441 research outputs found

    Hete-CF: Social-Based Collaborative Filtering Recommendation using Heterogeneous Relations

    Full text link
    Collaborative filtering algorithms haven been widely used in recommender systems. However, they often suffer from the data sparsity and cold start problems. With the increasing popularity of social media, these problems may be solved by using social-based recommendation. Social-based recommendation, as an emerging research area, uses social information to help mitigate the data sparsity and cold start problems, and it has been demonstrated that the social-based recommendation algorithms can efficiently improve the recommendation performance. However, few of the existing algorithms have considered using multiple types of relations within one social network. In this paper, we investigate the social-based recommendation algorithms on heterogeneous social networks and proposed Hete-CF, a Social Collaborative Filtering algorithm using heterogeneous relations. Distinct from the exiting methods, Hete-CF can effectively utilize multiple types of relations in a heterogeneous social network. In addition, Hete-CF is a general approach and can be used in arbitrary social networks, including event based social networks, location based social networks, and any other types of heterogeneous information networks associated with social information. The experimental results on two real-world data sets, DBLP (a typical heterogeneous information network) and Meetup (a typical event based social network) show the effectiveness and efficiency of our algorithm

    Machine Learning Models for Context-Aware Recommender Systems

    Get PDF
    The mass adoption of the internet has resulted in the exponential growth of products and services on the world wide web. An individual consumer, faced with this data deluge, is expected to make reasonable choices saving time and money. Organizations are facing increased competition, and they are looking for innovative ways to increase revenue and customer loyalty. A business wants to target the right product or service to an individual consumer, and this drives personalized recommendation. Recommender systems, designed to provide personalized recommendations, initially focused only on the user-item interaction. However, these systems evolved to provide a context-aware recommendations. Context-aware recommender systems utilize additional context, such as genre for movie recommendation, while recommending items to users. Latent factor methods have been a popular choice for recommender systems. With the resurgence of neural networks, there has also been a trend towards applying deep learning methods to recommender systems. This study proposes a novel contextual latent factor model that is capable of utilizing the context from a dual-perspective of both users and items. The proposed model, known as the Group-Aware Latent Factor Model (GLFM), is applied to the event recommendation task. The GLFM model is extensible, and it allows other contextual attributes to be easily be incorporated into the model. While latent-factor models have been extremely popular for recommender systems, they are unable to model the complex non-linear user-item relationships. This has resulted in the interest in applying deep learning methods to recommender systems. This study also proposes another novel method based on the denoising autoencoder architecture, which is referred to as the Attentive Contextual Denoising Autoencoder (ACDA). The ACDA model augments the basic denoising autoencoder with a context-driven attention mechanism to provide personalized recommendation. The ACDA model is applied to the event and movie recommendation tasks. The effectiveness of the proposed models is demonstrated against real-world datasets from Meetup and Movielens, and the results are compared against the current state-of-the-art baseline methods

    Latent Relational Metric Learning via Memory-based Attention for Collaborative Ranking

    Full text link
    This paper proposes a new neural architecture for collaborative ranking with implicit feedback. Our model, LRML (\textit{Latent Relational Metric Learning}) is a novel metric learning approach for recommendation. More specifically, instead of simple push-pull mechanisms between user and item pairs, we propose to learn latent relations that describe each user item interaction. This helps to alleviate the potential geometric inflexibility of existing metric learing approaches. This enables not only better performance but also a greater extent of modeling capability, allowing our model to scale to a larger number of interactions. In order to do so, we employ a augmented memory module and learn to attend over these memory blocks to construct latent relations. The memory-based attention module is controlled by the user-item interaction, making the learned relation vector specific to each user-item pair. Hence, this can be interpreted as learning an exclusive and optimal relational translation for each user-item interaction. The proposed architecture demonstrates the state-of-the-art performance across multiple recommendation benchmarks. LRML outperforms other metric learning models by 6%7.5%6\%-7.5\% in terms of Hits@10 and nDCG@10 on large datasets such as Netflix and MovieLens20M. Moreover, qualitative studies also demonstrate evidence that our proposed model is able to infer and encode explicit sentiment, temporal and attribute information despite being only trained on implicit feedback. As such, this ascertains the ability of LRML to uncover hidden relational structure within implicit datasets.Comment: WWW 201

    Study of event recommendation in event-based social networks

    Get PDF
    Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Maria Salamó Llorente[en] Recommendations are in our every day life: streaming services, social media, web pages... are adopting and using recommender algorithms. Recommendation algorithms benefit both parts: clients can find more easily products that they like, and the companies make more benefits because clients use their services more. The recommendation problem presented in this work is a non-traditional variant of this problem as it recommends events. Events, unlike books or videos, cannot be recommended in the same way, because users cannot rate an event until the day it happens, and then no new users can rate it again after that. This magnifies a problem called “cold start problem” where every new event has no ratings, which greatly complicates the recommendation problem. This work studies Event Recommendation for a social media called Meetup 1 where users can attend a selection of events created by the community. Although users do not leave a rating of the event, we have a signal called RSVP 2 , which is a non-obligatory mark on whether the user has the intention to attend the event or not. In this work we will be exploring how different recommender algorithms perform to recommend events based on RSVPs and also propose three new algorithms. The analysis will be done with 5 datasets extracted from Meetup during the months between November 2017 and April 2018. The results show that hybrid versions containing collaborative and contextual-aware algorithms rank the best among all the algorithms tested

    Joint knowledge graph approach for event participant prediction with social media retweeting

    Get PDF
    The version of record of this article, first published in Knowledge and Information Systems, is available online at Publisher’s website: https://doi.org/10.1007/s10115-023-02015-0Organized event is an important form of human activity. Nowadays, many digital platforms offer organized events on the Internet, allowing users to be organizers or participants. For such platforms, it is beneficial to predict potential event participants. Existing work on this problem tends to borrow recommendation techniques. However, compared to e-commerce items and purchases, events and participation are usually of a much smaller frequency, and the data may be insufficient to learn an accurate prediction model. In this paper, we propose to utilize social media retweeting activity to enhance the learning of event participant prediction models. We create a joint knowledge graph to bridge the social media and the target domain, assuming that event descriptions and tweets are written in the same language. Furthermore, we propose a learning model that utilize retweeting information for the target domain prediction more effectively. We conduct comprehensive experiments in two scenarios with real-world data. In each scenario, we set up training data of different sizes, as well as warm and cold test cases. The evaluation results show that our approach consistently outperforms several baseline models in both warm and cold tests

    Social Relations and Methods in Recommender Systems: A Systematic Review

    Get PDF
    With the constant growth of information, data sparsity problems, and cold start have become a complex problem in obtaining accurate recommendations. Currently, authors consider the user's historical behavior and find contextual information about the user, such as social relationships, time information, and location. In this work, a systematic review of the literature on recommender systems that use the information on social relationships between users was carried out. As the main findings, social relations were classified into three groups: trust, friend activities, and user interactions. Likewise, the collaborative filtering approach was the most used, and with the best results, considering the methods based on memory and model. The most used metrics that we found, and the recommendation methods studied in mobile applications are presented. The information provided by this study can be valuable to increase the precision of the recommendations
    corecore