26 research outputs found

    Reparameterization of ruled surfaces: toward generating smooth jerk-minimized toolpaths for multi-axis flank CNC milling

    Get PDF
    This paper presents a novel jerk minimization algorithm in the context of multi-axis flank CNC machining. The toolpath of the milling axis in a flank milling process, a ruled surface, is reparameterized by a B-spline function, whose control points and knot vector are unknowns in an optimization-based framework. The total jerk of the tool's motion is minimized, implying the tool is moving as smooth as possible, without changing the geometry of the given toolpath. Our initialization stage stems from measuring the ruling distance metric (RDM) of the ruled surface. We show on several examples that this initialization reliably finds close initial guesses of jerk-minimizers and is also computationally efficient. The applicability of the presented approach is illustrated by some practical case studies.RYC-2017-2264

    Smart machining system platform for CNC milling with the integration of a power sensor and cutting model

    Get PDF
    Novel techniques and strategies are investigated for dynamically measuring the process capability of machine tools and using this information for Smart Machine System (SMS) research. Several aspects of the system are explored including system integration, data acquisition, force and power model calibration, feedrate scheduling and tool condition monitoring. A key aspect of a SMS is its ability to provide synchronization between process measurements and model estimates. It permits real time feedback regarding the current machine tool process. This information can be used to accurately determine and keep track of model coefficients for the actual tooling and materials in use, providing both a continued improvement in model accuracy as well as a way to monitor the health of the machine and the machining process. A cutting power model is applied based on a linear tangential force model with edge effect. The robustness of the model is verified through experiments with a wide variety of cutting conditions. Results show good agreement between measured and estimated power. A test platform has been implemented for performing research on Smart Machine Systems. It uses a commercially available OAC from MDSI, geometric modeling software from Predator along with a number of modules developed at UNH. Test cases illustrate how models and sensors can be combined to select machining conditions that will produce a good part on the first try. On-line calibration allows the SMS to fine tune model coefficients, which can then be used to improve production efficiency as the machine learns its own capabilities. With force measurements, the force model can be calibrated and resultant force predictions can be performed. A feedrate selection planner has been created to choose the fastest possible feedrates subject to constraints which are related to part quality, tool health and machine tool capabilities. Monitoring tangential model coefficients is shown to be more useful than monitoring power ratio for tool condition monitoring. As the model coefficients are independent of the cutting geometry, their changes are more promising, in that KTC will increase with edge chipping and breakage, while KTE will increase as the flank wearland expands

    A Modeling and Analysis Framework To Support Monitoring, Assessment, and Control of Manufacturing Systems Using Hybrid Models

    Full text link
    The manufacturing industry has constantly been challenged to improve productivity, adapt to continuous changes in demand, and reduce cost. The need for a competitive advantage has motivated research for new modeling and control strategies able to support reconfiguration considering the coupling between different aspects of plant floor operations. However, models of manufacturing systems usually capture the process flow and machine capabilities while neglecting the machine dynamics. The disjoint analysis of system-level interactions and machine-level dynamics limits the effectiveness of performance assessment and control strategies. This dissertation addresses the enhancement of productivity and adaptability of manufacturing systems by monitoring and controlling both the behavior of independent machines and their interactions. A novel control framework is introduced to support performance monitoring and decision making using real-time simulation, anomaly detection, and multi-objective optimization. The intellectual merit of this dissertation lies in (1) the development a mathematical framework to create hybrid models of both machines and systems capable of running in real-time, (2) the algorithms to improve anomaly detection and diagnosis using context-sensitive adaptive threshold limits combined with context-specific classification models, and (3) the construction of a simulation-based optimization strategy to support decision making considering the inherent trade-offs between productivity, quality, reliability, and energy usage. The result is a framework that transforms the state-of-the-art of manufacturing by enabling real-time performance monitoring, assessment, and control of plant floor operations. The control strategy aims to improve the productivity and sustainability of manufacturing systems using multi-objective optimization. The outcomes of this dissertation were implemented in an experimental testbed. Results demonstrate the potential to support maintenance actions, productivity analysis, and decision making in manufacturing systems. Furthermore, the proposed framework lays the foundation for a seamless integration of real systems and virtual models. The broader impact of this dissertation is the advancement of manufacturing science that is crucial to support economic growth. The implementation of the framework proposed in this dissertation can result in higher productivity, lower downtime, and energy savings. Although the project focuses on discrete manufacturing with a flow shop configuration, the control framework, modeling strategy, and optimization approach can be translated to job shop configurations or batch processes. Moreover, the algorithms and infrastructure implemented in the testbed at the University of Michigan can be integrated into automation and control products for wide availability.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147657/1/migsae_1.pd

    Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems

    Get PDF
    This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Special Issue of the Manufacturing Engineering Society (MES)

    Get PDF
    This book derives from the Special Issue of the Manufacturing Engineering Society (MES) that was launched as a Special Issue of the journal Materials. The 48 contributions, published in this book, explore the evolution of traditional manufacturing models toward the new requirements of the Manufacturing Industry 4.0 and present cutting-edge advances in the field of Manufacturing Engineering focusing on additive manufacturing and 3D printing, advances and innovations in manufacturing processes, sustainable and green manufacturing, manufacturing systems (machines, equipment and tooling), metrology and quality in manufacturing, Industry 4.0, product lifecycle management (PLM) technologies, and production planning and risks
    corecore