the nth

element, and finally, Tn is the signal transmitted by the nth element to the

probe.

Table 4.1 lists all variables involved in (4.1) and (4.2), and specifies whether

they are:

Known either defined by the user or measured prior the application of the

calibration technique.

Measured during the calibration procedure.

Unknown due to hardware and measurement instruments errors.

The procedure requires to test all antenna elements of interest, often using

a robotic manipulator to automatically and accurately position the probe at

boresight of the tested antenna element. The NF sampling of all antenna

elements must be performed at the same probe-to-antenna distances, usually

3λ to 5λ.

Since the antenna elements are identical and they are tested under simi-

lar conditions, then the coupling between probe and any antenna element is

assumed to be identical, i.e.,

Cn,p = Cm,p. (4.3)
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Table 4.1: List of variables involved in the NF at boresight calibration tech-
nique. Adapted from [32]
.

Magnitude Symbol State
Signal from the probe received by the nth ele-
ment Rn,p Measured

Signal from the nth antenna received by the
probe rn,p Measured

Signal transmitted from the probe to the nth
antenna Tp Known

Signal transmitted from the nth antenna to
the probe T Known

Amplitude/phase configuration in receive
mode (complex weight) wrm Known

Amplitude/phase configuration in transmit
mode (complex weight) wtm Known

Losses due to the probe antenna kp Unknown
Coupling between the probe and the n-h an-
tenna element Cn,p Unknown

Amplitude/phase errors of the nth element in
receive mode, due to active components, trans-
mission lines, antenna and analog beamformer

krn Unknown

Amplitude/phase errors of the nth element
in transmit mode, due to active components,
transmission lines, antenna and analog beam-
former

ktn Unknown

Next, comparing received and transmitted signals from any mth and nth

element pair, and using (4.3), the resulting ratios are

Rn,p(wrn)
Rm,p(wrm) = krnw

r
nCn,pkpTp

krmw
r
mCm,pkpTp

= wrnk
r
n

wrmk
r
m

, (4.4)

and
rp,n(wtn)
rp,m(wtm) = kpCn,pw

t
nk

t
nT

kpCm,pwtmk
t
mT

= wtnk
t
n

wtmk
t
m

. (4.5)

Expressions (4.4) and (4.5) contain important information about the dif-
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ferences between the radiation of any two antenna elements. They show that

any discrepancy between the mth and nth elements will be determined by the

unknown error terms krm, krn, ktm and ktn, and by the user defined excitation

weights wrm, wrn, wtm and wtn. More importantly, these expressions demonstrate

that the differences in amplitude and phase between sampled fields of different

elements can be quantized using the measured values Rn,p, Rm,p, rp,n and rp,m.

These expressions make it possible to define error ratios, Kr andKt, among

the elements in receive and transmit modes, respectively, in relation to an

arbitrarily-defined reference element, ref . By substituting the reference ele-

ment for the mth element in (4.4) and (4.5), the error ratios are defined as

Kr
n = Rn,p(wrn)

Rref,p(wrref )
, (4.6)

and

Kt
n = rp,n(wtn)

rp,ref (wtref )
. (4.7)

Moreover, if the weight coefficients are chosen to yield the same phase

and amplitude excitation for all elements, i.e, wrn = wrm = wrref = wr and

wtn = wtm = wtref = wt, (4.6) and (4.7) will be reduced to,

Kr
n = krn

krref
, (4.8)

and,

Kt
n = ktn

ktref
, (4.9)

respectively.

Thus, using magnitudes that can be measured with the help of the probe,

the complex expressions (4.6) and (4.7) may be used to calculate the amplitude
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and phase errors between any nth element and the reference.

4.2.3 Embedded Element Patterns Measurement

After characterizing the excitation of the phased array system, it is nec-

essary to scan their embedded element patterns. This is accomplished by

employing an antenna test range, e.g., a planar NF chamber, which is also

compatible for park and probe tests, or a FF chamber. In addition to am-

plitude data, the scanned data must contain phase data so it can be post-

processed in complex domain. The scanned nth element must be configured

to a predefined wembeddedn (phsstg, attstg) complex excitation which is a function

of the combination of a selected phase shift stage, phsstg, and of a selected at-

tenuation stage, attstg. The remaining elements are required to be terminated

to their match impedance [92].

The embedded element patterns are critical to characterize any phased

array. These measurements serve as a base for any array pattern to be cal-

culated. Having these fundamental patterns allows the prediction of different

steered and tapered antenna array patterns, which is helpful in deciding what

patterns are more critical.

Two main reasons point to the importance of these patterns:

1. The array pattern is a weighted sum of the embedded element patterns

[95]. Hence, the embedded element patterns are the base on which any

array antenna pattern can be built.

2. The measured patterns are valid for all frequencies. By contrast, a beam-

steered array pattern for a specific angle is only valid for a single fre-

quency.

An embedded element pattern is an antenna pattern that reflects the im-
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pact of the array environment on the element. For instance, a microstrip

patch antenna pattern, while often predicted by analytical equations assum-

ing an infinite ground plane, is nevertheless always etched on a finite ground

plane, which adds unwanted edge diffractions [97, 98, 99, 100, 101]. Moreover,

when an antenna element radiates in the presence of other antenna elements,

the inherent mutual coupling forces the other antenna elements to be excited

as well. As a result, mutual coupling also perturbs the pattern of an antenna

element in an array environment. Thus, a measured antenna embedded ele-

ment pattern can be seen as an antenna element pattern that considers the

combined environmental effects of both edge diffractions and mutual coupling.

In an effort to mathematically describe the embedded antenna pattern

measured on an antenna range, the work of Steyskal and Herd [74] may be

used as a base to formulate the synthesized array pattern considering mutual

coupling. For an N -element array with analog beam former, the FF array

antenna pattern at coordinates θ and φ, fa(θ, φ), can be expressed in matrix

form as

fa(θ, φ) =
[
1 1 · · · 1

]


f1 0 · · · 0

0 f2 · · · 0
... ... . . . ...

0 0 · · · fN





C1,1 C1,2 · · · C1,N

C2,1 C2,2 · · · C2,N
... ... . . . ...

CN,1 CN,2 · · · CN,N





w1

w2
...

wN


,

(4.10)

or also, expressed as,

fa(θ, φ) = TFCW. (4.11)

Where T is a 1×N matrix consisting of ones,

T =
[
1 1 · · · 1

]
. (4.12)
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The terms fn represent the isolated pattern of the nth antenna element on

its embedded location in the array, which includes the phase offset due to its

location off phase center, and diffractions from the ground plane edges. All

involved pattern terms fn are a function of θ and φ, fn = fn(θ, φ). F is a

diagonal matrix conformed by the fn terms:

F =



f1 0 · · · 0

0 f2 · · · 0
... ... . . . ...

0 0 · · · fN


= diag





f1

f2
...

fN




. (4.13)

Cn,m are complex coupling values between antenna elements n and m, and C

is the coupling matrix:

C =



C1,1 C1,2 · · · C1,N

C2,1 C2,2 · · · C2,N
... ... . . . ...

CN,1 CN,2 · · · CN,N


. (4.14)

Finally, W is a N×1 matrix containing the complex weights wn,

W =



w1

w2
...

wN


. (4.15)

Expression (4.11) is a matrix equation that indicates how the patterns fn

of an element located on the array are affected by the mutual coupling effect.

Matrix T represents the effect of the analog beamformer, which sums the
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patterns modified by the coupling terms Cn,m to form the array beam fa.

Ground Plane

Antenna 

Element

Phase

Center

(a) (b) (c) 

Isolated Element

Pattern

Embedded Element

Pattern

Array

Pattern

Figure 4.2: Illustration of the pattern synthesis on a phase array. (a) fn:
The top left element, located on the ground plane, is active. (b) f en: The top
left element is active; neighboring elements are excited by mutual coupling
interactions. (c) fa: all elements are excited

The embedded element pattern, f en, is obtained when only the nth element

is excited, i.e., wn = 1 and wm 6=n = 0. In this manner, the W matrix results

in:

Wn =



0
...

1
...

0


. (4.16)

Replacing W for Wn in (4.11), makes fa(θ, φ) = f en, which results in the
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following summation:

f en = TFCWn

= C1,nf1 + C2,nf2 + · · ·+ Cn,nfn + · · ·+ CN,nfN

= Cn,nfn +
N∑

i=1,i 6=n
Ci,nfi (4.17)

The resultant (4.17) expression states that the embedded element pattern

of the nth element is not only the result of its own fn pattern times the self

coupling term Cn,n, but depends also on the added effect of mutual coupling

exciting neighboring elements. See Figure 4.2 for graphical depiction of the

differences between fn, f en and fa.

4.2.4 Beam-Steered Patterns Measurement

The main objective of characterizing the antenna patterns of a phased array

antenna is to analyze its performance at different beam-steered positions. This

section directly analyzes the beamformed patterns at different beam pointing

directions, using the same instrumentation as the embedded element scan. To

define the excitations associated with each beam, a set of complex weights wrn
are selected using [23]:

wrn(phsstg, attstg) = argwrnmin
∣∣∣Kr

n(wrn)− wtargetn

∣∣∣ , (4.18)

where wtargetn is the target complex weight which is desired to be applied to

the nth element.

For a uniformly spaced planar array the phase component of wtargetn is
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derived from the progressive phase shift between elements [102],

βx = −kd sin θ0 cosφ0, (4.19)

βy = −kd sin θ0 sinφ0, (4.20)

where k is the wavenumber in free space, d is the element separation, and

θ0 and φ0 are the coordinates of the main beam position. The amplitude of

the wtargetn is defined according to the desired amplitude taper, e.g., uniform,

Taylor or Chebyshev.

An example of beam-steered scanned patterns is presented by [103]. A

detailed procedure was applied to study the effect of a wet radome on phased

array antenna patterns. The beam of the array was steered at different angle

positions, and the antenna patterns were collected using the NF planar scanner

shown in Figure 3.1.

4.2.5 Array Pattern Prediction

The synthesis of an array antenna pattern fa at the observation angles θ

and φ is calculated [95] as

fa(θ, φ) =
N∑
n=1

f en(θ, φ)wn, (4.21)

where N is the number of active elements in the array, f en is the embedded

element pattern of the nth element, and wn is the complex excitation applied

to the nth element. The patterns f en are the ones collected in Section 4.2.3.

The complex weights wn implemented in (4.21) are the set of wrn selected in

Section 4.2.4 to create the calibrated beam-steered pattens, but normalized to

the level at which the embedded element patterns were measured. In other
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words,

wn = wrn
wembeddedn

, (4.22)

where wembeddedn is the measured excitation value with attenuation and phase

shift configuration corresponding to the configuration used while measuring

the embedded elements, for the nth element.

4.3 Case of Study - APAR LRU

In order to demonstrate the extended initial type characterization tech-

nique proposed in Section 4.2, the line replaceable unit (LRU) radar demon-

strator, which is part of the airborne phased array radar (APAR) project, was

experimentally tested according to the guidelines of the proposed technique.

The goal of the experiment is to characterize and calibrate the antenna radi-

ation patterns of the LRU. In this context, the objectives of this case study

experiment are to:

• Characterize the performance of all TR modules.

• Capture embedded element patterns for both V and H polarizations.

• Measure beam-steered patterns.

• Predict antenna array patterns using the collected data, and compare

the results with measured beam-steered patterns.

This case study tested the LRU in receive mode only. For transmission

mode, the TR module technology requires instrumentation capable of synchro-

nized pulsed measurements, which is incompatible with the current capabilities

of the Radar Innovations Laboratory’s NF scanner. Moreover, in transmission

mode, radars generate high power signals that are often above the maximum

allowed power level of the instruments.
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The following sections illustrate the experimental setup, detail the experi-

ments performed, and discuss the results.

4.3.1 System Description and Requirements

All measurements were performed using the NF scanner located at the

Radar Innovations Laboratory. Basically, the procedure consists of using the

scanner to control both instruments, to scan the patterns, and to configure the

operation of the LRU phased array demonstrator. In this manner, once the

LRU has been correctly installed inside the chamber, it is possible to automate

the complete procedure, making any further direct contact between operator

and the AUT unnecessary.

A depiction of the LRU is presented in Figure 4.3.(a), where the chassis

on which the LRU is mounted can be appreciated, as well as the physical TR

module printed circuit board (PCB), and the front of the antenna aperture.

The LRU consists of eight TR module PCBs, each of them containing 8 TR

modules, for a total of 64 elements. The antenna is a dual-polarized aperture

coupled 8×8 microstrip phased array, fed by the TR module PCBs.

The schematic of the LRU is provided in Figure 4.3.(b). It shows that the

eight PCBs are connected using power combiners to form two independent

transmit and receive beamformers. Each of the TR modules PCBs contains

eight TR module channels that are fed by two independent internal 1 to 8

corporate feeds. The independent internal feeds make it possible to simulta-

neously transmit with one or more elements and receive with another, a feature

that is critical for mutual coupling measurements. Also, each TR module con-

sists of the following: a 6-bit phase shifter (PS) and a 6-bit attenuator (ATT)

for conditioning the RF signal in phase and amplitude, respectively; a high
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(a)

(b)

Figure 4.3: Depiction of the Line Replaceable Unit (LRU). (a) Picture of the
LRU chassis, containing the PCB TR modules and dual-polarized microstrip
patch antenna. (b) Schematic of the components of the LRU, including power
combiners connecting all eight TR module PCBs; schematic of a TR module
channel; and, antenna elements numeration.

power amplifier (HPA) for the transmitted signal; a low noise amplifier (LNA)

for the received signal; and switches (SW) for commuting the electrical path

between reception and transmission, and for choosing the antenna polariza-
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tion. The phase shift step of the PS is ∆PS = 5.625◦, and the attenuation step

is ∆ATT = 0.5 dB.

In addition, a block diagram of the complete setup is shown in Figure 4.4.

This figure identifies the main components of the experimental setup: the PC,

which commands the procedure; the NF scanner, manufactured by NSI, the

instrument that performs the experiments; and the antenna under test, which

is capable of being configured according to test requirements.

Figure 4.4: Block diagram of the experimental setup. The main components
and instruments (NSI Scanner) are identified and their relations are properly
depicted.

The PC belongs to the NF chamber, functioning as the processing unit, and

has been adapted to command the AUT using the native scripting capability

of the NSI2000 software. The PC is communicating with the AUT using

an ethernet (UDP) protocol that is managed by the Array Controller of the

APAR LRU. The Array Controller handles the communication and translates

the received commands into orders that can be executed by the LRU. In this

way the PC has control over both the instrument and the AUT.

Here is a typical procedure:

1. The PC executes a script written in Visual Basic (VB) using the NSI2000
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library. It starts by initializing the scanning parameters.

2. The PC sends a command, defined by the script, to the AUT. The Array

Controller receives the command and configures the LRU excitation.

3. The PC triggers a scan.

4. Repeat steps 2 and 3 until all requested tests are executed.

The arrangement of the instrument and AUT is depicted in Figure 4.5. The

LRU was located on top of microwave absorber blocks inside the NF chamber,

and carefully aligned to the scanner’s probe. In order to reduce the reflections

from the metal structure of the AUT, absorber foam was used to cover the

periphery of the LRU.

Microwave 

Absorber Foam

LRU

OEWG

Probe

Cartesian

Robotic

Manipulator

Microwave 

Absorber Blocks

Anechoic

Chamber

Figure 4.5: Picture of the 8×8 C-Band active array LRU sitting inside the NF
anechoic chamber. The arrangement depicted is exactly the same used for all
experiments performed on this chapter.

4.3.2 Experiment Procedure

The initial NF characterization and calibration of the LRU was carried out

in four stages. The first stage, characterization, consisted of collecting the

phase and amplitude data of each active antenna element, and quantifying
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the misalignment among elements. The second stage captured the embedded

element patterns, which are required to simulate the antenna patterns of the

array. The third stage consisted of measuring beam-steered antenna patterns.

For this, the LRU configuration was selected using the data collected in stage

1 to correct misalignment errors. Finally, the last stage uses the TR module

data collected in stage 1 in conjunction with the embedded element patterns

collected in stage 2 to synthesize, i.e. predict, the antenna patterns of the

LRU. To verify that the predicted patterns are valid, the scanned patterns

from stage 3 are used as a reference for comparison.

A step-by-step description of the experiments performed in each stage fol-

lows. In addition, a description of the technical details of the NF planar

antenna measurements performed in this chapter is presented in Appendix A.

Stage 1 - Characterization of the TR Modules

The characterization stage is essential for the initial calibration of the LRU.

It allows quantification of the performance of the attenuators and phase shifters

contained in the TR modules. The objective is to use the park and probe tech-

nique to sample, for all channels in the array, each phase shift and attenuation

stage combination in their array environment.

To accomplish this, the first step is to align the array to the NF robotic

manipulator. This translates into having the aperture of the antenna under

test (AUT) positioned parallel to the scan plane of the antenna probe, ensuring

that the probe-AUT distance is the same during the entire scan. The antenna

probe and antenna element should have their boresights aligned. The probe-

to-AUT distance for all the experiments of this chapter was 4λ0, where λ0 is

the wavelength corresponding to the lower limit of the tested frequency range.
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Afterwards, the procedure is:

1. Positioning of the probe exactly in front of the first element of the array.

2. Sending of excitation phase shift and attenuation parameters to the LRU

controller by the NSI2000 software.

3. Triggering of an S-param measurement by the NSI2000 software.

4. Repeating steps 2 and 3 for all 64 phase shifts × 64 attenuations, for a

total of 64×64=1024 samples per TR module.

5. Rotating 90◦ to test the other polarization, and repeating step 4.

6. Move to next element and repeat steps 1-5, for all 64 elements.

7. Export collected data for all frequencies of interest. In this case, 5.35

GHz.

Notice that for the LRU case, the attenuators and phase shifter are the

same for both polarizations due to the architecture of the TR modules. As

a consequence, in step 5 it is not necessary to test all combinations of phase

shift and attenuation, since this information can be obtained from the data

collected in step 4 for the first polarization tested. However, one sample at

the default attenuation and phase shift stage must be performed for the sec-

ond polarization so that this information may be used to normalize the data

obtained for the first polarization.

As indicated by the park and probe theory, given in Section 4.2, only the

tested element is active when sampled. The remaining elements should be

terminated to their corresponding transmission line impedance value.

Once the data has been collected, the amplitude and phase differences

between elements are calculated using (4.6) and (4.7).
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Stage 2 - Embedded Element Patterns

To capture the embedded element patterns of the LRU, the array should

be aligned to the NF scanner window, just as in stage 1. Afterwards, the

following steps are executed:

1. Sending of excitation parameters to APAR by the NSI2000 software.

Only one element is to be excited to an arbitrarily-defined wembeddedn ,

while the remaining ones should be disabled, i.e., terminated to their

corresponding match impedance. In this case wembeddedn corresponds to

the complex weight obtained when phsstg = 0 and attstg = 0.

2. Triggering of a pattern scan by the NSI2000 software.

3. Repeating for all 64 elements and 2 polarizations, for a total of 128

patterns.

4. Exporting collected data for all frequencies of interest. In this case, the

results are shown at 5.35 GHz.

Stage 3 - Beam-steered Patterns

First the excitation data was processed to select a set of wrn values using

(4.18), just as explained in Section 4.2.4. In this case no taper is implemented.

The array is uniformly illuminated, hence all target amplitudes are chosen as

unity, i.e., |wtargetn | = 1.

The procedure to capture the patterns is the same as that described in stage

2, with the exception that in this case all elements are active and configured

to their corresponding wrn stage.
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Stage 4 - Array Antenna Pattern Synthesis

The pattern prediction is computed using (4.21), using the set of wrn values

obtained in stage 3, and the fa patterns scanned in stage 2. The objective of

this stage for this particular case study is to evaluate the agreement between

predicted and measured patterns.

4.4 Measured Results

4.4.1 TR Module Characterization

To illustrate the TR module characterization data, the sampled amplitude

and phase of consecutive stages of attenuation and phase shift are shown in

Figure 4.6. Figure 4.6.(a) presents the sampled amplitude, as blue circles, and

phase, as red circles, for all attenuation stages at a fixed phase stage. Since the

attenuation stages are tested and the phase configuration is kept constant, the

results should show a linear variation of the magnitude and a constant phase

for all attenuation stages. The linear variation of the amplitude is clearly seen

in the top plot of Figure 4.6.(a). Nevertheless, the phase also varies at different

attenuation stages even though the phase stage is kept constant, as shown in

the bottom plot. This plot shows that the phase can vary ≈ 40◦ by changing

only the attenuation configuration of the TR module.

This non-ideal behavior of the phase excitation is due to unwanted effects

on the electrical path of the attenuator, which alter the phase even though

only the attenuation was expected to change. Moreover, the phase change

plot shows a trend, namely, that the phase consistently decreases with the

attenuation stage, demonstrating that this is a systematic error and not a

random one. The 40◦ phase drift is a critical error for two reasons: first, it is

a considerably high error, and second, it is also a systematic error. Hence, as
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discussed in Chapter 2, this critical error has a significant adverse impact on

the synthesized beam.

~40°

(a) Measured excitation values at a fixed
phase shift stage, for all attenuation
stages.

~1.8 dB

(b) Measured excitation values at a fixed
amplitude stage, for all phase shift stages.

Figure 4.6: Sampled amplitude and phase data. Samples are plotted for TR
module 0 as circles, blue for amplitude, and red for phase, at consecutive stages
of attenuation (left), and at consecutive stages of phase (right). The step axis
indicates the difference between the value of the current stage and the value
of the preceding stage. Notice the bottom left plot ideally should appear as
a straight horizontal line since the phase stage is kept constant. In a similar
fashion, the top right plot should also be a straight horizontal line.

The continuous light blue curve, present in all plots of the figure, represents

the step, ∆, in amplitude or phase, between consecutive stages. The amplitude

plot at fixed phase stages, i.e., the top plot of Figure 4.6.(a), indicates a trend of

a step of 0.5 dB between consecutive amplitude stages, which is expected since

the attenuator modules used in this TR module have attenuation increments

of 0.5 dB per stage. However, in this case, the step ∆ plot also displays a ripply

and cyclical shape, which indicates that the steps are not always 0.5 dB, and
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instead vary systematically according to the chosen amplitude stage. This is

also another clear example of unwanted systematic errors due to imperfect TR

module hardware.

Figure 4.6.(b) presents an analogous situation, but in this case keeping the

attenuation stage constant, and varying the phase stage. Hence, the mag-

nitude ideally should be constant and the phase should change in steps of

∆PS = 5.625◦. Nonetheless, the top plot demonstrates that the magnitude

is not constant, and instead; it ranges approximately from -30 to -28.2 dB,

which represents an unwanted variation of 1.8 dB. The phase plot at a fixed

attenuation stage, i.e., bottom plot of Figure 4.6.(b), shows that the phase

varies linearly with the phase stage, just as expected. Its step ∆ plot indicates

that between consecutive phase stages, the phase changes between from 4◦ to

8◦. Ideally the steps should all be 5.625◦, as mentioned before, but there are

systematic cyclical errors specific the phase stage selected that prevent it.

The systematic errors of 40◦ and 1.8 dB found during the characterization

of the TR module performance, Figure 4.6, represent a big concern for the

correct operation of the phased array. For example, when applying a taper

to the array by choosing higher attenuation stages, a systematic phase shift

error is also added. Hence, tapered patterns necessarily require compensation

in order to remove systematic errors. A similar problem arises when choosing

the phase stages for beam steering, since a systematic amplitude is introduced

due to the non-ideal behavior of the phase shifters. These errors are one of

the main motivations for performing phased array calibration.

The amount of TRM data collected is very large, making it difficult to

display all of it. To summarize the results, a plot enabling comparison of the

amplitude and phase of each TR module at a fixed value of phase and attenu-
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~1 dB
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Figure 4.7: Sampled amplitude and Phase, for H-polarization, representing all
64 elements. Data is plotted in 1D (left), and in a 2D 8×8 grid arrangement
(right). All TR modules were configured to 0 dB attenuation and 0 degree
phase shift (attstg =63, phsstg =0). The top plot represents the amplitudes,
and the bottom demonstrates the phase. The data was normalized with respect
to the element with the highest amplitude value.

ation stage is generated. Figure 4.7 shows 8×8 arrangements, representing all

64 elements of the array. For the “Before Cal.” case, all TR modules were con-

figured at minimum attenuation stage (attstg =63) and no added phase shift

79



(phsstg). Ideally the 8×8 grid should display a homogeneous color, and like-

wise, the blue (amplitude) and red (phase) curves should be horizontal. This

is because it is expected that at the same attstg and phsstg stages, all channels

should behave similarly. However, as mentioned in the previous paragraph,

there are errors in the TR module hardware that add a different bias to all

elements. Thus, different color tones appear on the “Before Cal.” plot.

Both phase and amplitude data in Figure 4.7, show that TR module num-

ber 23 has excitation values completely off the average. Element 23 presents

a phase of 54.4◦ and a extremely low amplitude of -8.7 dB below the max

value, this low amplitude corresponding to the minimum amplitude measured

for all elements. Because these errors deviate the most compared to any other

element, this translates into a beamforming problem, where element patterns

do not add coherently. A deviation of 8.7 dB is a considerably large error. A

closer inspection of active element 23 revealed that the cause of the error was

a bad solder of the antenna connector.

Additionally, apart from the obvious random errors shown in Figure 4.7,

there are also systematic errors difficult to notice.The 2D plot at the top, right

shows that the elements belonging to PCBs 00, 01, and 07 have darker colors,

indicating higher amplitude than the remaining boards. Moreover, the 2D

“Before Cal.” phase plot (lower, right in Figure 4.7) shows that the 4th row,

corresponding to the elements of PCB 03, has a lighter tone than the rest,

which translates into lower phase values than the other rows. These obser-

vations denote that elements on the same PCB board have similar excitation

errors, hence, one can expect errors grouped in rows. This is a systematic

type of error, occasioned by the particular architecture of the LRU, which

implements a PCB board per row.
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Apart from illustrating the initial misalignment errors of the LRU, Figure

4.7 also presents the state of the array after calibrating it for uniform illumi-

nation at boresight by using (4.18). The 2D “After Cal.” cases for amplitude

and phase show a more homogenous color pattern, as expected from a uni-

formly excited array. The top left plot, which represents the before and after

calibration amplitude curves, indicates that after calibration the amplitudes

are contained in a span of 1 dB, or ±0.5 dB. The calibrated phase excitations

are limited to a peak to peak change of 12◦, or ±6◦. These error ranges are ex-

pected; they are a result of the criterion selected for calibration, which chooses

complex weights closer in both phase and amplitude to the target value. Thus,

all the chosen excitations deviate from the target ±∆ATT = 0.5 dB and ±∆PS

= 5.625 ◦, at most.

Alternatively, if one chooses a different criterion than the one in Figure 4.7,

for example, choosing to prioritize amplitude errors over phase, then it will be

possible to reduce the error span from 0.5 dB to half this value. This is due to

the fact that a target value in between two consecutive states is at most half

a step away from one of them. In this case, the trade-off is an increase in the

spread of phase errors.

Finally, in this case, a selection criterion was made to equalize the am-

plitude of all elements to the amplitude corresponding to the element with

the lowest value. This selection criterion was motivated by the fact that all

elements were configured to yield maximum power. Hence, the elements with

more power have to be attenuated to level down to the element with lowest

power. As a consequence, even though the excitations were equalized and

carefully chosen, the antenna gain is reduced.
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4.4.2 Embedded Element Patterns

To illustrate the results of scanning the embedded element antenna patterns

of an array using a NF planar scanner, Figure 4.8 presents the measured

antenna patterns of element 27. In this case the elements of the LRU are

microstrip patches characterized by typically having a low directivity of 8 to 9

dBi, and a beam width of ≥ 60◦ [102]. Hence, the co-polar pattern of a patch

antenna is a broad beam. On the other hand, the cross-polar components

have nulls on the principal planes, and higher field values off this region, as

shown in the 2D plots at the top left of Figures 4.8.(a) and 4.8.(b). The phase

data, not shown in the figure, is also critical information since the embedded

element patterns must be coherently summed to obtain the array pattern.

As a consequence of the beam shape of the co- and cross-polar patterns of

a microstrip antenna, two issues arise from the antenna pattern scan point of

view. First, due to the wide beam nature of the co-polar component of the

pattern, NF planar scans are not advised for low gain antennas (see Table A.1).

When an antenna pattern is wide, i.e., low gain, a planar scan is unable to

scan enough fields to properly capture the radiation propagating in directions

off boresight unless it extends the NF scan plane to unpractical lengths. In

other words, a planar scan of a low gain antenna suffers truncation.

The core of a NF to FF transformation is a Fourier transform that converts

the fields sampled in the Cartesian domain into the Kx, Ky and Kz wave spec-

trum, where K is the wavenumber. Truncation on a Fourier transformation

can be seen as a windowing effect. Since the scan window is finite, the recon-

struction of a broad beam will be missing information regarding the high har-

monics. As a consequence, an unwanted oscillation is added to the calculated

beam, and this is the reason why there are higher order oscillations noticeable
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(a) V-Polarization

(b) H-Polarization

Ripples due 

to truncation

Low power

on boresight

Cross-Polar

Cross-Polar

Figure 4.8: Scanned 2D plots and principal cuts of the embedded element
patterns of element 27. (a) V-Polarization; (b) H-Polarization. The co-polar
component is indicated by continuous lines, and cross-polar components by
the dashed ones.
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in the principal cuts of the embedded elements patterns.Consequently, the FF

estimation of the embedded element patterns should not be used to analyze

the performance of the particular element. However, the embedded element

patterns are valid and useful to reconstruct the pattern of the array, which is

a proper high gain pattern, using (4.21).

The second issue is related to the cross-polar component. At boresight

of the cross-polar component, a null is expected. Hence, in this region, the

SNR of the scanned fields is low. The deep null at boresight of the cross-

polar component makes this angular sector of the cross-polar antenna pattern

more susceptible to unwanted reflections caused by the AUT-instrumentation

interaction. When the cross-polar components are summed together to com-

pute the array pattern, using (4.21), the boresight region is perturbed by an

accumulated reflection error. As a result, post-processed array patterns de-

rived from the cross-polar component of the embedded elements will have poor

accuracy at the boresight region, as will be demonstrated in Section 4.4.4.

4.4.3 Beam Steered Patterns

As a summary of the extensive scanning procedure, the overlapped scanned

patterns over the principal planes are presented. The array was uniformly

excited, and the set of complex weights wrn for each antenna element was

chosen using (4.18). Figure 4.9 shows the co- and cross-polar azimuth beam-

steered patterns from -45◦ to +45◦ on steps of 5◦ for both polarizations. The

continuous lines indicate the co- component while the dashed lines correspond

to the cross-polar component, the color blue represents the E-plane pattern,

and the green the H-plane pattern. The elevation scan is shown in Figure 4.10.

For an ideal, uniformly illuminated array, the SLL expected is -13 dB,
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(a) V-Polarization, H-plane cuts

(b) H-polarization, E-plane cuts

Azimuth cuts

13 dB

13 dB

Figure 4.9: Measured beam-steered antenna patterns, corresponding to az-
imuth -45◦ to +45◦, in steps of 5◦, uniform illumination. (a) Patterns cor-
responding to V-polarization. (b) Patterns corresponding to H-polarization.
The co-polar component is indicated by continuous lines, and cross-polar com-
ponents by the dashed lines.
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(a) V-Polarization, E-plane cuts

(b) H-polarization, H-plane cuts

Elevation cuts

13 dB

13 dB

Figure 4.10: Measured beam-steered antenna patterns, corresponding to ele-
vation -45◦ to +45◦, in steps of 5◦, uniform illumination. (a) Patterns cor-
responding to V-polarization. (b) Patterns corresponding to H-polarization.
The co-polar component is indicated by continuous lines, and cross-polar com-
ponents by the dashed lines.
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indicated by the black dashed lines in Figures 4.9 and 4.10. The SLL for

almost all of the patterns is below this maximum level. However, at least

one beam-steered pattern in each scan has a sidelobe that is only ≤ 0.2 dB

above the -13 dB level. The reason for these errors is the combined effect

of two factors: first, manufacturing imperfections in the radiating elements

that prevent them from producing an ideal pattern; second, mutual coupling

and diffractions that cause ripples on the radiated pattern of the array. This

relatively small error can easily be compensated for by slightly tapering the

beam-steered pattern. This error provides the motivation for perform NF

measurements of the patterns before deployment, as they offer a sound basis

for evaluating the realized antenna pattern even after a calibration has been

performed. However, it is also possible to predict these errors by using (4.21)

in conjunction with the collected TR module data plus embedded element

patterns, as described in Section 4.4.4.

To demonstrate and further support the need for calibration, it is impor-

tant also to depict the problems that may arise if the park and probe cal-

ibration technique is not implemented to quantify the phase and amplitude

errors between elements. Figure 4.11 shows two measured antenna patterns

with the main beam pointing to boresight (0◦). On top, Figure 4.11.(a), the

uncalibrated pattern is depicted, while on the bottom, Figure 4.11.(b), the

calibrated one is presented.

The uncalibrated pattern in the figure reveals an unleveled SLL, nulls that

are not as deep as its calibrated version, an overall aspect that is not symmet-

ric, and, the most critical issue, a peak SLL that is ≈ 2.8 dB above its expected

value. For this particular case, the root of these problems is the misalignment

presented in Figure 4.7, and more critically, that TR module 23, according to

87



~2.8 dB

~1 dB

(a) Uncalibrated pattern

Cross-Polar

Cross-Polar

(b) Calibrated pattern

Figure 4.11: Measured boresight antenna patterns on H-polarization, uni-
formly illuminated, showing the differences between data without and with
calibration. (a) Uncalibrated pattern. (b) Compensated pattern calibrated
using the collected TR module data. The dashed black lines indicates the
expected -13 dB SLL, and the black circles point to the nulls of the main lobe.
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the results of the TR module characterization, had lower magnitude and phase

levels with respect to the other elements, ≈ -6 dB and ≈ -45◦, respectively.

On the other hand, when the pattern is calibrated, the SLL is reduced to ≤

-13 dB, and the depth of the nulls are better defined, reaching a ≤ -28 dB level

in the principal planes, as indicated by the black circles in Figure 4.11.(b).

A more severe case is expected when a taper is applied to the array. To

better demonstrate the adverse effect of misalignment, an uncalibrated pattern

with a Taylor taper of -20 dB was measured, as shown in Figure 4.12.(a). A

taper forces some antenna elements to be excited at higher attenuation stages.

As previously stated, at different attenuation stages, a systematic phase error

is introduced. As a result, the tapered pattern is severely deteriorated. The

SLLs on the elevation cut are 5 dB and 3 dB higher than the target -20 dB

level, rendering this pattern unacceptable. Whereas, when the tapered pattern

is compensated by calibration, the SLL reaches its expected level, and nulls

are deeper making the shape of the lobes better defined.

The reviewed uncalibrated cases demonstrate that misalignment errors, of

both types, random and systematic, are present in an uncalibrated pattern,

and they severely impact the synthesized beam of the array. It is evident from

these results that a phased array calibration must be applied to compensate

for the errors, and ensure a correct antenna pattern beam shape.

4.4.4 Pattern Prediction

The pattern prediction is enabled by using the TR module characterization

data collected in stage 1 and the embedded elements scanned in stage 2. In this

case, the beam-steered patterns scanned in stage 3 were synthesized to verify

the capability of the proposed characterization technique to predict phased
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~5 dB

~3 dB

(a) Uncalibrated pattern

(b) Calibrated pattern

Cross-Polar

Cross-Polar

Figure 4.12: Measured boresight antenna patterns on H-polarization, with a
-20 dB Taylor taper, showing the differences between data without and with
calibration. (a) Uncalibrated pattern. (b) Compensated pattern calibrated
using the collected TR module data. The dashed black lines indicates the
expected -20 dB SLL, and the black circles point to the nulls of the main lobe
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array beams.

Two cases are shown to present the prediction results, a beam pointing

at boresight followed by a beam pointing at 45◦ in elevation. Both cases are

depicted by their principle axis cuts and by a 2D plot of the pattern. The first

case corresponds to Figure 4.13. The predicted co-polar component, traced in

continuous lines in Figure 4.13, reproduce the measured patterns fairly well.

. The match is better for azimuth and elevation angles closer to 0◦, which

is expected since antenna patterns obtained using a planar scanner decrease

their accuracy at off-boresight directions.

On the other hand, the prediction of the cross-polar component seems

not to be as accurate as the co component case. A 4 dB underestimation at

boresight is evident in the azimuth and elevation cuts in the Figure 4.13. The

reason for this is that the cross-polar component has its lowest value around

boresight. As a consequence, the measurements of the cross-polarization of the

embedded elements at positions close to boresight were very low in magnitude,

i.e., exhibiting a low SNR. The result is that predictions for cross-polarization

will not be as accurate as for off-boresight.

To demonstrate how cross-polarization predictions are better at angles

away from boresight, an analysis of the predictions on a beam pointing to -45◦

in elevation is needed. Such a steered beam has a fairly high cross-polarization

level compared to a boresight case, as shown inFigure 4.14. The azimuth cut,

which is taken away from boresight, shows a very good match for both co- and

cross-polar components, confirming the initial statement that predictions are

better at off-boresight patterns.

As stated in the introduction of this chapter, sampling embedded patterns

is not a standard part of the characterization procedure of phased arrays.
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(a)

(b)

Predicted co-polar Predicted cross-polar

Meaured co-polar Measured cross-polar

Figure 4.13: Comparison between measured and predicted antenna patterns at
boresight. (a) Principle axis cuts, co- and cross-polar components plotted as
continuous and dashed traces, respectively. (b) 2D representation of measured
and predicted antenna patterns at boresight. The co-polar components are
shown on the left, and cross-polar components on the right.
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(a)

(b)

Predicted co-polar Predicted cross-polar

Meaured co-polar Measured cross-polar

Figure 4.14: Comparison between measured and predicted beam-steered an-
tenna patterns pointing to elevation -45◦. (a) Principle axis cuts, co- and cross-
polar components plotted as continuous and dashed traces, respectively. (b)
2D representation of measured and predicted antenna patterns at boresight.
The co-polar components are shown on the left, and cross-polar components
on the right.
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These results show that their employment for pattern prediction is vital for

prediction of co- and cross-polar components. It is especially relevant for cross-

polar components, since their patterns are currently only obtained either by

direct measurement of the beam, or by time consuming numerical computer-

assisted simulations.

4.5 Summary

This chapter introduced a proposed complete characterization procedure

for assessment of antenna patterns of phased arrays. It described the procedure

as consisting of four main stages. First, TR module data is collected using the

park and probe technique, which is the standard procedure for phased array

calibration. It also added that, for a complete assessment of the phased array

patterns, the embedded elements of each active element should be scanned

in the second stage. Next, the third stage requires scanning beam-steered

patterns of the array. The beam-steered patterns are corrected using the

collected TR module data. Finally, the data collected in stages 1 and 2 can

be used to predict the beam-steered patterns of the phased array.

The results demonstrated that hardware defects cause the electric paths of

the TR modules, antenna, and transmission lines to vary. As a consequence,

differences in phase and amplitude are found among antenna elements, and a

maximum of 54.4◦ and -8.7 dB were found in this case. Differences were also

found between expected steps in phase shift and attenuation, variations of 40◦

and 1.8 dB observed in these TR modules. Also, the results of the scanned

beam-steered patterns showed that the effect of calibration is often to level

sidelobes, deepen the nulls, and improve the overall shape of the beam.

Finally, pattern prediction has been qualitatively evaluated. It was found
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that co-polar component patterns were well reproduced by computing them

using the collected TR module data and embedded element patterns. However,

the cross polarization accuracy can be off by 4 dB when predicting it near

boresight. When the cross-polar component is predicted off-boresight, though,

the prediction accuracy is largely improved.
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5 Mutual Coupling-Based Initial and In-Situ Calibra-

tion

5.1 Introduction

This Chapter describes the work of Lebrón et al. [104], which experimen-

tally validates an initial type calibration, and proposes a hybrid in-situ cali-

bration technique, using in both cases mutual coupling feedback mechanisms.

As it was explained in Chapter 2, the calibration can be classified in two main

types, initial and in-situ [105]. As the name suggests, initial calibration is the

first alignment check performed on the phased array system, whereas, in-situ

calibration refers to the one performed on operation location.

Initial calibration is performed immediately after fabrication of the system.

It is often performed under controlled conditions of temperature and humidity

inside of an anechoic chamber. These testing conditions allows the utilization

of specialized measurement instruments, as antenna NF or FF test ranges.

The popular park and probe technique [28, 94], introduced in Section 4.2.2, is

a great example of an initial calibration technique that employs a NF robotic

scanner. Other techniques that require external equipment are [59, 64, 66, 67,

69]. By contrast, there are also techniques that take advantage of the inherent

property of mutual coupling among elements of the array, and use it to avoid

the employment of external equipment. The pioneers of this technique are

Aumann et al. [50], and it was further investigated by [51, 32, 53].

On the other hand, misalignment errors that may appear during on-site

operation are corrected by in-situ calibration. This type of calibration requires

feedback measurements on location. However, in many occasions it is simply

not feasible to deploy an external equipment for the sole purpose of calibration.
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As a result, it is preferable to use techniques that are self contained as the ones

mentioned in the previous paragraph which are based on mutual coupling

measurements. In addition, some mutual coupling-based techniques can only

be used for in-situ applications only, i.e., they require an initial calibration

to be performed first, and the in-situ calibration will compensate only for

the changes found between the current state and the initial calibrated state.

Examples of this type of technique are [54, 23, 32], which employ embedded

elements that monitor the current state of the array, and compare the results

with the ones initially obtained.

On this chapter an experimental survey of initial and in-situ calibration

techniques using mutual coupling as feedback mechanism is presented. The

goal is to assess the performance of mutual coupling-based techniques to cali-

brate the small sized LRU introduced in Section 4.3.1. For the initial technique

case the method proposed and simulated by Bekers et al. [53], and mathemat-

ically formulated by Mitchell [56], is implemented. This approach is capable of

using the coupling among several different pair of elements to compute a least

square minimum error estimate of the phase and amplitude difference between

them. However, the approach suffers from biases caused by the discontinuities

inherent to elements near the edge. Thereby, the feasibility of this technique

is unknown for small-sized array cases. The motivation behind the selection

of this technique is that it has not been experimentally validated yet, and its

performance on array of small sizes is to be determined.

For the in-situ case a hybrid mutual coupling-based technique has been

proposed and tested. The hybrid technique originates from the work of Şeker

[32], and has been modified to track changes between the current state of the

array and its initial calibrated state. The hybrid technique is motivated by the
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need of using only mutual coupling measurements between the active elements

of the array, avoiding the use of embedded elements which are required by the

original change-tracking approach.

Moreover, to serve as a comparison reference, the reliable park and probe

technique was implemented, and its results were used as ground truth to de-

termine the root mean squared error (RMSE) of the misalignment values es-

timated using the tested mutual coupling-based techniques.

Furthermore, there is also a constant threat of element failure [106], which

will compromise the mutual coupling-based calibration efforts, and it can ad-

versely affect the resulting pattern. Thus, it is important to determine whether

or not an element has failed. Fortunately, mutual coupling-based techniques

not only allow one to quantify phase and amplitude misalignment, but their

raw results by themselves contain information about the health of active ele-

ment components. In case of component failure, the collected coupling data

can be analyzed to determine failed active elements, and also to identify which

component have failed. For this reason, this dissertation also describes how

the raw coupling data was interpreted in order to quickly diagnose failed com-

ponents.

The chapter is organized as follows, Section 5.2 introduces the theory of

the initial type technique proposed by Bekers et al., while Section 5.3 presents

the in-situ type calibration proposed in this work. Section 5.4 describes the

mutual coupling-based calibration experiments performed on the LRU and

their results. Finally, a summary of the discoveries is given in Section 5.5.
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5.2 Mutual Coupling-Based Initial Calibration

The purpose of the initial calibration is to exhaustively test each active

element of the array, to quantify its excitation levels. The mutual coupling-

based calibration used in this work is the one proposed by Bekers et al. [53]

and formulated by Mitchell [56]. The main advantage of the selected approach

is that it provides a mathematical framework that estimates the misalignment,

by least square method, in transmit and receive, using as much information

as it is available. This contrasts with the techniques proposed by Aumann et

al. [50] and Şeker [32], which do not propose a systematic methodology to use

the redundant information provided by the coupling between all the elements.

As a consequence, it is expected that the mutual coupling-based approach by

Bekers et al. returns the most accurate results among all the techniques of

this type.

To introduce the approach it is necessary to formulate the mutual coupling

measurements using the coupling diagram shown in Figure 5.1. First, without

lost of generalization, lets assume that all elements are configured to a default

unitary complex weight, i.e., wn = 1. Then, in a similar fashion as (4.1), a

mutual coupling measurement consisting of a signal transmitted from element

m and received by n, is formulated as,

Rn,m = krnCn,mk
t
mT. (5.1)

The term Rn,m refers to the received signal by element n, transmitted by m.

The magnitudes kn and km refer to the errors associated to the electrical path

of the signal in the nth and mth elements, respectively. The term kn lumps

together the effect of the active component as well as the effect of transmission
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Table 5.1: List of variables involved in the MC calibration technique. Adapted
from [32].

Magnitude Symbol State
Signal from the mth element received by the nth
element Rn,m measured

Signal transmitted from any antenna element to
the probe T known

Coupling between mth and nth antenna elements Cn,m unknown
Amplitude/phase errors of the nth element in re-
ceive mode, due to active components, transmis-
sion lines, antenna and analog beamformer

krn unknown

Amplitude/phase errors of the nth element in
transmit mode, due to active components, trans-
mission lines, antenna and analog beamformer

ktn unknown

lines, antenna, and analog beamformer. The super-indexes t and r indicate

the value corresponds to the transmit or receive path. Finally, T indicates the

transmitted signal. Notice that the original signal T is always contaminated by

the transmit and receive error terms inherent to a microwave electrical path.

Refer to Table 5.1 for a list and description of the involved variables.

Furthermore, the transmit/receive order is non-commutative, meaning that

in general Rn,m 6= Rm,n. Consequently, swapping the transmit element with

the receive element will produce a different pair, containing new information.

As in the case of park and probe, the goal of this approach is also to

compute the error ratios kn/kref between all active elements and a reference.

This is accomplished by making any pair of active elements to test themselves,

i.e., one element transmit while the other receives. The consequence of using

different pairs of active elements for coupling measurements is that there is no

longer a global reference, as opposed to park and probe that uses the probe

to test all elements. In this context, the procedure can be seen as a guide
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th 

element

th 

element

Figure 5.1: Coupling diagram for calibration measurements, in arrays with
analog beamformer networks, using mutual coupling measurements. Test the
nth element in receive, and the mth element in transmit. Adapted from [104].

describing what measurements should be taken, and formulating the equations

to isolate the transmit and receive errors from the coupling samples.

The essence of the approach is based in the assumption that couplings

between neighboring symmetrically disposed pair of elements have same values

[53]. For this, the first step is to define coupling sets consisting of pairs of

antenna elements with approximately equal coupling; e.g., for an square lattice

of equally separated antenna elements, all pairs of elements that are immediate

neighbors in a row constitute the [1,0] set, and all pairs of elements that are

immediate neighbors in a column constitute the [0,1] set. These sets, and other

sets that can be defined are depicted in Figure 5.2.

The following step is to identify combinations of two pairs within same

sets and calculate ratios. For instance, for the subarray shown in Figure 5.2,
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Figure 5.2: Depiction of coupling sets. For the mutual coupling-based initial
technique proposed by [53], the couplings that belong to the same set are
assumed to be of the same value. Source: [104]

within the set [1,0], one could choose the pair {0,1} and compare it to {1,2},

by assuming that they have approximately the same coupling. The computed

ratio is,
R0,1

R1,2
= kr0C0,1k

t
1T

kr1C1,2kt2T
= kr0k

t
1

kr1k
t
2
, (5.2)

It follows from (5.2), that the ratio contains information of only the unknown

errors.

In order to isolate the unknown error terms from the ratios calculated

using (5.2), the technique suggests to linearize all ratios by reformulating their

complex terms in magnitude, by using logarithms or by transforming to dB

units, and in phase, by calculating their angle argument. In this context, it is

possible to create two linear equation systems of the form [56],
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1 −1 0 0 1 −1
...





(kr0)dB

(kr1)dB

(kr2)dB

(kt0)dB

(kt1)dB

(kt2)dB



=

(R0,1)dB − (R1,2)dB
...

 , (5.3)

1 −1 0 0 1 −1
...





∠kr0

∠kr1

∠kr2

∠kt0

∠kt1

∠kt2



=

∠R0,1 − ∠R1,2
...

 . (5.4)

The ∠ operator retreives the phase of a complex value, and the (·)dB operator

refers to,

(x)dB = 20 log10(|x|). (5.5)

The sparse matrix on the left side of (5.3), A, is the same as the one in

(5.4). Each row of the sparse matrix is composed of 1s and -1s, which represent

the error terms that are in the numerator and denominator, respectively, of

the linearized ratio. The number of rows of (5.3) and (5.4) depends on the

number of previously defined pair combinations to process, while the number

of columns is equal to the total number of unknown krn and ktn terms involved.

The column matrix that contains the unknown error terms is denominated

K. Lastly, the column matrix on the right side is R, and it is composed of

the measured coupling values Rn,m. Consequently, (5.3) and (5.4) have the
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following form:

AK = R. (5.6)

The objective is now to calculate the ratios Kr
n and Kt

n from (5.3) and

(5.4). One way to accomplish this, is to choose a reference element and define,

krref = ktref = 1, (5.7)

which is the same as normalizing the errors with respect to the reference.

In this way, (4.8) and (4.9) are simplified to Kr
n = krn and Kt

n = ktn. As a

consequence, by calculating the krn and ktn terms from (5.3) and (5.4), the

unknown Kr
n and Kt

n ratios are also obtained. Moreover, (5.7) also results in

∠krref = ∠ktref = (krref )dB = (ktref )dB = 0. (5.8)

To solve (5.3) and (5.4) for kn, Mitchell [56] proposed to split matrices A

and K to reshape (5.6) into,

GK1 + BK2 = R. (5.9)

G is the sparse matrix A without the columns corresponding to krref and ktref ,

while B is a two column matrix formed by the two columns removed from

A. K1 is the column matrix K without krref and ktref terms, and K2 is a

column matrix formed solely by krref and ktref . Notice that K1 contains all the

unknown variables; hence, to finally obtain the errors it is necessary to solve

(5.9) for K1:

K1 = G−1(R −BK2). (5.10)
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G−1 is the pseudo inverse of G.

For instance, if element 2 is chosen as ref , and taking (5.8) into consider-

ation, (5.3) and (5.4) can be rewritten according to (5.10) as



(kr0)dB

(kr1)dB

(kt0)dB

(kt1)dB


=

1 −1 0 1
...


−1 (R0,1)dB − (R1,2)dB

...

 , (5.11)



∠kr0

∠kr1

∠kt0

∠kt1


=

1 −1 0 1
...


−1 (R0,1)dB − (R1,2)dB

...

 . (5.12)

Notice that there is no BK2 term in (5.11) or (5.12); this is because the

error terms for the reference are zero, as specified by (5.8).

5.3 Mutual Coupling-Based In-Situ Calibration

In contrast to initial calibration, which is often performed indoors and un-

der controlled environmental conditions, the in-situ calibration is periodically

performed on the field, during operation of the system. Its objective is to regu-

larly monitor the status of the active elements of the array, and take corrective

actions in case partial or complete element failure occurs.

The mutual coupling-based technique detailed on Section 5.2 is a valid

option for in-situ calibration. However, the large number of coupling measure-

ments required and the high computational load imposed may increase testing

and data processing time, making this technique less attractive for periodi-
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cal monitoring of phased array with an analog architecture, because system

operation will be interrupted for longer periods of time.

Moreover, the original mutual coupling-based technique proposed by Au-

mann et al. [50] and its variations [51, 32] are also great options for in-situ

calibration of fielded large arrays, and they require less coupling samples com-

pared to its improved version by Bekers et al. Nonetheless, both approaches

rely on the assumption that coupling between an antenna element and its

neighbors is the same for all elements along the array, which does not hold for

small arrays due to unwanted edge effects.

On the other hand, there exists another approach that avoids the equal

coupling assumption between neighboring elements, therefore making it an

attractive option for in-situ calibration of both small and large arrays. The

approach can be introduced as a before/after comparison. First, the status of

the array when it has been initially calibrated is sampled and properly stored

as a “before” status. Next, during operation, the same samples are repeated

and compared to the before status. The ratio between the before and after

status will quantify the changes suffered by the electrical path of the active

elements. Still, the before/after approach does imply the assumption that

the employed sampling coupling mechanism does not change in time, i.e., the

coupling between two antenna elements Cn,m is the same when taken during

initial calibration and while fielded operation.

Examples of the before/after approach are proposed in [54, 32], which em-

ploy one or more embedded elements dedicated only to monitor the operation

of the active elements. However, the use of embedded elements is also subject

to dynamic range issues, i.e., an embedded element may not be able to test

elements far away from it with enough SNR. In the case of digital phased ar-
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rays, it is common practice to perform a self-calibration employing the active

elements only. For instance, [55] exploits the inherent simultaneous reception

on multiple elements capability of digital phased arrays to quickly test sev-

eral elements per sample, and then use the redundant information collected

to estimate the transmit and receive misalignment. From the analog phased

array perspective, which can test only a pair of elements per sample, the latter

approach is not efficient since it involves several coupling sampling repetitions

to cover the same number of tested elements. Thus, to adapt the technique

to analog cases, more effort should be directed on defining the set of coupling

measurements to perform.

Keeping in mind that the goal of this dissertation is to investigate cali-

bration techniques on an 8×8 active phased array, the in-situ technique to

test must be compatible with small arrays with analog beamformer networks.

Thus, it is proposed to use a hybrid in-situ/self-calibration technique that com-

bines the before/after approach with the initial mutual coupling-based tech-

nique proposed by Ş [32]. The reason behind using the before/after approach

is to avoid errors introduced by edge effects. Also, to avoid employing ded-

icated elements, the coupling measurements must be performed between the

active elements themselves. This motivates the use of the technique proposed

by Şeker, which defines the set of coupling measurements to test, and how

to compute ratios from them. The following subsection details the proposed

in-situ technique, including its limitations and benefits.

5.3.1 Hybrid In-Situ/Self-Calibration

As mentioned in the previous paragraph, this work proposes to implement

a hybrid in-situ calibration technique. The technique consists of three steps:
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1. After the initial calibration has been performed, sample and store a

“before”, or also called factory standard, status.

2. During operation of the system, interrupt it to sample an “after” status.

3. Compare before and after results to estimate changes on the receive and

transmit modules.

To introduce the concept of the hybrid technique, the procedure is detailed

in two stages. The first stage defines the coupling pairs to sample, and offers

a methodology to process the collected data to obtain error ratios between

antenna elements. This stage covers steps 1 and 2, and it is based on the mu-

tual coupling-based calibration proposed by Şeker [32]. The second stage deals

with the comparison procedure; it introduces the mathematical formulation to

calculate the changes covering step 3.

The scheme defining the sample couplings is shown in Figure 5.3.(a). On

the left side of the figure there is a simplified representation of a square array,

and on the right side there are different coupling schemes for an arbitrary

chosen 2×2 subarray. On each scheme there are four couplings depicted; all

of the them can be formulated in the same fashion as (5.1). For the first case,

the couplings are,

R2,1 = kr2C2,1k
t
1T, (5.13)

R2,4 = kr2C2,4k
t
4T, (5.14)

R3,1 = kr3C3,1k
t
1T, (5.15)

R3,4 = kr3C3,4k
t
4T. (5.16)
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Figure 5.3: Coupling schemes proposed for in-situ/self-calibration. (a) For
any 2×2 subarray, performing 4 coupling measurements obtains 2 error ratios
between two pair of elements. (b) Different coupling schemes used to calculate
error ratios among different pairs of elements. Source: [104].

In order to obtain the error ratios between elements, use (5.13), (5.14), (5.15)

and (5.16), in the following expressions [32],

Kr
3,2 =

√
R2,1R2,4

R3,1R3,4
= kr2
kr3

√
C2,1C2,4

C3,1C3,4
, (5.17)

and

Kt
4,1 =

√
R2,1R3,1

R2,4R3,4
= kt1
kt4

√
C2,1C3,1

C2,4C3,4
. (5.18)

Expression (5.17) calculates the receive error ratio Kr
3,2 between elements 3

and 2 multiplied by a ratio among couplings, while (5.18) returns the transmit

error ratio Kt
4,1 between 4 and 1, also followed by a respective coupling ratio.

It is important to notice that the involved couplings in Figure 5.3 belong to

set [0,1], shown in purple, to set [1,1], in black, and to set [1,0], in red. In

an ideal case, couplings within the same set are similar, thus approximating

the coupling ratios on the above two expressions to 1. Therefore, (5.17) and
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(5.18) estimate 2 error ratios from 4 coupling measurements, and the level of

accuracy depends upon how similar are same set couplings.

Nevertheless, until now only ratios between neighboring elements have been

calculated, but the issue of how to relate these ratios to an arbitrary reference

is unaddressed. To calculate the error ratios Kn between any element and the

reference element, one must define ratio paths that link the reference to all

other elements. A ratio path begins at any element and ends at the reference,

and its purpose is to serve as a map indicating which ratios should calculated.

For example, Figure 5.3.(b) shows a proposed set of ratio paths, for receive

and transmit, using the top left corner element as reference. The ratio between

any nth element to the reference is obtained as the product of all Kn,m terms

indicated in the ratio path, which is formulated as,

Kr
n = Kr

ref,m · · ·Kr
q,n, (5.19)

and

Kt
n = Kt

ref,m · · ·Kt
q,n. (5.20)

Indexes m and q represent the elements along the path. Moreover, Figure

5.3.b also details which 2×2 scheme type is used to sample the couplings.

In the context of the in-situ calibration, step 1 consist in implementing

(5.19) and (5.20) immediately after the initial calibration to obtain a factory

standard status set of Kr
n|bef and Kt

n|bef values, while step 2 repeats the same

procedure as step 1, but while the phased array system is in operation at the

deployment location, to obtain a new set of Kr
n|aft and Kt

n|aft values. Finally,

to cover step 3 and calculate the amplitude and phase deviation from the
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factory standard use [104],

(Kr
n)′ = Kr

n|aft
Kr
n|bef

=
Kr
ref,m|aft · · ·Kr

q,n|aft
Kr
ref,m|bef · · ·Kr

q,n|bef
, (5.21)

and

(Kt
n)′ = Kt

n|aft
Kt
n|bef

=
Kt
ref,m|aft · · ·Kt

q,n|aft
Kt
ref,m|bef · · ·Kt

q,n|bef
. (5.22)

Moreover, the assumption for this case is that couplings among elements

do not change with time [104], i.e.,

Cn,m|bef = Cn,m|aft. (5.23)

Replacing (5.17), (5.18), and assumption (5.23) in (5.21) and (5.22) yields

[104],

(Kr
n)′ =

(krn/krref )|aft
(krn/krref )|bef

, (5.24)

and

(Kt
n)′ =

(ktn/ktref )|aft
(ktn/ktref )|bef

. (5.25)

The resultant expressions (5.24) and (5.25) calculate deviations from the

original factory standard state. They must be used to track changes occurring

after the system has been deployed, and they do not represent by themselves

the current state. The most important advantage of these two expressions is

that the coupling terms are canceled using (5.23) rather than the less likely

assumption of equal same set coupling. Hence, there is no array minimum

size imposition, and edge effects are no longer an issue for initial calibration.

Another advantage is that this approach proposes a reduced number of cou-

pling measurements, in contrast to the initial technique which requires as much
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information as is available.

On the other hand, there are limitations that must be considered. The

square root of complex numbers in (5.17) and (5.18) produces two possible

results which are 180◦ apart. The first result, and the one used in this work,

is in the range of -90◦ to 90◦, which means that errors larger than |90◦| will be

incorrectly computed. However, large phase errors are not expected to arise

during operation, unless the active element antenna and/or electronics have

been damaged, in which case, it should be neglected from the calibration. Also,

expressions (5.19) and (5.20) are prone to error propagation, i.e., measurement

errors, caused by noise or repeatability, are present on each Kn,m term, and

they will accumulate along the ratio path. In other words, the longer the ratio

path, the greater the possibility of larger accumulated error.

5.4 Case of Study - APAR

To validate the technique by Bekers et al. and the hybrid technique pro-

posed in this work, both of them are tested on the LRU. The goal is to investi-

gate the accuracy of mutual coupling-based calibration techniques to quantify

the misalignment errors. For this, park and probe tests are performed to serve

as a ground truth reference. The RMSE between the mutual coupling-based

estimates and the park and probe reference is calculated as a figure of merit

to evaluate the accuracy of the techniques.

The experiments performed in this work can be grouped in three categories,

initial calibration, in-situ calibration, and detection and diagnosis of compo-

nent failure. The initial type technique detailed in Section 5.2 is implemented

to obtain the original misalignment of the system. For the in-situ type cali-

bration the experiment forced an excitation change on few arbitrarily selected
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elements, and then applied the technique proposed on Section 5.3.1 to quan-

tify the changes. Finally, an overview of component failure cases encountered

during testing is presented. The feedback data obtained from mutual coupling

samples are instrumental to identify and diagnose component failure.

5.4.1 System Description and Requirements

The antenna under test (AUT) is the 8×8 C-band active phased array LRU

prototype introduced in Section 4.3.1, and shown again in Figure 5.4. The

AUT is dual polarized, however, for this work, only the vertical polarization

was investigated. As previously explained, the TR module PCB boards were

designed with two independent beamformer networks, one for transmit signals

and another for receive. These independent networks are essential for mutual

coupling measurements. All 8 beamformers are connected to a 8:1 power

combiner, one combiner for transmit signals and another for receive, see Figure

4.3 for more details.

Figure 5.4: Simplified schematic of the LRU. Two independent analog beam-
former networks are used to allow simultaneous transmission and reception.
Source: [104].

The measurements were performed inside the custom made anechoic cham-

ber developed by NCAR and introduced in Section 3.2, consisting of a metallic

box covered with microwave absorber foam. The 4 degrees-of-freedom scanner
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attached to the chamber enabled performing park and probe measurements,

which serves as ground truth. The antenna probe used during these experi-

ments is a WR-187 open ended waveguide. A VNA is employed to generate

and digitize the signals for the park and probe experiments. The employed

VNA included extra hardware features to allow pulsed measurements, which

are required for the transmit mode. Whereas, for all mutual coupling samples,

a radar backend was implemented instead of the VNA, which also allowed for

pulsed measurements among elements. The signal generation and processing,

for the radar backend, were executed using a Pentek transceiver board.

Figure 5.5 shows the setup for the experiment. The park and probe exper-

iments were performed according to the configuration on Figure 5.5.(a). On

the other hand, to perform the mutual coupling measurements, a metal plate

covered with microwave absorbers was placed in front of the LRU. The ab-

sorber cover is used to block unwanted reflections from the metal frame of the

scanner. Figure 5.5.(b) depicts the covered chamber, the microwave absorber

stuck on the metal plate is inside the chamber.

5.4.2 Initial Calibration

The park and probe and mutual coupling-based technique by Bekers et al.

were implemented. The former technique employed the scanner attached to the

custom made anechoic chamber, and sampled all 64 elements in both receive

and transmit modes, for a total of 128 samples. The error ratios between

elements were computed using equations (4.6) and (4.7).

On the other hand, the mutual coupling-based technique was carried out

connecting the transmit and receive beamformers to the radar backend. Sev-

eral measurements were performed, for this case it was chosen to sample all
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Figure 5.5: Experimental setup utilized to perform the measurements. (a) The
AUT is the 8×8 LRU mounted on the custom made anechoic chamber. For
park and probe testing the 4 degrees of freedom scanner attached to the cham-
ber is used to accurately position the open ended waveguide acting as antenna
probe. (b) Configuration for mutual coupling measurements. A metal plate
lined with microwave absorber is used on top the scanner to avoid reflections.

possible pairs that belong to sets [0,1], [1,0], [1,1], [2,0], [0,2] and [2,1], as pro-

posed by [53]. A total of 780 samples were collected, which is a considerable

larger amount of samples than the number of samples required for park and

probe. Nonetheless, even though the mutual coupling-based technique requires

more samples, there is no need for mechanical movements, which severely re-

duces testing time.

An important consideration of the techinique by Bekers et al. is its vul-

nerability edge effect. Antenna elements located at the edges of the array are

exposed to a different environment than those located at the middle of the

array, which causes their coupling values to vary, thereby compromising the

assumption that couplings within the same set are equal. Simulations per-

formed by Bekers et al. [53] indicate that estimation errors for an 8×8 array

are low, e.g., in the order of 0.16 dB and 2.1◦. However, the simulations as-

sumed an array with an infinite ground plane, which is impossible to realize.
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Table 5.2: Summary of RMSE of the mutual coupling-based initial calibration
approach in reception and transmission.

Subarray Reception - Kr
n

RMSE amplitude (dB) RMSE phase (deg)
4×4 0.27 2.66
6×6 0.36 2.67
8×6 0.46 2.50
8×8 1.11 2.47

Subarray Transmission - Kt
n

RMSE amplitude (dB) RMSE phase (deg)
4×4 0.39 2.76
6×6 0.51 2.51
8×6 0.52 2.50
8×8 1.07 2.39

Consequently, the impact of the discontinuities occasioned by the finite nature

of physical arrays is unknown, and it is particularly more relevant for the case

of a small 8×8 array.

As a result, in order to properly assess the accuracy of the technique it is

necessary to investigate different subarray arrangements. For this reason, 4

different subarray configurations were considered, as shown in Figure 5.6. For

the first two cases the computation of the error estimations were performed

on subarrays that consider only inner elements. In contrast, the last 2 cases

consider configurations were edge elements are also included. The motivation

behind using two different cases, 8×6 and 8×8 arrangements, to depict edge

effect is that in this case it was found that couplings of elements located in

vertical edges are more perturbed than in horizontal edges.

The results of these experiments, for both receive and transmit, are sum-

marized in Table 5.2, and the estimated Kr
n in reception are shown in Figure

5.6. For each subarray case, the magnitude and phase estimations of the

misalignment from the mutual coupling-based technique are compared to the
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Amplitude (dB) Phase (deg)Subarray

4x4

6x6

8x6

8x8

(a)

(b)

(c)

(d)

Figure 5.6: Estimations of the initial misalignment, in receive mode, of the
LRU. The park and probe (P&P) results are compared to the ones obtained
using the mutual coupling-based (MC) technique for different subarray con-
figurations. The unwanted edge effect is most notorious on the vertical edges,
affecting mostly the magnitude estimations. Source: [104].

ones from park and probe, which are defined as ground truth. As a figure of

merit, the RMSEs are computed, the lower the RMSE the better the mutual

coupling-based estimation. Element 27 was chosen as reference element for all

subarray cases due to its center location, away from the edges and relatively

close to all other elements.

By inspection of the values given in Table 5.6, one can notice that there
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is a significant variation of the amplitude RMSE for the different cases. The

closer the involved elements are to the edges, the worst the estimation. The

worst result, RMSE8×8 > 1 dB, occurs for the 8×8 case, which covers all

edges, the estimated excitations for the elements on the left and right edges

are completely biased. In contrast, if these edges are avoided, i.e., considering

the 8x6 subarray, the error is reduced to RMSE8×6 ≈ 0.5 dB. This suggests

that couplings on vertical edges are more perturbed than on horizontal edges

for vertical polarization.

In contrast with the magnitude estimations, the phase estimations in this

particular array were improved by increasing the array size. Still, the improve-

ments are relatively small, 0.19 and 0.37 deg, for reception and transmission,

respectively. This indicates that the errors are being reduced by averaging

associated to the increased number of involved elements. The RMSE for all

cases is close to 2.5◦, which is a similar result to the RMSE predicted by

simulations [53], 2.1◦. As a consequence, it is possible to state that the mu-

tual coupling-based technique, by Bekers et al., is a great option for phase

estimation of misalignment on this small-sized array. However, for amplitude

estimations it is recommended to either avoid including edge elements, or add

dummy elements surrounding the active ones [106].

Moreover, a comparison between estimations in reception and transmission

indicates that the RMSE are in the same order for both cases. This should

not be a surprise considering that the main source of errors of this approach

is the amplitude and phase differences among same set couplings, which were

only assumed to be the same, and affect both transmission and reception in a

similar manner.
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5.4.3 In-Situ Calibration

The in-situ experiment was performed under similar conditions as the ini-

tial calibration. The LRU was located inside the custom-made anechoic cham-

ber, and the transmit and receive power combiners were connected to the radar

backend. However, for the in-situ case, arbitrarily defined amplitude and phase

perturbations were introduced to the initial state of the array excitations. In

this manner, the goal of the test is to accurately quantify the imposed changes

using the hybrid technique proposed in Section 5.3.1.

The excitation changes were introduced by modifying the receive TR mod-

ule configurations of a set of 6 arbitrarily chosen elements. Simultaneously,

the TR module configurations of another set of 6 arbitrarily chosen elements

were modified but for transmit. As a result, the new state of the active array

comprehends 6 variations in both receive and transmit conditions.

In order to quantify the added changes, the measurements depicted in

Figure 5.3 were performed, with the difference that for this test the reference

element was element 27, located on the center of the array. Next, the recently

collected data set, were used to compute a set of Kr
n|aft and Kt

n|aft coefficients

using (5.19) and (5.20), respectively. Then, in an analog manner, to obtain a

set of Kr
n|bef and Kt

n|bef values required for comparison, the data set collected

during the initial calibration experiment, described in Section 5.4.2, was used

in conjunction with (5.19) and (5.20). Finally, the added changes, (Kr
n)′ and

(Kt
n)′, were computed with the help of (5.21) and (5.22), respectively.

The estimated amplitude and phase changes in receive and transmit are

shown in Figure 5.7. As it is possible to appreciate, there are 6 peaks per

plot, each representing the estimated value of the introduced modification.

The unaltered elements are clearly noticeable since their values are close to
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0, hence indicating they suffered no change. However, small variations within

the unaltered elements are observed. The small variation can be contribution

from factors such as temperature changes, measurement repeatability, non-

linearity of the HPA, and low-level leakage within the T/R module channels.

For this reason, as a ground truth reference, the park and probe technique was

implemented to measure the introduced changes. The comparison between

estimations and ground truth values are detailed in Table 5.3.

The phase estimation in reception are one order of magnitude less than

those obtained using the initial calibration technique. In transmission the

estimations are not as good as in reception. This is likely due to the HPAs not

working in an ideal linear regime. In addition, the VNA calibration for park

and probe measurements in transmission and reception were different, because

they have different microwave circuits. For reception the calibration included

all the setup, whereas for transmission only portion of the microwave setup

was calibrated and de-embedded. A more precise calibration of the VNA plus

microwave setup in transmission must be performed for the park and probe

measurements to improve its estimation accuracy.

Nevertheless, the real advantage of the proposed in-situ calibration tech-

nique is that it greatly enhances the amplitude estimation for both cases,

regardless of the location of the element. As it can be verified, the estimation

in amplitude for any element is < 0.19 dB, while for the initial calibration

case elements on the edges were underestimated by > 1 dB. The reason, as ex-

plained in the previous section, is that the passive coupling values are removed

from the calculation by comparing the before and after states.
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Table 5.3: Summary of the excitations changes, estimations, and RMSE ob-
tained during in-situ calibration experiments.

Reception - (Kr
n)′

Element
Amplitude (dB) Phase (deg)

Value Estimation Error Value Estimation Error
4 -2.91 -2.89 -0.02 -23.30 -23.03 -0.27
28 -1.16 -1.13 -0.03 21.60 21.70 -0.10
32 -1.88 -1.87 -0.01 29.38 29.90 -0.52
45 -1.97 -1.97 -0.00 2.15 2.12 0.03
46 -2.37 -2.31 -0.06 18.20 18.13 0.07
63 -2.04 -2.05 0.01 -7.73 -7.61 -0.12

RMSE 0.03 0.25

Transmission - (Kt
n)′

Element
Amplitude (dB) Phase (deg)

Value Estimation Error Value Estimation Error
15 -1.03 -1.07 0.04 -8.01 -8.04 0.03
28 -0.97 -1.14 0.17 22.50 21.10 1.38
29 0.18 0.37 -0.19 -5.53 -5.35 -0.18
32 -0.02 -0.12 0.10 -8.80 -9.70 0.90
54 -1.58 -1.66 0.08 12.70 11.92 0.78
56 -1.94 -2.05 0.11 22.30 22.28 0.02

RMSE 0.12 0.75
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Figure 5.7: Estimations of the introduced changes in amplitude and phase, in
receive and transmit mode, of the LRU. For each mode, the excitations of 6
elements were modified and later detected by the proposed mutual coupling-
based in-situ error tracking technique. Source [104].

5.4.4 Component Failure Diagnosis

In addition to calculate amplitude and phase misalignment along the array,

mutual coupling measurements can be used to quickly identify component

failure in a system. In order to support this statement a collection of common

failure cases, which were found over the course of the experimentation period,

is presented. The cases include examples of damaged high power amplifier,

bad antenna connection, and complete failure of TR module board.

Figure 5.8 shows the aforementioned cases. The cases are introduced in

terms of sampled coupling values, which are summarized in the square grids

shown in the figure. Each pixel in the grid represents the received value result-

ing from transmitting a signal with one element and receiving it using another

element, while the rest of the elements are terminated. These samples are

taken exactly as specified by Section 5.3.1. The rows of the grid indicate the
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transmitting element, while the columns indicate the receiving element. As a

result, the values contained in the nth row represent the received signals by

all elements that were transmitted by element n. Whereas, the nth column

displays the received values by the nth element, which were transmitted from

all other elements.

Figure 5.8.(a) is the measured result of sampling all possible couplings

within the 8×8 array in the absence of failed components. It represents a

“healthy” array state. Notice that self-coupling terms, represented in white

and located in the main diagonal, were not measured due to hardware limita-

tions, however they are not necessary for calibration. On the other hand, the

grids shown in cases (b), (c), and (d) represent the coupling values when com-

ponent failures are present. By examining the differences between cases (b),

(c), and (d) in comparison with the healthy case (a), it is possible correlate the

errors to the failed component, ultimately diagnosing the array malfunction.

The diagnose begins with case (b), which compared to case (a) presents

3 rows with low power, -50 dB. The rows correspond to elements 11, 19, and

56. A row of low power signals indicates that the signals transmitted by the

element corresponding to the row are not sensed by any element, thus, denoting

the failure of the transmitting element. As a consequence, case (b) is indicating

that the elements 11, 19, and 56 have completely failed in transmission. In

addition, by inspection of the schematic given in Figure 5.4, it is possible to

conclude that, within the transmission path, the component most likely to fail

is the HPA. Hence, case (b) is the result of three failed HPAs.

On the other hand, case (c) conspicuously displays a large area of low

power signals, possibly implying a major failure. The low power signals are

found along rows, and also along columns. These results along rows indicate
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(a) (b)

(c) (d)

Figure 5.8: Examples of element failure depicted using coupling among ele-
ments of the phased array. Each pixel represents the amplitude in dB of the
received signal on “Rx channel”, transmitted by the “Tx channel”. Case (a)
represents a normal operation. Case (b) shows elements 11, 19, and 56 with
damaged high power amplifiers. Case (c) depicts complete failure of the boards
corresponding to PCB 04 and PCB 06. Finally, case (d) is the result of a bad
antenna connection. Source: [104]

failed transmitting element, whereas, low signals along columns indicate failed

elements in reception. The affected rows are the same as the affected columns,

which correspond to elements 32 to 39, and 48 to 55. In addition, one can

notice that the mentioned elements comprise TR module boards PCB 04 and
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PCB 06, see Figure 5.4. Consequently, if all the elements that belong to

boards PCB 04 and PCB 06 neither transmit nor receive, then both boards

have completely failed. The components that cause this type of failure are

the power supplies or voltage regulators, which later were confirmed to be

damaged in this case.

In contrast to cases (b) and (c), that involved signal levels close to noise

floor, Figure 5.8.(d) depicts only an attenuated signal at both transmission

and reception for element 52. The attenuation value is ≈ 10 dB, calculated

by either mutual coupling-based initial or in-situ techniques. This attenuation

level is about four times the maximum peak-to-peak amplitude misalignment

between elements, ≈ 2.5 dB, found using the park and probe technique (Figure

5.6.(d)). Thus, the issue stems from a more severe cause rather than a simple

untuned attenuator or phase shifter. On the other hand, the cause is not as

severe to completely disable the element, and thus there is no damaged active

component. Thereby, the issue is likely to be a passive component as the

antenna or transmission lines. It was verified that this particular error was

caused by a bad connection between the antenna and the TR module board.

The cases reviewed demonstrated how the feedback obtained from mutual

coupling measurements can quickly identify element failure, and be used for

diagnosing component damage. It is important to notice that, even though

the cases were illustrated using coupling data between all possible element pair

combination, the diagnose will be possible using a reduced amount of data.

For instance, the limited amount of data collected using the in-situ mutual

coupling-based technique presented in Section 5.3, is just enough to diagnose

failed components.

Additionally, data obtained from failed components should be left out of
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the computation of mutual coupling-based techniques, since these techniques

rely on relative ratios from element to element. Signals acquired using failed

elements will bias the estimations of elements away from the reference. For

this reason, before calculating the error ratios Kr and Kt, it is necessary to

check for low power signals in the same manner as discussed in the previous

paragraphs, identify possible failed components, and exclude them from the

calculations. Methodologies on how to avoid faulty elements have already

been presented in the literature, the reader can refer to [32, 106] for more

information.

5.5 Chapter Summary

This Chapter successfully implemented mutual coupling-based initial and

in-situ calibration techniques in the 8×8 active phased array LRU. The park

and probe technique was compared to the mutual coupling-based technique by

Bekers et al.; since the latter relies on symmetric coupling assumptions, the

former technique was used as ground truth. It is found that phase estimations

using the approach by Bekers et al. were fairly good, in the order of 2.5◦.

By contrast, the magnitude estimations are heavily affected by edge effects,

making the estimations only acceptable for element subsets chosen away from

the edges.

For the in-situ case, a phase and amplitude mutual coupling-based monitor-

ing technique was adapted from the literature to be implemented in this case.

The proposed hybrid technique allows to track excitation changes that may

arise during fielded operation, and the current state can be calculated based

on the state estimated by the initial calibration stage. The technique does not

rely on the same assumptions as its initial type counterpart, and removes the
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coupling values from the calculation. Thus, its misalignment estimations are

more accurate, i.e., yielding a RMSE < 1◦ and < 0.12 dB, regardless of the size

of the array. Moreover, diagnosis of component damage has been successfully

demonstrated on real failure cases. It was found that mutual coupling mea-

surements can be used as a fast feedback mechanism to identify component

failure and bad connections across the array.
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6 Conclusion

This work presented a compilation of research focused on calibration of

phased arrays. Motivated by the goal to investigate possible calibration tech-

niques for the APAR project by the NCAR-EOL, this research shows valu-

able experimental results from performing both current state-of-the-art and

novel techniques on the LRU test-bed. In addition, instrumentation related

to phased array characterization and calibration is also presented that shows

commercial options and custom-made novel scanners specifically designed for

phased array calibration applications.

Phased array calibration issues originate from the inherent excitation mis-

alignment problem, which can have a random or systematic distribution. This

research found that random misalignment errors are less impactful than sys-

tematic ones. A systematic error can focus the adverse effects of excitation

errors on critical performance parameters of the phased array. The simulated

example shown in Section 2.2 indicated that systematic errors, of 10◦ and 1 dB

of RMSE can cause an intolerable SLL error of more than 10 dB. By contrast,

for an equal level amplitude and phase RMSE, random errors result in only a 4

dB SLL error. After compensation is performed, the remaining misalignment

is expected to be of random nature only. Moreover, in the past, great effort

has been dedicated to finding the relationship between random amplitude and

phase errors, and their effects on the synthesized pattern of the phased arrays.

The error theory calculates that the beam pointing accuracy of the aforemen-

tioned simulated example is less than 0.005◦, and its directivity can change

by ≈ -0.2 dB. These degradations of performance are modest compared to

the 4 dB SLL errors; thus, when testing phased arrays, the SLL is the most

significant indicator of misalignment errors.
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The extensive review of the state-of-the-art of current calibration tech-

niques presented in Section 2.4 proposes to categorize them under different

criteria. The categories are initial versus in-situ, external versus built-in, NF

versus FF, specialized versus MC, and direct versus encoded. The most im-

portant category is initial vs. in-situ, because both types of calibrations are

necessary in order to ensure the correct function of any phased array. Among

all the cited techniques, the most common and straight-forward is the park

and probe technique; however, it requires the employment of a robotic ma-

nipulator, and the AUT architecture must allow for only one element to be

enabled, while the others should be terminated. The author prepared a useful

summary, Table 2.4, that categorizes each of the cited sources according to the

proposed criteria. In this manner, the reader can use the table as a catalogue

to find literature related to the requirements of his/her application.

Chapter 3 presented the most common instrumentation for phased array

measurement and calibration, the NF planar scanner. This scanner configura-

tion offers the probe positioning capability required for park and probe tests.

As an example, the commercial NF planar scanner located at the RIL was

introduced. Its three linear actuators enable the scanner to position the probe

anywhere in a 2D plane parallel to the array aperture, and a rotary joint allows

dual polarization testing. In addition, as a more affordable option, the custom

made planar scanner designed exclusively for LRU testing and calibration was

also described. This scanner proved to be an excellent tool for characterizing

the performance of the LRU, even though it is not suitable to perform NF to

FF scans, as the commercial versions can. Finally, a new trend of using ar-

ticulated robotic manipulators was discussed. Articulated manipulators often

include more degrees of freedom in a compact packaging, which allows for ar-
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bitrary scan grids that typically require several types of specialized hardware.

Therefore, implementing robotic manipulators on antenna measurements al-

lows more flexible scan geometry. However, they are recommended for higher

frequency applications, when the AUTs are smaller.

Inspired by the new trend of implementing articulated robotics, the ARRC

is developing its own phased array characterization tool. The RF scanner

is a novel automatic tool conceived for phased array calibration, and based

on a 6-degrees-of-freedom robotic arm. Its core function is to perform park

and probe calibration of phased arrays, with a probe positioning accuracy of

100 µm. However, unlike regular antenna ranges, it also allows the user to

control the environment temperature over a range of 0-50 ◦C. Moreover, its

sensor suite includes an HD camera that enables inspection of the surface

and, as a result, is used to locate the center of the phased array elements.

The sensor suite also includes a thermal camera to capture pictures of the

temperature distribution along the surface of the aperture. Preliminary results

were taken to demonstrate these capabilities. This tool allows testing of high

power phased array prototypes, many of which suffer from high-temperature

gradients across their surface.

A full characterization and initial calibration procedure of the patterns of

the LRU was presented in Chapter 4. It was demonstrated that the proposed

procedure not only calibrated the excitation of the phased array, but also ex-

haustively characterized the TR modules behavior, and allowed the calibration

engineer to collect enough information to permit pattern prediction as well.

The proposed procedure implements the park and probe technique to quantify

the misalignment between antenna elements, and to characterize the non-ideal

behavior of the attenuators and phase shifters mounted on the TR modules.
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It was found that, for higher levels of attenuation, there is an unwanted

phase shift caused by the attenuator chip. Since this type of error is systematic,

it can lead to a severe reduction of performance. The characterization process

uncovers this error and allows it to be corrected. Thus, after compensation is

applied, the systematic errors are removed, and the random errors are reduced

to a minimum defined by the attenuation and phase shift resolution.

Additionally, the proposed initial calibration includes NF planar pattern

scans of embedded element and beam-steered patterns. By measuring the em-

bedded element pattern of each antenna element, the calibration engineer is

collecting a set of patterns that can be post-processed to predict the array

patterns. Moreover, by combining the collected embedded element patterns

with the TR module data, more accurate array pattern prediction is achieved.

The result is a digital tool that simulates any antenna pattern that can be

synthesized by the AUT, considering both errors from the TR modules, and

irregularities of the antenna pattern particular to the AUT. Experimental re-

sults demonstrated that the predicted patterns agree for the co-polar compo-

nent of the fields. For the cross-polar component, the prediction is accurate

off-boresight (error ≤ 1 dB), but on boresight, errors of ≈ 4 dB were found.

The inaccuracies at boresight are due to the low SNR of the cross component

fields in this area.

As an alternative to the use of external calibration instrumentation, mu-

tual coupling-based techniques were tested. The approach by Bekers et al.

proved to be the most accurate initial type mutual coupling-based calibration

technique. The reason for this is its mathematical framework, which allows

taking into consideration as much information as possible, and thus the error

caused by the differences in coupling values is reduced by averaging. The es-
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timation error results, obtained by experimentation, are ≈ 2.5◦ in phase, and

can be improved by extending the subarray size. On the other hand, ampli-

tude error of ≈ 0.5 dB is obtained for a 6×6 subarray, but it reaches ≥ 1 dB

when elements on the edges are considered in the calculations. From these

results it is possible to infer that, for a larger array, phase estimations will

have an error of ≤ 2.5◦ regardless of the chosen subarray configuration, and

amplitude estimation errors will be ≤ 0.5 dB, as long as elements on the edges

are avoided. It was also noted that for vertically polarized microstrip patches

the amplitude of the coupling between elements on the left and right columns

suffers great variations when compared to that for coupling between elements

on the inner columns. Therefore, to apply the approach by Bekers et al. it is

advisable to avoid including elements located on the columns near the edges,

or to add dummy elements surrounding the active elements.

This work proposes a hybrid in-situ calibration technique as a complement

to the approach by Bekers et al. The hybrid technique tracks changes that

occur after the initial calibration by comparing the before and after excita-

tion states. To accomplish this, it employs all antenna elements to sample the

coupling between them, which avoids the use of embedded antenna elements.

Since the elements are coupled with their neighbors, the dynamic range prob-

lem, resulting from using embedded antenna elements, is avoided. The RMSE

estimation errors are 0.75◦ in phase and 0.12 dB in amplitude, which are much

lower than the in-situ case. In addition, the approach is also insensitive to edge

effects, and is scalable, thus applicable to arrays of any size.

Finally, an important advantage of mutual coupling-based measurements is

to identify component failure. Mutual coupling-based measurements proved to

be a fast test to determine the health of antenna elements. Experiments show
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that they not only detect failed antenna elements, but they also can identify

what component has failed. Among the cases reviewed, the measurements

revealed failed high power amplifiers and power supplies, and bad connections.

The ability to identify failed components is crucial for mutual coupling-based

calibrations, as algorithms for this type of calibration must avoid using data

from a damaged element. Because malfunctioning components are harmful to

the synthesized antenna pattern, it is important for the radar engineer to be

aware of the of the problem so that attempts to correct such problems can be

made
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A NF planar measurements: Fundamentals and Tech-

nical Details

A.1 Near Field Planar System

Ideally antenna patterns should be measured by having an ideal plane wave

source/receiver, rotating the AUT to the angular coordinates of interest and

sampling the received signal at each position. A typical example of this is a

Far-Field (FF) test, where the AUT is positioned far enough from an antenna

probe, and the AUT is rotated to capture its antenna pattern at different

angles. This is called a direct measurement, because the long probe-to-AUT

distance directly collimates the radiated waves [107]. Other direct methods

involve using lenses and/or reflective surfaces, as in compact antenna test

ranges. On the other hand, for electrically large AUTs where the FF distance

may be simply too large to arrange a direct test type, an indirect measurement

is more convenient. Indirect methods are often tests that sample the AUT at

its NF region, and later post-process the antenna patterns to a FF distances.

Since the NF region is just a few wavelengths away from the AUT, shorter

distances are needed and smaller chambers can be used.

NF tests are typically performed by planar, cylindrical and spherical sys-

tems, mainly because the required robotic mechanical scanners are relatively

easy to build, and convenient mathematical approaches can be applied to

process FF data from the sampled NF data, i.e., the Helmholtz equation is

separable on these coordinate systems. Each system has its own advantages

over the others; planar scans are used on high-gain antennas, spherical on om-

nidirectional antennas, and cylindrical on fan beam antennas. A list of the

main differences can be found in Table A.1, which clearly indicates that, to
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characterize, a high-gain antenna like the LRU, the suitable scan configuration

should be planar.

Parameter Planar Cylindrical Spherical
High-gain excellent good good
Low-gain poor poor excellent
Probe correction simple complex complex
Speed fast slow slow
Alignment easy difficult more difficult

Table A.1: NF scan types classification, main differences and advantages.
Source: [76]

The NF planar scanner used in this project is located at the Radar In-

novation Laboratory, and was manufactured by NSI. The dimensions of its

scanning windows are a horizontal span of 62.46 in, vertical of 62.46 in, and

a short course of 4 in of transverse movement, which is used to finely adjust

the probe-to-AUT distance. The window dimension defines the maximum FF

angle range that can be measured, i.e., the larger the window, the wider the

FF range that can be processed. The relation can be expressed as [76]

H = D + P + 2Ztanθ, (A.1)

where H is the scan height, D is the antenna aperture height, P is the probe

height, Z is the probe-to-AUT distance, and θ is the maximum FF angle that

can be accurately calculated. There is not enough information from the scan

to obtain the pattern at angles > |θ| away from the boresight axis. For this

project the values of H, D, P , Z, and θ are given in Table A.2. Notice that

θ was defined as 65◦ because often there is no need to have information on

the steering capability of a phased array above 45◦ , and also a smaller angle

results in a smaller scan height, which also translates to a lower scan time.

The value of H was calculated using (A.1) for θ =65◦ .
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Symbol Magnitude Value Unit
D Antenna aperture height 9 in
P Probe height 1.872 in
H Scan height 43.31 in
Z Probe to AUT distance 7.57 in

Table A.2: Definition of the NF scan parameters

A.2 NF Probe Correction

All NF tests require the use of an antenna probe, and due to the fact that

all antennas have their own radiation pattern, the data sampled by the probe

is influenced by its own radiation. Hence, an essential step to process the FF

patterns from NF sampled data is probe correction, which analytically removes

the effect of the probe from the calculated FF pattern. An in depth revision of

the theory behind planar NF to FF transformation is given by [108, 109]. The

scans for this project were performed using a WR-187 open ended waveguide

(OEWG).

In the case of planar NF, the probe correction is a straightforward proce-

dure. However, as will be explained later, despite its relative simplicity, the

accuracy of the technique to process the cross-polarization pattern is poor.

The full probe correction in planar scans requires a deep knowledge of the

co- and cross-polarization patterns of the probe, which, for an OEWG, are a

broad beam for the co-, and a lower power beam with a narrow null along

the principal planes for the cross-polarization, as shown in Figure A.1. More-

over, the alignment of the probe with respect to the AUT is crucial to the

procedure. The boresight axes of both antennas should always be parallel,

since any deviation will incur a systematic error and preclude the correct FF

computation.

The mentioned misalignment issue is especially problematic for the compu-

136



Figure A.1: Analytically computed co and cross patterns of an OEWG.

tation of the cross-polarization pattern of the AUT, which is heavily affected

by the nature of the inherent cross-polarization of the probe. Since the cross-

polarization pattern has a narrow null, any misalignment will misplace a deep

null in a position where a higher signal was expected, rendering errors to the

computation of the cross pattern of the AUT. Furthermore, it is not common

to have an accurate measurement of the co- and cross-polarization patterns of

the probe. However, due to its simple radiating mechanism the co-pattern is

usually calculated, either analytically or by simulation, with sufficient accu-

racy.

Commercial scanners often employ an approximate technique instead of

the full probe correction. The approximation assumes that the co-polarization

is much larger than its cross counter-part, and simply neglects its value during

the pattern correction. This approximation works very well for co-pattern

computation, with errors <0.1 dB, although the cross-polarization may have

errors of 3dB when using an OEWG with -40dB cross-polarization nulls to

measure an AUT as APAR with -30dB level cross-polarization [110]. For this

project, the probe correction was performed using the scanner software, which
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employs the approximated probe correction.

A.3 Coordinate System and Polarization

The representation of an antenna pattern consists of quantifying the electric

or magnetic vector fields over a section of the spatial domain. Usually, one

plots the tangential components of the fields of the FF pattern at a finite

number of sample points. The sample points are represented according to the

selected coordinate system, and the tangential components, often named co-

and cross-components, are represented according to the selected polarization.

A great summary of this topic can be found in [111].

The antenna patterns plotted in this dissertation are described using Lud-

wig III definition, which is commonly use to plot any antenna pattern. How-

ever, according to [112], for microstrip patch antennas, the Ludwig II defini-

tion describes their polarization nature better because the cross-polarization

component is closer to this definition rather than the third definition. The

transformation from second to third definition is straight forward [111].

To further discuss the differences between Ludwig’s second and third defi-

nitions, Figures A.2 and A.3 help to compare a beam-steered antenna pattern

plot at Az = -45o and El = 45o for both definitions. Figure A.2 shows the

antenna patterns for V polarization, while Figure A.3 shows the H polarization

case. To the left of each figure is the Ludwig II representation, and on the right

the Ludwig III. One can notice from Figure A.3 that the cross-polarization for

the second definition is lower than in the third, demonstrating the statement

made by [112].
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(a) Ludwig II definition, V polarization. (b) Ludwig III definition, V polarization.

Figure A.2: Ludwig II vs Ludwig III comparison, V polarization. Co-
component indicated by continuous lines, and cross-components by dashed
lines.

(a) Ludwig II definition, H polarization. (b) Ludwig III definition, H polarization.

Figure A.3: Ludwig II vs Ludwig III comparison, H polarization. Co-
component indicated by continuous lines, and cross-components by dashed
lines.

A.4 Antenna Fixture and Setup

For all tests, the antenna and its fixture rested on top of microwave absorber

blocks as illustrated in Figure 4.5. The AUT was aligned to the waveguide

139



probe by positioning the probe in front the AUT’s corners and measuring the

Z distance between the probe’s end and the AUT’s corner, using a laser dis-

placement sensor. The AUT is adjusted manually until the distance measured

of all corners differ from each other by only 0.01 inch (25.5 um).

A.5 Array Interface

The complete procedure was commanded by an Excel macro written in

Visual Basic. The script is executed on the PC controlling the scanner, as

shown in Figure 4.4, and it defines, coordinates and executes all steps of the

procedure. A typical program will setup the measurements parameters of the

scanner, configure the AUT excitation, trigger a measurement, log the results

and repeat for all required measurements.

The communication between the controlling PC and the APAR is via eth-

ernet using a UDP protocol as required by the APAR. The macro sequentially

sends the configuration commands to the AC controller, which will interpret

the data and communicate with the TR modules to configure their phase and

attenuation states accordingly.

A.6 Microwave Power Level

A C-band low-noise amplifier is added on the receiver port path. This

amplification will provide a +3 dBm input power at the SMA connector of

the antenna probe. The Minicircuits ZX60-83LN-12+ is used. The addition

of the LNA improves the SNR level of the measurements. This is important

because it enhances accuracy, especially when sampling individual channels of

the TR module boards which yield considerable lower power.

Moreover, for the TR module characterization and pattern scans a +5dB
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attenuator was added to the microwave circuit, immediately at the output

of the LNA, because the extra +13dB is excessive when all TR modules are

active. However, for embedded element pattern scans, the attenuator was

removed.
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B List of Abbreviations

5G Fifth generation

APAR Airborne phased array radar

ARRC Advanced Radar Research Center

ATT Attenuation

AUT Antenna under test

CROMMA Configurable robotic millimeter-wave antenna

DUT Device under test

EOL Earth Observing Laboratory

FF Far field

HD High definition

HPA High power amplifier

LRU Line replaceable unit

MC Mutual coupling

MIMO Multiple input multiple output

NCAR National Center for Atmospheric Research

NF Near field

OEWG Open ended waveguide

PCB Printed circuit board

PP Park and probe

PS Phase shift

REV Rotation of electric vector

RF Radio frequency

RMSE Root mean squared error
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Rx Reception

SLL Sidelobe level

SNR Signa-to-noise ration

SW Switch

TR Transmit/Receive

Tx Transmission

VB Visual Basic

VNA Vector network analyzer
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